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Abstract—Mutation testing is a white-box fault-based soft-
ware testing technique that applies mutation operators to
modify program source code or byte code in small ways and
then runs these modified programs (i.e., mutants) against a
test suite in order to measure its effectiveness and locate the
weaknesses either in the test data or in the program that are
seldom or never exposed during normal execution.

In this paper, we describe our implementation of a generic
mutation testing framework and the results of applying three
sets of concurrency mutation operators on four example Java
programs through empirical study and analysis.
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I. BACKGROUND

Mutation testing is a white-box fault-based software test-
ing technique that uses mutants, slightly modified variants
of the program source code or byte code, to characterize the
effectiveness of a testing suite and locate weaknesses in the
test data or program that are seldom or never exposed during
normal execution. [11] It has been studied and used since
the 1970s. [16] Mutation testing is based on the Competent
Programmer Hypothesis [1][11] and the Coupling Effect
Hypothesis [11][21]. The Competent Programmer Hypothe-
sis assumes that programmers are competent and normally
write programs that are close to perfect; program faults are
syntactically small and can be corrected with a few small
code modifications. The Coupling Effect Hypothesis states
that complex bugs in the software are closely coupled to
small, simple bugs. Thus, mutation testing can be effective
in simulating complex real-world bugs and may be used for
testing programs.

Mutation testing typically involves three stages: (1) Mu-
tant generation, the goal of which is the generation of
mutants of the program under test. (2) Mutant execution,
the goal of which is the execution of test cases against both
the original program and the mutants. (3) Result analysis, the
goal of which is to check the mutation score obtained by the
test suite. [24] For the first stage, a predefined set of mutation
operators are used to generate mutants from program source
code or byte code. A mutation operator is a rule that is
applied to a program to create mutants, [23] and researchers
have developed different sets of mutation operators [23][18],
targeting a variety of programming languages. Budd et al.

first applied it to Fortran, the first language used in mutation.
[7] Offutt et al. formally defined the mutation operators for
Fortran 77 and DeMillo et al. developed the Mothra mutation
toolset for Fortran 77. [22][10]

Carver investigated the nondeterminism issue related to
mutation testing of concurrent programs and described a
combination approach of deterministic execution mutation
testing. He also described the implementation of a TDCAda
framework for Ada and concurrent C. [8] Aichernig et al.
worked on specification mutation and defined a set of muta-
tion operators for Full LOTOS. [2] To measure the testability
of concurrent Java programs, Ghosh described mutation
based on two mutation operators that remove the keyword
synchronized. [15] Long et al. tested mutation-based
exploration for concurrent Java components and applied this
method to the readers-writers problem. Although this paper
mentioned the mutants were based on common concurrency
faults, the details of how these mutants were created were
not described and the mutation operators used are unknown.
[20]

Delamaro et al. proposed a set of 15 concurrency mutation
operators for Java within four groups: monitor lock code,
methods related to wait set manipulation that are defined
in the Java core API, use of synchronized methods,
and use of other methods related to synchronization and
concurrency. [9] Later, Bradbury et al. proposed a new set of
24 mutation operators for concurrent Java (J2SE 5.0) within
five categories: modify parameters of concurrent method,
modify the occurrence of concurrency method calls, modify
keywords, switch concurrent objects, and modify critical
region. [5] Bradbury et al. used a subset of these mutation
operators and the ExMAn mutation analysis framework to
assess the IBM tool ConTest and performed model checking
with Java PathFinder on four selected Java example pro-
grams. [6][4] For comparison and further study, we have
listed the mutation operators proposed by Delamaro et al.
and Bradbury et al. in Table L

II. SYNCHRONIZATION-CENTRIC MUTATION
OPERATORS

Based on our study on mutation for concurrent Java
programs, we proposed a new set of first and second-
order synchronization-centric mutation operators for mutant



Table 1 Table II
PREVIOUS CONCURRENCY MUTATION OPERATORS FOR JAVA FIRST-ORDER CONCURRENCY MUTATION OPERATORS FOR JAVA
[ Bradbury[5] [ Delamaro[9] [ Description | o RKSN Remove synchronized Keyword
MXT ReplWait, Modify time parameter t of wait (t), g RCSN Remove Call to synchronized Method
IncrDecrWait sleep (t), join(t), await (t) o RSSN Remove a Statement from synchronized Method
MSP ReplSyncObject | Modify — parameter obj of  block g AKST Add static Keyword to synchronized Method
i synchronized(obj) {...} " |[TMASN | Modify synchronized Argument with Constant
ESP SwitchArg Exchagge ‘parzgnel;r‘ obj of block 5 RSNB Remove synchronized Block
synchronized(obj) ..} S RSSB Remove a statement from synchronized Block
MSF N/A Modify Semaphore Fairness o - - -
- : - o MOSB Modify synchronized Object
MXC N/A Modify Permit Count in Semaphore and = 0S h - Ob;
Modify Thread Count in Latches and Bar- 2 EOSB Exchange synchronized Object
riers MVSB Move Statement(s) Out of synchronized Block
MBR N/A Modify Barrier Runnable Parameter 9 RMWN | Remove wait (), notify (), nofityAll ()
RTXC DelNotify, Remove Thread Call wait (), join(), E RMSV Remove static, volatile Keywords
DelWait sleep(), yield(), notify (),
notifyAll ()
RCXC N/A Remove Concurrency Call (methods in
Locks, Semaphores, Latches, Barriers, etc.) algorithms: greedy, genetic and hill climbing algorithm
RNA ReplNotify Replace notifyAll () with notify () 1 ith iall d f . 17
RIS N/A Replace join () with sleep () along with specially constructed fitness function. [17]
ELPA N/A Exchange Lock/Permit Acquisition We constructed second-order concurrency mutation op-
EAN N/A Exchange Atomic Call with Non-Atomic :
TR A o e Reyword — erators by 'ﬁxmg one of the two op§rato¥s to be a
synchronized Method synchronized block or method modification and the
RSTK N/A Remove  static —Keyword  from other to perform code changes related to the first
synchronized Method .
RSK DelSync Remove synchronized Keyword from synchronized block or method. Some subtle concur-
Method rency bugs can be generated using such second-order muta-
RSB N/A Remove synchronized block . .
RVK NIA Remove volatile Keyword tion operators. These operators are presented in Table III.
RFU N/A Remove finally Around Unlock
RXO N/A Replace One Concurrency Mechanism-X Table III
with Another (Locks, Semaphores, etc.) SECOND-ORDER CONCURRENCY MUTATION OPERATORS FOR JAVA
EELO N/A Exchange Explicit Lock Objects
SHCR MoveBrace Shift Critical Region RKSN+RSSN Remove synchronized Keyword and a State-
SKCR N/A Shrink Critical Region .
EXCR NIA Fxpand Critical Region ment from synchronized Method
SPCR NIA Split Critical Region AKST+MASN Add static Keyword gnd Modify Argument with
N/A DelStat Deletes a statement from a Constant to synchronized Method _
synchronized block RKSN+MASN Remove synchronized Keyword and Modify
N/A ReplArg Replaces argument with constant in a Argument with Constant
synchronized method RSNB+RSSB Remove synchronized Block and a Statement
N/A DelSyncCall Deletes a call to a synchronized from synchronized Block
method i MOSB+RSSB || Modify synchronized Object and Remove a
N/A ReplMeth Uses tmethod with same name and other Statement from synchronized Block
signature T n 0
N/A TnsNegArg Tnserts unary (negation) operators in an MOSB+MVSB Modify synchronized iject and Move State-
argument ment(s) Out of synchronized Block
N/A ReplTargObj Replaces the object in a call to
synchronized method
III. IMPLEMENTATION
For empirical study purpose, we developed an Eclipse
generation.

