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Abstract

Maximizing local autonomy has led to a scalable Inter-
net. Scalability and the capacity for distributed control
have unfortunately not extended well to resource access
control policies and mechanisms. Yet management of
security is becoming an increasingly challenging prob-
lem, in no small part due to scaling up of measures such
as number of users, protocols, applications, network el-
ements, topological constraints, and functionality expec-
tations.

In this paper we discuss scalability challenges for tra-
ditional access control mechanisms and present a set of
fundamental requirements for authorization services in
large scale networks. We show why existing mechanisms
fail to meet these requirements, and investigate the cur-
rent design options for a scalable access control architec-
ture.

We argue that the key design options to achieve scala-
bility are the choice of the representation of access con-
trol policy, the distribution mechanism for policy and the
choice of access rights revocation scheme.

1 Introduction

Technology trends and rapid commercialization have
resulted in the rapid deployment of many intercon-
nected, non-research computer networks, particularly
those based on Internet technologies [19, 23]. So-
called “network effects” apply strongly here, as increas-
ing numbers of online services attract increasing num-
bers of users (including corporate entities), attracting fur-
ther online availability of information and services. The
resulting communications system has large scale in ev-
ery dimension, with large numbers of network-attached
devices and users, and a variety of protocols and mech-
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Figure 1: A firewall’s bottleneck topology.

anisms1. While users desire access to as wide a va-
riety of data and services as possible, some organiza-
tions (e.g., financial, military, etc.) have networked re-
sources with more restrictive access control policies, and
various protection mechanisms in place to enforce these
policies. Since the same types of equipment and proto-
cols/applications are used in both “public” and “private”
networks (those not directly connected to the Internet),
the same, or very similar, security mechanisms are em-
ployed.

For example, IP firewalls offer a convenient method
for performing access control on packets and connec-
tions due to the restrictions they impose on the network
topology, as seen in Figure 1. Firewalls do not directly
enforce end-to-end security properties; they are systems
dedicated to examining network traffic between a pro-
tected network and the rest of the world. Thus, a firewall
can permit or deny a particular packet (or connection)

1An indication of the number of new services and protocols being
deployed can be found in the number of new Request For Comment
documents that have been issued the past few years[20]: 1992 - 92
RFCs, 1993 - 173, 1994 - 184, 1995 - 130, 1996 - 171, 1997 - 190,
1998 - 235, 1999 - 260, 2000 - 278. Not all of these documents refer
to distinct protocols or services, but they extend or modify existing
protocols in some way.
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to pass through it based on a policy, but cannot directly
protect traffic from eavesdropping or modification once it
has passed. Network-layer encryption offers end-to-end
secrecy and integrity guarantees, but does not directly
address the issue of access control.

Network structure has become sufficiently complex
that building blocks such as boundary controllers and
encryption are increasingly challenged. Consider, for
example, “intranets” and “extranets”, where parts of an
otherwise protected network are exposed to another en-
tity for the purposes of collaboration, tele-commuting,
etc. These network structures need access control mech-
anisms that can operate throughout a network, and en-
force a coherent security policy. If we reexamine the use
of centralized firewalls, we see several problems:

� The assumption that all insiders are trusted is false.

� It is easy for anyone to establish a new, unautho-
rized entry point to the network using tunnels or
poorly administered access points, such as the in-
creasingly pervasive 802.11 wireless access.

� Some protocols (FTP, RealAudio) require semantic
knowledge and demultiplexing which is hard to per-
form at a firewall, while application-specific gate-
ways are clumsy and introduce new sources of com-
plexity.

� End-to-end encryption can also be a threat to fire-
wall functionality [2], as it inhibits examining
packet fields needed for filtering.

� Finally, finer-grained (and even application-
specific) access control, which standard firewalls
cannot easily accommodate within their processing
budget, is increasingly a requirement.

1.1 Middleboxes and endpoints

These problems suggest that access control must become
an end-to-end consideration, similar to authentication
and confidentiality. This is not surprising, as the IP ar-
chitecture used the end-to-end argument [22, 8] as the
basis for many design decisions. In the present context,
we might view the logical end point (for access control)
as moving from a centralized firewall to end nodes (e.g.,
hosts) when a network must support a high degree of de-
centralized access control.

