
Metamorphic Testing Techniques to Detect Defects in Applications without Test Oracles

Christian Murphy

Submitted in partial fulfillment of the
Requirements for the degree

of Doctor of Philosophy
in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2010



c© 2010

Christian Murphy
All Rights Reserved



Abstract

Metamorphic Testing Techniques to Detect Defects in Applications without Test Oracles

Christian Murphy

Applications in the fields of scientific computing, simulation, optimization, machine

learning, etc. are sometimes said to be “non-testable programs” because there is no reliable

test oracle to indicate what the correct output should be for arbitrary input. In some cases,

it may be impossible to know the program’s correct output a priori; in other cases, the

creation of an oracle may simply be too hard. These applications typically fall into a

category of software that Weyuker describes as “Programs which were written in order to

determine the answer in the first place. There would be no need to write such programs, if

the correct answer were known.” The absence of a test oracle clearly presents a challenge

when it comes to detecting subtle errors, faults, defects or anomalies in software in these

domains.

As these types of programs become more and more prevalent in various aspects of

everyday life, the dependability of software in these domains takes on increasing impor-

tance. Machine learning and scientific computing software may be used for critical tasks

such as helping doctors perform a medical diagnosis or enabling weather forecasters to

more accurately predict the paths of hurricanes; hospitals may use simulation software to

understand the impact of resource allocation on the time patients spend in the emergency

room. Clearly, a software defect in any of these domains can cause great inconvenience or

even physical harm if not detected in a timely manner.

Without a test oracle, it is impossible to know in general what the expected output



should be for a given input, but it may be possible to predict how changes to the input

should effect changes in the output, and thus identify expected relations among a set of

inputs and among the set of their respective outputs. This approach, introduced by Chen

et al., is known as “metamorphic testing”. In metamorphic testing, if test case input x

produces an output f (x), the function’s so-called “metamorphic properties” can then be

used to guide the creation of a transformation function t, which can then be applied to the

input to produce t(x); this transformation then allows us to predict the expected output

f (t(x)), based on the (already known) value of f (x). If the new output is as expected, it is not

necessarily right, but any violation of the property indicates that one (or both) of the outputs

is wrong. That is, though it may not be possible to know whether an output is correct, we

can at least tell whether an output is incorrect.

This thesis investigates three hypotheses. First, I claim that an automated approach

to metamorphic testing will advance the state of the art in detecting defects in programs

without test oracles, particularly in the domains of machine learning, simulation, and

optimization. To demonstrate this, I describe a tool for test automation, and present the

results of new empirical studies comparing the effectiveness of metamorphic testing to that

of other techniques for testing applications that do not have an oracle. Second, I claim that

conducting function-level metamorphic testing in the context of a running application will

reveal defects not found by metamorphic testing using system-level properties alone, and

introduce and evaluate a new testing technique called Metamorphic Runtime Checking.

Third, I hypothesize that it is feasible to continue this type of testing in the deployment

environment (i.e., after the software is released), with minimal impact on the user, and

describe an approach called In Vivo Testing.

Additionally, this thesis presents guidelines for identifying metamorphic properties,

explains how metamorphic testing fits into the software development process, and discusses

suggestions for both practitioners and researchers who need to test software without the

help of a test oracle.
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Chapter 1

Introduction

Assuring the quality of applications such as those in the fields of scientific computing,

simulation, optimization, etc. presents a challenge because conventional software testing

processes do not always apply: in particular, it is difficult to detect subtle errors, faults,

defects or anomalies in many applications in these domains because there is no reliable test

oracle to indicate what the correct output should be for arbitrary input. These applications

are sometimes referred to as “non-testable programs” [190], and fall into a category of

software that Weyuker describes as “Programs which were written in order to determine

the answer in the first place. There would be no need to write such programs, if the correct

answer were known” [190].

Machine learning applications fall into this category of programs without test oracles

as well. Such applications are developed to discover previously-unknown trends in or

relationships among large sets of data; if there were some way of knowing these results

in advance, there would be no need to develop the software in the first place. As these

types of applications become more and more prevalent in society [125], ensuring their

quality becomes more and more crucial. For instance, there are over fifty different real-

world applications [178], ranging from facial recognition to computational biology, that

use the Support Vector Machines [183] machine learning classification algorithm alone.

1
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Additionally, machine learning ranking applications are widely used by Internet search

engines [25], and intrusion detection systems that use machine learning algorithms are

clearly becoming more important as critical data is stored online and attackers seek to

access it or gain control of systems [86].

One emerging domain of machine learning applications is in the area of clinical diagno-

sis, using a combination of systems-level biomolecular data (e.g., microarrays or sequencing

data) and conventional pathology tests (e.g., blood count, histological images, and clinical

symptoms). It has been demonstrated that a machine learning approach of multiple data

types can yield more objective and accurate diagnostic and prognostic information than

conventional clinical approaches alone [82]. However, for clinical adoption of this approach,

these programs that implement machine learning algorithms must be rigorously tested to

ensure their quality and reliability. A mis-diagnosis due to a software fault can lead to

serious, even fatal, consequences.

In all of these fields, formal proofs of an algorithm’s optimal quality are not sufficient

to guarantee that an implementation uses that algorithm correctly and is free of errors.

It is certainly possible that a programmer may accidentally insert a defect into the code

during implementation, for instance incorrectly performing a calculation or causing an

off-by-one error, i.e., forgetting to properly adjust a variable by one. In 1994, Hatton and

Roberts pointed out a “disturbing” number of calculation errors in software used in the earth

sciences community [79], and - even worse - followed that up with an article 13 years later

in which Hatton pointed out that things were not getting any better, claiming that “many

scientific results are corrupted, perhaps fatally so, by undiscovered mistakes in the software

used to calculate and present those results” [78]. More recently, others have demonstrated

that software engineering techniques are generally not prevalent amongst programmers in

the scientific community, and that although scientists understand the importance of software

testing, few feel that they have a solid understanding of how to sufficiently test the programs

that they create [77].
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This thesis investigates solutions to the problem of testing applications that do not have

test oracles. Given the importance of software in domains like machine learning, and given

the apparent lack of quality in some areas of scientific computing, and given the general

difficulty of testing applications without test oracles, the challenge and significance of this

research is clear. This thesis describes enhancements to existing approaches, introduces

novel techniques, and presents new empirical studies that demonstrate advancement in the

state of the art. This work also addresses the testing of non-deterministic applications that

do not have test oracles, which introduces additional challenges since multiple invocations

of the code under test may yield different results. Last, this thesis generalizes the proposed

techniques so that they can be used effectively in a variety of application domains, and

provides guidelines to researchers and practitioners who need to test applications without

the help of a test oracle.

1.1 Definitions

Before we further discuss the problem statement, requirements, and proposed approach,

this section first formalizes some of the terms used throughout this thesis.

• A defect, also referred to as an “error” or “bug”, is the deviation of system external

state from correct service state [97]. See Section 1.4 below for a description of the

types of defects specifically investigated in this thesis.

• A fault is the adjudged or hypothesized cause of a defect [97].

• A failure is an event that occurs when the delivered functionality deviates from

correct functionality. A service fails either because it does not comply with the

functional specification, or because this specification did not adequately describe the

system functionality [97].

• A test oracle is an entity (either human or a system) that is used to determine
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whether a software component’s output (including observable side effects) is correct,

according to the specifications, for a given input (including the system state) [15].

This is sometimes referred to as a “comparison-based test oracle” [151].

• The development phase includes all activities from presentation of the stakeholders’

initial concept to the decision that the system has passed all acceptance tests and is

ready to deliver service in its users’ environment(s) [97].

• The development environment refers to a setting (physical location, group of human

developers, development tools, and production and test facilities) in which software

is created and tested by software developers and is not made available to end users

[97].

• A deployment environment, or use environment, refers to a setting in which soft-

ware is made available to end users. This environment consists of the physical

location in which the software is used; groups of administrators and users; providers

(humans or other systems) that deliver services to the system through its interfaces;

and the physical infrastructure that supports such activities [97].

• The execution environment of an application refers to the setting in which the

software is running; it can either be the development environment or the deployment

environment.

• Metamorphic testing is a technique for creating follow-up test cases based on

existing ones, particularly those that have not revealed any failure. It is a methodology

of reusing input test data to create additional test cases whose outputs can be predicted

[32]. This is not to be confused with other uses of the word “metamorphic” in

computer science, such as metamorphic code, metamorphic viruses, etc.

• In this thesis, we refer to a function as a clearly delineated group of instructions that

perform a specific task [63]. Depending on the parlance of the particular programming
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language, these may also be referred to as “methods”, “procedures”, “subroutines”,

etc. We do not mean a function in the mathematical sense, but rather in the computer

programming sense.

1.2 Problem Statement

Independent of advances in software testing, there still remains a certain class of appli-

cations that have no reliable test oracle to indicate what the correct output should be for

arbitrary input. Regardless of whether there is an oracle, we cannot in general demonstrate

correctness of the implementation, i.e., the absence of defects, but we need a testing ap-

proach that can at least demonstrate the presence of defects in such applications. Such

defects may occur at the function level or at the system level.

We have observed that even when there is no oracle in the general case, there can still

be a limited subset of inputs for which the output can, in fact, be predicted. These “partial

oracles” [151] are typically only useful for very simple inputs, however, and may not have

much power at revealing defects [127, 190]. Additionally, other inputs, such as those that

push boundary or timing limits, can be used to reveal gross errors, e.g., catastrophic failures

(crashes) or infinite loops. However, an approach is needed that will reveal more subtle

defects for general input, as opposed to obvious defects for a limited set of input.

Testing techniques typically require some set of test input data, which could be generated

using various techniques, such as equivalence partitioning [135] or random testing [73].

However, inputs chosen using these techniques might not consider a sufficient variety of

potential inputs and subsequent system states [129, 130]. Some defects in such systems

(whether they have a test oracle or not) may only be found under certain application states

that may not have been tested because of the infeasibility of exhaustive testing. Thus,

a strategy that specifically considers these states and these inputs would likely be more

effective in revealing defects.
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1.3 Requirements

This thesis seeks to address not only the issue of the absence of a test oracle, but also

consider the multiple possible states under which an application may run. Such a solution

to the problems described above should meet the following requirements.

1. Indicate defects in applications without test oracles. Although it may be impossi-

ble in the general case to indicate that an output is correct for the given input, the

solution must at least be able to indicate whether the output is incorrect for at least

some particular cases.

2. Reveal defects that would not otherwise be revealed. The solution to this problem

must be able to reveal defects that would not ordinarily or realistically be revealed

with other current testing approaches. For instance, if the software crashes, hangs, or

produces output that is clearly incorrect, virtually any existing technique would be

able to detect the error. We require an approach that can reveal defects in output that

may “look” correct, but actually is not.

3. Support a variety of application types. The approach should be able to support

various types of applications, ranging from single-user standalone programs (e.g.,

scientific computing, desktop publishing, web browsing, etc.) to more complex

multi-user applications (e.g., a three-tier web server application), including those that

do actually have test oracles.

4. Be configurable. The software tester or a system administrator should be able to

configure the implementation of the approach (the testing framework) to control the

frequency with which tests are to be run, at what points during the program execution

the tests are to be run, what to do if a test fails, the acceptable overhead, etc.

5. Allow for the easy creation/specification of tests. The approach should allow

software testers and developers to easily create and specify the test cases, using
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familiar or easy-to-learn techniques. Aside from specifying test cases and setting up

the testing framework, the process should be completely automated and not rely on

manual intervention.

6. Be efficient. The user of a system that is conducting tests during execution should

not observe any noticeable performance degradation or any side effects, such as test

outputs being displayed on the screen or in a file.

1.4 Scope

Although we present a solution that is designed to be general purpose and applicable to

a variety of applications, in this thesis we specifically limit our scope to applications that

do not have test oracles, primarily in the domains of machine learning, discrete event

simulation, and optimization.

Additionally, as pointed out in Section 1.1, in this thesis a “defect” is considered

to be a deviation between the system’s expected state and its actual state, i.e., when an

implementation differs from its specification. A defect may also be defined as the violation

of a sound property of the software. Note that in this thesis, a defect does not refer to

errors that come about due to floating point imprecision or rounding, though these types

of errors may be detectable using the approaches defined here; nor does it refer to errors

in assumptions about the accuracy with which a scientific model represents a real-world

process or phenomenon, which we would consider to be errors in the algorithm, not in the

implementation.

It is true that software crashes, security vulnerabilities, concurrency bugs, and timing

errors fit this definition of “defect”. However, this thesis focuses only on errors for which

the program terminates normally and produces an output, but the output is incorrect due to

discrete localized defects that are the result of a specific (human) programming error at a

specific point in the code, such as off-by-one errors, errors in calculation (adding instead of
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subtracting, etc.), or errors in logic (using “and” instead of “or”, etc.). These are the types

of defects that are particularly hard to detect in the applications in the domains of interest

[79].

1.5 Proposed Approach

One popular technique for testing applications that do not have test oracles is to use a

“pseudo-oracle” [50], in which multiple implementations of an algorithm process the same

input and the results are compared; if the results are not the same, then at least one of the

implementations contains a defect. This approach is not always feasible, though, since

multiple implementations simply may not exist, or may be too complex to develop. Others

have pointed out that, in practice, the implementations may have been created by the same

developers, or by groups of developers who are prone to making the same types of mistakes

[93], or that the act of comparing the outputs may be error-prone if the implementations

can arrive at different results without actually having defects [24].

However, even without multiple implementations, often applications without test oracles

exhibit properties such that if an input produces an output, and the input is then mod-

ified in a certain way, it may be possible to predict its new output, given the original

output. If the application does exhibit such a property and the new output is as expected,

that does not necessarily mean that the implementation is working correctly. However, if

the property is violated, and the output is not as expected, then there is a defect. That is, the

application acts as a pseudo-oracle for itself. This approach was introduced by Chen et al.

and is known as “metamorphic testing” [32].

Metamorphic testing is a general technique for creating follow-up test cases based on

existing ones, particularly those that have not revealed any failure. In metamorphic testing,

if test case input x produces an output f (x), the so-called “metamorphic properties” of the
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code under test can then be used to guide the creation of a transformation function1 t, which

can then be applied to the input to produce t(x); this transformation then allows us to predict

the expected output f (t(x)), based on the (already known) value of f (x). If the output is not

as expected and the property is sound, then a defect must exist. Of course, adhering to this

property does not necessarily mean that the output is right (i.e., even if the outputs are as

expected, both f (x) and f (t(x)) could still be wrong), but although we cannot know whether

the output is correct, we may at least be able to tell that it is incorrect.

Metamorphic testing has previously been shown to be applicable to software for which

there is no test oracle [37, 202]. In some cases, these works have looked at cases in which

there cannot be an oracle for a particular application because the output cannot be known in

advance [38]; in others, the work has considered the situation in which the oracle is simply

absent or difficult to implement [28].

In practice, metamorphic testing can be a manually intensive technique for all but the

simplest cases. The transformation of input data can be laborious for large data sets, or

nearly impossible for input that is not in human-readable format. Similarly, comparing

the outputs can be error-prone for large result sets, especially when slight variations in

the results are not actually indicative of errors (i.e., false positives). Moreover, non-

deterministic applications introduce further complications in the comparing of outputs.

Thus, to reduce the likelihood of human error and increase testers’ productivity, part of our

approach involves automating the process of conducting metamorphic testing.

In addition to recommending the use of metamorphic testing to address this so-called

“oracle problem”, we also suggest that we can detect additional defects by conducting

metamorphic testing at the function level from within the running application. That

is, as opposed to performing system testing based solely on metamorphic properties of

the entire application, or by conducting unit testing of isolated pieces of code, we suggest

testing applications that do not have test oracles by checking the metamorphic properties

1Note that by “function”, we refer to a procedure, subroutine, method, etc.
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of some of their individual functions as the full application runs, instead of testing the

functions in isolation, as is typical in unit testing. This approach requires the use of a

new type of test framework that is designed to be run from within the application, as it is

executing. These are tests that ensure that the metamorphic properties hold true no matter

what the application’s state is, and no matter what the functions inputs are. This would go

beyond passive application monitoring (e.g., [145]) and actively test the application as it

runs.

As the final part of our approach, we point out that continuing to execute tests in the

field, after deployment, can provide representative test data and may reveal defects

that are dependent on the application state. By executing tests from within the software

while it is running under normal operations and use, additional defects that depend on the

system state (or a combination of state and environment) may also be revealed.

Our solution, therefore, entails automating the process of metamorphic testing at both

the system and the function level, and making it possible to check metamorphic properties as

the software executes, even in the deployment environment. For either an individual function

or for the entire application, a testing framework first captures the initial input/output pairs,

which may be from test input data or from actual execution in the field. The framework

then applies the function’s or application’s metamorphic properties to derive new test input,

so that it should be possible to predict the corresponding test output. Although it cannot be

known whether the outputs are correct, if they are not as predicted then a defect has been

revealed. When this process is conducted in the field, the framework must ensure that users

do not notice this testing, e.g., see the test output, experience a sudden performance lag, etc.

Of course, a solution to this problem does not necessarily need to be limited to appli-

cations without test oracles. Even applications that have test oracles also have properties

(metamorphic or otherwise) that can be checked as the program executes, even while the

program is running in the field. Some defects in such systems may only be found under

certain application states that may not have been tested prior to deployment: for large,



CHAPTER 1. INTRODUCTION 11

complex software systems, it is typically impossible in terms of time and cost to reliably

test all possible system states before releasing the product to the end users. Thus, we can

generalize the solution so that arbitrary properties of the system or its constituent functions

can be checked as the software runs in the deployment environment.

1.6 Hypotheses

The main hypotheses investigated are as follows:

1. For programs that do not have a test oracle, an automated approach to meta-

morphic testing will advance the state of the art in detecting defects. That is, we

will show that the approach is more effective at revealing defects than other techniques

such as using partial oracles or runtime assertion checking, and more practical than

using pseudo-oracles, formal specifications, extrinsic interface contracts, or log/trace

file analysis, all of which have been suggested as solutions for testing programs

without oracles [15].

2. Furthermore, an approach that conducts function-level metamorphic testing in

the context of a running application will reveal defects not found by metamor-

phic testing using system-level properties alone. We will show that checking the

metamorphic properties of individual functions while the program is running can find

defects that metamorphic testing based on properties of the entire application may

not discover.

3. It is feasible to continue this type of testing in the deployment environment, with

minimal impact on the end user. Such a solution would not modify the application

state from the users’ perspective, and would have acceptable performance overhead.

We primarily apply these approaches to applications in the domain of machine learning,

focusing specifically on subtle computational defects that come about due to programming
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errors and misinterpretation of specifications, as opposed to gross defects (like system

crashes or deadlocks) that may be a result of untested deployment environments, configura-

tions, etc. Although the focus is mostly on machine learning applications, we also show

generalizability by applying the technique to applications in other domains that do not have

test oracles, such as discrete event simulation, information retrieval, and optimization.

As these types of applications become more and more prevalent in various aspects of

everyday life, it is clear that their quality and reliability take on increasing importance.

This thesis advances the state of the art in testing these types of applications, and provides

guidelines to developers and testers who are working with programs that have no test oracle.

1.7 Outline

The rest of this thesis is organized as follows:

• Chapter 2 motivates the work further and describes a set of metamorphic testing

guidelines that can be followed to assist in the formulation and specification of

metamorphic properties. It also discusses how metamorphic testing fits into the

overall software development process.

• Chapter 3 describes an approach for automating system-level metamorphic testing by

treating the application as a black box and checking that the metamorphic properties

of the entire application hold after execution. This simplifies the process of conduct-

ing metamorphic testing, but also allows for metamorphic testing to be conducted

in the production environment without affecting the user, so that real-world input

can be used to drive the test cases. This chapter also introduces an implementa-

tion framework called Amsterdam, and discusses a new technique called Heuristic

Metamorphic Testing, which is used for testing non-deterministic applications that

do not have oracles, using application-specific heuristics. It also details the results of

empirical studies that measure the approaches’ effectiveness at detecting defects, and
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quantitatively compares the approaches to other techniques such as pseudo-oracles,

runtime assertion checking, and the use of a partial oracle.

• Chapter 4 introduces a new type of testing called Metamorphic Runtime Checking,

which enhances metamorphic testing by making it possible to check the metamorphic

properties of individual functions (as opposed to only those of the system as a whole)

while the entire program is running. Metamorphic tests are executed at designated

points in the program, within its current runtime context. We also present a system

called Columbus that supports the execution of Metamorphic Runtime Checking

from within the context of the running application. Columbus conducts the tests with

acceptable performance overhead, and ensures that the execution of the tests does not

affect the state of the original application process from the users’ perspective.

• Chapter 5 generalizes the Metamorphic Runtime Checking approach into a technique

called In Vivo Testing. This allows software to perform any type of test (not just

metamorphic tests) on itself in the runtime environment, including unit or integration

tests, or special “In Vivo tests” that are designed to check properties of the system

regardless of its application state. We also present a framework called Invite that

implements the approach.

• Chapter 6 presents related work for all three testing approaches. It also qualitatively

compares the metamorphic testing approaches to other techniques for testing pro-

grams that have no oracle, such as using formal specifications, extrinsic interface

contracts, and log/trace file analysis.

• Chapter 7 summarizes the main contributions of this work, discusses short-term and

long-term future research directions, and concludes the thesis.



Chapter 2

Background

This chapter provides background and context for the work presented in this thesis. We

begin in Section 2.1 by motivating the work through real-world examples of applications

without test oracles. We then describe the metamorphic testing technique in further detail

in Section 2.2, and discuss some previous work in the field in Section 2.3. In Section

2.4, we discuss guidelines for devising metamorphic properties, and also explain how the

technique fits into the overall software development process. Last, in Section 2.5, we

describe the applications of interest (from the domain of machine learning), and discuss

their metamorphic properties, which will be used in the experiments in the following

chapters.

2.1 Motivation

This line of research began with work in which we addressed the dependability of a machine

learning (ML) application commissioned by a company for potential future experimental

use in predicting impending electrical device failures in an urban power grid, using historic

data of past failures as well as recent static and dynamic information about the devices

[127]. Classification in the binary sense (“will fail” vs. “will not fail”) is not sufficient

because, after enough time, every device will eventually fail. Instead, a ranking of the

14
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propensity of failure with respect to all other devices is more appropriate. The application

uses a variety of ML algorithms in its implementation, and thus has no oracle to indicate

whether it is producing the correct output, since if the correct output (the ranking) could

be known in advance, then the application would not be needed. Although it is possible

to know whether the application is predicting well by simply waiting a period of time and

seeing whether the devices deemed most likely to fail actually do, that does not necessarily

mean that the implementation is without defects; even random predictions could sometimes

be right. Thus, software testing is necessary. The full application is detailed by Gross et al.

[70], but is not otherwise discussed further here.

The dependability of the implementation of this system addresses real-world concerns,

rather than just academic interest. Although it may be impossible to accurately predict all

power outages (which can be due to weather, human error, hungry rats, etc.) there have

been cases in which outages might be prevented via timely maintenance or replacement of

devices that are likely to fail, such as the 2005 blackout in Java and Bali1, and the 2008

blackout in Miami2. A dependable application in this domain may save money and even

lives if it can accurately predict which devices are most likely to fail, so that preventative

measures can be taken.

The impact of the research goes far beyond the particular application for which our

investigations began. As machine learning applications become more and more prevalent

in society [125], ensuring their quality becomes more and more crucial. There are over fifty

different real-world applications [178], ranging from facial recognition to computational

biology, that use implementations of the Support Vector Machines [183] machine learning

classification algorithm. Additionally, ranking of search results is widely used by Internet

search engines (e.g., [25]), also apparently using similar machine learning algorithms

without test oracles. And other ML applications like those used for security and intrusion

detection systems are clearly becoming more important as companies seek to protect crucial

1http://www.thejakartapost.com/news/2005/08/19/massive-blackout-hits-java-bali.html
2http://www.cnn.com/2008/US/02/26/florida.power/index.html
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hardware and software from attackers [86]. Thus, ensuring the dependability of these sorts

of applications takes on significance even beyond our initial work.

The absence of a test oracle makes these applications difficult to test, since the correct

output cannot be known in advance. Further complicating the matter is the fact that software

engineering practices are not traditionally prevalent in these domains (machine learning,

scientific computing, simulation, etc.) [26]. Such software is often developed to explore

something previously unknown in the domain of interest, making it difficult to identify

requirements in advance. Typically the software developers have no formal knowledge

of software engineering tools and techniques, and may be developing software on their

own, acting as architect, developer, and tester [77]. Often, the developer may only test the

application by checking that it runs to completion and does not produce an obvious error.