A. First-Order Concurrency Mutation Operators for Java

We first selected several concurrency mutation operators
based on their relevance to synchronization. These operators
are listed in Table II.

B. Second-Order Concurrency Mutation Operators for Java

Polo et al. studied ways to decrease the cost of mutation
testing with second-order mutants. [24] They also described
the potential problem of creating huge amounts of mutants,
thus leading to higher computing cost, because of second-
order mutation. Under a brute force second-order mutation
strategy, N number of mutation operators may lead to N*N
number of second-order mutants. Jia et al. described the
general case of higher order mutation and three reduction

Plug-in [13] named BugGen that is able to automatically
generate mutants using selected mutation operators. Eclipse
is a popular multi-language software development envi-
ronment comprising an integrated development environ-
ment (IDE) and an extensible plug-in system. Building the
BugGen as an Eclipse Plug-in leverages the functionalities
and user-friendly platform that Eclipse provides, thus re-
duces GUI development time.

IV. EXAMPLE JAVA PROGRAMS

In order to study the quantity of mutants generated, as well
as the cost and effectiveness of each proposed concurrency
mutation operator, we used the following four example
programs in our experiments:

o Webserver, a Java web server program that supports

concurrent client connections and synchronization. It
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Figure 1. BugGen Eclipse Plug-in

was used by Aldrich et al. and its source code can be
found in their paper’s appendix section. [3]

o Chat, a Java chat program that supports multiple clients
exchanging messages. Threads listen to the network and
make connections whenever necessary. [12]

o Miasma, a graphical Java applet program from the
NIH web-site that generates an animated display by
summing four sine waves into an array. It supports
synchronization and has wait (t) for prior pixels to
be accepted before triggering another one. [19]

o LinkedList, a modified Java program from the IBM
concurrency benchmark programs repository. [14] The
original program was developed to emulate the concur-
rency bug in using Java linked list, which is a non-
synchronized collection. The program was modified by
adding one synchronized keyword to one method,
following the suggestion commented in the benchmark
to fix the bug.

The source code of the above example programs can also
be found at the appendix section of this paper. The basic
statistical information for each program’s source code is
listed in Table IV.

Table IV
EXAMPLE PROGRAMS USED IN OUR EXPERIMENTS

Program Name LOC | classes | sync methods | sync blocks
Webserver 125 6 11 2
Chat 482 4 10 2
Miasma 360 1 0 2
LinkedList 421 5 1 1
Total 1,388 16 22 7

V. RESULTS AND ANALYSIS

In our experiments, we applied each of the mutation
operators listed in Table I, II and III on the example
programs and counted how many mutants were generated by
each operator for each program. Our quantitative data and
summations for each category are recorded in the appendix
section.

Our empirical study and analysis of mutant generation
for concurrent Java programs shows that there are certain
limitations in previously proposed mutation operators. The
first problem we found is that almost half of proposed
mutation operators are not effective in generating mutants
because they generate very few or zero mutants. Our study
also shows that synchronization-centric mutation operators
generate the most mutants. In addition, some mutation oper-
ators generate functionally equivalent mutants. Finally, some
subtle concurrency bugs are not generated by these mutation
operators at all. Our study also shows that the new set of first
and second-order synchronization-centric mutation operators
are more effective and applicable in mutant generation for
concurrent Java programs.

VI. CONCLUSION AND FUTURE WORK

This paper describes our implementation of a generic
mutation testing framework and the results of applying three
sets of concurrency mutation operators on four example Java
programs through empirical study and analysis.

For future work, we plan to do further empirical studies,
especially involving test suite comparison and evaluation,
along with further investigations of the special characteristics
of mutation testing for concurrent programs.