To manage access control in these networks and de-
liver the required services, new tools and architectures
are needed to cope with the increased scale and com-
plexity of the network entities (devices, users, protocols,

security policy enforcement points) and their respective
policies for interaction. Since the primary method of ad-
dressing scalability issues in networking (and other ar-
eas) has been replication, we might attempt a “separa-
tion of duty” structure, where different individuals man-
age different aspects of the network’s operations. Un-
fortunately, current tools either ignore, or do not suffi-
ciently address separation of duty concerns, as we shall
see later in Section 2. Even in small networks, adminis-
trators have trouble handling the configuration of a small
number of firewalls [29]. The results of this can be seen
in studies of network intrusions and their causes [13]:
an increasing number of vulnerabilities can be directly
attributed to misconfiguration, with an even larger per-
centage of intrusions indirectly caused by administration
failures.

1.2 Access Control Scalability

The situation is equivalently bad in simply scaling the
policy enforcement mechanisms; most access control
mechanisms become a bottleneck as the level of replica-
tion increases in an attempt to meet increased demands
in network bandwidth, I/O and processing. To better il-
lustrate this, let us consider a simple example.

Imagine a building with � doors. People wishing to
enter the building show up at one of the door; all doors
are equivalent for the purpose of accessing the building.

In a simple configuration, each door has a guard that
examines the person’s identification (authentication) and
checks the list of people that are allowed to enter the
building (access control). If the person is on the list, he
is allowed in the building.

To scale for many visitors, we have to increase the
number of doors. In the case of the traditional access
control (using guards), we have the problem of distribut-
ing the list to all the guards and maintaining that list. Fur-
thermore, if the number of potential visitors is large, the
list becomes very large and the guards have to spend time
and effort looking up people in that list (let alone lifting
the book!). Although we have multiple doors, and we
can hire many guards, the work of the guards increases
rapidly with the number of users, because that work de-
pends on the size of the list.

Now consider a scenario where the guards are replaced
with locks on the doors. Each person has a key and that
key grants access to the building. Let us assume momen-
tarily that all visitors have the same key (access control
policy); in that case, any visitor can enter through any
door. The work in performing an access control decision
does not depend on the number of doors. Also since each
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visitor is supplying the key, the complexity of the locks
on each door is independent of the total number of visi-
tors or the number of other doors. As the complexity of
the mechanism increases (more sophisticated locks, tak-
ing more time to operate) the throughput per door may
go down, but this can be fixed by adding more doors.

We shall see in a later section how the problem of giv-
ing all the visitors the same key can be addressed.

1.3 Organization

The rest of the paper is organized as follows. Section
2 outlines requirements for modern networks and points
out where current systems are inadequate to meet these
requirements. Section 3 discusses the various options
available to the designer of an access control mechanism,
with particular emphasis to a credential-based system.
Section 4 concludes the paper with a brief summary of
what should be “ideal” access control scheme for a large
multi-service network infrastructure.

2 New requirements and existing
architectures

Access control management systems appropriate for the
scale and complexity of today’s networks must meet sev-
eral requirements:

1. The system must be able to support the security pol-
icy requirements of many diverse applications, given the
large number in use today. (The term “applications”
is used to mean services and protocols that require ac-
cess control configuration. These applications can be
security-oriented, e.g., a network layer security protocol,
or they may be consumers of security services, e.g., a
web server.)

2. The increasing size and complexity of networks
strains the ability of administrators to effectively man-
age their systems. The traditional way of handling scale
at the human level has been decentralization of manage-
ment and delegation of authority. This approach is evi-
dent throughout the complete range of human activities
(i.e., most, if not all, effective large “systems” involve the
creation and maintenance of an administration service
where responsibility for different aspects of the system
is handled by different entities). Thus, an access control
management system for large networks must be able to
adapt to different management structures (web of trust,
hierarchical management, etc.).

3. The system should be agnostic with respect to the
configuration front-end that administrators use. The first
reason for this is to allow a decoupling of the manage-
ment mechanism, which could potentially be used for the
whole lifetime of the network, from the method used to
configure it, which may change as a result of new devel-
opments in Human-Computer Interaction interfaces, or
because of a change in administrators. Secondly, such
a system, by allowing the use of different management
front-ends for configuring different applications’ access
control policies, encourages the development and use of
front-ends (GUIs, languages, etc.) that are tailored to the
specific application and its particular nuances.

We should note that this requirement is not typical for
access control management systems; most such systems
promote the use of a single configuration front-end for
all the applications in the system. Although more re-
search is needed in this area, one can see the parallels be-
tween the all-encompassing languages developed in the
1970s and the more recent trend on “domain-specific”
languages (languages specifically designed to address a
limited application domain, e.g., active networks).