Given the importance of such applications, and considering the general lack of software

quality assurance in such domains, it is clear that a simple yet effective testing technique is

of immediate importance.

2.2 Metamorphic Testing

Metamorphic testing has been suggested by Chen et al. as a way of testing applications that

do not have test oracles [37] by ensuring that the software under test exhibits its expected

“metamorphic properties”.

A metamorphic property can be defined as the relationship by which the change to the

output of a function can be predicted based on a transformation of the input [32]. Consider a

function that calculates the standard deviation of a set of numbers. Certain transformations

of the set would be expected to produce the same result: for instance, permuting the order of

the elements should not affect the calculation; nor would multiplying each value by -1, since

the deviation from the mean would still be the same. Furthermore, other transformations

will alter the output, but in a predictable way: if each value in the set were multiplied by 2,
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then the standard deviation should be twice that of the original set. Thus, given one set of

numbers, we can create three more sets (one with the elements permuted, one with each

multiplied by -1, and another with each multiplied by 2), and get a total of four test cases;

moreover, given the output of only the first test case, we can predict what the other three

should be.

Metamorphic properties can exist for an entire application, as well. Consider an

application that reads a text file of test scores for students in a class, computes each

student’s average, and uses the function described above to calculate the standard deviation

of the averages and determine the students’ final grades based on a curve. The application

itself has some metamorphic properties, too: permuting the order of the students in the

input file should not affect the final grades; nor should multiplying all the scores by 10

(since the students are graded on a curve).

As a more complex example of how metamorphic testing can be used for applications

in the domain of machine learning, anomaly-based network intrusion detection systems

build up a model of “normal” behavior based on what has previously been observed. This

model may be created, for instance, according to the byte distribution of incoming network

payloads (since the byte distribution in worms, viruses, etc. may deviate from that of

normal network traffic [186]). When a new payload arrives, its byte distribution is then

compared to that model, and anything deemed anomalous causes an alert. For a particular

input, it may not be possible to know a priori whether it should raise an alert, since that is

entirely dependent on the model. However, if while the program is running we take the new

payload and randomly permute the order of its bytes, the result (anomalous or not) should

be the same, since the model only concerns the distribution, not the order. If the result is

not the same, then a defect has been found.

Clearly metamorphic testing can be very useful in the absence of an oracle: regardless of

the values that are used in the test cases, if the relationships between the inputs and between

their respective outputs are not as expected, then a defect must exist in the implementation.
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That is, even if there is no test oracle to indicate whether f (x) is correct, if the output f (t(x))

is not as expected, and the metamorphic property is sound, then the property is considered

violated, and therefore a defect must exist.

2.3 Previous Work in Metamorphic Testing

Metamorphic testing was not originally devised as a solution to testing applications without

test oracles. Rather, the concept was presented as a way of generating additional test cases

from an existing set, particularly by suggesting that test cases that did not reveal defects did

not necessarily have to be considered “failures”, since they could be used to generate more

test cases that may have fault-revealing power [32]. Metamorphic testing sought to extend

the use of the algebraic properties of software [45, 103] to demonstrate that such properties

could be used to create more test cases, even when starting from a limited number.

It was quickly noted that metamorphic testing could be applied to situations in which

there is no test oracle [37, 202]. In some cases, these works looked at situations in which

there cannot be an oracle for a particular application because the correct output cannot

be known in advance [38]; in others, the work considered the case in which the oracle is

simply absent or difficult to implement [28].

Most recently, Hu et al. conducted empirical studies to determine the effectiveness

of metamorphic testing of applications without oracles [85], while others have applied

metamorphic testing to specific domains of programs without test oracles such as bioinfor-

matics [33], network simulation [35], and machine learning [195]. Other related work (in

metamorphic testing or otherwise) is presented in Chapter 6.

This thesis contributes to the body of work on metamorphic testing by implementing

improvements to the technique and measuring the improvements empirically. It also

demonstrates that aspects of this improvement can be applied to testing applications in

other domains that do, in fact, have test oracles.
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2.4 Devising Metamorphic Properties

An open issue in the research on metamorphic testing is, “how does one know the meta-

morphic properties of the function or application?” Although others have looked into

test case selection in metamorphic testing [34], i.e., choosing the test cases most likely

to reveal defects, previous work assumes that the tester or developer will have sufficient

knowledge of the system or function under test to identify its metamorphic properties, using

application- or domain-specific properties.

To assist in the process of identifying metamorphic properties, in this section we

describe some general guidelines that testers can follow and discuss how this fits into the

overall software development lifecycle. As we are the first to present a classification of

metamorphic properties, this is one of the major contributions of this thesis.

2.4.1 Mathematical Properties

Many programs without test oracles rely on mathematical functions (i.e., those that take

numerical input and/or produce numerical output), since the point of such programs is to

implement an algorithm and perform calculations, the results of which cannot be known in

advance; if they could, the program would not be necessary. In Table 2.1, we categorize

different classes of metamorphic properties that are common in mathematical functions. The

classes are not meant to imply that the output will not be changed by such transformations,

but rather that any change to the output would be predictable given the change to the input.

additive Increase (or decrease) numerical values by a constant
multiplicative Multiply numerical values by a constant
permutative Permute the order of elements in a set
invertive Take the inverse of each element in a set
inclusive Add a new element to a set
exclusive Remove an element from a set
compositional Create a set from some number of smaller sets

Table 2.1: Classes of metamorphic properties
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A simple example (for expository purposes only) of a function that exhibits these

different classes of metamorphic properties is one that calculates the sum of a set of

numbers. Consider such a function Sum that takes as input an array A consisting of n real

numbers. Based on the different classes of metamorphic properties listed in Table 2.1, we

can derive the following:

1. Additive: If every element in A is increased by a constant c to create an array A’,

then Sum(A’) should equal Sum(A) + n*c.

2. Multiplicative: If every element in A is multiplied by a constant c to create an array

A’, then Sum(A’) should equal Sum(A) * c.

3. Permutative: If the elements in A are randomly permuted to create an array A’, then

Sum(A’) should equal Sum(A).

4. Invertive: If we take the inverse of each element in A, i.e., multiply each element by

-1, in order to create an array A’, then Sum(A’) should equal Sum(A) * -1.

5. Inclusive: If a value t is included in the array to create an array A’, then Sum(A’)

should equal Sum(A) + t.

6. Exclusive: If a value t is excluded from the array to create an array A’, then Sum(A’)

should equal Sum(A) - t.

7. Compositional: If the array is decomposed into two smaller arrays A’ and A”, then

Sum(A) should equal Sum(A’) + Sum(A”).

These are admittedly very trivial examples and do not fall under the category of pro-

grams without test oracles, but more complex numerical functions that operate on sets or

matrices of numbers - such as sorting, calculating standard deviation or other statistics,

determining distance in Euclidean space, etc. - tend to exhibit similar properties as well.

Such functions are good candidates for metamorphic testing because they are essentially
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mathematical, and demonstrate well-known properties such as distributivity and transitivity

[133].

It is also the case that entire applications exhibit such properties, particularly in the

domain of interest (in our case, machine learning) [131]. These applications and their

metamorphic properties are discussed further in Section 2.5.

2.4.2 Considerations for General Properties

Although the classes of metamorphic properties listed in Table 2.1 can be useful in detecting

defects, they are generally only applicable to functions and applications that deal with

numerical inputs and outputs. Programs without test oracles tend to fall into this category

(machine learning, scientific computing, optimization, etc.), but other programs in domains

like computational linguistics and discrete event simulation work with non-numeric data,

and these classes of properties may not be applicable.

As a general methodology for creating metamorphic properties, we propose the guide-

lines set out in the following four paragraphs. As a running example, we also provide

possible metamorphic properties for applications from the domain of discrete event simula-

tion. Such applications have no test oracle because the software is written to produce an

output (the simulation) that was not already known in advance; if it were known in advance,

then the simulator would not be necessary.

First, consider the metamorphic properties of all applications in the given domain.

That is, there may be properties that are shared by all applications that operate in the

domain, because of the nature of that domain. For instance, in discrete event simulation,

regardless of the particular algorithm, there are generally “resources” that are modeled in the

simulation. These resources may be doctors and nurses in a hospital, assembly line workers

in an industrial factory, or postal workers who deliver mail. No matter what algorithm is

used, and no matter what is being simulated, all of these share some common metamorphic

properties. For instance, increasing the number of resources would be expected to lower
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each resource’s utilization rate, assuming the amount of work to be done remains constant.

As another example, if the timing of all events in the simulation is multiplied by a constant

factor, then the resource utilization should not change, since the ratio of the time spent

working to the total time of the simulation would not be affected (because each are scaled

up by the same factor).

Next, consider the properties of the algorithm chosen to solve a particular problem

in that domain. That is, within the domain, one chooses an algorithm to solve a given

problem, and that algorithm will itself have metamorphic properties. For instance, simula-

tors can be used to model the process by which patients are treated in a hospital emergency

room [60]. The process of simulating a patient’s visit to the hospital emergency room might

use an algorithm whereby steps and substeps are represented in a tree, and the entire process

is essentially a traversal of that tree [156]. This architectural detail leads to numerous

metamorphic properties relating to tree traversal: for instance, tree rotation is expected not

to change the result of an inorder traversal; also, the tree can be broken into its constituent

left and right subtrees, the combined traversal of which should be the same as the traversal

of the entire tree. As another example, the selected algorithm may allow for steps of the

process to run in parallel; a metamorphic property may be that changing the ordering of the

parallel steps in the process specification should not affect the output (since they all execute

at the same time, their ordering should not matter).

Then, consider the properties specific to the implementation of the algorithm used to

solve the problem. A given application that uses the chosen algorithm may have particular

metamorphic properties based on features of its implementation, the programming language

it uses, how it processes input, how it displays its output, etc. For instance, in simulating

the operation of a hospital emergency room, the process definition language Little-JIL [27]

and its corresponding simulator tool (Juliette Simulator, or JSim [193]) may be used to

specify the steps that an incoming patient goes through after arriving in the ER. In this

implementation, the unique identifiers for the different resources (doctors, nurses, etc.) are
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specified in a plain-text file; since this particular simulator treats all resources as being

equal, this implementation exhibits the metamorphic property that permuting the order of

the resources in the text file should not affect the simulated process.

Last, consider properties that are applicable only to the given input that is being used as

part of the test case. It may be the case that some metamorphic properties of an application

will only hold for certain inputs (this idea is explored further in the Future Work section

in Chapter 7). Consider an input to the hospital emergency room simulation in which the

number of resources is sufficiently large so that no patient ever needs to wait. For this

particular input, increasing the number of resources should not affect the simulation, since

those resources would go unused. But this particular property would not be expected to

hold if there were too few resources, of course.

Although the examples provided here are specific to the domain of discrete event

simulation (and simulation of a hospital emergency room in particular), such an approach

could be used in other domains that have no test oracle, as well.

2.4.3 Automated Detection

We are not aware of any investigation into the automatic discovery of metamorphic prop-

erties, though this may be possible by building upon other techniques designed to detect

similar characteristics of code. For example, dynamic approaches for discovering likely

program invariants, such as Daikon [58] and DIDUCE [75], observe program execution

and formulate hypotheses of invariants by relaxing different constraints on variables and/or

using machine learning techniques to generate rules. Such techniques tend to focus on

lower-level implementation details regarding application state and not on higher-level prop-

erties regarding function input and output, but could still be used as a basis for a dynamic

approach.

The automatic detection of metamorphic properties may also build upon the work in the

dynamic discovery of algebraic specifications [80], though that work has tended to focus
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on data structures and abstract datatypes, and not on how an arbitrary function should react

when its arguments are modified.

Of course, for any approach to automatically detecting code properties, a human “oracle”

must decide whether the properties seem to be correct. If a defect prevents the detection of

a metamorphic property, then the property will not be inferred and therefore no defect will

be detected. On the other hand, a defect in the code might cause the detection of a property

that the code should not, in fact, exhibit. Thus, as in invariant detection, the developer or

tester must validate whether the suggested properties are sound [58].

It could be argued that static analysis techniques such as model checking or symbolic

execution may be able to determine whether these properties hold, though such methods

rely on an initial hypothesis of the property to be checked, and are not intended to discover

the properties in the first place [42]. Furthermore, many metamorphic properties may be

“hidden” within an implementation, and not detectable through analysis of the source code.

As a very simple example, a sine function that uses a Taylor series sin(x) = x - (x3/3!) +

(x5/5!) - (x7/7!) obscures the metamorphic property that sin(x) = sin(x + 2π).

Another approach would be to use machine learning techniques to automatically detect

metamorphic properties by considering “similarities” in code. That is, if different pieces

of code are known to exhibit a given property, then it may be possible to speculate that

“similar” code (by some definition of “similarity”) may exhibit the same property. This

could also be done using techniques aimed at detecting code clones, which typically look for

semantic and/or syntactic resemblance [65], but could conceivably be modified to indicate

that two pieces of code exhibit the same metamorphic properties. Such approaches may

be feasible in simple cases for the mathematical properties described in Table 2.1, though

further investigation is required to determine how the approach fares on arbitrary pieces of

more complex code.

The automated detection of metamorphic properties is outside the scope of this thesis,

but is an important direction for potential future work.
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2.4.4 Effect on the Development Process

Though there may be no “silver bullet” when it comes to devising the metamorphic proper-

ties of a given function or application, we would argue that in any software testing approach,

the tester still must have some knowledge or understanding of the program in order to

devise test cases. Semantic knowledge of the program or function to be tested is required for

writing use cases, devising equivalence classes, creating test input, and designing regression

tests [61, 135]. Even purely random testing approaches demand that the tester understand

the input and output domain [73]. Thus, metamorphic testing is no different from other

black-box techniques in that it is assumed that the tester will have enough knowledge of the

code to create test cases (in this case, metamorphic properties), as guided by the program

or function specifications and a general understanding of what the code is meant to do.

To facilitate this, we suggest that the metamorphic properties be identified as part of the

planning and design phase, and included in the program specification. Thus, the application

designer, who is likely to have the best understanding of how the program should react when

its inputs are changed, can pass this knowledge on to the tester, who can then implement

the specific test cases.

Metamorphic testing can also be applied to individual functions, and thus is suitable for

use in unit testing and integration testing, particularly when there may be no oracle for the

unit(s) being tested. Thus, in the implementation phase, developers can use metamorphic

testing for subcomponents of the application; given that they are the ones who implemented

the code, it should be easy for them to devise metamorphic properties, in the same way that

it is easy for them to devise program invariants [43].

2.5 Applications in the Domain of Interest

In this section, we provide more details about the programs in the domain of interest

(machine learning), and discuss how they exhibit the metamorphic properties listed above
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in Table 2.1. These applications and properties will be used throughout the experiments in

the following chapters. Other applications will be included in those experiments as well,

and are described in the corresponding sections.

2.5.1 Machine learning fundamentals

In general, data sets used in machine learning (ML) consist of a collection of examples,

each of which has a number of attribute values. The examples can be thought of as rows in

a table, each of which represents one item from which to learn, and the attributes are the

columns of the table.

In supervised ML, a label indicates how each example is categorized. In some cases

the labels are binary: an example with a label of 1 is considered a positive example, and a

0 represents a negative example. In the motivating device failure application described in

Section 2.1, though, the labels could be any non-negative integer, indicating how may times

the device failed over a given period of time. Our investigation only considers binary labels,

but the results are still generalizable. Figure 2.1 shows a small portion of a data set that

could be used by supervised ML applications. The rows represent examples from which to

learn, as comma-separated attribute values; the last number in each row is the label.

Supervised ML applications execute in two phases. The first phase (called the training

phase) analyzes a set of training data; the result of this analysis is a model that attempts to

make generalizations about how the attributes relate to the label. In the second phase (called

the testing phase), the model is applied to another, previously-unseen data set (the testing

data) where the labels are unknown. In a classification algorithm, the system attempts

to predict the label of each individual example; in a ranking algorithm, the output of this

phase is a ranking such that, when the labels become known, it is intended that the highest

valued labels are at or near the top of the ranking, with the lowest valued labels at or near

the bottom.

Unsupervised ML applications also execute in training and testing phases, but in these
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27,81,88,59,15,16,88,82,41,17,81,98,42, ..., 0

15,70,91,41, 5, 3,65,27,82,64,58,29,19, ..., 0

22,72,11,92,96,24,44,92,55,11,12,44,84, ..., 1

82, 3,51,47,73, 4, 1,99, 1,51,84, 1,41, ..., 0

57,77,33,86,89,77,61,76,96,98,99,21,62, ..., 1

...

Figure 2.1: Example of part of a data set used by supervised ML ranking algorithms

cases, the training data sets specifically do not have labels. Rather, an unsupervised ML

application seeks to learn properties of the examples on its own, such as the numerical

distribution of attribute values or how the attributes relate to each other. This model is

then applied to testing data, to determine whether (or to what extent) the same properties

exist. Anomaly-detection systems are types of applications that use unsupervised machine

learning, as are data mining [74] and collaborative filtering [157].

2.5.2 MartiRank

Algorithm

MartiRank [70] was developed by researchers at Columbia University’s Center for Com-

putational Learning Systems as a ranking implementation of the Martingale Boosting

algorithm [109], specifically with the electrical device failure application (described in

Section 2.1) in mind.

In the training phase, MartiRank executes a number of “rounds”. In each round, the

set of training data is broken into sub-lists; there are N sub-lists in the Nth round, each

containing 1/Nth of the total number of positive examples (i.e., examples with a label

of 1). For each sub-list, MartiRank sorts that segment by each attribute, ascending and

descending, and chooses the attribute that gives the best “quality”. The quality is assessed

using a variant of the Area Under the Curve [76] calculation that is adapted to ranking

rather than binary classification. The model, then, describes for each round how to split

the data set and on which attribute and direction to sort each segment for that round. In
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the second (testing) phase, MartiRank applies the segmentation and sorting rules from the

model to the testing data set to produce the ranking (the final sorted order).

1.0000,61,d

0.4000,32,a;1.0000,12,d

0.2500,18,d;0.5555,55,d;1.0000,41,d

Figure 2.2: Sample MartiRank model

Figure 2.2 shows a sample model created by MartiRank. In the first “round”, shown

on the first line, all of the examples are sorted by attribute 61 (indicated by the “61”)

in descending order (indicated by the “d”). In the second round, shown on the second

line, the result of the first round is then segmented. The first segment contains 40% of

the examples in the data set (indicated by the “0.4000”) and sorts them on attribute 32,

ascending. The rest of the data set is sorted on attribute 12, descending. The two segments

are then concatenated to reform the data set, which is then segmented and sorted according

to the next line of the model, and so on. A typical MartiRank model in the device failure

application may have anywhere from four to ten rounds.

Metamorphic Properties

In determining the metamorphic properties of MartiRank, we first considered relationships

that should not affect the output: either the model that is created as a result of the training

phase, or the ranking that is produced at the end of the testing phase. For the training phase,

if training data set input D produces model M, then we looked for input transformation

functions Ti so that input Ti(D) would also produce model M. Additionally, if testing data set

input K and model L produce ranking r(K, L) = R, then we looked for input transformation

functions Ti and model transformation functions Tm so that the combinations r(Ti(K), L),

r(K, Tm(L)) or r(Ti(K), Tm(L)) produce R as well.

Based on our analysis of the MartiRank algorithm, we noticed that it is not the actual

values of the attributes that are important, but it is the relative values that determine the
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model. Adding a constant value to every attribute, or multiplying each attribute by a

positive constant value, should not affect the model because the model only concerns how

the examples relate to each other, and not the particular values of the examples’ attributes.

The model declares which attributes to sort to get the best ordering of the labels; in Figure

2.1, if the values in any column were all increased by a constant, or multiplied by a positive

constant, then the sorted order of the examples would still be the same, thus the model

would not change. Additionally, applying a given model to two data sets, one of which

has been created based on the other but with each attribute value increased by a constant,

should generate the same ranking, based on the same line of reasoning. Thus, MartiRank

exhibits metamorphic properties that we can classify as both additive and multiplicative:

modifying the input data by addition or multiplication by a positive constant should not

affect the output.

It should also be the case that changing the order of the examples should not affect the

model (in the first phase) or the ranking (in the second). As MartiRank is based on sorting,

in the cases where all the values for a given attribute are distinct, the sorted order will still

be the same regardless of the original input order. Thus, MartiRank also has a permutative

metamorphic property in that permuting the order of the input should not affect the output,

albeit only limited to certain inputs.

We then considered metamorphic relationships that would affect the output, but in a

predictable way. For the training phase, if training data set input D produces model M, then

we looked for input transformation functions Ti so that input Ti(D) would produce model

M’, where M’ could be predicted based on M. Additionally, if testing data set input K and

model L produce ranking r(K, L) = R, then we looked for input transformation functions Ti

and model transformation functions Tm so that r(Ti(K), L), r(K, Tm(L)) and r(Ti(K), Tm(L))

all can be predicted based on R. Keep in mind that in order to perform testing, we need

to be able to have a predictable output based on R because we cannot know it in advance

otherwise, since there is no test oracle.
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We mentioned above that multiplying all attributes by a positive constant should not

affect the model. On the other hand, multiplying by a negative constant clearly would have

an effect, because sorting would now result in the opposite ordering. The effect on the

MartiRank model, however, could easily be predicted, because the model not only specifies

which attribute to sort on, but which direction (ascending or descending) as well. Consider

that, if one were to sort a group of numbers in ascending order, then multiply them all by

a negative constant, and sort in descending order, the original sorted order would be kept

intact. In MartiRank, if in the original data set a particular attribute is deemed to be the

best one to sort on, and a new data set is created by multiplying every attribute value by a

negative constant, then that particular attribute will still be the best one to sort on, but in

the opposite direction. The only change to the model will be the sorting direction. Thus,

MartiRank displays an invertive metamorphic property, wherein it is possible to predict

the output based on taking the “opposite” of the input. Like the permutative property, this

property only holds in the case where all values are distinct, however, and would not be the

case in situations in which there are repeating values and a stable sort is used.

This invertive property can also be seen in the testing phase. For data set input K, we

define K’ as its inverse, i.e., all attribute values multiplied by a negative constant. For model

L, we define L’ as its inverse, i.e., using the same attributes and partitioning but with the

sorting directions all changed. We also define R = r(K, L) as the ranking produced on

data set K and model L, and R’ as the inverse ranking, where the examples are ranked in

“backwards” order. Based on the explanation above, we can expect that if r(K, L) = R, then

r(K’, L’) is also equal to R, because sorting the positive values ascending will yield the

same ordering as sorting the negative values descending. It also follows, then, that r(K’, L)

and r(K, L’) should both be equal to R’, in which the ranking is the same but in the opposite

direction.

Furthermore, once we know the model, it is easy to add an example to the set of testing

data so that we can predict its final place in the ranking. Take, for example, the model
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shown in Figure 2.2. In the first round, it sorts on attribute 61 in descending order; if we

add an example to a testing data set such that the example has the greatest value in attribute

61, it will end up at the top of the sorted list. In the second round, the model sorts the top

40% (which would include our added example) on attribute 32 in ascending order; if we

modify our added example so that it has the smallest value for attribute 32, it will stay

at the top of the list. And so on. Knowing the model, we can thus construct an example,

add it to the data set, and expect it to appear first in the ranking. We can thus say that

MartiRank has an inclusive metamorphic property, meaning that a new element can be

included in the input and the effect on the output is predictable. Similarly, MartiRank also

shows an exclusive metamorphic property: if an example is excluded from the testing data,

the resulting ranking should stay the same, but without that particular example, of course.

Last, the compositional property of MartiRank is simply demonstrated by duplicating

all of the examples in the training data. That is, if data set input D produces model M,

then a data set D’ that consists of every example in D appearing twice should also produce

the same model M, since the results of sorting the elements will stay the same, as will the

percentage of positive examples used for creating the segments.

We note that all of these properties were validated with the MartiRank implementation

used in the experiments in the following chapters.

2.5.3 Support Vector Machines

Algorithm

The Support Vector Machines (SVM) algorithm [183] belongs to the family of linear

classifiers and is the foundation of numerous real-world applications [178]. In the learning

phase, SVM treats each example from the training data as a vector of N dimensions (since

it has N attributes), and attempts to segregate the examples with a hyperplane of N-1

dimensions. The type and shape of the hyperplane is determined by the SVM’s “kernel”: in

our work, we only investigated the linear kernel, which is the default for the implementation
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Figure 2.3: Data points separated by hyperplanes in SVM

we considered. The goal is to find the hyperplane with the maximum margin (distance)

between the “support vectors”, which are the examples that lie closest to the surface of the

hyperplane; the resulting hyperplane is the model.