APPENDIX
A. Number of Mutants Generated (Delamaro & Bradbury)
B. Number of Mutants Generated (New)
C. Source Code of Webserver Program
D. Source Code of Chat Program
E. Source Code of Miasma Program
FE. Source Code of LinkedList Program
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Appendix A. Number of Mutants Generated (Delamaro & Bradbury)

Mutation Operators Webserver  |Chat Miasma LinkedList |Total

MXT 0 0 1 0 1
MSP 2 2 2 1 7
ESP 1 1 1 0 3
MSF 0 0 0 0 0
MXC 0 0 0 0 0
MBR 0 0 0 0 0
RTXC 0 2 3 2 7
RCXC 0 0 0 0 0
RNA 0 0 1 0 1
RJS 0 0 0 2 2
ELPA 0 0 0 0 0
EAN 0 0 0 0 0
ASTK 11 10 0 1 22
RSTK 0 0 0 0 0
RSK 11 10 0 1 22
RSB 2 2 2 1 7
RVK 0 7 0 0 7
RFU 0 0 0 0 0
RXO 0 0 0 0 0
EELO 0 0 0 0 0
SHCR 0 3 2 2 7
SKCR 2 2 5 2 11
EXCR 4 8 4 1 17
SPCR 0 0 3 1 4
DelStat 2 4 7 2 15
ReplArg 7 25 0 2 34
DelSyncCall 11 10 0 1 22
ReplMeth 11 10 0 1 22
InsNegArg 0 2 0 0 2
ReplTargObj 4 0 0 0 4




Appendix B. Number of Mutants Generated (New)

Mutation Operators Webserver |[Chat Miasma LinkedList |Total

RKSN 11 10 0 1 22
RCSN 11 10 0 1 22
RSSN 21 35 0 3 59
AKST 11 10 0 1 22
MASN 7 25 0 2 34
RSNB 2 2 2 1 7
RSSB 2 4 7 2 15
MOSB 2 2 2 1 7
EOSB 1 1 1 0 3
MVSB 2 2 5 2 11
RMWN 0 2 3 2 7
RMSV 0 7 0 0 7
RKSN+RSSN 21 35 0 3 59
AKST+MASN 7 25 0 2 34
RKSN+MASN 7 25 0 2 34
RSNB+RSSB 2 4 7 2 15
MOSB+RSSB 2 4 7 2 15
MOSB+MVSB 2 4 11 2 19
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Appendix C. Source Code of Webserver Program

class Pair {
private Object first;
private Object second;
public Pair(Object f, Object s) {
first = f; second = s; }
public synchronized Object getFirst() {
return first; }
public synchronized Object getSecond() {
return second; }
public synchronized void setFirst(Object f)
{ first = f; }
public synchronized void setSecond(
Object s) { second = s; }
¥

class Table {

private List entries[];

private int capacity;

public Table() {
capacity = 13587;
entries = new List[capacity];
for (int 1 = 0; 1 < capacity; ++i)

entries[i] = new List();

}
public synchronized Object get(Object key) {
return getkEntry(key).getSecond();

}
public synchronized void put(Object key,
Object value) {
Pair entry = getEntry(key);
entry.setSecond(value);
}
private synchronized Pair getEntry(Object
key) { _
int index = key.hashCode() % capacity;
List 1 = entries[index];
l.reset();
while (I.hasMore()) {
Pair p = (Pair) l._.getNext();
it (p.getFirst().equals(key))
return p;
I ]
Pair p = new Pair(key, null);
I.add(p);
return p;
}
}

class List {
private Pair first;
private Pair current;
public synchronized void reset() {
current = first; }
public synchronized boolean hasMore() {
return current != null; }
public synchronized Object getNext() {
if (current = null) {
Object value = current.getFirst();
current = (Pair) current.getSecond();
return value;

}

else

by
public synchronized void add(Object 0) {
first = new Pair(o, first); }

class WriterThread extends Thread {
public void run() {

Page 1 of 2
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int myMaxNumber = 100;
while (myMaxNumber < 10000) {
for (int i = 0; i < 100; ++i) {
Webserver .dataTable.put(
new Integer(myMaxNumber),
String.valueOf(myMaxNumber));
myMaxNumber++;

}
synchronized(Webserver .maxNumberLock) {
Webserver._maxNumber = myMaxNumber ;
}
}

System.out._printIn(C'Writer complete™);
}
}

class ReaderThread extends Thread {
public void run() {
int myMaxNumber;
Random rand = new Random();
for (int 1 = 0; 1 < 1000; ++i) {
synchronized(Webserver .maxNumberLock) {
myMaxNumber = Webserver.maxNumber;
}

for (int j = 0; j < 100; ++j) {
int index = Math.abs(
rand.nextInt()) % myMaxNumber;
Webserver .dataTable.get(
new Integer(index));
}
by .
System.out.printIn("'Reader complete');

}
}

public class Webserver {
public static void main(String args[]) {
/* set up data table */
maxNumber = 100;
dataTable = new Table();
maxNumberLock = new Object();
for (maxNumber = 0; maxNumber < 100;
++maxNumber) {
dataTable.put(new Integer(maxNumber),
String.valueOf(maxNumber));

by
for (int threadNum = 0; threadNum < 8;
++threadNum) {
new ReaderThread().start();

new WriterThread().start();
public static Table dataTable;

public static int maxNumber;
public static Object maxNumberLock;

Page 2 of 2
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Appendix D. Source Code of Chat Program

import javax.swing.JFrame;

/**

* Runs a program that opens a "simple network chat"™ window that
* supports two-way connections.

*/

public class Chat {

/**
* Main program just creates a JFrame that shows a ChatPanel,
* and makes that window visible on the screen.
*/
public static void main(String[] args) {
JFrame window = new JFrame(*'Simple Network Chat');
window.setContentPane( new ChatPanel() ):
window.pack();
window.setLocation(100,50);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
window.setVisible(true);

¥

import java.awt.*;

import java.awt.event_*;

import javax.swing.*;

public class ChatPanel extends JPanel implements ActionListener {
JTextField inputBox; // User types messages here.
JButton sendButton; // Message is sent when user clicks this button.
JTextArea transcript; // All messages are posted here.

public ChatPanel() {

sendButton = new JButton(*'Send™);

sendButton.addActionListener(this); // A button-click will cause the actionPerformed()

inputBox = new JTextField(40); // Create an input box sized to hold 40 characters

inputBox.setBackground(Color .WHITE);

inputBox.addActionListener(this); // Pressing return in the input box will call acti

transcript = new JTextArea();
transcript.setLineWrap(true); // Lines will wrap at the right margin.
transcript.setWrapStyleWord(true); // Line wrap will not split words.

transcript.setEditable(false); // User can"t type in the transcript area.

transcript.setBackground(Color _WHITE);