4. The system must be able to handle large numbers of
users, applications, and policy evaluation and enforce-
ment points. As we saw above, corporate (and other)
networks are rapidly increasing in size; furthermore, new
protocols are being deployed (without necessarily depre-
cating old ones); finally, these same networks are used
in increasingly more complicated ways (intranets, ex-
tranets, etc.).

5. A corollary of the above is that the system should be
able to handle the common operations (such as adding
or removing users) efficiently. This is important be-
cause, over the lifetime of the system, these overheads
will dominate other costs like initial deployment.

6. Last but not least, the system must be efficient. It
should not impose significant overheads on existing pro-
tocols and mechanisms; it should strive to match the per-
formance curve attained by service replication. Ideally,
it should even improve performance by addressing any
inefficiencies in existing management systems.

2.1 Systems versus requirements

2.1.1 ACLs and Taos

The work by Lampson [15, 16] established the ground
rules for access control policy specification by introduc-
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Multiple Multiple Decentralized Scalability Cheap
Languages Applications Management Updates

OASIS[11] x x
Hinrichs[12] x
Filtering Postures[9] x
Firmato[1]
Molitor[18] x
Hale et al.[10] x x
Bonatti et al.[3] x x
Napoleon[24] x x
SnareWorks[7]
COPS[4] x
RADIUS[21] x
Bull et al.[5] x x
Kerberos[17] x x x

Table 1: System classification. Bold-face font indicates a system name, otherwise the author name is used.

ing the access control matrix as a useful generalization
for modeling access control. A concept derived from the
access control matrix that is used in many security sys-
tem is the Access Control List (ACL); this is a list of 
Subject, Object, Access Rights � tuples, that collectively
encompass the access control policy of the entire sys-
tem, in terms of users, and services or data to which ac-
cess must be controlled. The focus in both that work and
in Taos [28] is on authentication. The latter depended
on a unified policy specification and enforcement frame-
work, although it identified credentials (in the form of
digitally signed statements) as a scalable authorization
mechanism.

2.1.2 Policy algebras

In [3] the authors propose an algebra of security policies
that allows combination of authorization policies spec-
ified in different languages and issued by different au-
thorities. The algebraic primitives presented allow for
considerable flexibility in policy combination. As the au-
thors discuss, their algebra can be directly translated to
boolean predicates that combine the authorization results
of the different policy engines. The main disadvantage
of this approach is that it assumes that all policies and
(more importantly) all necessary supporting information
is available at a single decision point, which is a diffi-
cult proposition even within the bounds of an operating
system. Our observation here is that in fact the decision
made by a policy engine can be cached and reused higher
in the stack. Although the authors briefly discuss partial
evaluation of composition policies, they do so only in the

context of their generation and not on enforcement.

2.1.3 Domain specific languages

The approach taken in Firmato[1] is that of use of a
“network grouping” language that is customized for each
managed firewall at that firewall. The language used is
independent of the firewalls and routers used, but is lim-
ited to packet filtering. Furthermore, it does not han-
dle delegation, nor was it designed to cover different, in-
teracting application domains (IPsec, web access, etc.).
Policy updates are equivalent to policy initializations in
that they require a reloading of all the rules on the af-
fected enforcement points. Finally, the entire relevant
policy rule-set has to be available at an enforcement
point, causing scale problems with respect to the number
of users, peer nodes, and policy entries. Other similar
work includes [12, 9, 18].

2.1.4 Names and role dependencies

In the OASIS architecture [11], the designers identify
the dependencies between different services and the need
to coordinate these. They present a role-based system
where each principal may be issued with a name by one
service on condition that it has already been issued with
some specified name of another service. Their system
uses event notification to revoke names when the issuing
conditions are no longer satisfied, thus revoking access to
services that depended on that name. Each service is re-
sponsible for performing its own authentication and pol-
icy enforcement. However, credentials in that system are
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limited to verifying membership to a group or role, thus
making it necessary to keep policy closely tied to the ob-
jects it applies to. Furthermore, OASIS uses delegation
in a very limited scope, thus limiting administrative de-
centralization.

2.1.5 Policy mediation, proxying and delegation

The work described in [10] proposes a ticket-based ar-
chitecture using mediators to coordinate policy between
different information enclaves. Policy relevant to an ob-
ject is retrieved by a central repository by the controlling
mediator. Mediators also map foreign principals to local
entities, assign local proxies to act as trusted delegates
of foreign principals, and perform other authorization-
related duties. Coordination policy must be explicitly
defined by the security administrator of a system, and is
separate from (although is taken in consideration along
with) access policy.