Figure 2.3 demonstrates a simple example.3 Hyperplane H3 does not separate the two

classes, indicated as black dots and white dots. H1 does separate the classes, but the support

vectors (data points closest to the hyperplane) have a small “margin”, or distance, from the

hyperplane. Hyperplane H2 separates the classes with the maximum margin between the

support vectors, and thus would be chosen as the model.

In the classification phase, examples in the testing data are classified according to which

“side” of the hyperplane they fall on.

3http://en.wikipedia.org/wiki/Support vector machine
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We tested the SVM implementation in the Weka 3.5.8 toolkit for machine learning

[194], written in Java. While there are many other implementations of SVM, we chose

the Weka implementation because it is open source and because of its popularity (over 1.6

million downloads on sourceforge.net as of November 2009, almost four times as many as

the next most-downloaded open source machine learning toolkit).

Metamorphic Properties

As expected, SVM exhibits the same classes of metamorphic properties shown by Marti-

Rank. Almost all of the transformations based on these metamorphic properties would be

expected to result in a modification of the output compared to the original, but this modifi-

cation should be predictable or easily be converted to the original output with additional

transformations. For instance, if the training data set were transformed using an additive,

multiplicative, and/or invertive relationship, then the corresponding model (hyperplane)

should be affected by being shifted, expanded, or inverted in the N dimensions; if an

example in the testing data set also had the same transformation(s) applied, the resulting

classification when the new model is applied should be the same as that of the original

model applied to the original data set, since the relation to the hyperplane should stay the

same.

As with MartiRank, we would expect that SVM should exhibit the permutative property:

it theoretically should produce the same model regardless of the order of the examples

in the training data. In practice, though, this property does not always hold because of

approximations that are used in the implementation [127]. An ML researcher familiar with

SVM told us that because it is inefficient to run the quadratic optimization algorithm on the

full data set all at once, the implementation performs “chunking” whereby the optimization

algorithm runs on subsets of the data and then merges the results [168]. Numerical methods

and heuristics are used to quickly converge toward the optimum; however, the optimum is

not necessarily achieved, but instead this process stops after some threshold of improvement.
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Thus, the models may demonstrate slight differences depending on which examples were

in which chunks. We note, however, that although permuting the training data input does

not always produce the exact same model, it generally produces a semantically-equivalent

model, i.e., one that classifies examples in the testing data in the same manner as the

original. Thus, for our purposes, we use this definition of the permutative property, and we

validated this property with the Weka implementation used in our experiments.

Because every example in the training data influences the creation of the SVM model

(hyperplane), even if in just a small way, it is clear that including an additional example

or removing an example from the training data would have an unpredictable effect on the

model; thus, it may appear that SVM does not have inclusive or exclusive metamorphic

properties. However, classification algorithms in supervised machine learning do have

properties related to including or excluding examples, but only once the classification of a

particular example from the testing data is already known. For example, if a model M is

created in the training phase and an example t is classified in the testing phase with label l,

then we can duplicate all or some of the examples in the training data with label l, and the

classification of t should remain the same, even if the model M does not; this is an inclusive

metamorphic property if we simply insert a single new example, and a compositional

property if we duplicate all examples with label l. Similarly, if we remove some of the

examples in the training data that have labels other than l, again the classification of t

would be expected to stay the same; this is an exclusive property. Both are a result of

strengthening the relationship between the attributes in the training data and the label, and

we have elsewhere argued that all classification algorithms would be expected to exhibit

these particular properties [195].
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2.5.4 C4.5

Algorithm

C4.5 [154] is a commonly used classification algorithm for building decision trees, in

which branches represent decisions based on attribute values and leaves represent how the

example is to be classified. Like other decision tree classifiers, it takes advantage of the fact

that each attribute in the training data can be used to make a decision that splits the data

into smaller subsets. In our experiments, we tested C4.5 release 8, implemented in C.

During the training phase, for each attribute, C4.5 measures how effective it is to split

the data on a particular attribute value, and the attribute with the highest “information gain”

(a measure of how well similar labels are grouped together [95]) is the one used to make

the decision. The algorithm then continues recursively on the smaller sublists.

Figure 2.4: Decision tree used by C4.5
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During classification, the rules of the tree are applied to each example, which is classified

once it reaches a leaf. Figure 2.4 shows an example of a decision tree that could be used

in the C4.5 algorithm (this example happens to be a binary decision tree, but that is not

a limitation of C4.5). The circles represent nodes, at which different attribute values are

evaluated. The edges coming from those nodes show the “direction” to traverse in the tree,

based on the attribute values. Once a leaf is reached, the example can be classified, as the

leaf specifies the label.

For instance, using the decision tree in Figure 2.4, if an example to be classified had the

attributes {A=7, B=3, C=3, D=4}, then at the root of the decision tree, we would choose

the right branch because A ≥ 7. At the next node, we look at the value of C, and choose the

left branch because C ≤ 5. Then, we look at D, and choose the left branch again because D

< 9. Finally, we reach a leaf, and the example is classified with the label 0.

Metamorphic Properties

From looking at Figure 2.4, we can clearly see how C4.5 would exhibit a multiplicative

metamorphic property: if the attributes in the training data were all multiplied by 10, for

instance, the resulting tree would be expected to stay the same, except that the values on

each edge should also be multiplied by 10. Then, if the attributes in the example used in the

testing phase were also multiplied by 10, the classification should not change. The same

case can be made for the additive property: as long as the same constant is added to the

same attributes in both the training data and the testing data, the classifications should stay

the same.

The same is true for the invertive property, but with a slight difference. For example,

using the decision tree in Figure 2.4, if we apply the multiplicative property and multiply

by 10, then the edges coming from the root node would change to “A < 70” and “A ≥ 70”.

If we instead apply the additive property and add 10, then they would become “A < 17”

and “A ≥ 17”. However, if we apply the invertive property and multiply by negative 1, in
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order to get the same classification from the testing data (which would have to have the

same transformation applied, of course), we must reverse the comparison signs. So the left

edge would become “A ≥ -7”, and the right would become “A < -7”.

We noted, though, that in the C4.5 implementation we evaluated, the values on the edges

were not exactly negated. This is due to a small constant ε that is used in the calculation of

the information gain; because it is not negated during the metamorphic transformation, this

affects the calculation. However, we observed the difference in values to be slightly less

than 1%, which could be accomodated for by using a threshold for the comparison of the

models, as discussed later in Section 3.3.

As with MartiRank and SVM, we would likewise expect that C4.5 should exhibit the

permutative property, in that the model should not be affected by the order of the examples

in the training data. And, as argued above and in [195], C4.5 has the same inclusive,

exclusive, and compositional properties as all other classification algorithms, including

SVM.

2.5.5 PAYL

Algorithm

MartiRank, SVM, and C4.5 represent three major categories of supervised machine learn-

ing: ranking, linear classification, and decision tree classification, respectively. To apply

our approach to the category of unsupervised machine learning applications, we investi-

gated PAYL [188], an anomaly-based network intrusion detection system (IDS) that was

developed in Java by members of Columbia University’s Intrusion Detection Systems Lab.

Although PAYL can act as a standalone application, it has been incorporated within a

commercial product that has been deployed in a number of corporate network environments

[176].

Many intrusion detection systems are primarily signature-based detectors, and while

these are effective at detecting known intrusion attempts and exploits, they fail to recognize
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Figure 2.5: Sample payload byte distribution

new attacks and some variants of old exploits 4. However, anomaly-based systems like

PAYL are used to model normal or expected behavior in a system, and detect deviations that

may indicate a security breach or an attempted attack. Anomaly-based IDS applications are

considered unsupervised machine learning because there are no labels on the training data;

rather, the system must learn on its own what is “normal” and what is “anomalous”.

PAYL’s training data simply consists of a set of TCP/IP network packets (streams of

bytes), without any associated labels or classification. During its training phase, it computes

the mean and variance of the byte value distribution for each payload length (the payload

can be thought of as the “message” inside the network packet) in order to produce a model.

Figure 2.5 shows an example of such a distribution [188]. During the second (“detection”)

phase, each incoming packet is scanned and the distribution of the byte values in its payload

is computed. This new payload distribution is then compared against the model (for that

payload length) using the Mahalanobis distance [114], which is a way of comparing two

sets of data taking into account their correlations. If the distribution of the bytes in the new

payload is above some configurable threshold of difference from the norm, PAYL flags it as

anomalous and generates an alert.

4www.securityfocus.com/infocus/1663
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Metamorphic Properties

Because the model generated by PAYL in the training phase represents the distribution

of byte values in the TCP/IP payload (see Figure 2.5), it can be shown that it exhibits the

additive property. Adding a constant value to each byte would simply shift the distribution,

assuming overflows are handled by “wrapping” the values (e.g., 0xFF + 2 would become

0x01). Therefore, it would be easy to predict the effect on the model. Additionally, the

categorization (as anomalous or not) of a packet in the testing phase would not change if it,

too, had its bytes modified in the same manner.

As for a multiplicative property, though, it would not appear that multiplying the bytes

in the payload by a constant would have a predictable effect on the output, particularly

because the values need to be constrained to one byte, and there would be no one-to-one

transformation based on multiplying that would meet that constraint. However, this is more

of an issue of the particular application in this particular domain than it is of the approach

itself, or of applying the approach to unsupervised machine learning algorithms.

Much of our analysis of PAYL focused on its permutative properties, primarily because

some attackers may try to hide a worm or virus by permuting the order of the bytes, so

as to trick a signature-based intrusion detection system. Of course, the model created by

PAYL does not consider the order of the bytes, only their distribution, so a permutation

should still result in the same model. At a higher level, because the model is created from a

number of packets (not just a single one), permuting the order of the packets in the training

data stream should also result in the same model.

PAYL also has an invertive property. An “inverse” of the distribution can be obtained

by subtracting each byte value from the maximum (0xFF), so that frequently-seen values

become less frequent, and vice-versa. If the same treatment is then applied to the payloads

in the testing data as well, then the same alerts should be raised as before, since these values

will still appear to be anomalous.

Aside from considering the distribution of byte values in creating its model, PAYL also
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considers the existence (or absence) of payloads of certain lengths, and thus certainly has

inclusive metamorphic properties. For instance, consider a model that generates an alert

on a new payload because its length had never before been seen. If the particular payload

were then included in the training data, it should no longer be considered anomalous. We

would similarly expect PAYL to have exclusive metamorphic properties: if all payloads of a

certain length were removed from the set of training data, then any messages of that length

in the testing data would thus be considered anomalous because they had not previously

been seen. The same holds true for port numbers, in addition to payload length.

2.6 Summary

In this chapter, we have discussed the metamorphic testing technique, presented guidelines

for devising the properties of the software that are required for testing, and demonstrated

that applications in machine learning exhibit such properties.

Next, we describe some of our enhancements to metamorphic testing, and show how

they improve the state of the art in testing applications without test oracles.



Chapter 3

Automated Metamorphic System

Testing

Although metamorphic testing is a simple technique in principle, clearly tool support is

required in practice for all but the most trivial cases. The transformation of input data

should be automated for large data sets, especially for input that is not in human-readable

format. Similarly, comparing the outputs requires tools for cases in which the result sets

are large, and/or if the outputs are not expected to be exactly the same.

It is certainly true that the testers can create one-off scripts to perform these transfor-

mations and comparisons, but to date there is no out-of-the-box testing framework that

automates the way in which metamorphic testing is conducted in practice. In the same way

that JUnit [89] provides a set of core functionality so that testers need not reinvent the wheel

each time they perform unit testing, we intend to provide a new framework that automates

the tasks performed by testers when they conduct metamorphic testing. Moreover, unlike

JUnit, in which the testers still need to produce test code, the framework we seek to develop

will allow them to merely specify the metamorphic properties using a simple notation,

rather than needing to write any code.

The need for automation of the metamorphic testing process is particularly clear in the

41
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cases in which slight variations in the outputs appear to indicate violations of metamorphic

properties, but are not actually the result of errors in the code. This may come about due

to imprecisions in floating point calculations that arise during additional executions of the

program or function under test, and may lead to false positives (thinking that there is a

defect when there actually is not). In such cases, the results need to be compared to within

some threshold, or checked for semantic similarity.

Non-deterministic applications also present a challenge: to check whether a meta-

morphic property holds may require many executions of the code, and then some further

analysis of the resulting outputs. Clearly these cases all would require tool support. To date,

there has been very little work in investigating the application of metamorphic testing to

non-deterministic applications, and yet many applications without test oracles may also

rely on randomization, making them even more difficult to test.

In this chapter, we present an approach to automating metamorphic testing and describe

an implementation of a testing framework called Amsterdam that facilitates the manner

in which metamorphic testing is conducted in practice. To address the testing of non-

deterministic applications, we introduce a new technique called Heuristic Metamorphic

Testing. We also provide the results of new empirical studies conducted on real-world

programs (both deterministic and non-deterministic) that have no test oracles to demonstrate

the effectiveness of metamorphic testing techniques, and show that they are more effective

than other common approaches.

The rest of this chapter is organized as follows: in Section 3.1, we further motivate

the need for automation of the process by which metamorphic testing is conducted in

practice. In Section 3.2, we describe the implementation of the Amsterdam framework

for automating system-level metamorphic testing. In Section 3.3, we discuss the Heuristic

Metamorphic Testing approach, and describe how it can be applied to non-deterministic

applications. The results of our empirical studies are detailed in Section 3.4.
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3.1 Motivation

Although it has been demonstrated that it is possible to use metamorphic testing to reveal

previously-unknown defects in applications without test oracles [131, 195], the process by

which the testing is conducted can benefit from automation, so that testers can be more

productive by reusing existing testing frameworks and toolsets, and by running test cases in

parallel whenever possible.

3.1.1 The Need for Automation

Without tool support, the manual transformation of the input data can be laborious and

error-prone, especially when the input consists of large tables of data, rather than just

scalars or small sets. Machine learning applications, for example, can take input files of

thousands or tens of thousands of rows of data; anything but the simplest transformations

would need to be automated.

On a similar note, input data that is not human-readable (for instance, binary files

representing network traffic) certainly require tools for transformation. For instance, as

described in Section 2.5.5, the network intrusion detection system PAYL takes as input a

collection of network packets represented as streams of bytes, the format of which must

adhere to the strict TCP/IP conventions. Any transformation of this input would need

to ensure that the new data set contains syntactically and semantically correct packets;

however, it is quite difficult to know which parts of the byte stream to modify without tool

support.

Additionally, the manual comparison of the program outputs can also cause problems.

As with the input data, many applications for which metamorphic testing is appropriate

produce large sets of output, and comparing them manually can be error-prone and tedious.

In fact, Weyuker includes applications that produce a large amount of output in her definition

of applications without test oracles [190].
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Another issue involves metamorphic properties for which changes to the output are to

be expected. For instance, in the C4.5 classifier discussed in Section 2.5.4, if the examples

in the training data input have all attributes multiplied by two, then the decision tree should

stay the same, but with the values at the nodes also multiplied by two. If the decision tree is

large, it can be difficult to manually compare the two trees to make sure that they are as

expected, and obviously a tool like “diff” is not sufficient because the trees are not expected

to be exactly the same.

In all of these cases, one-off scripts could be created, but testers could clearly benefit

from a general framework that addresses different types of input transformations and output

comparisons for purposes of metamorphic testing. Such a framework would be even more

beneficial if it did not require testers to actually write test code; rather, they would only

need to use a simple notation to specify the metamorphic properties of the application under

test, and let the framework do the rest. More importantly, the testers’ productivity could

further be increased if the framework automatically handled running multiple invocations

of the program in parallel, so that the tester need not wait for additional program runs to

complete in order to know the results of the test.

3.1.2 Imprecision

The problem with comparing program outputs - regardless of how it is done - is exacerbated

by the fact that imprecisions in floating point operations in digital computers could cause

outputs to appear to deviate, even if the calculation is actually correct programmatically.

Although errors due to floating point imprecision are not the types of defects that we have

set out to discover, comparing the outputs based on an expectation of equality may lead to

a false positive, i.e., thinking that there is a defect when there actually is not [24].

Consider the simple case of the sine function, and the metamorphic property sin(α)

= sin(α + 2π). In practice, a defect-free implementation may cause a failure of the

metamorphic test, due to imprecision in floating point calculations and the representation of
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π. For instance, the Math.sin function in Java computes the sine of 6.02 radians and the sine

of (6.02 + 2 * Math.PI) radians as having a difference on the order of 10-15, which in most

applications is probably negligible, but is not exactly the same when checking for equality;

thus, a metamorphic property based on checking that the results are equal would lead to a

false positive. It may be of interest to the tester to know that the property was violated, of

course, but this violation may not actually indicate a defect in the implementation.

3.1.3 Non-Determinism

Non-deterministic programs may yield outputs that are expected to deviate between execu-

tions, and thus it may be impossible in practice to know whether the output is one that is

predicted according to the metamorphic property, given the non-determinism. For instance,

in the ranking algorithm MartiRank, described in Section 2.5.2, the result of the second

(or “ranking”) phase can be non-deterministic if there are missing attribute values in the

data set: when the examples are sorted, those with unknown attribute values are randomly

placed throughout the sorted list. If we permute the order of the examples in the input

data, we would expect the output to stay the same if all attribute values were known. But if

some are missing, the output will not stay exactly the same, because the placement of the

examples with missing values is bound to change; this would also result in the placement

of the known values being adjusted slightly. However, we may expect the new output to be

“similar” to the original. The degree of expected similarity would need to either be specified

by the tester or inferred automatically. In either case, tool support is required.

3.2 Automated Testing Framework

To automate the process by which system-level metamorphic testing is conducted, we

propose that the tester would simply need to follow these steps:

1. Specify application’s metamorphic properties. The tester needs to specify the



CHAPTER 3. AUTOMATED METAMORPHIC SYSTEM TESTING 46

application’s metamorphic properties using a special syntax or scripting language.

This specification should describe how to transform the input, and what the expected

change to the output would be (Section 3.2.3).

2. Configure framework. The testing framework is configured so that it knows where

to find the specification of the metamorphic properties, and how to run the program

to be tested (Section 3.2.4).

3. Conduct system testing. The framework is invoked using test input data, as specified

by the tester. The transformation of the input data, execution of the program, and

comparison of the output are all automatically performed by the framework. The

tester is notified about any violation of metamorphic properties, indicating that a

defect has been found (Section 3.2.5).

Aside from facilitating metamorphic testing in the development environment, this

technique can conceivably also be used to continually test the application as it runs in the

deployment environment, as well. This must be done in such a manner that the end user

only sees the results of the main (original) execution, and not from any of the others that

are only for testing purposes; Section 3.2.6 investigates this further.

3.2.1 Model

Figure 3.1 shows the model of an implementation of such an automated approach. Meta-

morphic properties of the application are specified by the tester and then are applied to the

program input. The original input is fed into the application, which is treated completely

as a black box; a modified version of this input data is also produced, according to the

metamorphic property. For each property to be checked, the corresponding input data is then

fed into a separate invocation of the application, which executes in parallel but in a separate

sandbox so that changes to files, screen output, etc. do not affect the other process(es).

When the invocations finish, their results are compared according to the specification; if the
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results are not as expected, a defect has been revealed. Although not reflected in Figure 3.1,

it should be possible to execute more than two invocations of the program in parallel.

Figure 3.1: Model of Amsterdam testing framework

Ideally, the tester would not need to write any actual test code per se, nor any test scripts,

but rather would only need to specify the metamorphic properties of the application. This

can be done by the creator of the algorithm or by the application designer, and does not

assume intricate knowledge of (or even access to) the source code or other implementation

details.

The rest of this section describes our implementation of a testing framework called

Amsterdam, which enables an application to be treated as a black box so that system-level

metamorphic testing can be automated without any modification to the code whatsoever.
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As described above, multiple invocations of the application are run and their outputs are

compared; however, the additional invocations must not affect the original process (or each

other) and thus must run in a separate sandbox.

3.2.2 Assumptions

The current implementation of the Amsterdam framework assumes that: the program

under test can be invoked from the command line; system input comes from files or from

command line arguments; and, output is either written to a file or to standard out (the

screen). This may limit the generality of this framework, but according to our preliminary

investigations, these assumptions are typically not restrictive in applications in the domains

of interest (particularly machine learning, but also discrete event simulation, optimization,

etc.). Additionally, when input comes from database tables, mouse clicks, keystrokes,

incoming network traffic, etc., an analogous unit testing approach can be used instead, so

that metamorphic testing can be conducted at a more granular level; Chapter 4 describes

such an approach.

3.2.3 Specifying Metamorphic Properties

When using the Amsterdam framework, the tester first specifies the metamorphic properties

of the application. In our current implementation, this can be done in a text file using

a syntax similar to plain English for some simple properties. For instance, if permuting

the input to an application is not expected to affect the output (i.e., the resulting output

is equal to the output of the initial test case), then the specification would simply be “if

permute (input) then equal (output)”. For more complex properties, an XML

file is used for the specification (described below). The examples in this section assume the

specifications are written in XML (since the plain-English properties are ultimately pre-

processed into XML files), though the ideas and principles will remain the same, regardless

of the particular implementation.
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The specification of a metamorphic property includes three parts: how to transform

the input, how to execute the program (e.g., the command to execute, setting any runtime

options, etc.), and how to compare the outputs. Multiple metamorphic properties can be

specified together in one file.

For input transformation, the tester can describe how to modify the entire data set

or only certain parts, such as a particular row or column in a table of data. As described

in Section 2.4, we have identified seven general categories of metamorphic properties,

and the framework supports out-of-the-box input modification functions to match each

of these categories: adding a constant to numerical values; multiplying numerical values

by a constant; permuting the order of the input data; reversing the order of the input data;

removing part of the data; adding additional data; and, composing a data set from smaller

subsets.

For program execution, the tester needs to specify the command used to execute the

program. The program is completely treated as a black box, so the particular implementation

language does not matter, as long as the program is executable from the command line.

Some metamorphic properties may call for different runtime options to be used for the

different invocations; those would be specified here.

For output comparison, the tester describes what the expected output should be in

terms of the original output. In the simplest case, the outputs would be expected to

be exactly the same. In other cases, the same transformations described above (adding,

multiplying, etc.) for the input may need to be applied to the output before checking for

equality. Additionally, the framework also supports checking for inequality if a change to

the input is expected to cause a change to the output, even if that output cannot be precisely

predicted. Last, if the output is non-deterministic, statistical or Heuristic Metamorphic

Testing can be used, as described in Section 3.3.

Figure 3.2 demonstrates an example of a metamorphic property for system testing

as specified in an XML file. On line 2, the name of the program to be run (in this case,
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1 <TESTDESCRIPTOR>

2 <EXECUTION>/usr/bin/c-marti</EXECUTION>

3 <PARAMETERS>@input.training data @output.model --no-permute --no-prob-dist</PARAMETERS>

4 <INPUT>

5 <VAR TYPE="csv file" NAME="training data" />

6 </INPUT>

7 <OUTPUT>

8 <VAR TYPE="text file" NAME="model" />

9 </OUTPUT>

10 <POST TEST>

11 <BRANCH NAME="main" />

12 <BRANCH NAME="test1">

13 @op permute(@input.training data)

14 </BRANCH>

15 <BRANCH NAME="test2">

16 @op multiply(@input.training data, 10)

17 </BRANCH>

18 <PROPERTY>

19 <ASSERT> @op equal(@main.output.model, @test1.output.model) </ASSERT>

20 <ASSERT> @op equal(@main.output.model, @test2.output.model) </ASSERT>

21 </PROPERTY>

22 </POST TEST>

23 </TESTDESCRIPTOR>

Figure 3.2: Example of specification of metamorphic property for system-level testing

MartiRank) is specified, and on line 3 the names of the command-line parameters are

given. For the purposes of metamorphic testing, the input is given the placeholder name

“training data” and the output is given the name “model”; other parameters specific to the

execution of MartiRank are also specified on line 3. On lines 5 and 8, the types of files for

the input and output are given, respectively.

The metamorphic properties to be tested are declared in lines 10-22. On line 11, we say

that there is to be a “main” execution, the output of which will be shown to the user. On

lines 12-14, we specify a test case called “test1” in which the input is to be permuted. On

lines 15-17, we also specify another test case in which the elements of the training data

should all be multiplied by 10. Lines 19 and 20 specify how to compare the outputs for the

two metamorphic properties: in both cases, the new output (as a result of the test case) is

expected to be the same as the original from the “main” execution.