JScrollPane scroller = new JScrollPane(transcript); // Required for adding a scrollbar

setPreferredSize( new Dimension(650,450)); // This is the size that will be used for t

setBackground(Color .GRAY); // This color will show between components
setLayout(new BorderLayout(5,5)); // Use a border layout with 5-pixel gaps be
JPanel bottom = new JPanel(); // Create a panel to hold the input box and send but
bottom.setBackground(Color.GRAY);

bottom.add(inputBox); // Add the input box to the bottom panel.
bottom.add(sendButton); // Add the send button to the bottom panel.
add(bottom, BorderLayout.SOUTH); // Puts the bottom panel at the bottom (SOUTH) of

add(scroller, BorderLayout.CENTER); // Puts the transcript (in its scroller) in the ma

} 7/ end constructor

/**

Page 1 of 7
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/**

* Ok % ok X

*/

* Adds a string to the transcript area, followed by a carriage return.
* @param s the string to be added to the transcript.
*/
synchronized private void postMessage(String s) {
transcript.append(s + "\n"");
// The following line is a nasty kludge that was the only way I could find to force
// the transcript to scroll so that the text that was just added is visible in
// the window. Without this, text can be added below the bottom of the visible area
// of the transcript.
transcript.setCaretPosition(transcript.getDocument().getLength());

}

/**

* This method is called when an action event occurs in a component, assuming that
* this ChatPanel has been "registered" as an ActionListener with that component.
*/

public void actionPerformed(ActionEvent e) {

Object source = e.getSource(); // This is the object that generated the event.

iT (source == sendButton || source == inputBox) {
String str = inputBox.getText();
postMessage(''SEND: " + str);

inputBox.selectAll();
inputBox.requestFocus();

}
} 7/ end actionPerformed()

This interface should be implemented by an object that wants to use

a SimpleNet object for network connectivity. A SimpleNet object must
have an "observer"™ that implements this interface. The SimpleNet
object informs its observer about network events by calling methods
defined in this interface.

public interface SimpleNetObserver {

/**

* This method is called when the connection has been successfully opened and is ready to

* be used for sending messages back and forth.

* @param connection the SimpleNet object that is managing the connection. You can ignore
* this parameter unless you are using several SimpleNet objects and need to tell them apar
*/

public void connectionOpened(SimpleNet connection);

/**

This method is called whenever a message is received from the other side of the

network connection.

@param connection the SimpleNet object that is managing the connection. You can ignore
this parameter unless you are using several SimpleNet objects and need to tell them apar
@param data the message that was received

* ok X ok X

*/
public void connectionDataReceived(SimpleNet connection, String data);

/**

* This method is called when the connection closes because you called the close() method

* in the SimpleNet object.

* @param connection the SimpleNet object that is managing the connection. You can ignore
* this parameter unless you are using several SimpleNet objects and need to tell them apar
*/

public void connectionClosed(SimpleNet connection);

/**
* This method is called when the connection closes because of action taken on the other
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}

* side of the network connection.

* @param connection the SimpleNet object that is managing the connection. You can ignore
* this parameter unless you are using several SimpleNet objects and need to tell them apar
*/

public void connectionClosedByPeer(SimpleNet connection);

/**

* This method is called when the connection closes because of some sort of network error.
* Note that this method can be called when the connection is in the process of being openel
* @param connection the SimpleNet object that is managing the connection. You can ignore
* this parameter unless you are using several SimpleNet objects and need to tell them apar
*/

public void connectionClosedWithError(SimpleNet connection, String errorMessage);

import java.io.*;
import java.net.*;

N
*
)(.

Ok o X R X b X Ok 3k X ok ¥

*/

This class supports basic, text-based communication between two computers

on the network. For opening a connection, a SimpleNet object can run

in either server mode -- where It waits for an incoming connection -- or in
client mode -- where it tries to make a connection to a waiting server. Use
the listen() method to run as a server; use connect() to run as a client.
Once the connection has been opened, it makes no difference whether server
or client mode was used. Lines of text can be transmitted in either
direction. Use the send() method to transmit a line of text. Receiving
messages is more complicated, since they can arrive asynchronously. Also,

a connection can be closed asynchronously from the other side. And when
operating in server mode, the connection is opened asynchronously. To support
asynchronous operation, a SimpleNet object must have an "observer™ that
implements the SimpleNetObserver interface. This interface defines several
methods that are called by the SimpleNet object when network events occur.
See that interface for more information.

public class SimpleNet {

/**
* Possible state that a SimpleNet object can be in. The states are mostly used
* internally in this class, but you can find out the state by calling getState().
*/

public final static int IDLE = 1;

public final static int WAITING_FOR_CONNECTION = 2;

public final static int CONNECTING = 3;

public final static int CONNECTED = 4;

public final static int CLOSING = 5;

private SimpleNetObserver owner;

private int state;

private volatile PrintWriter out;

private ConnectionHandler connectionHandler; // ConnectionHandler is a nested class, definel

/**
* Create a SimpleNet object that can be used for basic two-way text-based network connectit
* @param observer A non-null object that implements the SimpleNetObserver interface. When
* certain network events occur, the SimpleNet object will notify the observer by calling
* one of the methods defined in the interface.
* @throws IllegalArgumentException if observer is null
*/
public SimpleNet(SimpleNetObserver observer) {
if (observer == null)
throw new IllegalArgumentException(*'A SimpleNet object requires a non-null SimpleNe
owner = observer;
state = IDLE;
}
/**