2.1.6 Group-based access control

The Napoleon system [24, 25] defines a layered group-
based access control scheme that is in some ways similar
to the distributed firewall concept presented in [14], al-
though it is mostly targeted to RMI environments like
CORBA. Policies are compiled to access control lists ap-
propriate for each application (in our case, that would be
each end host) and pushed out to them at policy creation
or update time.

2.1.7 Specializing security with wrappers

SnareWork [7] is a DCE-based system that can provide
transparent security services (including access control) to
end-applications, through use of wrapper modules that
understand the application-specific protocols. Policies
are compiled to ACLs and distributed to the various hosts
in the secured network. Connections to protected ports
are reported to a local security manager which decides
whether to drop, allow, or forward them (using DCE
RPC) to a remote host, based on the ACLs.

2.1.8 Decentralized enforcement and delegation

[5] describes an open, scalable mechanism for enforcing
security. It argues for a shift to a more decentralized pol-
icy specification and enforcement paradigm, without dis-
cussing the specifics of policy expression. It emphasizes
the need for delegation as a mechanism to achieve scale
and decentralization, but focuses on design of protocols

Client

(1)
(2)

(3)

(4)

(5)

(3): Client, Enforcement Point, TGT
(2): Ticket−Granting Ticket (TGT)

(4): Service−specific Ticket (TKT)
(5): TKT, request

(1): "Hi, I’m Client"

Enforcement
point

TGS

KDC

Figure 2: The Kerberos authentication protocol.

for accomplishing this rather than the more high-level re-
quirements on policy expression.

2.1.9 RAP, COPS, RADIUS and DIAMETER

In the IETF, the RAP (RSVP Admission Policy) working
group has defined the COPS [4] protocol, as a standard
mechanism for moving policy to the devices. This pro-
tocol was developed for use in the context of QoS, but is
general enough to be used in other application domains.

RADIUS [21] and its proposed successor, DIAME-
TER [6], are similar in some ways to COPS. They require
communication with a policy server, which is supplied
with all necessary information and is depended upon to
make a policy-based decision. Both protocols are ori-
ented toward providing Accounting, Authentication, and
Authorization services for dial-up and roaming users.

2.1.10 Kerberos

Kerberos [17] is an authentication system that uses a cen-
tral server and a set of secret key protocols, as shown in
Figure 2, to authenticate clients and give both a client and
an application server a secret key for use in protecting
further communications. Initially, the client authentica-
tion to the Key Distribution Center (KDC), which gives
it a Ticket Granting Ticket; this step occurs infrequently
(typically, once every 8 hours). For each service the
client needs to contact, it must then contact the Ticket
Granting Service (TGS), which responds with a Ticket
(TKT) that is service-specific. The client then contacts
the service, providing TKT. Often, the KDC and the TGS
are co-located.
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The two most important deficiencies of Kerberos
are that it does not implement any kind of authoriza-
tion (applications are expected to make their own ac-
cess control decisions, based on information they ac-
quire through other means, e.g., Directory Services, lo-
cal ACLs, database queries), and it is expensive, in terms
of administrative effort, to do cross-realm authentication,
as this requires all clients to have complete knowledge of
the trust relationships between realms (a Kerberos realm
is the collection of systems and users managed by a sin-
gle administrative entity). Although there has been some
recent work towards addressing these issues [27, 26],
there remain significant problems with using Kerberos
in a truly large scale environment.

A more important deficiency, however, lies in the na-
ture of the secret key authentication employed by Ker-
beros: Referrals (used for cross-realm authentication)
can solve the problem of securely determining the iden-
tity of the principals and KDCs involved in a request,
but they cannot be used to convey hierarchical policy in-
formation to the enforcement point, beyond any policy
included in the ticket issued by the enforcement point’s
KDC. While access policy could be encoded in the re-
ferrals themselves, these would not be verifiable to the
enforcement point (since it does not share a secret key
with any of the intermediate KDCs). The intermediate
KDCs cannot make an access control decision at the time
the referral must be issued, since they do not have any
information about the application request itself; even if
they did, however, this would be an extremely inefficient
approach to access control, since all such KDCs would
have to be contacted each time a request is made — with
no possibility of ticket and referral caching, as is cur-
rently possible.