Note that with minimal modification, the metamorphic properties specified in this XML

file could also be applied to any other program that exhibits the same properties.

If the framework does not support a specific transformation or comparison feature as

required by the tester, functionality can be added by creating a separate component that
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1 <TESTDESCRIPTOR>

2 <EXECUTION>/usr/bin/c-marti</EXECUTION>

3 <PARAMETERS>@input.training data @output.model --no-permute --no-prob-dist</PARAMETERS>

4 <INPUT>

5 <VAR TYPE="csv file" NAME="training data" />

6 </INPUT>

7 <OUTPUT>

8 <VAR TYPE="text file" NAME="model" />

9 </OUTPUT>

10 <FUNCTION NAME="switch" CLASS="MyOperators" METHOD="reverseDirection" TYPE="transform"/>

11 <POST TEST>

12 <BRANCH NAME="main" />

13 <BRANCH NAME="test1">

14 @op multiply(@input.training data, -1)

15 </BRANCH>

16 <PROPERTY>

17 <ASSERT> @op equal(@main.output.model, @op switch(@test1.output.model)) </ASSERT>

18 </PROPERTY>

19 </POST TEST>

20 </TESTDESCRIPTOR>

Figure 3.3: Example of specification of metamorphic property for system-level testing,
with extended functionality

can be invoked by the framework, according to a specific programming interface (currently

implemented in Java). This would also allow the tester to automate the transformation of

other input formats not currently supported by the tool, or to compare other output formats.

For instance, Figure 3.3 shows the specification of another metamorphic property of

MartiRank. In this one, multiplying all of the attributes in the training data by -1 (as

specified on line 14) would not produce the exact same model, but rather the same model

but with the sorting directions changed (see Section 2.5.2). The Amsterdam framework

does not have a built-in function for comparing the outputs in such a manner, so the user

needs to extend its functionality by creating a new component.

On line 10, the user introduces a new function called “switch”. This function name

is mapped to a method called “reverseDirection” in a class called “MyOperators”, which

the tester would have implemented. The type of the function is specified on line 10 as a

“transform” function, meaning that the implementing method takes one argument, which is

the data to be transformed. On line 17, when the outputs are to be compared, Amsterdam

will invoke the method mapped to the name “switch”, which produces a new output that

can then be checked against the original.
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Alternatively, the tester could have created a comparison function that takes the two

files to be compared and returns a boolean indicating whether or not they are as expected.

In either case, it is easy to add functionality to the Amsterdam testing framework, and such

functions can conceivably be reused for testing other applications as well.

3.2.4 Configuration

After specifying the metamorphic properties, the tester then configures the Amsterdam

framework to indicate the name of the XML file containing the specifications. Additionally,

the tester can also specify how the multiple invocations of the program should be executed.

Typically, all of the invocations would be run in parallel, and the outputs compared at the

end of all executions, in order to speed up the testing process. However, parallelism may

be disabled if the tester wants to also measure resource utilization (memory, CPU, etc.)

during a single execution of the application. Also, if the tests are run on a single processor,

running the applications in parallel will actually cause more overhead because of context

switching, so the invocations can be run sequentially if so desired.

Another reason to run the tests sequentially is if there needs to be some “build up” or

“tear down” actions before or after each invocation is run. This may be the case, for instance,

if the tests require the creation of a temporary database that will be modified during the

program execution. The user can specify “build up” or “tear down” scripts (which are

assumed to be executable from the command-line) in the specification of the metamorphic

properties.

Sequential execution may also be necessary to support metamorphic properties such as

“ShortestPath(a, b) = ShortestPath(a, c) + ShortestPath(c, b) where c is some point in the

path from a to b”, i.e., properties that depend on the result of the initial execution of the

program in order to conduct the subsequent ones.

The configuration also includes declaring what action to take if a metamorphic test fails.

The tester can be notified that the test revealed unexpected behavior through an entry in
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Amsterdam’s execution log file and/or by a pop-up window.

3.2.5 Execution of Tests

When the application is executed, the testing framework first invokes the original application

with the command line arguments provided in the property specification, so that the startup

delay of the framework is minimal from the user’s perspective. While the application

is running, Amsterdam then makes copies of the input files to use for the additional

invocations of the program, then applies the specified transformations to the input files.

This is done after invoking the original application because copying and modifying large

files can take a long time, and there is no need for the original application to wait. The

framework provides out-of-the-box support for the transformation of four different file

formats: XML, comma-separated value (CSV), an attribute/value pair format for “sparse”

data, and the attribute-relation file format (ARFF). These file formats are commonly

used in the domains of interest. Other file formats can be supported by building custom

transformation components, as described above.

The framework then starts additional invocations with the newly-generated inputs.

When the test processes are to be run in parallel with the main process, the sandbox for

each process is provided by simply creating copies of all the input files used by the test

processes, and by redirecting screen output to a file so that the user does not see the results

of the additional invocations of the program. To make the sandbox more robust, we have

also integrated Amsterdam with a virtualization layer called a “pod” (PrOcess Domain)

[147], which creates a virtual environment in which the process has its own view of the file

system and process ID space and thus does not affect any other processes or any shared

files. At this time, however, the framework sandbox does not include external entities such

as the network or databases; this is discussed in Future Work (Section 7.2).

Once all processes are complete, the output files are then compared according to

the specification of the metamorphic properties. If the output files are not as expected,
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then a defect has been detected, and the appropriate action can be taken according to the

configuration.

3.2.6 Testing in the Deployment Environment

The framework is also designed to be used in the production environment by the system’s

end users, so that metamorphic testing can continue even after deployment. Such “perpetual

testing” [148] approaches have been shown to be effective at revealing defects that may not

have been found before the software is deployed. This addresses one of the practical issues

of metamorphic testing, which is “where does the test input come from?”

If the test invocations are run in parallel with the main one, the end user ideally would

not even know that the testing was being conducted. In such cases, the results of the

tests can be sent back to the development team for use in regression testing and program

evolution [56]. The system administrator can specify the following configurations:

• whether to send results of failed test cases or all test cases

• how frequently to send results (i.e., after how many test cases are executed)

• the email address(es) to which the results should be sent

• for failed tests, whether to send the entire input and output files, or just their names

(since sending the entire input file may give rise to privacy issues, and the file may

simply be too big to send anyway)

• also for failed tests, the metamorphic property that was violated will be supplied

To date we have not investigated the mechanisms by which developers could actually use

this information when defects are discovered, but we point out that others have previously

looked into using similar field failure data to perform debugging and fault localization [44],

or for regression testing [144]. We expect that such techniques are applicable in our case,

as well, and leave this as future work.
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When using Amsterdam to test a program as it runs in the field, it is assumed that the

software vendor would ship the application including the testing framework and specifi-

cation of the metamorphic properties as part of the software distribution. The customer

organization using the software would configure the framework, but aside from that would

not need to do anything special at all, and end users ideally would not even notice that the

tests were running.

3.2.7 Effect on Testing Time

To demonstrate that the Amsterdam framework incurs limited overhead on the application

being tested, we conducted performance tests on a quad-core 3GHz CPU with 2GB RAM

running Ubuntu 7.10. Our experiments showed that the performance impact on the main

application process (the one seen by the user) comes only from the creation of the sandbox,

copying the files for the input, and comparing the results: this was measured at about

400ms for a 10MB input file when just copying the files, and 1.1s when using the “pod”

virtualization layer. After that, all other test processes execute on separate cores and do not

interfere with the original process (assuming that there are fewer test processes than cores,

of course). Thus, the tests can be run with minimal performance impact from the tester’s

perspective. Note that, without automation, if the processes were run in sequence, then the

tester would have to wait for each to finish and the overhead on the testing time would be

100% for each metamorphic property.

3.3 Heuristic Metamorphic Testing

During the implementation of our Amsterdam framework, it became immediately apparent

that false positives could be a problem if there were small deviations in the results of

calculations that were expected to yield the same result. Additionally, many applications

without test oracles rely on non-determinism, which limits the effectiveness of metamorphic
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testing since it makes it more difficult to predict the expected outputs. To address this,

we introduce a technique called Heuristic Metamorphic Testing, based on the concept of

“heuristic test oracles” [83]. This variant of metamorphic testing permits slight differences

in the outputs, in a meaningful way according to the application being tested. By setting

thresholds and allowing for application-specific definitions of “similarity”, we can reduce

the number of false positives and address some cases of non-determinism. This new

approach to conducting metamorphic testing is one of the major contributions of this thesis.

3.3.1 Reducing False Positives

In Heuristic Metamorphic Testing, output values that are “similar” are considered equal,

where the definition of “similarity” is dependent on the application being tested. For

instance, when the output is numeric (as in the sine function example in Section 3.1.2), a

threshold can be set to check that the values are suitably close. As long as the difference

between the values is below the threshold, then the outputs are considered sufficiently

“similar”, and no violation of the metamorphic property is reported.

Consider the situation of the sine function, for which the the metamorphic property

sin(α) = sin(α + 2π) may be violated in practice because of imprecisions in representing π

and in calculating the sine value. We did an experiment in which we checked this property

for all values of α ranging from 0 to 2π in increments of 0.0001. For the 62,832 values of

α, 52,868 would violate the property in Java if it were checked using equality to compare

the outputs; this is a false positive rate of 84.1%. For the C implementation, using the

constant M PI, all but one of the values of α violate the property. However, if we check the

outputs to within a tolerance of 10-10, then no value of α violates the property in either C or

Java. Although this is a very simple example, it demonstrates the need in practice to use

thresholds when checking metamorphic properties that involve floating point numbers.

For an example from the applications of interest, the C4.5 decision tree classification

algorithm (discussed in Section 2.5.4) does not precisely adhere to the metamorphic property
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based on negation, because a small constant ε that is used in determining the information

gain affects the calculation. For almost all of the data sets used in the experiments below,

the property seemed to be violated even in the “gold standard” implementation because of

this small difference, i.e., the output was not exactly as expected. However, if we allowed

for a tolerance of even just 1% when comparing the values, the property was never violated.

More complex cases may call for heuristics to check for semantic similarity. For

example, in Section 2.5.3, we mentioned that the Support Vector Machines implementation

did not strictly adhere to the metamorphic property based on permutation because of

approximations used in the quadratic optimization algorithm. The values used in the

specification of the model could conceivably be compared using a threshold, assuming the

tester knows in advance how close the results should be, and assuming there is an easy

way to compare the mathematical descriptions of the hyperplanes. Alternatively, we would

expect the resulting model to be semantically similar to the original, in that the classification

of examples in the testing data should be the same when each model is applied; the same

is true in the case of C4.5 and the property based on negation, in fact. That is, even if the

models are not exactly as expected, if they produce the same output in the classification

phase, they can thus be considered semantically equivalent.

The Amsterdam framework supports techniques for considering such heuristics and

either setting thresholds in the comparison of outputs, or specifying how to check semantic

similarity, with the intent of reducing false positives. However, it has been argued that

although the failure of a metamorphic test in such cases may not necessarily indicate a

defect per se, it does reflect a deviation from expected behavior (albeit a very slight one),

and thus it is useful to warn the user [195]. Therefore, Amsterdam can be configured to

generate such a warning if so desired.
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3.3.2 Addressing Non-Determinism

Non-deterministic applications present a particular challenge to metamorphic testing be-

cause it may not always be possible to know what the expected change to the output should

be given the change to the input, and then check whether the new test output is as predicted.

Here, we describe how Heuristic Metamorphic Testing can be applied to non-deterministic

applications, starting with a description of a related approach.

Statistical metamorphic testing

Guderlei and Mayer presented statistical metamorphic testing [71] as a solution to testing

non-deterministic applications and functions that do not have test oracles. Consider a trivial

example of a function r that takes two inputs x and y and returns a random integer in the

range [x, y]. And, of course, r(10x, 10y) would return a random integer in [10x, 10y].

However, we cannot simply specify the metamorphic property that r(10x, 10y) should equal

10r(x, y), because of the randomization that occurs each time r is invoked.

Statistical metamorphic testing points out that, over many executions of r(x, y), its

output values will have a statistical mean µ and variance σ. Even if we cannot know

whether µ and σ are correct, we would expect that many executions of r(10x, 10y) should

produce a mean 10µ and variance 10σ; of course, given a non-infinite number of executions,

they may not be exactly 10µ and 10σ, but a statistical comparison (such as a Student T-test

[67]) can be used. If the results are not statistically similar, then the metamorphic property

has been violated.

Limitations of statistical metamorphic testing

Statistical metamorphic testing is limited to outputs that consist of a set of numbers whose

statistical values, such as mean and variance, can be calculated. The approach is not

necessarily applicable in the applications of interest presented here, for instance where the

output could be a set in which the ordering is of prime concern, and the values of the set
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elements are not important. For instance, the ranking application MartiRank may produce

non-deterministic results in its ranking phase when there are missing values in the testing

data set. Because the output is a listing of elements, there is no mean and variance to

calculate, since the values themselves remain the same, but the ordering will be slightly

different across multiple executions.

In Heuristic Metamorphic Testing, however, the results of the ranking algorithm can

still be compared using some basic domain-specific metrics, such as the quality (measured

using the Area Under the Curve [76], a common metric for comparing machine learning

results) for each ranking, the number of differences between the rankings (elements ranked

differently), the Manhattan distance (sum of the absolute values of the differences in the

rankings), and the Euclidean distance (in N-dimensional space). Another metric is the

normalized equivalence (or Spearman Footrule Distance), which explains how similar the

rankings are (1 means exactly the same, 0 means completely in the opposite order) [173].

Furthermore, in practice the user of the system may only be concerned with a small

number of elements in the ranking, presumably selected from the top (or possibly the

bottom) of the list. For a parameterized value X, it may be suitable to calculate the quality

of only the top and bottom X% of each ranking, or calculate the “correspondence” between

the top and bottom X% of both rankings, where the correspondence is simply the number

of elements that appear in the top (or bottom) X% of both rankings, divided by the number

of elements in the top (or bottom) X%. These metrics, along with the other distance metrics

described previously, can help decide whether a pair of rankings is similar in the ranges

that are most important, and thus can be used even when the result is non-deterministic.

The issue, of course, is knowing just how similar the results should be, so that the

heuristic can be applied. In Heuristic Metamorphic Testing, this can be inferred by observing

multiple executions with the original input, using the chosen heuristic to create a profile

describing how they relate to each other, and then checking that the executions with the

new input (after applying metamorphic properties) have a comparably similar profile using
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a statistical significance measure.

Examples

Consider an example from the MartiRank application described in Section 2.5.2. In its

second (“ranking”) phase, MartiRank applies the model to the examples in the testing data,

sorting and segmenting them so that it yields the final ranking. If the data set contains any

missing/unknown values, MartiRank will randomly place the missing elements throughout

the sorted list, making the output non-deterministic. However, because the elements with

known values should end up in approximately the same spot over multiple executions, we

know that the final rankings should always be somewhat similar, and can use a heuristic

(such as normalized equivalence) to measure that similarity. We also know that there is a

metamorphic property that if, for instance, we multiply all values in the data set by 10, the

final ranking should still be approximately similar over multiple executions.

To validate this approach, we ran a simple experiment in which we created a data set

with missing values and ran MartiRank 100 times, and then compared the similarity of the

outputs. The average normalized equivalence was 0.996 with a standard deviation of 0.011.

We then multiplied all elements in the data set by 10, and ran MartiRank 100 more times.

With this new data set, the normalized equivalence was 0.989 and the standard deviation

was 0.013. Using a Student t-test, we could determine that the difference between the

normalized equivalence values is not statistically significant (p < 0.05), meaning that the

results are “close enough”. However, when we inserted a defect into the sorting code so that

the ordering would be incorrect, the normalized equivalence was 0.663 and the standard

deviation was 0.055, indicating that there is a statistically significant difference (i.e., the

results are not sufficiently similar), thus revealing the error.

As another example of Heuristic Metamorphic Testing of non-deterministic applications,

consider the following case. If there are missing values in the training data for the first

(“learning”) phase of MartiRank, it will randomly place them throughout the sorted lists
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when determining which attribute is best for sorting in that particular round (note that this

is different from the previous example, which dealt with missing values in the testing data

that is in the second, or ranking, phase). We know that there is a metamorphic property that

if the values in the training data are all multiplied by 10, the model should be the same, but

it will not be exactly the same because the randomness in dealing with missing values will

cause multiple invocations of MartiRank to yield slightly different models.

The question then arises, “what heuristic can we use to compare the models?” One

solution is to determine their similarity using semantic equivalence. That is, we can apply

the two models to the same training data, and expect them to produce the same rankings.

Yet, we know they won’t be exactly the same, so we can use a heuristic such as normalized

equivalence to measure the similarity of those outputs. But now the question arises “how

similar should those rankings be?”

To address this problem, we can apply Heuristic Metamorphic Testing, by following

these steps:

1. Run MartiRank N times on the original set of training data (with missing values)

T train to produce N models

2. Apply those N models to the set of testing data (with no missing values) T test to

produce N rankings

3. Build a profile P of those rankings according to a domain-specific heuristic, in this

case by measuring their normalized equivalence

4. Create a new set of training data T’train, which is the same as T train but with all values

multiplied by 10

5. Run MartiRank N times on the new set of training data T’train to produce N models

6. Apply those N models to the set of testing data T test to produce N rankings

7. Build a profile P’
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8. Compare P and P’; if their difference is statistically significant, then the property is

violated

In this case, we use both aspects of Heuristic Metamorphic Testing: running a non-

deterministic application multiple times to determine its output profile; and using notions

of semantic equivalence to compare outputs that are difficult to compare otherwise.

3.4 Empirical Studies

In their 2001 survey paper [15], Baresi and Young identified techniques for addressing the

lack of a test oracle, including the use of runtime assertion checking, extrinsic interface

contracts and algebraic specifications, formal specification languages, and trace and log

file analysis. As far as we know, that paper represents the current state of the art in testing

applications without test oracles, aside from the work on metamorphic testing. Others

have more recently presented domain specific approaches for testing GUIs [120] or web

applications [174], but we are considering the general class of programs that do not have

test oracles.

To demonstrate the effectiveness of an automated metamorphic testing approach and

determine how well it can detect defects in software without test oracles, we conducted

three empirical studies on various real-world programs and compared the effectiveness of

some of the proposed techniques. In the first study, we investigated the machine learning

applications described in Section 2.5; in the second, we looked at applications without test

oracles in other domains; and in the third study, we considered non-deterministic programs.

The experiments presented in this section seek to answer the following research ques-

tions:

1. Is system-level metamorphic testing more effective than other techniques for detecting

defects in applications without test oracles, particularly in the domains of interest?
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2. Is Heuristic Metamorphic Testing more effective than other techniques for detecting

defects in non-deterministic applications without test oracles?

3. Which metamorphic properties are most effective for revealing defects in the applica-

tions of interest?

Although others have conducted similar studies (most notably Hu et al. [85], discussed

further in Related Work Section 6.2), the studies here are the first to consider applications in

the particular domains of interest, and the first to evaluate the effectiveness of metamorphic

testing when applied to non-deterministic programs. These studies are one of the major

contributions of this thesis.

3.4.1 Techniques Investigated

This section describes the various testing techniques employed in the experiments, in

addition to metamorphic testing.

Partial Oracle

As previously discussed, it is impossible to know whether the output of these programs

is correct for arbitrary input, because there is no general test oracle to cover all cases.

However, in some trivial cases, it may be possible to know what the correct output should be,

based on analysis of the algorithm and understanding how it should perform under certain

conditions. A “partial oracle” [151] is one that will indicate correctness or incorrectness

of the output program that does not have a test oracle in the general case, but only for a

limited set of test cases.

Determining the boundaries of such partial oracles (i.e., at what point does the program

cease to have an oracle) is outside the scope of this work, but we assume for each of the

applications in our studies that such oracles exist, either because the correct output can
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easily be calculated by hand, or there is an agreed-upon correct output for the given input

within the particular domain.

Weyuker points out that “Experience tells us that it is frequently the ‘complicated’

cases that are most error-prone” [190], thus limiting the effectiveness of the partial oracle.

However, we assume that many developers of applications without test oracles would use

such a technique, and as it is relatively simple and cheap to implement, we choose to

include it in our studies.

Pseudo-Oracle

The concept of a pseudo-oracle is based upon that of “N-version programming” [31], in

which independent programming teams develop an application (perhaps using different

technologies or programming languages) from the same specification; then, identical sets

of input data are processed and the results are compared. If the results are the same, that

does not necessarily mean that they are correct (since the implementations may all have the

same defect, for instance), but if the results are not the same, then a defect has likely been

revealed in at least one of the implementations.

Although the effectiveness of N-version programming has been criticized from both a

practical [2] and theoretical [93] point of view, the pseudo-oracle approach is still common

in the machine learning community, for instance. Algorithms are typically prototyped

in R or MATLAB before being implemented in C or Java; thus, we need to consider

pseudo-oracles in our evaluation because of their widespread use in the domains of interest

[172].

Assertion Checking

The use of assertions for fault detection has been employed since the early days of software

development [43], and modern programming languages such as ANNA [111] and Eiffel

[124], as well as C and Java, have built-in support for assertions that allow programmers
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to check for properties at certain control points in the program. For instance, assertion

checking may be used for program safety, such as to ensure that pointers are not null, array

indices are in bounds, or that data structure integrity is maintained.

When used in applications without test oracles, assertions can ensure some degree

of correctness by checking that function input and output values are within a specified

range, the relationships between variables are maintained, and a function’s effects on the

application state are as expected. As a simple example, in a function to calculate the

standard deviation of a set of numbers, the assertions may be that the return value of the

function is always non-negative, the values in the input array never change, the size of the

input array never changes, etc. While these statements alone do not ensure correctness

(many other functions would have the same properties), any violation of them at runtime

indicates a defect.

To aid in the creation of assertions, we used the Daikon invariant detection tool [58].

Daikon observes the execution of multiple program runs and creates a set of likely invariants,

which can then be used as assertions for subsequent runs of the program. This has been

shown to be effective at detecting defects like the ones we use in our studies [140]. Although

it is possible to customize the types of invariants that Daikon can detect, in our experiments

we only use its out-of-the-box features. Note that the invariants created by Daikon only

include function pre- and post-conditions, and do not incorporate any assertions that are

within the function itself; future work could consider the effectiveness of runtime assertion

checking when using in-function invariants, though these would need to be generated by

hand, as discussed in the Threats to Validity section below (Section 3.4.6).

Approaches Not Investigated

Formal specification languages like Z [1] or Alloy [87] could be used to declare the

properties of the application, typically in advance of the implementation to communicate

intended behavior to the developers. However, Baresi and Young point out that a challenge
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of using specification languages as oracles is that “effective procedures for evaluating the

predicates or carrying out the computations they describe are not generally a concern in

the design of these languages” [15], that is, the language may not be suitable for describing

how to know whether the implementation is meeting the specification. Although previous

work has demonstrated that formal specification-based assertions can be effective in acting

as test oracles [48], the specifications need to be complete in order to be of practical use in

the general case [164]. Incomplete specifications can be used as partial oracles, though the

extent to which this can be controlled in an experiment may introduce additional threats to

validity. Thus, we do not consider formal specification languages in our evaluation.

Additionally, it may be possible to perform trace or log file analysis to determine

whether or not the program is functioning correctly, if for instance it is conforming to

certain properties (like a sequence of execution calls or a change in variable values) that are

believed to be related to correct behavior; or, conversely, to see if it is not conforming to

these properties. We have, in fact, investigated this technique previously [127], but noted

that often the creation of an oracle to tell if the trace is correct can be just as difficult as

creating an oracle to tell if the output is correct in the first place, assuming it is even possible

at all. Therefore, we do not consider log file analysis in this study either.

3.4.2 Study #1: Machine Learning Applications

In this first study, we compare the effectiveness of metamorphic testing to that of three

other approaches: partial oracles, runtime assertion checking, and pseudo-oracles. The test

subjects chosen for this study come from the domain of supervised machine learning: C4.5,

MartiRank, and SVM. The applications are described in more detail in Section 2.5.

Methodology

In this experiment, we used mutation testing to systematically insert defects into the source

code and then determined whether or not the mutants could be killed (i.e., whether the
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defects could be detected) using each approach. Mutation testing has been shown to be

suitable for evaluation of effectiveness, as experiments comparing mutants to real faults have

suggested that mutants are a good proxy for comparisons of testing techniques [3]. These

mutations fell into three categories: (1) comparison operators were mutated, e.g., “less than”

was switched to “greater than or equal”; (2) mathematical operators were mutated, e.g.,

addition was switched to subtraction; and (3) off-by-one errors were introduced for loop

variables, array indices, and other calculations that required adjustment by one. Based on

our discussions with the researchers who implemented MartiRank and PAYL, we chose

these types of mutations because we felt that these represented the types of errors most likely

to be made in these types of applications. All functions in the programs were candidates

for the insertion of mutations; each variant that we created had exactly one mutation, i.e.,

we did not create any program variants with more than one mutation.