* Open a connection in server mode. The SimpleNet object will wait for an incoming connec
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* request. This method returns immediately, without waiting for the connection to open.
* observer will be notified when the connection opens by calling its connectionOpened() me
* (Or, if an error occurs, its connectionClosedWithError() method will be called instead.)
* @param portNumber the port number on which the server will listen. A network server mus
* have a port number in the range 1 to 65535. Numbers less than 1024 are reserved for sys
* use, and attempting to use one will produce an error. It is also an error to try to use
* a port number that is already being used by another server.
* @throws IllegalStateException if this SimpleNet object is already connected or opening a
*/
synchronized public void listen(int portNumber) {
if (state !'= IDLE)
throw new IllegalStateException("Attempt to open a connection while not in idle sta
state = WAITING_FOR_CONNECTION;
connectionHandler = new ConnectionHandler(portNumber);
connectionHandler.start();
3
/**
* Open a connection in client mode. The SimpleNet object will appempt to connect to a sen
* that is listening on a specified computer and at a specified port number. This method r
* immediately, without waiting for the connection to open. The observer will be notified
* when the connection opens by calling its connectionOpened() method. (Or, if an error oci
* its connectionClosedWithError() method will be called instead.)
* @param hostNameOrlIP the host name (such as "math.hws.edu™) or IP address (such as "172.:
* of the computer when the server is listeneing
* @param portNumber the port number where the server is listening
* @throws IllegalStateException if this SimpleNet object is already connected or opening a
*/

synchronized public void connect(String hostNameOrlIP, int portNumber) {

iT (state !'= IDLE)

throw new IllegalStateException("'Attempt to open a connection while not in idle sta
state = CONNECTING;
connectionHandler = new ConnectionHandler(hostNameOrIP,portNumber) ;
connectionHandler.start();

/**

ok X ok X %

Closes the current connection, if any. This method returns immediately.
The observer will be notified when the connection closes by calling its
connectionClosed() method. Note that this method can be called while
the connection is still in the process of being opened. In that case,
the connection attempt will be aborted; the connectionClosed()

method in the observer will still be called in this case.

*/
synchronized public void close() {

}

iT (state == IDLE)

return; // ignore close command if there is no connection
state = CLOSING;
connectionHandler._abort();

/**
* Transmit a message to the other side of the connection. Attempts to
* transmit data when no connection is opened are simply ignored.
* @param message the text to be transmited
*/
synchronized public void send(String message) {

ifT (out == null || out.checkError() || state !'= CONNECTED)
return;

out._printin(message);

out.flush(Q);

it (out.checkError())

close();
3
/**
* Returns the current state of this SimpleNet object. For the most part,
* the state information is not needed outside this class, but you can use
* this method to inquire the current state If you need it.
* @return the current state, which is one of the contstants
*

IDLE, CONNECTING, WAITING_FOR_CONNECTION, CONNECTED, or CLOSING,
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*/
synchronized public int getState() {
return state;

synchronized private void dataReceived(ConnectionHandler handler, String data) {
if (state == IDLE || state == CLOSING || handler != connectionHandler)
return; // ignore possible input from old connection
owner .connectionDataReceived(this,data);

}

synchronized void opened(ConnectionHandler handler) {
if (handler !'= connectionHandler || (state != WAITING_FOR_CONNECTION && state != CONNEC
return;
out = connectionHandler.getOutputStream();
state = CONNECTED;
owner .connectionOpened(this);

}

synchronized void closed(ConnectionHandler handler) {
if (state == IDLE || handler != connectionHandler)
return;
if (state == CLOSING)
owner .connectionClosed(this);
else
owner .connectionClosedByPeer(this);
connectionHandler = null;
out = null;
state = IDLE;
}

synchronized private void error(ConnectionHandler handler, String message, Exception e) {
if (state == IDLE || connectionHandler != handler)
return; // lIgnore any left-over error from old connections.
out = null;
connectionHandler = null;
iT (state == CLOSING) { // don"t send error since owner wants to close anyway
state = IDLE;
owner .connectionClosed(this);

else {
state = IDLE;
owner .connectionClosedWithError(this,message + ": " + e.toString()):

by
// e.printStackTrace();
3

private class ConnectionHandler extends Thread {

private int port;
private String host;
private boolean runAsServer;

private volatile Socket connection;

private volatile ServerSocket listener;

private volatile boolean aborted;

private volatile Thread connectionOpener;

private volatile Exception exceptionWhileConnecting;
private volatile PrintWriter out;

private BufferedReader in;

ConnectionHandler(int portNumber) {
port = portNumber;
runAsServer = true;
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ConnectionHandler(String hostName, int portNumber) {

host = hostName;
port = portNumber;
runAsServer = false;

}

void abort() {
try {

if (listener != null)
listener.close();

else if (connectionOpener != null)
this.interrupt(Q);

else if (connection = null) {
connection.shutdownlinput();
connection.shutdownOutput();
connection.close();

¥
iatch (Exception e) {

aborted = true;

}

PrintWriter getOutputStream() {
return out;
¥

public void run() {

BufferedReader in;

if ('runAsServer) {
try {
connectionOpener = new Thread() {
public void run() {
try {
try {
connection = new Socket(host,port);

¥
catch (Exception e) {
exceptionWhileConnecting = e;

%inally {
synchronized(this) {
notify();
¥

catch (Exception e) {
connection = null;
}

}
}: )
connectionOpener._start();
synchronized(connectionOpener) {

try {
connectionOpener wait();

catch (InterruptedException e) {
closed(this);
return;
¥
} )
connectionOpener = null;

ifT (exceptionWhileConnecting != null)
throw exceptionWhileConnecting;

}

catch (Exception e) {
error(this,"Error while attempting to connect to "
return;

+ host, e);
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else {
try {
listener = new ServerSocket(port);
connection = listener.accept();
listener.close();
listener = null;

catch (Exception e) {
error(this,"Error while waiting for connection request'”, e);

return;
}
}
it (aborted)
return;
try {

in = new BufferedReader(new InputStreamReader( connection.getlnputStream() )):;
out = new PrintWriter(connection.getOutputStream());

catch (Exception e) {
error(this,”Error while creating network input/ouput streams™, e);
return;

}

it (aborted)
return;

opened(this);

try {
while (true) {
String input = in.readLine();
it (input == null || aborted)
break;
dataReceived(this, input);

}

}
catch (Exception e) {
error(this,"An error occured while connected”, €e);

}
finally {
closed(this);
if (connection != null) {

try {
connection.close(); // Make sure connection is properly closed.

iatch (Exception e) {
¥
¥
3

} 7/ end runQ)

} 7/ end nested class ConnectionHandler
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Appendix E. Source Code of Miasma Program

/*

Miasma is based on the Plasma applet.
Modifications by J. Random Programmer.
Modifications released into the public domain.

1"ve fixed a number of flaws and bugs, and added features to break
out the individual elements that contribute to overall speed.
The original Plasma applet is public domain, and so is this.