Similar inefficiencies arise when the enforcement
point contacts each KDC for every request made by the
client. Either of these approaches effectively converts
a fairly decentralized authentication mechanism into an
extremely centralized access control mechanism. Fi-
nally, a referral-based architecture that supports policy
dissemination, requires duplication of client information
at both the client and the enforcement point’s KDC.
This is necessary because only the enforcement point’s
KDC can provide policy information to the enforcement
point (encoded inside a ticket), and therefore has to have
knowledge of the client’s privileges.

2.2 Summary: Access Control System
Classification

Table 1 classifies the various systems based on the re-
quirements we enumerated. For the real system require-
ments we enumerated at the beginning of this section, no
single system gets right all of the policy and mechanism
interaction challenges. The next section outlines design
choices needed for such a system.

3 Designing a Scalable Access Con-
trol Architecture

The concerns outlined in Section 2 must guide the design
of an access control architecture. Such a system must ef-
fectively scale in two different, but related, areas: system
and management complexity (and size).

Addressing system complexity requires policy speci-
fication, distribution, and enforcement mechanisms that
can handle large numbers of users, enforcement points,
and applications. Furthermore, the system must be able
to handle the increased complexity of mechanism inter-
actions. We can critique three obvious models rather eas-
ily.

Fully-centralized (Figure 3) approaches demonstrate
poor scaling properties. Here, the enforcement points
contact the server with the user request details, and ex-
pect an answer. Policy evaluation is done at the central
repository, for each request. Responses may be cached
at the enforcement points, as long as the details of the
request do not change, but systems implementing this
approach must therefore also address policy consistency
issues. Interactions between services and protocols are
easy to define, since all the information is centrally avail-
able.

Semi-centralized (Figure 4) approaches are those
where policy is centrally specified but distributed (syn-
chronously, or “simultaneously”) to all enforcement
points. Interactions between protocols and services are
easy to define, since all the information is centrally avail-
able. Changes to the running system require commu-
nication with the affected enforcement points. Such
approaches require the enforcement points to maintain
large amounts of potentially unneeded state, and require
communication for common (and thus frequent) security
operations such as adding/removing users or modifying
their privileges.
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Figure 3: Centralized policy specification and enforcement.
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Figure 4: Central policy specification, decentralized en-
forcement.

Fully-decentralized (Figure 5) approaches do not eas-
ily allow for interaction between different applications.
Policy is specified by different administrators for the dif-
ferent applications, users, and enforcement points. Pol-
icy may be distributed directly to the enforcement points,
or may be made available to the users in the form of
certificates or tickets. Interactions between protocols
and services are difficult to express, unless an addi-
tional “coordination” layer is added, which re-introduces
a measure of centralization to the system; the coordina-
tion layer may be explicit (in the form of a meta-policy
server), or implicit (in the form of a meta-policy lan-
guage).

No real system follows any of these three approaches
(especially the centralized ones) in their pure form (e.g.,
caches are employed at enforcement points), but they
outline the separation of policy from mechanism in ac-
cess control architectures.

3.1 Use of flexible credentials

As a first design choice then, a system should exhibit the
scaling properties of a decentralized policy specification,
distribution, and enforcement system, while retaining the
ability to let different applications and protocols interact
as needed. Therefore, policy should be expressed in a
way that is easy to distribute to enforcement points “on
the fly”, and which is easy for the enforcement points
to verify and process efficiently. One way of expressing
low-level policy is in the form of public-key credentials
(roughly, public-key certificates with authorization infor-
mation embedded inside them); an administrator can is-
sue signed statements that contain the privileges of users;
enforcement points can verify the validity of these cre-
dentials and enforce the policies encoded therein. An
additional benefit is that, since credentials are integrity-
protected via a digital signature, they need not be pro-
tected when transmitted over the network (thus avoiding
a potential security bootstrap problem). Thus, it is pos-
sible to distribute policies in any of the following three
ways:

1. Have the policies “pushed” directly to the enforce-
ment points. While this is the simplest approach, it re-
quires all policy information to be stored locally at an
enforcement point, which may present problems for em-
bedded systems or routers. For example, assume a sys-
tem that any of 100,000 users may access; identifying
each user would require knowledge of their public key,
for authentication purposes. Assuming a typical RSA
key of 128 bytes (1024 bits), simply storing this informa-
tion requires about 13 MB, excluding any access control
information. Typical certificate encodings multiply this
by 3 or 4, and access control information will further add
to this.