To determine which variants were suitable for testing, each was executed with the data

sets described below. If the mutation yielded a compilation error, fatal runtime error (crash),

an infinite loop, or an output that was clearly wrong (for instance, being nonsensical to

someone familiar with the application, or simply being blank), that variant was discarded

since any of the approaches would detect such defects. We also ensured that each mutant

was on the execution path of at least one of the data sets used as test cases.

In the SVM implementation, we ended up with a total of 85 separate versions that were

suitable for our experiment, each with exactly one mutation. For C4.5, we had 28, and for

MartiRank, 69. The variation in the number of mutants for each application is due to the

different sizes of the source code, the different number of points in which mutations could

be inserted, and the different number of mutants that led to fatal errors or obviously wrong

output. The breakdown of mutants by type is specified in Table 3.1.

Creating Partial Oracles. As the SVM and C4.5 algorithms are fairly commonly used

in the machine learning community, there exist sample data sets for which the correct output

is actually known; these are used by developers of SVM and C4.5 implementations to make
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Mutant Type C4.5 MartiRank SVM
Comparison 8 20 30
Math 15 23 24
Off-by-one 5 26 31
Total 28 69 85

Table 3.1: Types of mutants used in Study #1.

sure there are no obvious defects in their code. Of course, producing the correct output for

this input does not ensure that the implementation is error-free, but these data sets can be

used as partial oracles. We used the “iris” and “golf” data sets from the UC-Irvine machine

learning repository [138] for both SVM and C4.5, since the data sets are relatively small

in size and the correct output can be calculated by hand. For both of those data sets, we

created four variants of each, using different values or different ordering of examples, so

that the output would still be easy to calculate, for a total of eight data sets.

For MartiRank, we hand-crafted two data sets for which we could know in advance

what the expected output should be, and confirmed our expectation using the “gold standard”

implementation, which we assumed to be error-free (this assumption is discussed in Section

3.4.6 below). As with the SVM and C4.5 data sets, we created four variants of each one,

each of which would yield an output that could be known.

Note these data sets for the partial oracle were selected so that the percentage of line

coverage was approximately the same for the different applications and the different testing

approaches, thus removing any bias due to the number of data sets used. That is, we do not

expect that the partial oracles would be significantly more effective if additional data sets

were used, assuming the percentage of line coverage did not likewise increase significantly.

Pseudo-Oracles. We were fortunate that the three machine learning algorithms selected

for this experiment all had multiple implementations that were readily available to us.

For SVM, we selected LIBSVM [29], which is implemented in C, as the pseudo-oracle

for Weka’s SVM implementation in Java. For C4.5, we chose the J48 implementation in

Weka 3.5.8 as the pseudo-oracle for the C implementation. And for MartiRank, we selected
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the Perl implementation, which was the original prototype of the algorithm, to act as the

pseudo-oracle for the C version.

Metamorphic Testing. For the three applications, we devised metamorphic properties

according to the guidelines described in Section 2.4. Each property was verified with the

“gold standard” version to make sure that the property was, in fact, expected to hold for the

data sets described below. The properties are defined as follows:

1. Permuting the order of the examples in the training data should create a semantically-

equivalent model, i.e., one that yields the same classification (or ranking, in the case

of MartiRank) of examples in the testing data.

2. Multiplying each attribute value in the training data by a positive constant (in our

case, ten) should create a semantically-equivalent model.

3. Adding a positive constant (in our case, ten) to each attribute value in the training

data should create a semantically-equivalent model.

4. Negating each attribute value in the training data, followed by negating each attribute

value in the testing data, should result in the same classification (or ranking) for each

example.

For SVM and C4.5, we performed the experiment using six data sets from the UC-Irvine

machine learning repository [138], listed in Table 3.2. The sets are all relatively small in

size because the SVM algorithm can take over an hour to run on larger data sets [133].

These data sets could not be used for MartiRank because MartiRank requires numeric

labels, so we used 10 randomly-generated data sets that covered a variety of equivalence

classes (using a “parameterized random testing” technique [129]), to try to obtain line

coverage similar to the data sets used in the partial oracle experiment. These data sets are

listed in Table 3.3.

For each data set, each mutated version was executed with both the original and the

data set modified according to each metamorphic property, and the results were compared:
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Name # examples # attributes
golf 14 4
iris 150 4
wine 178 13
hepatitis 155 19
heart 303 75
glass 214 10

Table 3.2: Data sets used for C4.5 and SVM with metamorphic testing and runtime
assertion checking.

Name # examples # attributes
data1 10000 100
data2 20000 100
data3 20000 100
data4 10000 100
data5 1000 40
data6 1000 200
data7 1000 100
data8 1000 100
data9 100 200
data10 10000 200

Table 3.3: Data sets used for MartiRank with metamorphic testing and runtime assertion
checking.

if the outputs were not as expected, then the mutant was considered to be “killed” (i.e., the

defect was found). Note that, in this experiment, all three applications were deterministic;

we did, however, need to use the Heuristic Metamorphic Testing features of the Amsterdam

framework because we were looking for semantic equivalence in the models in some cases.

Invariant Detection. To create the set of invariants that we could use for runtime

assertion checking, we applied Daikon to the “gold standard” (i.e., with no mutations)

of the three applications. We executed the applications multiple times, with the different

data sets described in Tables 3.2 and 3.3. This was done in order to reduce the number of

“spurious invariants” that Daikon might produce. For instance, if a program is only run once

with an input called “input.data”, Daikon will detect that the variable representing the input

file is always equal to “input.data” and create an invariant as such; clearly this is spurious



CHAPTER 3. AUTOMATED METAMORPHIC SYSTEM TESTING 71

because it only happens to be true in this one particular case.

Once the set of invariants had been created, we executed each mutated version with the

same data sets used for metamorphic testing (six for SVM and C4.5, ten for MartiRank)

and used Daikon’s invariant checker tool to ensure that none of the invariants were being

violated. If a violation occurred, then the defect had been found.

Note that in practice, it may not be possible to derive a complete set of invariants from

the “gold standard”: after all, if one knew that the implementation were the gold standard,

testing it would not be necessary. However, in this experiment, we wanted to create a

set of invariants that would best reflect the correctness of the implementation, and this

seemed the best way to automate that. An alternative would have been to hand-generate a

set of program invariants, but this would have required more detailed understanding of the

implementation details, and we did not have access to the developers of the C4.5 and SVM

implementations. Rather, we aimed to compare the techniques assuming that the tester

only had an understanding of what the applications are meant to do, and not how they are

implemented.

Additionally, even though we took steps to reduce the number of spurious invariants

created by Daikon, some still remained, specifically invariants that asserted that a given

variable could only exist in a particular range of values. These invariants were ignored if,

upon further analysis, these ranges were deemed to be merely an artifact of the data sets

that were used, and not an actual property of the program implementation.

The complete set of Daikon-generated invariants is too lengthy to be enumerated here,

and is instead listed in Appendix A of the tech report [128] describing this study.

Results

Each of the four techniques described above (partial oracle, pseudo-oracle, metamorphic

testing, and runtime assertion checking) was applied to all mutated variants of the three

applications investigated in this experiment. The goal was to determine what percentage of
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the mutants were killed by each approach.

Table 3.4 shows the effectiveness (percentage of distinct defects found) for the partial

oracle, metamorphic testing, and assertion checking. We have omitted the results of testing

with pseudo-oracles for reasons that are described at the end of the Discussion section.

Overall, metamorphic testing was most effective, killing 97.8% of the mutants in the

three applications. Assertion checking found 84% of the 182 defects, and the partial oracle

detected 80.7%.

Partial Metamorphic Assertion
App. # Mutants Oracle Testing Checking
C4.5 28 22 (78.5%) 26 (92.8%) 28 (100%)
MartiRank 69 47 (68.1%) 69 (100%) 57 (82.6%)
SVM 85 78 (91.7%) 83 (97.6%) 68 (80.0%)
Total 182 147 (80.7%) 178 (97.8%) 153 (84.0%)

Table 3.4: Distinct defects detected in Study #1.

To further assess the results, Table 3.5 shows the number of mutants killed by none of

the approaches, only one of the approaches, two of the three approaches, and all three. This

gives an indication of where the overlaps are between the different testing techniques.

Number of Mutants
Not killed 0
Partial Oracle only 1
Metamorphic Testing only 9
Assertion Checking only 2
Partial Oracle and
Metamorphic Testing only 19
Partial Oracle and
Assertion Checking only 1
Assertion Checking and
Metamorphic Testing only 24
All three 126
Total 182

Table 3.5: Breakdown of defects detected in Study #1.

This table demonstrates that metamorphic testing was able to detect nine defects not
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found by the other approaches, whereas there were only four defects that it could not find.

By way of comparison, the partial oracle only found one defect not found by the others, but

missed 35; and assertion checking detected two not found by the others, but missed 29. It

is clear that by these various metrics, metamorphic testing is the most effective overall.

Discussion

Here we discuss the results of the empirical study and evaluate why certain testing ap-

proaches are more effective than others.

C4.5. As opposed to the other two applications, runtime assertion checking was more

effective than metamorphic testing at revealing the C4.5 defects, although only slightly so

(28 mutants killed, compared to 26). As shown below in Table 3.7, the mutants not killed

by metamorphic testing were both math mutants, in which a calculation was modified. In

both cases, this resulted in a violation of an assertion, but not a violation of a metamorphic

property.

One of the two defects is found in the code in Figure 3.4, which comes from the

“FormTree” function used to create nodes of the decision tree. Lines 179-182 use a for-

loop macro to initialize the values of an array ClassFreq, which is used to calculate the

frequency with which a class (or label) appears in the training data. Line 183 then uses the

macro to iterate values of i from Fp (the first index of the array) to Lp (the last index). On

line 185, the Class function is used to determine the class of the item from the training

data, and the ClassFreq array is updated with the corresponding weight.

If there is a defect on line 185, such that the addition of the weight is changed to sub-

traction, the values in ClassFreq become negative, in violation of the invariant (detected

by Daikon) that the values should always be greater than or equal to zero; thus, the defect

is detected. However, metamorphic testing does not reveal this defect: the changes made

to the training data do not affect the calculation of class frequency, and even though the

resulting output is incorrect, none of the metamorphic transformations cause the properties
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to be violated.

179 ForEach(c, 0, MaxClass)

180 {

181 ClassFreq[c] = 0;

182 }

183 ForEach(i, Fp, Lp)

184 {

185 ClassFreq[ Class(Item[i]) ] += Weight[i];

186 }

Figure 3.4: Sample code in C4.5 implementation. A defect on line 185 causes a violation
of the assertion checking, but not of the metamorphic property.

We see from Table 3.1 that C4.5 had a proportionally higher number of math mutants,

compared to SVM and MartiRank; as the example in Figure 3.4 is a math mutant, as well,

it may seem that assertion checking is more effective for these types of defects. However,

we observed in all three applications that metamorphic testing is approximately as effective

for all three types of defects (comparison operator mutations, math operator mutations, and

off-by-one errors), and we attribute this result perhaps to the relatively small sample of

usable mutants that we were able to insert in the C4.5 code.

MartiRank. All 69 of the defects in MartiRank were detected by metamorphic testing,

making it much more effective than the other two approaches, especially the partial oracle.

One of the reasons why the partial oracle was so ineffective is that the data sets we hand-

crafted were necessarily much smaller than the ones for metamorphic testing and runtime

assertion checking: the partial oracle data sets consisted of 10-20 examples, whereas the

data sets used with the other techniques had 200-20,000. The small size of the data sets

was necessary so that we could accurately and reliably calculate what the correct output

should be; anything much larger would be too complex to calculate, or would be so trivial

(e.g., setting just one attribute to be perfectly correlated to the labels) that it would not be of

much interest.

Although this seems to put the partial oracle at a disadvantage, we point out that both

the partial oracle data sets and the data sets used for metamorphic testing were attaining
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approximately the same overall line coverage (around 70%) regardless of their size, and

we only considered mutants that were on the execution path, to ensure that there was a

possibility that they would affect the program output. Upon analysis of the mutations that

were missed by the partial oracle, we discovered that often the defects only caused incorrect

outputs when the data sets were large, as expected.

For instance, in one case there was an off-by-one defect in which an error in the

allocation of memory for an array meant that one of the elements could be overwritten, but

this did not occur when the input was “small” because there was no need for the creation of

the additional arrays that did the overwriting.

In another case, a defect in the “merge” step of the merge sort algorithm caused the

indices that delineated the sublists to be incorrect, making it possible for elements to be

sorted in the wrong order. This defect only affected the final output if the incorrectly sorted

elements happened to be on the boundary between two segments of the MartiRank model;

this never occurred for the smaller partial oracles, but was more likely to occur in the larger

data sets used for the other approaches, primarily because MartiRank continued to sort and

segment the larger data sets for multiple rounds, whereas MartiRank had already generated

the correct model with the small data set after only a few rounds, obviating the need for

further sorting.

Note that the definition of a “non-testable program” is not only limited to software for

which an oracle does not exist: it can also include software for which the creation of an

oracle is too difficult [190], and the partial oracle by its nature tends to address a smaller,

simpler part of the input domain. This does serve to point out, though, that the metamorphic

testing and runtime assertion checking techniques can be used with arbitrary input data of

any size, thus improving their effectiveness.

SVM. Metamorphic testing was more effective than the other two approaches for SVM,

particularly for off-by-one errors: all 31 were found by metamorphic testing, while assertion

checking missed seven and the partial oracle missed four.
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Figure 3.5 shows a sample of the SVM code that was tested in this experiment. The

array m class identifies the classification, or “label”, for each example in the training data.

This particular piece of code attempts to segregate the examples into those that have a label

of 1 (into set m I1), and those that do not (into set m I4). An off-by-one mutant has been

inserted into line 524, such that the for loop omits the final element of m class.

524 for (int i = 0; i < m class.length-1; i++) {

525 if (m class[i] == 1) {

526 m I1.insert(i);

527 } else {

528 m I4.insert(i);

529 }

530 }

Figure 3.5: Snippet of code from Weka implementation of SVM, with an off-by-one error
in the for-loop condition on line 524

Metamorphic testing detects this defect because, when the examples in the training data

are permuted, a different one is omitted in the loop, and thus it is possible that the contents

of both m I1 and m I4 are different (compared to the original invocation) when using the

permuted set: if element k had been in m I1 in the original execution, but ends up being

omitted as a result of permutation, and element k’ is placed into m I4, then both sets would

be different. The result is that, when the program later performs “validation” (i.e., using the

training data as testing data to determine the accuracy of the model), the element that was

omitted is classified differently in each of the two executions; since the results are expected

to be the same, the defect is thus revealed.

On the other hand, when using the partial oracle, either m I1 is different or m I4 is

different (but not both, since an element is omitted from one but the other stays the same) in

the execution with the mutated version. For the small data sets we used, this did not affect

the validation results. Larger data sets would possibly be affected by this difference, but

would no longer be useful as partial oracles since the correct output would no longer be

predictable.
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Assertion checking fails to find this defect because the relevant invariants simply deal

with sizes of the sets (e.g., “m I1.size > 0”) and the fact that m class does not change.

Despite the mutant in line 524, these invariants still hold. This is not to say that the invariants

are wrong or are even incomplete; rather, the use of invariants alone is not sufficient to

reveal this defect.

Pseudo-Oracles. Strictly speaking, the pseudo-oracles for the three applications killed

all but one of the mutants, i.e., the output of the pseudo-oracle differed from that of

the mutated version in almost every case. However, none of the pseudo-oracles that we

employed were actually suitable for our purposes, because none of them consistently

produced the exact same output as the gold standard versions that we used in the experiment

(i.e., the ones without the mutants). For C4.5, there were only very minor differences that

appeared at lower levels of the decision tree in the Weka J48 implementation, and this was

only for one of the six data sets; thus, one could argue that this pseudo-oracle was “good

enough”.

However, for both MartiRank and SVM, the other implementations we selected pro-

duced different results for all of the data sets. This essentially means that the pseudo-oracles

we chose for those applications have a 100% false positive rate: they supposedly revealed

defects (because the outputs were different), even though no defect existed. Upon further

investigation, we realized that this is partly by design: for SVM, the Weka implementation

used in the experiment performs different types of optimizations when calculating the

hyperplane so as to improve performance at the cost of accuracy. However, for MartiRank,

this difference was a result in different interpretations of the specification on the part of the

developers [127]. These differences mean that not only are the outputs (the models) of the

implementations slightly different, but they are semantically different as well: applying

the different models to the same training data set also produced differing results in the

classification/ranking phase. Therefore, in addition to the other criticisms of N-version

programming, we can also point out that care must be chosen in selecting alternative imple-
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Application # Mutants Permute Multiply Add Negate Total
C4.5 28 13 3 4 23 26 (93%)
MartiRank 69 69 1 1 38 69 (72%)
SVM 85 76 23 25 56 83 (97%)
Total 182 158 27 30 117 178 (98%)

Table 3.6: Summary of results of mutation testing using metamorphic testing

mentations of an algorithm as pseudo-oracles, as there may be deliberate (or accidental)

differences that lead to false positives.

Additionally, in one case, the pseudo-oracle for SVM had a false negative: the mutated

version coincidentally produced the same output as the pseudo-oracle, so it appeared that

no defect existed. Even though this was very rare (it only happened once), this also adds to

the argument that the pseudo-oracle approach is not without its flaws.

Analysis of Metamorphic Testing Results

The results of metamorphic testing of all three applications are summarized in Table 3.6.

For each application, the second column shows the total number of mutants that were

suitable for use in the testing (i.e., that did not produce an obvious error). The next four

columns show how many of those mutants were killed by metamorphic properties based

on permuting the input, multiplying the input values by a constant, adding a constant to

each input value, and negating each input value, respectively. The last column shows the

total number of distinct mutants killed by metamorphic testing (a mutant may be killed by

multiple different metamorphic properties), and the overall percentage.

Following, we analyze the results for each of the three applications.

C4.5 Table 3.7 lists, for each of the three types of mutations inserted into C4.5, the

number of mutants that were killed by metamorphic testing with the different types of

properties as listed above.

The metamorphic property based on negating the input proved to be the most reliable

means of killing the C4.5 mutants (23 of 28, or 82%), and was more or less equally effective
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Mutation # Mutants Permute Multiply Add Negate Total
Comparison 8 8 0 1 8 8 (100%)
operators
Math 15 2 3 3 11 13 (86%)
operators
Off-by-one 5 3 0 0 4 5 (100%)
Total 28 13 3 4 23 26 (93%)

Table 3.7: Results of mutation testing for C4.5 using metamorphic testing

for all three types of mutations. This is because the nodes of the decision tree contain

clauses such as “if attrn > α then class = C”, where attrn is some attribute, α is some value,

and C is the classification. If all the training data were negated, then the clause is expected

to become “if attrn ≤ -α then class = C”, which requires both the comparison operator and

the sign of α to be switched. However, in most of the cases, only one or the other was

switched, so that in the classification phase, elements in the testing data were not correctly

classified. Because C4.5 also involves calculations (to determine which splitting of data

provides the best information gain), other mutations caused the value of α to be changed

when the training data values were negated.

Table 3.8 shows the effectiveness at revealing defects for each of the data sets used in

the C4.5 experiment. These data sets are from the UC-Irvine machine learning repository

[138] and are summarized above in Table 3.2. All of them are similarly effective, except

for the “golf” data set, which only killed three of the mutants. This particular data set is

much smaller than the others, having only 14 examples, compared to the others, which had

at least 150 examples. Because of the small size, the generated decision tree is quite small,

and thus there are fewer points for the metamorphic properties to detect defects.

Mutation # Mutants iris golf heart glass wine hepatitis
Comparison 8 8 3 7 6 7 8
Math 15 8 0 7 7 4 10
Off-by-one 5 3 0 4 5 3 1
TOTAL 28 19 3 18 18 14 18

Table 3.8: Number of mutants killed per data set for C4.5
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MartiRank. Metamorphic testing killed all 69 mutants in the MartiRank application.

As shown in Table 3.9, the property based on permuting was particularly effective, with the

negation property less so, and the properties based on multiplying and adding not at all.

Mutation # Mutants Permute Multiply Add Negate Total
Comparison 20 20 1 1 16 20 (100%)
operators
Math 23 23 0 0 12 23 (100%)
operators
Off-by-one 26 20 0 0 10 26 (100%)
Total 69 69 1 1 38 69 (100%)

Table 3.9: Results of mutation testing for MartiRank using metamorphic testing

Consider a simple function to perform bubble sort (although MartiRank uses merge

sort, not bubble sort, the bubble sort example is easier to understand). One would expect

that permuting the input should not affect the result, as the sorted order does not depend on

the original order. However, if there were an error in the implementation, then permuting

the order of the inputs may yield a different result, revealing the defect.

In the erroneous implementation in Figure 3.6, the condition i < A.length - 1 on

line 2 should simply be i < A.length. Here, inputs like A = {3, 1, 2, 5, 4} or A = {4, 3, 1,

2, 5} and many others would correctly return the sorted array. However, if we permute the

input and happen to set A = {2, 3, 5, 4, 1} (or any other input in which the smallest value is

at the end), it would incorrectly return an unsorted list, and metamorphic testing reveals the

defect.

On the other hand, a metamorphic property based on multiplication or addition would

not find this defect. For instance, A = {2, 3, 5, 4, 1} would return {2, 3, 4, 5, 1}, and A = {20,

30, 50, 40, 10} would return {20, 30, 40, 50, 10}, as expected according to the metamorphic

property. Thus, changing the values in A does not reveal these types of defects, but changing

their order does.

Table 3.10 shows the sensitivity of the results to the different data sets used in the
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1 bubble sort(A) {

2 for (i = 0; i < A.length - 1; i++)

3 for (j = 0; j < A.length - i; j++)

4 if (A[j] > A[j+1])

5 swap A[j] and A[j+i]

6 return A;

7 }

Figure 3.6: Mutated function to perform bubble sort with off-by-one error on line 2

experiment for MartiRank. Almost all of the data sets were equally effective at revealing

defects, except for data set #6, which killed all but one of the 69 mutants. One of the

reasons why it may have been so effective is that this data set had 200 attributes, whereas

most of the others had no more than 100. This means that there would be twice as many

opportunities for errors to arise in the sorting of attributes and the calculation of the quality

of the results. Thus, it follows that more of the defects would be revealed.

Comparison Math Off-by-one TOTAL
COUNT 20 23 26 69
data1 18 15 17 50
data2 20 15 17 52
data3 18 14 18 50
data4 19 15 16 50
data5 19 14 19 49
data6 19 23 26 68
data7 18 15 15 48
data8 18 14 15 47
data9 13 14 15 42
data10 19 14 16 49

Table 3.10: Number of mutants killed per data set for MartiRank

SVM. For SVM, permuting the input was the most powerful metamorphic property in

terms of revealing defects: 76 of the 85 mutants (89%) were killed, as shown in Table 3.11.

Permuting the input was particularly effective in killing the off-by-one mutants in SVM

(30 out of 31, or 97%). In these mutations, for-loops omitted either the first or last value in

an array, thus the mathematical calculations would yield different results because different
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Mutation # Mutants Permute Multiply Add Negate Total
Comparison 30 23 9 2 19 29 (96%)
operators
Math 24 23 3 12 19 23 (95%)
operators
Off-by-one 31 30 11 11 18 31 (100%)
Total 85 76 23 25 56 83 (97%)

Table 3.11: Results of mutation testing for SVM using metamorphic testing

permutations meant that different elements were being left out. For instance, consider a

function f (A) =
∑

i

Ai, where A is an array of values. One would expect that permuting the

order of the elements in A would not affect the result. But clearly if, say, the first element

of A is not included in the sum, then permuting the elements will put a different one first,

and thus the result will change, in violation of the metamorphic property.

Table 3.12 shows the number of mutants killed for each data set used in the SVM

experiment. The numbers are fairly consistent except that the “iris” data set was very

effective for the off-by-one mutants, but not as effective for the comparison mutants.