Do what you want with Miasma, but DON*T SEND ME NUMBERS because 1 don"t care.
IT you care, then go ahead and post numbers, but that doesn®t mean | have to care.
And, no, I don"t have to explain why 1 don"t care.

—— JRP

From the original Plasma applet:

This applet creates an animated display by summing four

sine waves into an array. Example FPS rates are at
http://rsb.info.nih.gov/plasma.

It is based on "Sam®"s Java Plasma Applet”

(http://www.dur .ac.uk/~d405ua/Plasma.html) by Sam Marshall
(t-sammar@microsoft.com). It was modified to use 8-bit images
by Menno van Gangelen (M.vanGangelen@element.nl). Improved
frame rate calculation and code for using MemorylmageSource.setAnimated()
contributed by andy@mindgate.net.

*/

import java.awt.*;
import java.awt.image.*;

public class Miasma
extends java.applet.Applet
implements Runnable
{
private Image img;
private Thread runThread;
private long first;
private int frames, fps;
private int width, height;
private int w,h,size;
private int scale;
private boolean showFPS;
private IndexColorModel icm;
private int[] waveTable;
private byte[] pixels;
private MemorylmageSource source;

private boolean draw;
private int deliver;
private boolean filter;
private boolean sync;
private int pri;

private boolean useRGB;
private int[] pixelsRGB;
private int[] mapRGB;

private final boolean[] pending;
private String StrFPS;

int frameslndex, past;
int framesSum, elapsedSum;
int[] framesPast, elapsedPast;

public
Miasma()

pending = new boolean[ 1 ];
StrFPS = "'';
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}

public void Init(Q)
{
scale = getInt( "scale™, 2 );
showFPS = getBoolean( "'showfps™, true );

pri = getint( "pri*, Thread MIN_PRIORITY );
draw = getBoolean( "‘draw', true );

deliver = getint( “"deliver”™, -1 );

Ffilter = getBoolean( "filter”, false );
useRGB = getBoolean( "rgb', false );

sync = getBoolean( "'sync', false );

int avg = getint( "avg"™, 10 );
framesPast = new int[ avg ];
elapsedPast = new int[ avg ]:

width = size().width;
height = size().height;
w = width/scale;

// h =w; // from Plasma original. Huh?
h = height/scale;
pixels = new byte[ w * h ];
pixelsRGB = new iInt[ pixels.length ];
size = ((w+h)/2) * 4;
waveTable = new int[size];
calculateWaveTable();
calculatePaletteTable();

}

private boolean
getBoolean( String name, boolean defaultvValue )

String val = getParameter( name );
if ( val == null )

return ( defaultValue );
else

return ( "true”.equals( val ) );

}

private int
getint( String name, int defaultvalue )

{
String val = getParameter( name );
if ( val == null )
return ( defaultvalue );
else
return ( Integer.parselnt( val ) );
}

private void
calculateWaveTable()

for ( int i = 0; < size; ++i

double perStep = (2 * Math.Pl) / size;
i
{ waveTable[ 1 ] = (int) (32 * (1 + Math.sin( i * perStep ))); }

private void
calculatePaletteTable()

mapRGB = new int[ 256 ];

// All G components are O in palette, so do nothing to fill the “gg" array.

int r, b;

byte[] rr = new byte[ 256 ];
byte[] gg = new byte[ 256 ];
byte[] bb = new byte[ 256 ];
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// To ensure that the RGB image and the indexed image look different,

// the RGB one shows red/green gradients vs. the indexed one®s red/blue gradients.

// Do this simply by using "b" as a G component, not a B, in the 24-bit mapRGB values.
for (int 1 =0; 1 < 128; 1i++)

{
rrL 8] =rr[f 255 -1 ] = (byte) (r =1 + 1 + 1);
bb[ i ] = bb[ 255 - i ] = (byte) (b = OXFF & -r);
mapRGB[ i ] = mapRGB[ 255 - i ] = (r << 16) | (b << 8);
}
icm = new IndexColorModel( 8, 256, rr, gg, bb );
}
public void start()
{
// System.out._printin( "codebase = " + getCodeBase() ):;
// System.out.printIn( " docbase = " + getDocumentBase() );

// Defer creation of Images and MemorylmageSources until the last possible moment.
// Use source®s state as representative of all image-related variables.
if ( source == null )
{
if ( useRGB )
{

// could use this.getColorModel() or ColorModel .getRGBdefault() or Toolkit.getCi
ColorModel modelRGB = getColorModel();

// System.out.printin( "ColorModel: "™ + modelRGB );
source = new MemorylmageSource( w, h, modelRGB, pixelsRGB, 0, w );

T
else

// source is indexed image, with bytes for pixels.

source = new MemorylmageSource( w, h, icm, pixels, 0, w );
}

source.setAnimated( true );
source.setFullBufferUpdates( true );

ImageProducer producer = source;
if ( filter )

{
// The filter rescales to original size, so drawlmage() won"t.
// You could use a different class of rescaling filter, to measure its effect o
producer = new FilteredImageSource( producer, new ReplicateScaleFilter( width, |
3
// img = Toolkit.getDefaultToolkit().createlmage( producer );
i = createlmage( producer );
3
if ( runThread == null )
{
for ( int i = 0; i < framesPast. Iength ++i )
{ framesPast[ i ] = elapsedPast[ i ] =
frameslndex = past = framesSum = eIapsedSum = frames = 0;
first = System.currentTimeMillis(Q);
pending[ 0 ] = false;
runThread = new Thread( this );
runThread.setPriority( pri );
runThread.setDaemon( true );
runThread.start();
};

}
public void stop()

if ( runThread !'= null )

{
runThread. interrupt();

runThread = null;
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¥
¥
public void update(Graphics Q)
{
// Deliver source"s pixels to Image, if needed.
// An int started at -1 will reach 0 after 49.7 days at 1000 fps,
// or 497 days at 100 fps, etc.
if ( deliver 1= 0 )
{
source.newPixels(Q);
-—-deliver;
3
// Signal acceptance after new pixels delivered, but before drawing occurs.
// This maximizes concurrency between producer and consumer threads,
// while ensuring that every calculated frame iIs accepted and handled.
acceptDelivery();
if ( draw )
g-drawlmage( img, 0, O, width, height, null );
++frames;
ifT ( showFPS )
calculateFPS( System.currentTimeMillis(), g );
¥

private void
calculateFPS( long now, Graphics g )

if ( now > first + 1000L )
{

fps = frames;

frames = 0;