Furthermore, under this scheme, changes in the policy
(e.g., adding a new user) require all affected systems to
be contacted and their local copy of the policy updated.
If such changes are frequent, or the number of affected
systems is large, the cost can prove prohibitive.

Finally, the enforcement point will also have to incur a
processing cost for examining potentially “useless” pol-
icy entries when trying to determine whether a specific
user request should be granted. The exact cost depends
on the particular scheme used to store and process this
information.

2. Have the policies “pulled” by the enforcement points
from a policy repository as needed, and then stored lo-
cally. This exhibits much better behavior in terms of pro-
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Policy interaction

Enforcement
point

Enforcement Enforcement
point

User User User User

User service requests

point

specification
Policy

Policy
specification

Policy coordination

Policy distribution

Figure 5: Decentralized policy specification and enforce-
ment.

cessing and storage requirements, but requires that the
enforcement point perform some additional processing
(and incur some communication overhead) when evalu-
ating a security request. System availability can be ad-
dressed via replicated repositories; an attacker that com-
promises one or more of these can deny service to legiti-
mate users, but cannot otherwise affect a policy decision.
This approach offers two additional advantages: first, it
is relatively easy to deploy since it requires modification
of only the enforcement points (as opposed to modifying
all the clients and other network elements). Secondly, it
effectively addresses privilege revocation (which we dis-
cuss later in this section).

3. Have the policies distributed to the client (user) sys-
tems, and make these responsible for delivering them to
the enforcement points. While this approach requires
modification of the client, most security protocols al-
ready provide certificate exchange as part of the authen-
tication mechanism; it is often relatively straightforward
to modify such protocols to deliver the kind of creden-
tials used in our system instead. Furthermore, since the
end systems hold all the credentials that are relevant to
them, it is possible to determine in advance under what
conditions a request will be granted by an enforcement
point (e.g., how strong the encryption should be to be
able to see confidential information on the corporate web
server).

The three approaches to policy distribution are shown
in Figure 6. These approaches are: (1) policy is pushed

request

Policy
repository

Enforcement
point

Enforcement Enforcement
point point

User User User

Service request Service request

Policy "push"

"pull"
Policy

Policy "push" or "pull"
 to the user

Policy "push"
from the user

Service

Figure 6: Policy distribution models.

to the enforcement points; (2) policy is “pulled” by the
enforcement points from a repository; and (3) policy is
supplied to the end users which must deliver it to the en-
forcement points as needed. A combination of (2) and
(3) may be used in the system: if the client system pro-
vides credentials during the authentication phase, these
are used to determine the user’s privileges; otherwise,
the system may contact a repository to retrieve the rel-
evant information or, if it is overloaded, deny the request
and ask that the user provide the missing information in
a subsequent request. One advantage of this approach is
that policy can be treated as “soft state,” and periodically
be purged to handle new users and requests (using LRU,
or some other replacement mechanism). If the policy is
needed again, it will be re-instantiated. This mechanism
is conceptually similar to virtual memory page replace-
ment algorithms used by modern operating systems, and
thus many such algorithms can be reused here for pur-
poses of policy state. We call this mechanism “lazy pol-
icy instantiation” in our context.

One benefit of choosing to use credentials as a
means for distributing policy is the fact that one of the
frequently-done operations (adding a user, or giving ad-
ditional privileges to an existing user) is cheap: we sim-
ply have to issue the necessary credentials for the user
in question, and make them available in the repository.
Under any of the distribution schemes already described,
the new policy will take effect as soon as the next request
that requires is appears.

On the other hand, one other frequent operation (re-
moving a user, or revoking some existing user’s privi-
leges) is more complicated in an environment where pol-
icy is not centrally stored and maintained. We defer dis-
cussion of this issue until Section 3.4.
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Policy specification points

Policy enforcement points
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Central policy specification and
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point
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Figure 7: Different combinations of policy specification
and decision making with respect to (de)centralization.

3.2 Ease of administration

The second scale-related problem area our system must
address is administrative complexity; the increased sys-
tem scale stretches the ability of human administrators
to handle its complexity. One well-known and widely
used solution is that of “separation of duty”: different
administrators are made responsible for managing dif-
ferent aspects of the larger system. In computer net-
works, this separation can be implemented across net-
work boundaries (e.g., LAN or WAN administrators) or
across application boundaries (e.g., different administra-
tors for the firewalls, the web servers, the print servers,
etc.). Multiple layers of management may be used, to
handle increasing scale. Thus, our system must support
this management approach. One commonly-used mech-
anism that implements hierarchical management in de-
centralized systems is delegation of authority.