Mutation # Mutants iris hepatitis heart glass wine golf
Comparison 30 17 28 27 26 25 24
Math 24 18 19 23 21 21 20
Off-by-one 31 31 18 18 26 13 20
TOTAL 85 66 65 68 73 59 64

Table 3.12: Number of mutants killed per data set for SVM

Additional Results

As part of our study, we also investigated the anomaly-based intrusion detection system

PAYL, described in Section 2.5. In our experiments with PAYL, we created 40 mutants for

testing, but only two were killed using our approach. One reason for this poor performance

is that we were only able to automate two metamorphic properties for PAYL: permuting the

order of the packets in the training data set; and permuting the order of the bytes within the



CHAPTER 3. AUTOMATED METAMORPHIC SYSTEM TESTING 83

payload (“message”) in each packet. Although permutation of the input proved to be an

effective technique for detecting defects in SVM and MartiRank, PAYL is purely concerned

with distribution of values and not at all with their ordering or relationship to each other;

thus, it follows that permuting the input would have very little effectiveness at killing the

types of mutants that we introduced.

By way of comparison, runtime assertion checking using Daikon-generated invariants

killed 13 of the 40 mutants. This is not a great result either, but we mention this here to

demonstrate that metamorphic testing is not a silver bullet for applications that have no test

oracle, and that its effectiveness relies heavily on a combination of the types of metamorphic

properties, the types of defects being targeted, and the nature of the application itself.

3.4.3 Study #2: Applications in Other Domains

In the next study, we sought to apply the different techniques to applications in other

domains, including discrete event simulation, information retrieval, and optimization.

Test Subjects

Discrete event simulators can be used to model real-world processes in which events occur

at a particular time and affect the state of the system [152]. Simulators can be considered to

have no test oracle because if the results of the simulation could be known in advance, the

software would not be necessary.

In this study, we tested the simulator JSim [193], which is implemented in Java and

has been used in the modeling of the flow of patients through a hospital emergency room

[156]. The input to JSim consists of a process, represented as a tree of steps and constituent

substeps; a set of agents who perform the steps, such as patients in the emergency room; a

set of resources, which may indicate things like how many doctors, nurses, hospital beds,

etc. are available to be used in the steps; and an oracle, which dictates when process events

should occur and how long they should take (not to be confused with a “test oracle”, of
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course).

When the simulation is run, each agent is assigned an agenda, or a list of steps to

perform. The simulator goes through the process, and the oracle indicates whether it is time

for each agent to perform the next step on its agenda. If it is, and sufficient resources are

available, then the agent performs the step and moves on to the next one on its agenda; if no

resources are available, then depending on the configuration, the agent either blocks (waits

for the required resource) or throws an exception, in which case the process is terminated.

This continues until all agents have completed their agendas. The output of the simulation

is the sequence of events (steps) that took place, the times at which they started and ended,

and the agents and resources involved.

The second application we investigated is Lucene [6], an open-source text search engine

library that is part of the Apache project and is implemented in Java. When Lucene produces

the results of a search query, each item is given a relevance score, and the results are sorted

accordingly. With a known, finite set of documents to search, it is trivial to check whether

the items in the query result really do contain the query keywords (and that documents not

in the result do not contain the keywords), but the relevance scores and the sorted ordering

cannot be known in advance (if they could, there would be no need to have the tool).

Lucene supports simple queries like “romeo”, “romeo AND juliet”, “romeo OR juliet”,

“romeo NOT juliet”, etc. It is also possible to boost the relevance scores associated with a

particular term, e.g., “romeoˆ4 juliet” would boost the score of “romeo” four times as much

as it does of “juliet”.

The third application investigated in this study is gaffitter [10], which is an open-source

application that uses a genetic algorithm to arrange an input list of files and directories into

volumes of a certain size capacity, such as a CD or DVD, in a way that the total unused

(wasted) space is minimized. This is an example of optimization software, specifically

for solving the “bin-packing problem,” which is known to be NP-hard.1 Solutions to

1http://en.wikipedia.org/wiki/Bin packing problem
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optimization problems in the domain of NP-hard qualify as “non-testable programs”: after

all, by definition, verifying whether a solution is correct is just as hard as finding the

solution in the first place.

The gaffitter software is implemented in C++ and allows the user to specify the list of

files and the target size (i.e., the size of each bin). The user can also specify other options

related to the genetic algorithm, such as the number of generations, crossover probability,

mutation probability, etc. In the first generation of the genetic algorithm, gaffitter randomly

creates a number of candidate solutions (collection of files), and measures their quality by

calculating how close the solution comes to the target. In subsequent generations, the best

solutions are randomly mutated and/or combined with other candidate solutions, and those

with the highest quality are carried over to the next generation, while lower-quality solutions

are deselected. Once the specified number of generations is reached, or an ideal candidate

solution is found, the program concludes. Although genetic algorithms necessarily rely on

randomization, gaffitter allows the user to specify a seed for the random number generator

so that the results would be deterministic; we used a seed of 0 in our experiments.

Methodology

We used mutation testing in this experiment, just as in the one previously described.

For JSim, we were only able to generate six mutants that could be used in the experiment.

These were all in the Task class, which includes code responsible for tracking the amount

of time spent on each step in the simulated process. The two principle reasons why we

were only able to create a small number of mutants were that there simply are not many

mathematical calculations in JSim, and that many of the mutants we generated led to

obvious errors, such as crashing. We investigated the use of a mutant generator tool such

as µJava [112], which would also create other types of mutations specific to Java (such as

modifying inheritance hierarchies, variable scope, etc.) but the current implementation
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of µJava (version 3) as of this writing does not support Java generics2, which are used

throughout the JSim implementation. We also considered simulating defects in JSim

through modifications to the configuration files, but such a technique would not be useful in

measuring the effectiveness of runtime assertion checking, which aims to find code defects.

Other non-systematic approaches such as manually inserting defects could introduce threats

to validity if the defects are biased towards (or against) a particular testing approach. Thus,

even though six mutants is a small number, we feel that this is the only fair way to compare

the testing techniques. Of the six mutants, one was a mathematical operator and five were

off-by-one errors.

For Lucene, we only placed mutations in the DefaultSimilarity and TermScorer classes,

because they are the ones that do most of the work in the simple searches we tested (note

that as Lucene is a large framework for building search applications, many of the classes

are not useful for our purposes). Also, none of the mutations of the comparison operators

(e.g., changing “less than” to “greater than”) were usable because they all caused obvious

failures, such as the application crashing or producing no results. Thus, we only had 15

mutants to use in the experiment: four mathematical errors and 11 off-by-one errors.

For gaffitter, we created a total of 66 mutants: 15 related to comparison operators, 19

related to mathematical operators, and 32 off-by-one errors.

Creating Partial Oracles. As in the first experiment, for each application we created

simple test cases whose correct output could easily be calculated. To ensure that these

simple test cases are not too simple, we measured the line coverage of the programs when

processing these inputs, and checked that the coverage is approximately the same as when

using the arbitrary inputs for metamorphic testing and runtime assertion checking.

For JSim, the partial oracle was based on six of the test cases that were created by the

developers of the program. These include simple processes that exercise only particular

parts of the simulator, such as executing steps in sequential order.

2http://cs.gmu.edu/ offutt/mujava/
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For the Lucene partial oracle, we manually created a simple document corpus in which

the first file consisted of only the word “one”, the second contained “one two”, the third

contained “one two three”, and so on. Thus, we could easily predict not only the results of

queries like “one AND three” but also know the expected relevance ranking. Note that we

could not predict the scores themselves, only their relative values; the scores do not have

any meaning on their own.3

To create a partial oracle for gaffitter, we generated a set of files, each of which had a

size which was a power of two (i.e., one byte, two bytes, four bytes, eight bytes, sixteen

bytes, etc.). For any given target size, there would be exactly one optimal set of files to

reach that value. As an example, if the target were 11 bytes, then a collection including the

files of size one, two, and eight bytes would be the only optimal solution. Thus, it would be

possible to know what the correct output should be.

Metamorphic Testing. Using the guidelines described previously for conducting

metamorphic testing, we assessed each of the three applications and enumerated a set of

properties that were verified using the gold standard implementation of each program. Then,

for each mutant, we determined whether there was a violation of the metamorphic property

when running the program on arbitrary test input; if so, the mutant was killed and the defect

had been found.

For JSim, we identified two metamorphic properties. First, because the event timings

as specified in the configuration have no time units, multiplying each by a constant value

should effectively increase the overall time to complete the process by the same factor. For

instance, if there are N events in the process, and the time to complete each step is t0, t1,

t2... tN-1 respectively, and the total time to complete the process is observed to be T, then

changing the event timings to 10t0, 10t1, 10t2... 10tN-1 would be expected to change the

overall process time to 10T.

Second, we considered the effect that changing the event timings would have on the

3http://article.gmane.org/gmane.comp.jakarta.lucene.user/12076
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utilization rates for the different resources in the simulation. Specifically, if the event

timings were increased by a positive constant, then the utilization rate (i.e., the time the

resource is used, divided by the overall process time) of the most utilized resource would

be expected to decrease, since the total increase in the overall process time would outweigh

the small increase in the resource’s time spent working. As a simple example, consider a

process that has steps that take times a, b, and c to complete, and a resource that is used

in the third of these steps. Its utilization would thus be c/(a + b + c). If the time for each

step were increased by one, then the utilization rate would change to (c + 1)/(a + b + c +

3). If this resource has the highest utilization, i.e., c > a > 1 and c > b > 1, then the new

utilization rate will be lower, because the change to the numerator is proportionally smaller

than the change to the denominator.

In the metamorphic testing of JSim, we used the same data set used in the emergency

room simulation work presented by Raunak et al [156].

The metamorphic properties for Lucene are based on those presented by Zhou et al.

[203], in which the authors applied metamorphic testing to Internet search engines such

as Yahoo!, Google, and Microsoft Live Search. In addition to the properties presented in

that work, we also included others based on the specific syntactic features of Lucene, as

described in its user manual. The properties are listed in Table 3.13. The corpus used for

Lucene was the text of Shakespeare’s “Romeo and Juliet”.4

ID Property Description
L1 romeo OR juliet == juliet OR romeo Commutative property of boolean operator
L2 romeo julietˆ0.25 == romeoˆ4 juliet Boosting one term by a factor of 4 should be the

same as boosting other term by a factor of 0.25
L3 romeo OR foo == romeo Inserting an OR term that does not exist

should not affect the results
L4 romeo NOT foo == romeo Excluding term that does not exist

should not affect the results

Table 3.13: Metamorphic Properties Used for Testing Lucene

4http://shakespeare.mit.edu/romeo juliet/index.html
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For gaffitter, we were able to identify two metamorphic properties. First, if the number

of generations used in the genetic algorithm were to increase, the overall quality of the

result (in this case, the amount of unwasted space) should be non-decreasing. The intuition

is that subsequent generations should never reduce the quality, but rather only candidate

solutions with better quality should be included. Of course, we cannot say that increasing

the number of generations will increase the quality, since an optimal solution may have

been reached, but there should not be any decrease in quality. Second, if the sizes of the

files were all multiplied by a constant, and the target size (“bin size”) were also multiplied

by the same constant, the results should not change, since there is no notion of units in the

algorithm.

In our metamorphic testing experiment with gaffitter, we used a collection of 84 files

ranging in size from 118 bytes to 14.9MB, and set targets of 1kB, 1MB, and 100MB. As

mentioned above, the non-deterministic aspects of the genetic algorithm were controlled by

specifying a seed for the random number generator.

Invariant Detection. To create the set of invariants that we could use for runtime

assertion checking, we applied Daikon to the “gold standard” (i.e., with no mutations) of

the three applications. We executed the applications multiple times, with the different data

sets described above. This was done in order to reduce the number of “spurious invariants”

that Daikon might produce.

Once the set of invariants had been created, we executed each mutated version with

the same data sets used for metamorphic testing and used Daikon’s invariant checker tool

to ensure that none of the invariants were being violated. If a violation occurred, then the

defect had been found.

The complete set of Daikon-generated invariants is listed in Appendix A of the tech

report [128] describing this study.

Pseudo-Oracles. As in the previous experiment, we were unable to obtain sufficient

pseudo-oracles that could be used in the study. For JSim, we intended to use the simulation
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tool Arena from Rockwell Automation [171], but were told by the developers of JSim

that there were known slight differences between the implementations that would affect

the results [184]. For Lucene, we could not find any other search engine that used the

same scoring algorithm, thus introducing the possibility of differences that were not a

result of defects in the code. Last, although there certainly are other implementations of

genetic algorithms that attempt to solve the bin-packing problem, none of the others that

we investigated produced the exact same results as gaffitter, because of implementation

issues related to the use of random numbers and seeds for the generators.

Results

Table 3.14 shows the effectiveness (percentage of distinct defects found in each application)

for the partial oracle, metamorphic testing, and assertion checking approaches for the three

applications.

For JSim, all six defects were detected by metamorphic testing and runtime assertion

checking, compared to only four when using the partial oracle. For Lucene, both the partial

oracle and metamorphic testing discovered 11 of the 15 defects; assertion checking only

detected nine. Last, for gaffitter, metamorphic testing killed 22 of the 66 mutants, whereas

the partial oracle killed only 14 and assertion checking killed 20.

Partial Metamorphic Assertion
App. # Mutants Oracle Testing Checking
JSim 6 4 (66.7%) 6 (100%) 6 (100%)
Lucene 15 11 (73.3%) 11 (73.3%) 9 (60%)
gaffitter 66 14 (21.2%) 22 (33.3%) 20 (30.3%)

Table 3.14: Distinct defects detected in Study #2.

Discussion

Because of the small number of mutations used in the experiment for JSim and Lucene,

the results may not be statistically significant, but serve to demonstrate that metamorphic
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testing is at least as effective as the other approaches. This may not be an important finding

in and of itself, but combined with the results of the first experiment, and considering the

results for gaffitter, indicates that metamorphic testing is no less effective than the current

state of the art at finding defects in a variety of applications without test oracles.

As for gaffitter, none of the results are particularly impressive, though we do see again

that metamorphic testing is the most effective of the three. One of the reasons that gaffitter

(and, presumably, most other implementations of genetic algorithms) is fairly insensitive to

the mutations that we introduced is that many of the calculations have only a subtle effect on

the output of the program. This is actually by design, since the point of a genetic algorithm

is to simulate small changes to the candidate solutions with the hopes that they increase

the quality of the result, but any one particular change is unlikely to have a dramatic effect.

This is why the partial oracle, in particular, performed so poorly.

For instance, consider the pseudo-code in Figure 3.7, which summarizes lines 212-226

in GeneticAlgorithm.cc and is typical in most genetic algorithms. This function takes two

candidate solutions (i.e., sets of items) called CS1 and CS2, and creates a child candidate

solution, which contains some items from CS1 and some from CS2. On line 2, a random

number is used to determine whether CS1 and CS2 should cross over at all. If so, on line 3,

a crossover point (i.e., an index in the list of items) is randomly chosen. In line 4, the first

items (up to the crossover point) of CS1 are merged with the last items (from the crossover

point to the end) of CS2.

1 crossover(CS1, CS2) {

2 if (rand() < crossover rate) {

3 cross pt = rand() * length(CS1);

4 Child = CS1[1, cross pt] + CS2[cross pt + 1, length(CS2)];

5 return Child;

6 }

7 else return null;

8 }

Figure 3.7: Sample code from genetic algorithm

Considering the mutations such as those we inserted into gaffitter, it is clear that many
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of them will indeed affect the output of this particular function, but are likely to have little or

no effect on the quality of the overall solution. For example, in line 3, an off-by-one mutant

may change the value of the crossover point, the effect of which is that an item from CS1

may incorrectly be replaced instead with an item from CS2 (or vice-versa), but including or

excluding a single item is unlikely to have a dramatic effect on the overall quality of the

result when the number of items is relatively small, as in our partial oracle. The same can

be said of potential off-by-one or mathematical mutants on line 4 in which the items from

CS1 and CS2 are selected to create the child: if the wrong items are selected, the result of

the function will differ from what is “correct”, but if the incorrectly-created child candidate

solution does not have a quality that is much higher than what the correctly-created child

would have, then it will not be selected for inclusion in the next generation, and the fact

that there is a defect is moot.

More importantly, in cases like the partial oracle that we created for gaffitter, in which

there is a relatively small number of possible combinations of the files to be packed into

the bins, an optimal (and correct) solution will eventually be found, even when there is a

defect in the implementation. This explains why the partial oracle was so poor at detecting

defects.

This leads to an interesting question regarding whether the mutations we put into the

code are actually “defects” in all cases. The mutated versions we used in this experiment

are ones for which the program output differed from that of the gold standard, i.e., the

list of selected files was not the same. However, in some cases the output in the mutated

version had the same quality as that of the gold standard. Does this mean that the output

is “incorrect”? One could argue that there is no practical difference in that there can be

multiple solutions, all of which are equally good. For the sake of this experiment, though,

we will consider these differences to be defects, using the definition from Section 1.1, since

the output deviates from what is expected according to the gold standard, which we assume

to be error-free. The justification is that these defects may not have affected the quality of
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the output for these particular cases, but might for others.

Note that we were only able to identify two metamorphic properties for this application.

This is partly because for many of the inputs to a genetic algorithm, the effect of changing

them cannot be known in advance. For instance, one cannot predict the changes to the

output based on changing inputs like crossover rate, mutation rate, etc. After all, if it could

be known that a particular value would have a positive effect on the overall result quality,

then there would be no need to vary that input. The only inputs for which we could predict

changes to the outputs were the list of files, the target size, and the number of generations;

these were all used in the metamorphic properties we considered. If we were able to identify

more, it follows that more mutants may have been killed by further testing. As in the case

of PAYL in the study described in the previous section, if we were able to conduct the

metamorphic tests inside the application at the function level, we may be able to identify

more properties and run more tests; such an approach is described in Chapter 4.

Analysis of Metamorphic Testing Results

Here we analyze the effectiveness of the different metamorphic properties used for the

testing of the three applications.

JSim. Table 3.15 shows the effectiveness of the two metamorphic properties used in the

testing of JSim. The first (labeled “Multiplication”) involves multiplying all event timings

by a constant factor; the total overall time should also increase by that factor. The second

(labeled “Addition”) involves adding a constant to all event timings; the utilization rate of

the most utilized resource should decrease.

Mutation # Mutants Multiplication Addition Total
Math 1 1 1 1 (100%)
operators
Off-by-one 5 5 2 5 (100%)
Total 6 6 3 6 (100%)

Table 3.15: Results of mutation testing for JSim using metamorphic testing
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The most interesting result here is that, unlike in the previous experiment with the

machine learning applications, the metamorphic property based on multiplication was very

effective at killing the off-by-one mutants. Upon further investigation, we see that this is

due to the nature of the particular way in which the off-by-one mutant is manifested.

Consider a simple function f (a, b) = a + b, and a mutated version with an off-by-one

error f ’(a, b) = a + b - 1. We would expect f to exhibit the metamorphic property that f (10a,

10b) = 10f (a, b); obviously, f’ does not exhibit this property, since f’(10a, 10b) = 10a +

10b - 1 = f’(a, b) - 1. In this case, the property based on multiplication reveals the defect.

The code we mutated in JSim included such simple functions, thus the property was very

effective.

On the other hand, in the machine learning applications tested in the first experiment,

the off-by-one mutants were more likely to appear in loop control structures, array indexing,

etc. In Figure 3.6 above, in which there is an off-by-one error in the implementation of

bubble sort, the result is that the ordering of the values is incorrect. However, the values

themselves are not affected by the defect, so a metamorphic property based on multiplying

them by a constant will not be violated: the ordering of the values will still be as expected,

even though it is incorrect.

Lucene. Table 3.16 shows the effectiveness of each of the four metamorphic properties

(listed in Table 3.13) for Lucene.

Mutation # Mutants L1 L2 L3 L4 Total
Math 4 0 0 2 0 2 (50%)
operators
Off-by-one 11 0 1 6 2 9 (81.8%)
Total 15 0 1 8 2 11 (73.3%)

Table 3.16: Results of mutation testing for Lucene using metamorphic testing

Property L3 is clearly the most effective. This property declares that the results from

the query “romeo OR foo” should be the same as those from the query “romeo”, since the

word “foo” does not appear in any of the text, and should not affect the results. The reason
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why this property is effective is quite clear: in determining the quality of each search result,

the term “foo” is being given a non-zero score because of the mathematical and off-by-one

errors, thus the total score changes, even though it should not.

On the other hand, property L1 is not effective because, even in the presence of the

defects, the queries “romeo OR juliet” and “juliet OR romeo” will return the same scores,

even if they are incorrect.

gaffitter. Table 3.17 shows the effectiveness of metamorphic testing for detecting each

of the types of mutants used in the experiment, broken down by the different metamorphic

properties, where “G1” refers to increasing the number of generations, and “G2” refers to

multiplying the file sizes and target size by a constant.

Mutation # Mutants G1 G2 Total
Comparison 19 7 3 7 (36.8%)
operators
Math 15 8 2 8 (53.3%)
operators
Off-by-one 32 7 2 7 (21.9%)
Total 66 22 7 22 (33.3%)

Table 3.17: Results of mutation testing for gaffitter using metamorphic testing

Analysis of the mutants that were killed reveals that most of them were in the code

that selects the top N candidate solutions (where N is configurable) to be used in the next

generation. If this code has defects, then some candidate solutions that are of lesser quality

may survive whereas ones with higher quality may be removed; thus, the quality of future

generations may decline, in violation of the metamorphic property.

On the other hand, for defects in other parts of the code, this particular metamorphic

property was not effective at killing the mutants. For instance, if the calculation of the

quality of a candidate solution were incorrect, the property would not be violated as long as

the best candidate solutions survived into future generations, regardless of the correctness of

the quality calculation. Similarly, as described previously, mutants in the code that performs
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crossovers between candidate solutions are not likely to have much impact on the overall

quality; thus, the quality will likely continue to improve over subsequent generations, even

if the implementation of crossing over contains an error.

Clearly these shortcomings could be addressed with the identification of more metamor-

phic properties. In Chapter 4, we will see that identifying properties at the function-level,

as opposed to the system-level, may be more useful in detecting errors related to these

calculations.

3.4.4 Study #3: Non-Deterministic Applications

The challenge of testing applications without test oracles can be compounded by the fact

that some applications in these domains are non-deterministic, in that multiple runs of

the program with the same input will not necessarily produce the same output. Note that

being non-deterministic does not necessarily imply not having an oracle: a program that

produces an equally distributed random integer between 1 and 10 is non-deterministic, but

has an oracle (specifically, that over a large number of executions, the number of times

each integer is returned should be the same; and that no single execution should return a

result outside the specified range). However, non-deterministic applications that do not

produce numerical output, or for which the distribution or range of results cannot be known

in advance, could be considered programs without test oracles, and thus we include some

of these applications in our study.

Test Subjects

In our first two experiments described above, all the applications were deterministic, and

thus none of the defects found were a result of non-determinism. In our next experiment, we

apply the testing approaches to non-deterministic applications to measure the effectiveness

of each technique.

JSim. The JSim [193] discrete event simulator (described in the previous experiment)
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can be non-deterministic depending on the system configuration. Specifically, the amount of

time each step in the simulation takes to complete may be random over a range, either using

an equal distribution or using a “triangle” distribution with an inflection point at a specified

mode; thus, the time it takes for the entire process to complete may be non-deterministic.

MartiRank. The MartiRank application described above also can be non-deterministic.

In its second (“ranking”) phase, MartiRank performs sorting on the elements in the testing

data to achieve the final ranking according to the given model. If the data set contains

missing values (which is very likely to happen when using real-world data [127]), MartiRank

will randomly place the missing elements throughout the sorted list. Thus, subsequent

executions may yield different results, making the output non-deterministic. Note that in our

first study, the MartiRank data sets had no missing values, thus the output was deterministic.

Methodology

For JSim, we used mutation testing to insert defects that were related to the non-deterministic

parts of the application. To create defects that would affect these parts of JSim, we system-

atically inserted 19 different off-by-one mutants related to the event timing, so that when

the configuration specified a timing range from A to B for a given event, the actual range

would be [A+1, B] or [A, B-1] or [A+1, B-1]. We could not use defects that had ranges

starting at A-1 or ending at B+1 because of checks that already existed within the code that

would notice such out-of-range errors and raise an exception.

For MartiRank, we were able to use mutation testing as described in the first two

experiments and inserted a total of 59 defects (18 mathematical operator mutants and 41

off-by-one mutants). Note that these are not the same set of mutants used in Study #1, since

in that study we considered the training phase of MartiRank (as it constructs the model)

and here we consider its ranking phase (when it applies the model to testing data). There is

some overlap in the code, but other parts are completely different.