// Elapsed millis should never overflow the capacity of an int (~2Msecs).
int elapsed = (int) (now - first);
first = now;

int n = frameslndex;

framesSum = framesSum - framesPast[ n ] + fps;
elapsedSum = elapsedSum - elapsedPast[ n ] + elapsed;
framesPast[ n ] = fps;

elapsedPast[ n ] = elapsed;

frameslndex = (n + 1) % framesPast.length;

// Calculate scaled up by 10, to get an extra decimal digit of precision to display
// This is reasonable considering the precision of past readings, and the averaging
n = (framesSum * 10000) / elapsedSum;

if ( past < framesPast.length )
++past;

strFPS = fps + " fps, avg " + (n/10) + "." + (n%10) + " over " + past + " sec';
showStatus( strFPS );
¥

// ## This display now taken over by showStatus()
// g-clearRect( 0, height-15, 200, height );
// g-drawString( strFPS, 2, height - 2 );

/** Trigger delivery of new pixels, waiting for prior pixels to be accepted, if necessary.
private void
triggerDelivery(Q)

it ( sync )
{
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//

long failsafe = 1000;
long abandon = System.currentTimeMillis() + failsafe;
synchronized ( pending )

// Wait for prior delivery to be accepted before triggering another one.
// Interrupted wait()"s return without triggering a delivery.
while ( pending[ 0 ] )
{
if ( System.currentTimeMillis() >= abandon )
break;

try

{ pending.wait( failsafe ); }

catch ( InterruptedException why )

{ Thread.currentThread().interrupt(); return; 3} // reassert interrupt, then ri

}
pending[ 0 ] = true;
repaint();

// ldentical to original Plasma code.
repaint();
Thread.yield();

/** Accept delivery of new pixels, allowing calculation of new pixels to proceed. */

void

acceptbDelivery()

if ( sync )

synchronized ( pending )

pending[ 0 ] = false;
pending.notifyAll();

index, bottom;

result, tempval;

tposl, tpos2, tpos3, tpos4;
incl=6, inc2=3, inc3=3, inc4=9;
posl=0, pos2=0, pos3=0, pos4=0;

ks
ks
else
}

ks

private

{
ks

T

public void

run()

i .
int
int
int
int
int
int

spd1=2, spd2=5, spd3=1, spd4=4;

whille ( ! Thread.currentThread().islInterrupted() )

{

tposl = posl; tpos2 = pos2;
for( index = pixels.length - 1; index >= 0; )

{
tpos3 = pos3 - inc3; tpos4 = pos4 - inc4;
tempval = waveTable[ tposl %= size ] + waveTable[ tpos2 %= size ];
for ( bottom = index - w; 1index > bottom; )
tpos3 = (tpos3 + inc3d) % size; tpos4 = (tposd4 + incd) % size;
result = tempval + waveTable[ tpos3 ] + waveTable[ tpos4 ];
// Fill in pixelsRGB[] and pixels[], though only one has its data delivered
pixelsRGB[ index ] = mapRGB[ OxFF & result ];
pixelsRGB[ index ] = (OxFF & result) << 8;
pixels[ index-- ] = (byte) result;
tposl += incl; tpos2 += Inc2;
3

Page 5 of 6



Miasma. java 4/29/2010 12:40 PM

triggerDelivery();
posl+=spdl; pos2+=spd2; pos3+=spd3; pos4+=spd4;
}
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Appendix F. Source Code of LinkedList Program

//BugTester . java

//implements two threads that are building the same list

//and are conflicting each other next pointer in the latency between
//fetch and write back

import java.util_*;
public class BugTester

public static void main(String[] args)
{
try
{ . _ _
MyListBuilder mlistl;
MyListBuilder mlist2;

int IT = 0; //times to sleep
int nT ;

it ( args.length >= 1)

{

if ( args.length > 1 && args[1]-.equals('1™) )
{

it ( args.length >= 3 )
{

IT = Integer.parselnt(args[2]);
nT = Integer.parselnt(args[3]);
//no else

MyLinkedList mlst = new MyLinkedList(IT,nT,args[0]);

mlistl = new MyListBuilder(mlst,0,5,true,args[0]);
mlist2 = new MyListBuilder(mlst,5,10,true,args[0]):
¥
else //showing the case in the linked list of java®s collection
LinkedList Ist = new LinkedList();
mlistl = new MyListBuilder(lst,0,5,false,args[0]);
mlist2 = new MyListBuilder(lst,5,10,false,args[0]);
3
Thread t1 = new Thread(mlistl);
Thread t2 = new Thread(mlist2);
tl._start(); //starting the two threads
t2_start();
tl_joinQ); //waiting for all threads to finish
t2_joinQ);
mlistl.print(); //prints results to output file
mlistl._empty(); //empties list
¥
else
System.out.printIn('Name of output file is required as argument!!!1');
¥
catch(InterruptedException e)
{

e.getMessage();
e.printStackTrace();

catch(Exception e)

e.getMessage():
e.printStackTrace();
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¥

//MyLinkedList. java
//This class implements a linked list class .

import java.io.*;
class MyLinkedList

/*Class Member*/

public String _fileName = "ID_029646965.txt";
private MyListNode _header; //The list head pointer
private int _ITime = O; //The time to sleep

//C"tor
public MyLinkedList(int IT,int nT,String fName)

this._fileName = fName;

this._ITime = IT;

this._header = new MyListNode( null,nT );
}

/*Methods*/

//Checks 1T list is empty
public boolean isEmpty( ){ return this._header._next == null; }

//Empties list
public void clear( ){ this._header._next = null; }

//Returns fTirst element in list
public MyLinkedListltr first( )

return new MyLinkedListltr( this._header._next );