Note that the degree of (de)centralization of policy
specification and enforcement are independent of each
other: decentralized policy specification may be built on
top of a centralized enforcement system, by providing
a suitable interface to the different administrators; simi-
larly, a centralized policy specification system can easily
be built on top of decentralized enforcement architecture,
as shown in Figure 7. Although the actual enforcement is
done at the different network elements (marked as “en-
forcement points”), enforcement typically refers to the
decision making (policy evaluation).

information

Firewall

Global
Policy

Host
Router

Local
Enforcement

Compiler BCompiler A

High level policy
(Language A) (Language B)

High level policy
Network etc.

Low−level Policy System

Figure 8: A multi-layer access control architecture.

3.3 Layering considerations

These considerations argue for a multi-layer design, such
as shown in Figure 8. Administrators can use any num-
ber of different interfaces in specifying access control
policy. Thus, administrators can pick an interface they
are already familiar with or one that is not very different
from what they have been using. Furthermore, it is possi-
ble to construct application-specific interfaces, that cap-
ture the particular nuances of the application they con-
trol. This architecture has an intentional resemblance to
the IP “hourglass”, and resolves heterogeneity in simi-
lar ways, e.g., the mapping of the interoperability layer
onto a particular enforcement device, or the servicing of
multiple applications with a policy lingua franca.

Is is important to realize that the design in Figure 8
refers to the logical flow of policy; the system itself
follows the decentralized policy specification and en-
forcement approach. High-level policy is specified sepa-
rately by each administrator. This interface takes as input
the stated policy and information from a network/user
database, and produces policy statements in the common
language of the low-level policy system. Thus, the low-
level policy system (the policy interoperability layer, as
it were) must be powerful and flexible enough to han-
dle different applications. These low-level policy state-
ments are then distributed on-demand to the enforcement
points, where policy evaluation and enforcement is per-
formed locally.

To accommodate management delegation, one of two
approaches may be taken: delegation may be imple-
mented as part of the low-level policy mechanism, or as
a function of the high-level policy specification system,
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Figure 9: Delegation as a function of high-level policy spec-
ification.

as shown in Figures 9 and 10. We differentiate between
high and low levels in the following way. High-level pol-
icy statements by different administrators at level N of
the management hierarchy are imported and combined at
level N-1, recursively. The top-level administrator pro-
duces the final low-level policy statement, as a result of
the composition of all the policies. In contrast, low-level
policy statements from all (relevant) administrators are
combined at the policy evaluation point.

The high-level approach offers considerable flexibil-
ity in expressing delegation and related restrictions, but
causes the higher echelons of the administrative hierar-
chy to become bottlenecks, since they have to be in-
volved in all policy specification. One advantage of fol-
lowing the “low-level” approach is that administration
hierarchies can be built “on the fly”, simply by delegat-
ing to a new administrator.

To summarize, our choice for a low-level policy mech-
anism is dictated by:

1. Flexibility in the types of applications it can sup-
port.

2. Efficiency in evaluating policy.

3. Ability to naturally and efficiently express and han-
dle delegation of authority.

4. Simplicity, as a desirable property of any system2.

2To paraphrase Albert Einstein, “every system should be as simple

Low level policy statements

Policy evaluation
and enforcement
point

User

Service request

Admin 1 Admin 2
Admin 3

Figure 10: Delegation as part of the low-level policy system.

3.4 Policy Updates and Revocation

In a credential-based access control system, adding a new
user or granting more privileges to an existing user in a
credential-based system is simply a matter of issuing a
new credential (note that both operations are equivalent
in terms of sequence of operations in our system).

The inverse operation, removing a user or revoking is-
sued privilege, means notifying entities that might try to
use the relevant credential that it is no longer valid, even
though the credential itself has not expired. Potential rea-
sons for the revocation include theft or loss of the admin-
istrator key used to sign the credential (in which case, all
certificates signed by that key need to be revoked), theft
or loss of the user or administrator key authority has been
delegated to, or discovery that the information contained
in the certificate has become inaccurate.