Note also that we did not include pseudo-oracles for this study, as the one for MartiRank
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was found to be unsuitable, as described in Study #1.

Partial Oracle. Although the applications being tested are non-deterministic, a partial

oracle can exist if it is possible to enumerate all of the possible “correct” outputs. For both

MartiRank and JSim, we created simple data sets for which we could know what all the

possible outputs would be, and confirmed this by using the gold standard version (without

any mutations). Then, we executed each mutated version up to 100 times; if it produced an

output that was not one of the possible correct outputs, the defect had been found.

Of course, it is possible that there would be false negatives in that the mutated version

may randomly not produce an erroneous output during the 100 executions. However,

given that the input was contrived so that there were only 2-3 possible correct outputs, the

likelihood of this happening is incredibly small (around 1 in 1017).

Metamorphic Testing. In this experiment, we used statistical metamorphic testing

(SMT), which has been proposed by Guderlei and Mayer as a technique for testing non-

deterministic applications that do not have test oracles [71] and is summarized briefly

in Section 3.3. SMT can be applied to programs for which the output is numeric, such

as the overall event timing in JSim, and is based on the statistical properties of multiple

invocations of the program. That is, rather than consider the output from a single execution,

the program is run numerous times so that the statistical mean and variance of the values

can be computed. Then, a metamorphic property is applied to the input, the program is

again run numerous times, and the new statistical mean and variance are again calculated.

If they are not as expected, then a defect has been revealed.

For JSim, we specified non-deterministic event timing over a range [α, β] and ran the

simulation used in the previous experiment 100 times to find the statistical mean µ and

variance σ of the overall event timing in the process (i.e., the time to complete all the steps).

We then configured the simulator to use a range [10α, 10β], ran 100 more simulations,

and expected that the mean would be 10µ and the variance would be 10σ. Of course, they

results would not exactly meet those expectations, so we used a Student T-test to see if any
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difference was statistically significant; if so, then the defect was revealed. We validated

this approach with the gold standard implementation (i.e., in which we had not inserted any

defects), and found that the resulting distributions were not significantly different, with p <

0.05.

Heuristic Metamorphic Testing (HMT), a new technique introduced above in Section

3.3, is a similar approach that is based on SMT but can be used for non-deterministic

applications or functions that produce non-numerical output, such as the ranking of testing

data examples in MartiRank. For such applications, certain metamorphic properties can

be applied so that the new output is expected to be “similar” to the original, where the

expected similarity is determined by observing multiple runs of the program.

In this experiment, we ran 100 executions of MartiRank with a given input, which

produced a ranked list of elements. We could then compare the similarly of those lists

of elements using the Spearman Footrule Distance [173], which yields a normalized

equivalence rating of how similar the lists are, given that they are always expected to

contain the same elements. We then permuted the input (by changing the ordering of

the examples in the data set for MartiRank), ran 100 executions with the new input, and

calculated the normalized equivalence of the new outputs. As with SMT, we again used

a Student T-test to compare the results, and we validated this approach using the gold

standard implementation.

Note that just as metamorphic testing is essentially a pseudo-oracle approach, in that

“expected results” are not necessarily “correct results”, SMT and HMT can only indicate

defects, not correctness: if the statistical mean and variance are not as expected (in SMT) or

if the normalized equivalence is not as expected (as in HMT), that indicates that something

is amiss; but if the results are as expected, a defect may still exist but not be revealed.

Invariant Detection. As in the previous study, we applied Daikon to the applications

and had it observe multiple program executions of the “gold standard” implementation so

that it could create a list of invariants. The mutated versions of the software were then
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executed with the same data sets to see whether any invariants were violated. Because

of the non-deterministic nature of the applications, each was run 100 times, since some

invariants might only be violated occasionally.

The complete set of Daikon-generated invariants is listed in Appendix B of the tech

report [128] describing this study.

Results

To determine the effectiveness of the three techniques, we applied each to all of the mutated

variants of JSim and MartiRank. Table 3.18 shows the number of defects found by the three

techniques in this study. The metamorphic testing approaches were most effective in both

cases.

Partial Metamorphic Assertion
Application # Mutants Oracle Testing Checking
MartiRank 59 15 (25.4%) 40 (67.7%) 27 (45.7%)
JSim 19 0 (0%) 19 (100%) 0 (0%)

Table 3.18: Distinct Defects Found in Study #3.

Discussion and Analysis

MartiRank. Heuristic Metamorphic Testing was the most effective technique at detecting

the defects in MartiRank. When MartiRank is run repeatedly, the final result of the ranked

elements is expected to be more or less the same each time: even though MartiRank places

missing values randomly throughout the list, the other elements will stay in about the same

place, so the normalized equivalence (i.e., the heuristic used to measure the “sameness” of

multiple lists) is high. One of the metamorphic properties is that permuting the order of

the elements should result in a similar ranking (since sorting does not depend on original

input order). However, if there is a defect such that the known elements of the list are

sorted incorrectly, then the resulting lists will not be similar to the original (since the known



CHAPTER 3. AUTOMATED METAMORPHIC SYSTEM TESTING 101

elements are out of place and the normalized equivalence will be lower), and the defect will

be revealed.

As we observed in the first study, the MartiRank partial oracle data sets were too small

to be effective, as errors with sorting the known values only appeared in the larger data sets;

of course, once the data set got to be too large, the results were no longer predictable, and a

partial oracle could not be used.

One reason that runtime assertion checking was not as effective as it was for the

deterministic aspects of MartiRank is that Daikon only detected 1927 invariants in this

study, compared to 3666 in the first one. We attribute this to the non-determinism: over

multiple executions, it may not be true in every case that, for instance, one variable is

always greater than another, and thus Daikon disregards this as a likely invariant. With

fewer invariants, it follows that there are likely to be fewer violations.

JSim. Both the partial oracle and assertion checking techniques were unable to detect

any of the JSim defects related to event timing because each approach only considers a

single execution of the program, or of the function that produces the random number in

the specified range. Consider a function that is meant to return a number in the range [A,

B], but has a defect so that the range is actually [A, B-1]. No single execution will violate

the invariant that “the return value is between A and B”, so assertion checking does not

reveal this defect. As for the partial oracle, if it is known that the program calls the function

10 times, for instance, then we can know that the total overall timing (i.e., the sum of the

random numbers) should be a value in the range [10A, 10B]. Even with the defect, though,

this still will be true: no program execution will have a total overall timing outside that

range.

However, statistical metamorphic testing will detect this defect because over 100 exe-

cutions of the program (as in our experiment), the mean and variance show a statistically

significant difference compared to what is expected; the other approaches necessarily only

run the program once, and do not consider the trend of the program over a number of
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independent executions.

3.4.5 Summary

We now revisit the research questions that this experiment was designed to answer.

1. Is system-level metamorphic testing more effective than other techniques for detecting

defects in applications without test oracles, particularly in the domains of interest?

2. Is Heuristic Metamorphic Testing more effective than other techniques for detecting

defects in non-deterministic applications without test oracles?

3. Which metamorphic properties are most effective for revealing defects in the applica-

tions of interest?

For questions #1 and 2, the answer is clearly “yes”. In the first two studies, metamorphic

testing killed 217 of the 269 total mutants (80.6%), whereas assertion checking killed 188

(69.8%) and the partial oracle killed 176 (65.4%). In the third study, the metamorphic

testing approaches killed 59 of the 78 total mutants (75.6%) in the non-deterministic

programs, whereas assertion checking killed 27 (34.6%) and the partial oracle killed 15

(19.2%).

For question #3, properties based on permuting or negating the input were most effective

for detecting the types of defects we inserted into the machine learning applications evalu-

ated in the first study. Properties based on multiplication and addition were considerably

less effective.

3.4.6 Threats to Validity

Some of the details of the three studies may cause the reader to wonder how generalizable

the results are.
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The programs that were investigated may not be representative of all programs that do

not have a test oracle. However, these were selected so as to demonstrate that metamorphic

testing is applicable to a range of application domains that do not have test oracles: specifi-

cally, machine learning (C4.5, MartiRank, SVM, PAYL), discrete event simulation (JSim),

information retrieval (Lucene), and optimization (gaffitter). Moreover, within the domain of

machine learning, we chose applications from different subdomains, specifically decision

tree classifiers (C4.5), linear classifiers (SVM), ranking (MartiRank), and unsupervised

machine learning (PAYL). Given the number of test subjects and the breadth of applica-

tion domains, plus the fact that many of these applications are (or are part of) industrial

systems, we feel that the results can safely be generalized. However, although we investi-

gated multiple supervised machine learning applications, future work could investigate the

effectiveness of detecting defects in other unsupervised applications beyond PAYL.

Another issue is related to the types of defects that were planted in the applications

via mutation testing, and whether or not the ability to detect mutants is a fair metric

for comparison of testing approaches. As indicated above, though, mutation testing has

been shown to be an accurate approximation of real-world defects [3], and is generally

accepted as the most objective mechanism for comparing the effectiveness of different

testing techniques [55, 167]. Additionally, we assumed in the mutation testing experiment

that the version we used as the gold standard was free of defects. If this were not true, then

the invariants created by Daikon may not all have been sound, and some sound invariants

may have been omitted; additionally, defects supposedly revealed by any of the testing

approaches may have been the result of detecting other defects, not the ones inserted via

mutation. However, we felt that the likelihood of defects (or, at least, defects that would

influence the results) existing in the gold standard was very low, given that: we were able to

verify that the expected metamorphic properties held in the gold standard implementation

for all applications and all test inputs; and, the partial oracle for the gold standard produced

the expected result for all applications and all test inputs.
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A third potential threat to validity involves the data sets that were used in the experiments.

For the partial oracles, the data sets were typically smaller than the data sets used for

metamorphic testing and runtime assertion checking. Of course, the data sets were smaller

out of necessity because, for larger data sets, the correct output could not easily be predicted,

thus they could not be used as partial oracles. Also, as noted, the line coverage of the

data sets was approximately the same for all the testing approaches, and variations of the

original partial oracle data sets were generated to attain a better mix of values. Last, for

all experiments but particularly Study #1, the data sets were selected because they were

readily available to us; it is possible that the results may have been different had different

data sets been chosen, but with very few exceptions, we did not see any single data set

being particularly good (or particularly bad) at revealing defects, and the results would not

have changed significantly had any data set been omitted.

In these studies, we used Daikon to create the program invariants that would be used

in runtime assertion checking. Although some researchers have questioned the usefulness

of Daikon-generated invariants compared to those generated by humans [153], Daikon is

generally accepted as the state-of-the-art in automatic invariant detection [141]. We chose

to use the tool so that we could eliminate any human bias or human error in creating the

invariants, which would require a great deal of knowledge of the source code, considering

the complexity of the applications we evaluated. Hu et al. [85] performed a study in which

invariants were hand-generated, but the programs they investigated were considerably

smaller than the ones we used in our experiments, and we did not feel that such an approach

would scale to larger, more complex systems.

As noted above, Daikon can generate spurious invariants if there are not enough program

executions, but we mitigated this by running the programs multiple times with different

inputs, and by ignoring any invariants that were obviously a result of the data sets that

were being used. Note that even if some of the invariants that detected defects in the study

actually were spurious, this would only serve to increase the apparent effectiveness of
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runtime assertion checking. Given that our intent was to show that metamorphic testing is

more effective, any experimental error related to spurious Daikon invariants would, in fact,

only strengthen that claim.

Clearly the ability of metamorphic testing to reveal defects is dependent on the selection

of metamorphic properties, and the results may have varied had we selected different ones

instead. However, it was our intention to show that even the basic metamorphic properties

described in Section 2.4 can be used even without a particularly strong understanding of

the implementation, and we have shown that these are shared by many applications in the

domains of interest (Section 2.5). Using this approach, therefore, we are demonstrating the

minimum effectiveness of metamorphic testing; the use of application-specific properties

may actually reveal even more defects.

Last, as acknowledged previously in introducing this set of experiments, we did not

compare our results to those of techniques such as formal specification languages or trace

and log file analysis. A qualitative discussion of how metamorphic testing techniques

compare to the approaches surveyed by Baresi and Young [15] can be found in the Related

Work section (Section 6.1).

3.5 Summary

In this chapter, we have presented a testing framework called Amsterdam, which addresses

some of the practical limitations of metamorphic testing so that it can be an efficient

technique for testing applications that deal with large, complex data sets.

Additionally, we have introduced a new technique called Heuristic Metamorphic Testing,

which can be used to test non-deterministic applications. The application is run multiple

times to build a profile of the outputs, using a domain-specific heuristic, and then the

metamorphic transformation is applied: the application is then run multiple times again,

and a measurement is taken to see if the profile of the new outputs is statistically similar to
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what is expected. If not, then a defect has been detected.

We conducted three empirical studies designed to measure the effectiveness of metamor-

phic testing at finding defects in the domains of interest. In the first study, we investigated

three supervised machine learning classifiers. In the second study, we investigated applica-

tions in the domains of discrete event simulation, information retrieval, and optimization. In

the final study, we applied the techniques to non-deterministic applications. All three studies

showed that metamorphic testing is more effective than other approaches, specifically using

partial oracles or runtime assertion checking.

By showing metamorphic testing to be more effective than other approaches for testing

programs that have no oracle, we have proven the hypothesis (stated in Section 1.6) that

“for programs that do not have a test oracle, automating the process of metamorphic testing

advances the state of the art in detecting defects.” In each of the three studies, metamorphic

revealed more defects on average than using partial oracles or runtime assertion checking

using Daikon-detected program invariants, and was particularly effective for finding defects

in non-deterministic applications.

In the next chapter, we seek to improve the metamorphic testing technique by checking

the metamorphic properties of individual functions, as opposed to just those of the entire

system, and to determine whether this approach will be more effective at detecting defects.



Chapter 4

Metamorphic Runtime Checking

Although the empirical studies in the previous chapter demonstrate that metamorphic testing

is very effective at detecting defects in applications without test oracles, we noticed two

important inherent limitations. One is that the application itself may not have a sufficient

number of metamorphic properties, possibly because of rigorous restrictions placed on the

allowable input space (this was an issue with the intrusion detection system PAYL) or the

small number of system inputs (as in the genetic algorithm gaffitter). Another limitation is

that metamorphic testing at the system level may not detect defects in individual functions

that do not have much effect on the overall output in a way that violates the property, as

was the case for gaffitter.

To address these limitations, and to improve the effectiveness of metamorphic testing, we

suggest that the checking of metamorphic properties could also occur inside the application,

at the function level. That is, in addition to checking the system-level metamorphic

properties of the entire application as a whole, we also intend to check the metamorphic

properties of individual functions as the software is running. As opposed to performing

system testing based on properties of the entire application, or by conducting unit testing of

isolated pieces of code, in this chapter we present a technique for testing applications that

do not have test oracles by checking the metamorphic properties of its individual functions

107
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as the full application runs. This will allow for more fine-grained testing that is not as

restricted by limitations on the input space, and also makes it possible to check for subtle

defects inside the code that do not have a large impact on the overall output.

In this chapter, we introduce a new type of testing called Metamorphic Runtime Check-

ing. This is a system testing technique in which, rather than specifying the metamorphic

properties of the application as a whole, we do so for individual functions. While the

program is running, we apply functions’ metamorphic properties to derive new test input

for those functions, so that we should be able to predict the corresponding test output;

if it is not as predicted, then there is a defect in the implementation. We also present an

implementation framework called Columbus that supports the execution of Metamorphic

Runtime Checking from within the context of an application as it runs, so that program

inputs can be used to drive the arguments used in metamorphic testing of the individual

functions.

We then describe the results of new empirical studies of real-world programs without

test oracles to demonstrate the effectiveness of Metamorphic Runtime Checking, and show

that conducting metamorphic testing based on the properties of individual functions is able

to reveal defects not found by metamorphic testing based on system-level properties alone.

The rest of this chapter is organized as follows: in Section 4.1, we introduce the Meta-

morphic Runtime Checking approach, including the necessary steps to be performed. In

Sections 4.2 and 4.3, we describe the model and architecture of the Columbus implementa-

tion framework, respectively. We present the results of feasibility studies in Section 4.4, and

in Section 4.5 we discuss empirical studies that measure the effectiveness of Metamorphic

Runtime Checking, and compare the results to metamorphic testing at the system level.

In Section 4.6 we consider the performance cost of testing software using Metamorphic

Runtime Checking.
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4.1 Approach

Metamorphic Runtime Checking is a system testing technique based on checking the

metamorphic properties of individual functions, rather than just those of the entire system,

as the application is running. Metamorphic Runtime Checking can be considered a cross

between metamorphic testing and runtime assertion checking [43]. The metamorphic

properties that are checked are analogous to program invariants: at the point in the program

execution in which the function is called, its metamorphic properties are expected to hold.

If the metamorphic property is violated, then a defect has been revealed.

This technique is orthogonal to the techniques described in Chapter 3, in that the various

techniques can be combined to ensure that the properties of both the entire system and of

individual functions hold as the program executes. That is, Metamorphic Runtime Checking

does not preclude the checking of metamorphic properties at the system level. However, in

the rest of this chapter, the two techniques will be discussed and compared separately.

4.1.1 Overview

The Metamorphic Runtime Checking approach entails four steps. Note that by “tester” we

mean “the person who is testing the code”; this may include the original author (developer)

of the code, or a separate third-party test engineer.

1. Identify metamorphic properties. The tester must first identify the metamorphic

properties of the functions that will be used in the testing. This step is further

described in Section 4.1.2.

2. Specify metamorphic properties. For each function to be tested, the tester specifies

its metamorphic properties using a notation based on the Java Modeling Language

(JML) specification language [98], further described below in Section 4.3.1.

3. Convert the specifications into tests. In this step, described in Section 4.3.2, the
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tester uses a preprocessor to convert the specifications into test functions. These tests

will automatically be added to the original source code.

4. Conduct system testing. Once the metamorphic properties are specified and the

code is instrumented with the tests, system testing can commence. The properties are

checked as the individual functions execute, and any test function outputs that deviate

from what is expected are indicative of defects in the code. Unlike in conventional

unit testing, the tester need not construct any specific test harness; rather, the functions

are effectively tested by simply executing the entire program.

The approach is not limited only to “pure” functions that do not have side effects, nor to

metamorphic properties that depend only on a function’s formal parameters as input and

its return value as output. In fact, functions need not have any input parameters or any

return values to have metamorphic properties: the properties can just specify the expected

relationship between the system state before the function call and the state after the call.

Consider a function to calculate standard deviation function, which operates on an array

that is part of the system state, and has no return value, but rather updates a global variable

as a side effect. The function’s metamorphic property can still be checked by considering

the array as the “input” and the value of the global variable as the function’s “output”.

Because Metamorphic Runtime Checking must allow the functions under test to be run

multiple times, it must therefore permit these functions to have side effects, but ensure that

the side effects of the additional invocations do not affect the process’ system state after

the test is completed. Clearly, changes to the state caused by calling the function again

with modified inputs would be undesirable, and may lead to unexpected system behavior

later on. Thus, the metamorphic tests are conducted in a “sandbox”, as described below in

Section 4.2.
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4.1.2 Devising Metamorphic Properties

As discussed in Section 2.4, an open issue in the research on metamorphic testing is, “how

does one know the metamorphic properties of the functions?” Typically it is assumed

that the tester will be familiar enough with the algorithm being implemented so that he

or she can identify these properties. Although this is generally a reasonable assumption

for system-level metamorphic properties, the conventional wisdom is that determining the

metamorphic properties of individual functions requires much more detailed knowledge of

the code.

In our experience with Metamorphic Runtime Checking, we noted anecdotally that

the metamorphic properties of the entire application were often also reflected in one or

more individual functions within the code. That is, if one can identify a property of the

application, then it is often the case that there will be a function (or perhaps even more than

one) that exhibits the same property.

Investigation of this phenomenon is outside the scope of this particular work, but during

our experiments we observed that often there would be data structures that represented

the program input data (either all of it, or a significant part of it); any function that took

such a data structure as a parameter was likely to exhibit the same metamorphic property

as the entire application since, essentially, the input to the function was the same as the

input to the program. For instance, the SVM implementation in Weka (described in Section

2.5.3) contains a method “buildClassifier” which takes as input the set of examples from

the training data and constructs the set of support vectors. And C4.5 (Section 2.5.4) has a

function called “FormTree” that considers a group of examples and builds the decision tree.

Both of these essentially wrap all of the functionality of the program as a whole, and thus

have the same metamorphic properties.

Of course, the Metamorphic Runtime Checking of such properties may not be particu-

larly useful, since the properties can simply be checked with system-level metamorphic

testing. In terms of looking for other metamorphic properties (not necessarily those of the
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entire application), we also observed that many of the applications in the domain of interest

(specifically, machine learning) include “pure” functions, i.e., those that do not depend

on, nor alter, the system state. These functions often take numerical or well-structured

data as input and produce similar output; functions like sorting or performing a calculation

fall into this category. Such functions are good candidates for exhibiting the metamorphic

properties classified in Section 2.4.1 because they are essentially mathematical, and exhibit

well-known algebraic properties such as distributivity and transitivity [133].

It is our assumption that, in practice, the software architect or developer would be able

to more easily identify the functions’ metamorphic properties, since they will have more

familiarity with the code than a third-party tester does. The same guidelines prescribed in

Section 2.4 could be applied here, as well.

Last, we note that test case selection (i.e., choosing the test cases most likely to reveal

defects) in metamorphic testing is detailed elsewhere [34] but is not further described

here. In Metamorphic Runtime Checking, all specified metamorphic properties are tested

whenever the corresponding function is called, in whatever states and for whatever inputs

that are encountered during execution.

4.2 Model

Metamorphic Runtime Checking is a technique by which metamorphic tests are executed

in the running application, using the arguments to instrumented functions as they are called.

The arguments are modified according to the specification of the function’s metamorphic

properties, and the output of the function with the original input is compared to that of the

function with the modified input; if the results are not as expected, then a defect has been

exposed.

For instance, for a function to calculate the standard deviation of an array of numbers,

whenever the function is called, its argument can be passed along to a test method, which
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Figure 4.1: Model of Metamorphic Runtime Checking

will multiply each element in the array by -1 and check that the two calculated output

values are equal; at the same time, another test method can multiply each element by 2 and

check that the new output is twice as much as the original. It is true that if the new output

is as expected, the results are not necessarily correct, but if the result is not as expected,

then a defect must exist. This model will allow us to execute tests within the context of the

running application, in applications without a test oracle, by using the metamorphic tests

themselves as built-in pseudo-oracles.

In our model of the testing framework, metamorphic tests are logically attached to

the functions that they are designed to test. Upon a function’s execution, the framework

invokes its corresponding test(s). The tests execute in parallel with the application: the test

code does not preempt the execution of the application code, which can continue as normal.

Figure 4.1 demonstrates the model we will use for conducting these tests.

Metamorphic Runtime Checking must be done in such a manner that any changes to

the state of the process are the result of only the main (original) function execution, and not

from any function calls that are only for testing purposes. In other words, there must not be

any observable modification of the application state; however, the tests themselves do need

to be able to modify the state because the functions are necessarily being called multiple
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times, which could have side effects. Thus, the modifications to the state that are caused

by the tests must not affect the application, so that the application can keep executing and

testing can continue.

One solution is to run the tests in the same process as the user state and then transac-

tionally roll them back (an idea explored by Locasto et al. [107]). Another approach is to

create a “sandbox” so that the test function runs in a separate cloned process that does not

affect the original; the sandbox must also make sure that the test function does not affect

external entities such as the file system. The current implementation of the Metamorphic

Runtime Checking framework uses the sandbox approach, as further described below in

Section 4.3.2.

Note that Metamorphic Runtime Checking does not force the execution of any particular

function or corresponding test; rather, it only tests the functions that are actually executed,

using the function’s arguments and the current system state to check that the metamorphic

properties still hold.

4.3 Architecture

In order to facilitate the execution of Metamorphic Runtime Checking, we require a

framework that conducts the function-level tests during actual runs of the application, using

the same internal state as that of the original function. A system like Skoll [121] is a

candidate for something on which to build, but it is primarily intended for execution of

regression tests and determining whether builds and installs were successful, and not for

testing the system as it runs; other assertion checking techniques (as surveyed by Clarke

and Rosenblum [43]) or monitoring tools (such as Gamma [144]) could be used, but they

generally do not allow for calling a function again with different arguments (which we

require), and do not safeguard against visible side effects. Thus, a new solution is required.

In this section we introduce the Columbus testing framework, implemented for appli-
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cations in both C and Java. The Columbus framework allows software testers to specify

metamorphic properties, instrument the application code, and conduct metamorphic tests at

the function level as the program executes.