}

//Inserts element anywhere in list just after current
public void insert( Object x, MyLinkedListltr p )

ifC p '= null & p._current = null )
p-._current._next = new MyListNode( X, p._current._next , p._current._nTime );

}

//Inserts element to the end of list .
//1T this func is synchronized the bug will not apear
public synchronized void addLast( Object x ) //modified by LEON to make the program b

{
MyListNode itr = this._header;
/*
//just a sleep noise to the system
try

Thread.sleep(this._ITime);
catch(InterruptedException e)

e.getMessage();
e.printStackTrace();

}
1///7/17/77777/77/77/7/7/7/7//77/77777
*

/

while( itr._next I= null )
itr = Itr._next;
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insert(x,new MyLinkedListltr(itr));

//Retrieves list size
public int size()

{
MyListNode itr = this._header;
int 1 = 0;
while( itr._next I= null )
{ .
i++;
itr = 1tr__next;
¥
return 1i;
3

//Finds "x" element in list
public MyLinkedListltr find( Object x )

{
MyListNode itr = this._header._next;
while(C itr = null && litr._element.equals( x ) )
itr = 1tr__next;
return new MyLinkedListltr( itr );
3

//Finds *"x" previous element in list
public MyLinkedListltr findPrevious( Object x )

{
MyListNode itr = this._header;
while( itr._next = null && litr._next._element.equals( x ) )
itr = 1tr__next;
return new MyLinkedListltr( itr );
3

//Removes "x" element from list
public void remove( Object x )

MyLinkedListltr p = findPrevious( X );

if( p._current._next != null )
p._current. _next = p._current._next. _next; // Bypass deleted node

}

//Prints list
public void printList( MyLinkedList theList ) throws I0Exception
{

PrintWriter of = new PrintWriter(new FileWriter("_\\" + _fileName,true),true);

if( theList.isEmpty( ) )
of.printIn( "Empty list" );
else

t of.print(list : (->");

MyLinkedListltr itr = theList_first( );
for( ; litr.isPastEnd( ); itr.advance( ) )
) +

of.print( (Integer)itr.retrieve( D 5
of .print(") . ");
}
if ( this.size() == 10 ) //theoretical size of list is 10
of_print(“length - " + this.size(Q) + " , No Bug >");
else
of.print("length : "™ + this.size() + " , Non-Atomic Bug >");
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of.close():

}

}
//MyLinkedListltr.java
//This class implements iterator to a linked list .

class MyLinkedListltr

{
/*Class Memeber*/
public MyListNode _current; // Current position
//C"tor
MyLinkedListltr( MyListNode theNode ){ this._current = theNode; }
/*Methods*/
public boolean isPastEnd( ){ return this._current == null; }
public Object retrieve( )
return isPastEnd( ) ? null : this._current._element;
}
public void advance( )
if( lisPasteEnd( ) )
this._current = this._current._next;
}
}

//MyListBuilder.java
//This class builds a shared list from given threads .

import java.util.*;
import java.io.*;

class MyListBuilder implements Runnable
{
/*Class Members*/
public boolean _debug = true;
public String _fileName = "ID_029646965. txt";
public Object _list = null;
public int _boundl = O;

public int _bound2 0;

//C"tor

public MyListBuilder(Object Ist,int bndl,int bnd2,boolean dbg,String fName)
{

this._debug = dbg;

if ( _debug == true )

this._list = (MyLinkedList)lIst;
else

this._list = (LinkedList)lst;

this._fileName = fName;

this._boundl = bndl;
this._bound2 = bnd2;
H
/*Methods*/
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//The processor
public void run(Q)

for ( int 1 = this._boundl; 1 < this._bound2 ;i++ )
/*
//just a sleep noise to the system
try
Thread.sleep(i);

catch(InterruptedException e)

e.getMessage();
e.printStackTrace();

}
1/1//1777/777777777/7//7/7/7/77/77/777
*

/

if ( _debug == true )
((MyLinkedList)_list).addLast(new Integer(i));
else
((LinkedList)_list).addLast(new Integer(i));

}

//Prints list elements
public void print()
{
int size;
if ( _debug == true )
size = ((MyLinkedList)_list).size();
else
size = ((LinkedList)_list).size();
try
PrintWriter of = new PrintWriter(new FileWriter("_ \\" + _fileName),true);
of.print(’’< " + "BugTester Program™ + " , ");
if ( _debug == true )
of.close():;

((MyLinkedList)this._list).printList((MyLinkedList)_list);

}
else
of.print(list : (->");
Iterator iter = ((LinkedList)_list).iterator();
while( iter._hasNext() )
of_print((Integer)iter.next() + "->");
of.print(”) , );
if ( size == 10 ) //theoretical size of list is 10
of.print(“length : " + size + " , No Bug >");
else
of_print(length - ™ + size + " , Non-Atomic Bug >");
of.close();
}
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catch(10Exception e)

System.out.printIn('Problems with output file name : " + _FfileName);
e.getMessage():
e._printStackTrace();

}
}

//Empties list
public void empty(Q)

t it ( _debug == true )
((MyLinkedList)_list).clear(Q);
|
¢ Se((LinkedList)_Iist).clear();
}

//MyListNode. java
//This class implements basic node stored in a linked list .

class MyListNode

/*Class Members*/

public Object _element; //Node*"s data

public MyListNode _next; //Pointer to next node
public int _nTime = O; //The time to sleep
//C tor - 1

MyListNode( Object theElement,int nT ){ this( theElement, null , nT ); }

//C"tor - 2
MyListNode( Object theElement, MyListNode n , int nT )

this. _nTime = nT;
synchronized ( this )

this._element = theElement;
this._next = n;

}

/*

//a sleep before the last element can be added to list .

//it conflicts with the while looop in addLast func in MyLinkedList.java file .
//the if condition is in order to show the case that no noise is added

//to this c"tor In which case it is hard to acheive the bug

if ( this._nTime > 0 )

{
try
Thread.sleep(this._nTime);
}
catch(InterruptedException e)
e.getMessage();
e.printStackTrace();
3
//no else
L1171 7777777777777777777777//7/777/7///7/777/7//77777
*/
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