There are four main mechanisms for certificate revo-
cation:

1. The validity period of the credential itself; if it is set
to a sufficiently small value, then the window of revo-
cation is effectively limited to that. On the other hand,
a short lifetime means that the a user’s credential has to
be re-issued much more often, which implies increased
work for the administrator (in terms of credential gener-
ation and distribution). In the extreme case, where cre-
dentials are made valid for a few minutes only, the CA
is effectively involved in (almost) every authentication
protocol exchange. This approach works well when cre-
dentials are used in a transient manner (e.g., to authorize
temporary access to a resource). On the other hand, if

as possible, but no more.”
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credential revocation is rare in a given deployed system,
the amount of unnecessary work done by the system (re-
issuing short lived policy statements) can be quite high.

2. Certificate revocation lists (CRLs), and their vari-
ants. The idea is that the administrator compiles a list
of credentials that must be revoked, and distributes this
to the enforcement points (or, as is more typical, the
enforcement points periodically retrieve the list from a
repository). The CRL is signed by the administrator, and
contains a timestamp. An enforcement point can verify
that it has received a valid and reasonably recent copy
of the CRL by verifying the signature and examining the
timestamp. Revoked credentials can be removed from
the CRL as soon as their validity period expires. This
approach works well when, on the average, only a small
number of credentials are revoked. Various approaches,
such as Delta-CRLs or Windowed Revocation, attempt
to address scalability issues with this approach.

3. Refresher credentials. In this scheme, the owner of a
long-lived credential has to periodically retrieve a short-
lived credential that must be used in conjunction with
the long-lived one. They can do this by simply con-
tacting the issuer of the credential (or some other entity
that handles refresher credentials). The advantage of this
approach over direct short-lived credentials is that a re-
fresher credential is only issued if the user actually needs
one. On the other hand, it requires some communication
on the part of the credential owner (as do all revocation
schemes, except lifetime-based revocation).

4. Online certificate-status protocols, such as OCSP,
have the credential verifier query the credential issuer
(or other trusted entity) about the validity of a creden-
tial. One drawback is that it is the verifier that must do
this status check; if the verifier is a web server or other
(potentially overloaded) service, this approach places ad-
ditional burden on it. On the other hand, this approach
does not require even roughly synchronized clocks, as
solutions (1), (2), and (3) do. However, since the ex-
change needs to be secured, the protocol can be fairly
expensive.

In cases (2), (3) and (4), the credential issuer (or other
trusted entity) must issue statements as to the validity of
an issued credential. Since such statements must be ver-
ifiable, these approaches require that this issuer’s private
key is available online (especially for cases (3) and (4)).
However, separate keys can be used for issuing and re-
voking credentials; both keys can be present in the cre-

dential. In the event that the machine where the revoking
key is stored is compromised, an attacker can extend the
lifetime of any issued credential that uses the compro-
mised key for revocation to its maximum validity period;
but, the attacker cannot issue new credentials, nor can
they affect the revocation of credentials issued after the
intrusion has been detected (at which point, a new revo-
cation key is used).

The decision as to which revocation mechanism to use
depends on the specifics of the system; in particular, how
often are credentials revoked (and for what reason), how
stringent the revocation requirements are, what the com-
munication and processing costs and capabilities are, etc.
For environments where quick revocation is not neces-
sary, time-based expiration may be sufficient; at the other
end of the spectrum, a certificate status check protocol
may be used to provide near real-time revocation ser-
vices. (Note however that even Kerberos uses an 8-hour
window of revocation, by issuing tickets that are valid for
that long, as a tradeoff between efficiency and security.)
Luckily, the exact revocation requirements for any partic-
ular credential can be encoded in the credential itself; so
an administrator’s credentials may require an online sta-
tus check for every use, whereas a user’s revocation re-
quirements may be considerably more lax. Furthermore,
these requirements can change over time (with each new
version of the credential that is issued).

4 Conclusions

The use of credentials has many attractive properties in
terms of flexibility. Yet, as in other systems, the schemes
for distributing them are important to the overall scalabil-
ity and correctness of the system. The use of caches cre-
ates some challenges for credential revocation, yet these
appear to be addressable with a menu of techniques, the
choice of which is dependent on particular system re-
quirements for credential expiry.

We have outlined requirements for scalability, and pro-
vide a survey of viable approaches to meeting these re-
quirements. Our belief is that from this analysis, one
should definitely favor the flexibility of credential-based
policy management, while using the lazy evaluation tech-
nique. Refresher credentials have the most appeal to us
in terms of scalability and consistency with respect to the
rest of the system, but may not be “safe” enough for all
security applications.
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