4.3.1 Creating Tests

For the functions that are to be tested, the Columbus framework must be provided with

executable test code that specifies the metamorphic properties to be checked within the

running program. Because the instrumentation of the functions is done at compile-time,

we currently assume access to the source code. Given that it is the software developers

and testers who will write the tests and instrument the code, we feel that this assumption

is reasonable. However, as it may not always be possible or desirable to recompile the

code, an approach to dynamically instrumenting the compiled code, such as in Kheiron

[69], could be used instead.

To aid in the generation of these tests, we have created a pre-processor to allow testers

to specify metamorphic properties of a function using a special notation in the comments

[133]. As in JML and many other specification languages, the properties are specified in

annotations in the comments preceding the function with which they are associated, or in a

separate file. In our notation, the metamorphic properties are specified in a line starting with

the tag “@meta” and then are followed by a boolean expression that states the property.

Figure 4.2 shows such properties for an implementation of the sine function in C, which

exhibits two metamorphic properties: sin(α + 2π) = sin(α) and sin(-α) = -sin(α). The

parameter “\result” represents the return value of the original function call, so that outputs

can be compared; this notation is typical in specification languages such as JML. These

properties can then be used by the pre-processor in the testing framework to generate the

test code shown in Figure 4.3.
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/*@

* @meta sine(angle + 2 * M PI) == \result

* @meta sine(-1 * angle) == -1 * \result

*/

double sine(double angle) { ... }

Figure 4.2: Specifying metamorphic properties

int MRCtest sine(double angle, double result) {

if (( sine(angle + 2 * M PI) == \result) == 0) return 0;

if (( sine(-1 * angle) == -1 * \result) == 0) return 0;

return 1;

}

Figure 4.3: Example of a Metamorphic Runtime Checking test generated by the
pre-processor

Comparing floating point values

As it is written, the above example in Figure 4.3 may fail even if the function is working

correctly, due to imprecision in floating point calculations. In order to address this, the

notation in the Columbus framework allows floating point values to be compared using a

built-in tolerance level (set by default to 10-6), and the comparison returns true if the values

are within that tolerance. Of course, if developers want finer control over the tolerance, they

can explicitly take the absolute value of the difference and then compare it to a tolerance,

as is customary in most specification languages.

Array functions

To simplify the specification of some of the types of metamorphic properties that we feel

would be typical, based on our evaluation in Section 2.4, we have also added special

keywords to the notation, using the JML style of starting keywords and operators with a

backslash. These allow for the execution of operations on arrays, or for Java applications,

on classes that implement the Collection interface that would be used during the test; Table

4.1 explains these built-in functions.
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\add(A , c) Adds a constant c to each element in
array or Collection A

\multiply(A , c) Multiplies each element in array
or Collection A by a constant c

\permute(A) Randomly permutes the order of the
elements in array or Collection A

\reverse(A) Reverses the order of the elements in
array or Collection A

\negate(A) If the elements in A are numeric,
multiplies each by -1

\include(A , x) Inserts an element x into A
\exclude(A , x) Removes an element x from A
\concatenate(A , B) Combines the elements of A and B

into a new array or Collection

Table 4.1: Additional keywords for manipulating arrays

An example of the use of these keywords appears in Figure 4.4. When calculating the

standard deviation for an array of integers, permuting the values should not affect the result,

since the calculation does not depend on the initial ordering of the elements. However,

multiplying each element by 2 is expected to double the calculated standard deviation.

/*@

@meta standardDev(\permute( A )) == \result;

@meta standardDev(\multiply( A , 2)) == \result * 2;

*/

double standardDev (int[] A) { ... }

Figure 4.4: Example of using built-in array functions for specifying metamorphic
properties

Conditionals

Some metamorphic properties may only hold under certain conditions or certain values

for the input, for example if the input is positive or non-null. We allow for the inclusion

of conditional statements when specifying metamorphic properties, using if/else notation.

Figure 4.5 shows an example.



CHAPTER 4. METAMORPHIC RUNTIME CHECKING 118

/*@

@meta if (A != null && A.length > 0)

average(\multiply(A, 2)) == 2 * \result;

*/

public double average (double[] A) { ... }

Figure 4.5: Conditional metamorphic property

Checking within a range

The metamorphic properties of some functions may entail 1-to-many relationships of inputs

to possible outputs, rather than 1-to-1 mappings as we have discussed so far. For instance,

a function that solves a quadratic equation may return the two possible values in an array,

where either {x1, x2} or {x2, x1} is correct. Thus, the metamorphic property would need to

check that the new output is equal to one of these two possibilities. In other cases, the new

output might be expected to fall within some range of numbers.

To make these properties easier to express, the notation includes two additional boolean

functions, as described in Table 4.2; note that either function can used to check that a value

is not in the range by using the boolean negation operator.

\in { x ; S } Returns true if the value x is
equal to a member of S

\inrange { x ; x1 ; x2 } Returns true if x ≥ x1

and x ≤ x2

Table 4.2: Additional keywords for handling ranges of values in specifications

As an example, consider a function in a personal finance application that calculates

the amount of income tax a user must pay, according to a number of input criteria such

as annual wage income, stock holdings, tax-free investments, etc. Determining a specific

metamorphic property based on modifying any of these inputs may be quite complicated: it

is probably not always the case that simply doubling the annual wage income will double

the amount of income tax owed. However, it might be fair to say (given the particular

implementation), that even though the predicted new output will not exactly be doubled, we

may be able to specify that the value should not be less than the original output, and perhaps
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should not be more than 2.5 times that value. Thus, we can specify this metamorphic

property as demonstrated in Figure 4.6.

/*@

@meta \inrange { calculate tax(\multiply(income, 2) ;

\result ; \result * 2.5 };

*/

double calculate tax (double income, double stock, double ...)

{ ... }

Figure 4.6: Example of metamorphic properties specifying a range of values

Although some of these metamorphic properties can be expressed using boolean op-

erators (such as logical AND and OR) within the specification, these extensions should

make the notation simpler and easier to understand, and reduce the chance of incorrectly

specifying the metamorphic property.

Non-deterministic functions

Functions that rely on randomness present a challenge for Metamorphic Runtime Checking,

since the specific output may vary across function executions, and thus it is difficult to

create a metamorphic property that will always hold. For instance, consider a function

rand(A, B) that is meant to return a random number in the range [A, B]. One would expect

that rand(A + 10, B + 10) would return a number in the range [A + 10, B + 10], of course,

because the range would simply be shifted. However, we cannot say that rand(A, B) + 10

== rand(A + 10, B + 10), because the second invocation of the function will result in a

second call to the random number generator, and the output will change.

In Section 3.3, we discussed metamorphic testing approaches based on statistical

properties of a non-deterministic application, or using domain-specific heuristics. However,

both of these approaches rely on observing the results of many executions, which is not

feasible in Metamorphic Runtime Checking. For a given program execution, we cannot

ensure that the non-deterministic function will be run a sufficient number of times with

the same arguments so that we can get a statistically meaningful result (it is generally
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accepted that at least 30 data points are required to achieve statistical significance [102]).

An alternative would be to force multiple executions of the function, with its original inputs

and with its transformed inputs, but the overhead of doing so may be prohibitive because of

the cost of repeatedly creating the sandbox in which to run the test.

The solution implemented in Columbus is to force the function to be deterministic across

the two function calls by modifying the random number generator. If it were guaranteed that

the same random number (or sequence of random numbers) would be returned in the second

function call, then a metamorphic test could check the results by using a deterministic

metamorphic property.

For instance, the code in Figure 4.7 shows an implementation of the function rand

described above. In this example, the metamorphic property rand(A, B) + 10 == rand(A +

10, B + 10) would be expected to hold if the random number generated by Math.random()

were the same in each function invocation.

int rand(int A, int B) {

return (int)(Math.random() * (A - B + 1)) + A;

}

Figure 4.7: Code to generate a random number in the range [A, B]

Rather than modifying the underlying Java or C libraries to support determinism in

the random number generator, Columbus provides a library call that can be used instead.

Although this involves modifying the source code, we consider this to be less intrusive

than modifying the Java virtual machine or operating system kernel. The Columbus pre-

processor can be used to change calls to standard random number libraries to use our special

library call, which keeps track of return values so that they can be replayed in the test

processes.

We point out here that some sources of non-determinism in applications come not from

random number generation, but rather from the underlying operating system or virtual

machine on which the application relies. For instance, in the JSim simulator described in
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the previous chapter, the output trace of events can be non-deterministic across invocations

if some events occur in parallel, since each event is executed in its own Java thread, the

scheduling of which is non-deterministic. In these cases, since there is no randomization at

the function level, “normal” Metamorphic Runtime Checking can be used at the function

level (since each function is deterministic), and metamorphic testing based on statistics or

heuristics can be used at the system level.

Specifying more complex properties

Metamorphic Runtime Checking is not limited only to those functions that take input

values and return an output, nor is it limited to simple metamorphic properties that can

easily be expressed or specified using annotations in the comments. Consider a function

calculate sum that determines the sum of the elements in an array referred to by a pointer

p, and stores that value in a variable sum. The tester can then write a test function that

permutes the elements in p, multiplies them by a random number, calls calculate sum,

and checks that the value of sum is as expected. Figure 4.8 shows how the tester could

then specify that the metamorphic property of calculate sum is described in the function

test calculate sum; the property is simply that test calculate sum should return

true.

Note that because test calculate sum is called after calculate sum, the frame-

work ensures that the variable sum will already have been set by the original function call

and will have the appropriate result by the time it is accessed in the first line of the test

function. Additionally, the test is executed in a sandboxed process, so the tester does not

have to worry about the fact that sum will be overwritten by the additional invocation of

calculate sum.
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int* p;

int sum;

/*@

* @meta test calculate sum()

*/

void calculate sum() { ... }

int test calculate sum() {

int temp = sum; // remember the old value

// ... randomly permute elements in p...

int r = rand();

// ... multiply values in p by r...

calculate sum(); // call the function again

return temp == sum * r; // check the metamorphic property

}

Figure 4.8: Example of a manually created Metamorphic Runtime Checking test

4.3.2 Instrumentation and Test Execution

Before compiling the source code, the tester uses the Columbus pre-processor to first

generate test code from the specifications, and then to instrument each annotated function

with its corresponding test.

During instrumentation, functions to be tested are renamed and wrapped by another

function, as shown in Figure 4.9, which shows pseudocode for the wrapper of a Java

function f. When an instrumented function is to be executed, the function is first called

with its input arguments (line 8). Then the “wrapped” original function is called, and any

return value is stored in a variable called result (line 9). The framework then generates

a new process as a copy of the original to create a sandbox in which to run the test code

(line 10), ensuring that any modification to the local process state caused by the test will

not affect execution of the “real” application, since the test is being executed in a separate
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1 /* original function */

2 int f (int x) { ... }

3

4 /* auto-generated metamorphic test function */

5 boolean MRCtest f(int x, int result) { ... }

6

7 /* wrapper function */

8 int f(int x) {

9 int result = f(x);

10 create sandbox and fork();

11 if (is test process()) {

12 if ( MRCtest f(x, result) == false) fail();

13 else succeed();

14 destroy sandbox();

15 exit();

16 }

17 return result;

18 }

Figure 4.9: Wrapper of instrumented function

process with separate memory. At this point, because it is not the test process (line 11),

the original process continues by returning the result and carrying on as normal (line 17);

meanwhile, in the test process, the original input and the result of the original function call

are passed as arguments to the test function (line 12). Within that function, the input can

be modified and the outputs can be compared according to the metamorphic properties,

without having to worry about changes to the application state. Note that the application

and the test run in parallel in two processes: the test does not block normal operation of the

application after the sandbox is created. Depending on the configuration and the hardware,

the test process may be assigned to a separate CPU or core, so as not to further preempt the

original process.

In our current implementation of the Columbus framework, we use a process “fork” to

create the sandbox, which gives each test process its own memory space to work in, so

that it does not alter that of the original process. In our investigations so far, this has been

sufficient for our testing purposes. However, to ensure that the metamorphic test does not
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make any changes to the file system, we have also integrated Columbus with a thin OS

virtualization layer that supports a “pod” (PrOcess Domain) [147] abstraction for creating

a virtual execution environment that isolates the process running the test and gives it its

own view of the process ID space and a copy-on-write view of the file system. However,

whereas the overhead of using a “fork” can be as little as a few milliseconds (see Section

4.6), the overhead of creating new “pods” can be on the order of a few seconds, so they

should only be used for tests that actually affect the file system. Testers can indicate that a

“pod” is needed for a test via an annotation in the specification of the metamorphic property;

future work could consider automatic detection of which tests need to be run in “pods”.

When the test is completed, the framework logs whether or not it passed (Figure 4.9

lines 12-13), the process in which the test was run notifies the framework indicating that it

is complete so that the framework can perform any necessary cleanup (line 14), and finally

the test process exits (line 15).

Note that Metamorphic Runtime Checking does not preclude “traditional” metamor-

phic testing using system level properties (as described in Chapter 3) in which the entire

application itself is also run a second time with transformed inputs, so that system-level

metamorphic properties can also be checked once the process has run to completion. This

means that both system-level and function-level properties can be checked during execution,

increasing the likelihood of detecting defects.

4.3.3 Limitations

The current implementation of the Columbus framework does have some limitations.

As pointed out previously, the test functions are called after the function to be tested,

rather than at the same point in the program execution. This limitation grew out of the

necessity to pass the result of the original function call to the test functions. Another

reason for this implementation decision is that, since the function calls are in different

processes, challenges would arise in comparing the outputs if the results are pointers,
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which would point to memory in separate process spaces. The possible side effect of our

implementation is that the original function call may alter the system state in such a way

that the metamorphic property would not be expected to hold by the time the test function

is called, possibly introducing false positives. In the experiments described below, none of

the selected metamorphic properties fell into this trap, but further investigation needs to be

performed to determine how often this problem may arise.

This limitation also affects the solution for handling non-deterministic functions, de-

scribed above, in which a modification to the random number generator is required to force

determinism across multiple calls. We note here this solution would not be necessary if the

two function calls actually happen in parallel in two separate processes, one of which is the

result of a “fork” call in the other. In such a case, if the code were using a random number

generator whose internal state were the same in each process after the fork, then the next

call to the generator would yield the same result in each process (this is the case in both C

and Java when using the built-in random number functions). For the reasons described in

the previous paragraph, though, a workaround was required.

Another limitation of the testing framework is that it uses function calls as the insertion

points for metamorphic tests. In our investigation of the source code of some of the

applications of interest, we noticed that some functions were quite long (over 200 lines)

and that we were limited to how many and what sorts of metamorphic properties we could

check. Smaller functions may have yielded more opportunities for metamorphic testing.

Checking metamorphic properties at arbitrary points within a function would require more

complex instrumentation and code re-writing, which may not be desirable or even possible

in some cases.
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4.4 Case Studies

To demonstrate the feasibility of Metamorphic Runtime Checking, we applied it to some

open-source machine learning applications. The goal was to assess whether or not real

defects could be revealed using the approach.

Our testing involved the Naive Bayes [88] implementations in both Weka 3.5.8 [194]

and RapidMiner 4.1 [155]. Both Weka and RapidMiner provide Java implementations

for numerous machine learning and data mining algorithms, and are popular tools for the

development of Java machine learning applications. Naive Bayes is a probabilistic approach

to the machine learning classification problem that assumes independence between the

attributes, i.e., that the presence of a particular attribute in a class is unrelated to the presence

of any other. The model is a formula that considers each attribute value and weighs it by its

likelihood of correlating with the label.

4.4.1 Experimental Setup

For each of the implementations, we first determined the metamorphic properties of the

entire application using the approach described in Section 2.4, and then identified various

functions that reflected those same properties. We specified a total of 10 metamorphic prop-

erties for the two applications we investigated. Both implementations share the following

properties:

1. Permuting the order of the examples in the training data should not affect the model

2. Permuting the order of the examples in the testing data should not affect their classifi-

cation

3. If all attribute values in the training data are multiplied by a positive constant, the

new model should be semantically equivalent to the original (meaning that, if the

values in the testing data were multiplied by the same constant, the new model would
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classify them with the same label as in the original model)

4. If a positive constant is added to all attribute values in the training data, the new

model should be semantically equivalent to the original

Additionally, the Weka implementation provides an API for updating an existing model

with a new example; if this is done, it should yield the same model created with training data

originally containing that example. Also, for the RapidMiner implementation, a confidence

value is reported when each example is classified. If an example that exists in the training

data is classified, and the model is changed so that the example exists in the training data

twice, the reported confidence should be half as much (since a lower confidence value

means “more confident”)

We then annotated the corresponding methods with specifications using the notation

described above, and used Columbus to pre-process the source code to create the test

methods. Last, we used data sets from the UC-Irvine Machine Learning Repository [138]

(the same ones listed in Table 3.2 in Section 3.4.2) to perform testing, and looked for

violations of properties, which would indicate that a defect had been found. No command

line options were set for the machine learning applications, so all defaults were used. Our

approach did not require the modification of any of the original application code; however,

some code needed to be added to facilitate our testing (see Section 4.4.3 below).

4.4.2 Findings

The Naive Bayes implementation in Weka provides an API for updating a model after it has

been created by adding a new instance to the training data: we would expect that if training

data set T produces model M, and if there is an example e such that training data set T’ =

T - e, and T’ produces model M’, then when M’ is updated using e, it becomes equal to

M. We discovered that in Weka’s Naive Bayes implementation, the model created from a

data set after it is updated with one example is sometimes (but not always) different from a
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model created from a data set containing that original example. Moreover, we observed

that if a data set is updated with multiple examples, the number of differences between

the updated model and a model created from a data set already including those examples

had no correlation to the number of updates. When we inspected the code, we discovered

that the update method does not update the probability estimates, thus causing a difference

compared to the model built using the entire data set. The Weka developers told us that

this was by design, and not actually a defect in the code. However, because the behavior

deviated from what the user of the implementation may have expected, we could say in

this case that metamorphic testing was shown to be useful for validation (i.e., determining

whether this implementation is right for the task at hand) more than verification [195].

We also detected a defect in the calculation of confidence in RapidMiner’s Naive Bayes

classifier. The confidence value is a (normalized) indication of how sure the algorithm is

about the classification it makes of examples in the classification phase. One would expect

that if an example being classified had previously existed in the training data set and its

confidence was c, and if the training data were modified so that the example existed twice,

then upon classification the confidence should be c/2, since the algorithm would be twice

as confident about its classification (a lower value means “more confident”). However,

this turned out not to be the case. Further investigation revealed an error in one of the

normalization calculations; this turned out to be a known defect in the version we tested,

and was fixed in a later release.

4.4.3 Discussion

In practice, the use of Metamorphic Runtime Checking to specify metamorphic properties

would seem to work best for methods that both take input and produce output, so that

changes to the input of a function can produce an output that can be predicted and then

analyzed easily. For instance, in the NaiveBayes implementation in both Weka and Rapid-

Miner, the Java classes contained methods that took a single example as input and produced
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a classification as output. However, in the Weka implementation’s training phase, there

was no single method that took the training data as input and produced a model as output.

Rather, the training data was input as a parameter but the model was represented by one

or more member variables in the class, modified by a side effect. Thus, to compare the

models after changing the input, a call to a separate method was required, and there was no

way to call all of the necessary methods in one single-line specification of the metamorphic

property using our notation.

However, to work around this restriction, we found that it was rather straightforward to

write a new test function that would conduct the metamorphic test on its own: it would take

as its arguments the example to be classified and the result from the original method call,

perform the metamorphic transformation, call the necessary method(s), and then compare

the results. The metamorphic property that we specified for the method would simply be

that this new test function should return true, similar to the example shown in Figure 4.8.

Overall, our case study demonstrated that Metamorphic Runtime Checking is a feasible

approach for detecting defects in applications without test oracles, and that the Columbus

framework is flexible enough to allow for the specification of metamorphic properties be-

yond simple identity functions. Note that, in this study, the properties used by Metamorphic

Runtime Checking mirrored those of the application as a whole. This is not a limitation of

the approach, though: it is possible that individual functions may have properties that the

entire application does not, and those properties may provide extra fault-revealing power,

as shown in the next section.

4.5 Empirical Studies

To measure the effectiveness of Metamorphic Runtime Checking, we conducted experiments

on the same applications used in the studies presented in the previous chapter (Section 3.4),

and compare the results against using metamorphic properties at the system level alone.
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Our intuition is that Metamorphic Runtime Checking will only be effective for detecting

defects in functions that actually have metamorphic properties, but that it will be more

effective than system-level metamorphic testing in those cases.

The goal of these studies is to answer the following research questions:

1. Can Metamorphic Runtime Checking reveal defects not found by using system-level

metamorphic properties alone?

2. Is Metamorphic Runtime Checking more effective at detecting defects in functions

for which metamorphic properties have been identified?

4.5.1 Study #1: Machine Learning Applications

In this experiment, we revisit the same four machine learning applications used in the first

study presented in the previous chapter (Section 3.4.2).

The four applications, described previously in Section 2.5, are as follows:

1. C4.5 release 8 [154], which uses a decision tree to perform classification and is

written in C

2. The machine learning ranking algorithm MartiRank [70], also written in C, developed

by researchers at Columbia University’s Center for Computational Learning Systems

3. Support Vector Machines (SVM) [183], a linear classifier as implemented in the

popular Weka [194] 3.5.8 open-source toolkit for machine learning in Java

4. The anomaly-based intrusion detection system PAYL [186], implemented in Java by

researchers in Columbia University’s Intrusion Detection System Lab

Experimental Setup

As in Section 3.4.2, we used mutation testing to systematically insert defects into the code

and see how many were detected. We used the same mutated versions of the applications
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as in the previous experiment. For C4.5, there were 28 versions, each with one mutant; for

MartiRank, there were 69; for SVM, 85; and for PAYL, 40 versions.

Next we investigated the source code, determined the metamorphic properties at the

function-level, and verified that they would also hold in the “gold standard”. Note that we

are not the developers of any of the four applications used in the experiment, so we did not

have particularly intimate knowledge of the code (we did, admittedly, have direct access to

the developers of MartiRank and PAYL). Even without being very familiar with the code,

though, when it came to identifying metamorphic properties for use in the experiment, we

were able to use the guidelines described in Section 2.4. For C4.5, MartiRank, and SVM,

we identified four function-level metamorphic properties, and two properties for PAYL. The

function-level metamorphic properties are listed in Table 4.3; note that these properties are

not necessarily the same as the ones for the entire system, but rather are separate properties

that apply to the particular selected functions.

For each mutated variant, we used the Columbus framework with the same program

inputs as described in the experiment in Section 3.4.2 to determine whether Metamorphic

Runtime Checking would reveal the defect. The goal of the experiment is to determine how

many of the defects are detected by Metamorphic Runtime Checking, and to show that an

approach based on checking the metamorphic properties of individual functions can find

defects not revealed by checking system-level properties alone.

Results

Table 4.4 shows the results of the experiment for the four machine learning applications.

The third column represents the number of mutants killed in the study presented in Section

3.4.2 using system-level metamorphic testing, and the last column shows the number killed

by Metamorphic Runtime Checking.

Table 4.5 shows the results with the mutants grouped by (a) those that were killed by

both approaches, (b) those that were killed only by the system-level metamorphic properties,
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ID App. Function Function Description Metamorphic Property
C1 C4.5 FormTree Creates decision tree Permuting the order of the examples

in the training data should not affect
the tree

C2 C4.5 FormTree Creates decision tree Multiplying each element in the training
data by a constant should yield the same
tree, but with the values at decision
points also increased

C3 C4.5 FormTree Creates decision tree Negating each element in the training data
should yield the same tree, but with the
values at decision points negated and the
comparison operators reversed

C4 C4.5 Classify Classifies example Multiplying the values in the example
should yield the same classification if
the values at decision points are also
similarly increased

M1 MartiRank pauc Computes “quality” \result = 1 - reverse ranking
[76] of a ranking

M2 MartiRank sort examples Sorts set of examples based Permuting the order of the elements and
on given comparison function negating them returns the same result,

but with the elements in the reverse order
M3 MartiRank sort examples Sorts set of examples based Multiplying the elements by a constant

on given comparison function returns the same result
M4 MartiRank insert score Inserts a value into an array Calling the function a second time with

used to hold top N scores the same value to be inserted should not
affect the array of scores

P1 PAYL computeTCP- Computes probability of different Changing the byte values and permuting
LenProb lengths of TCP packets their order does not change the results

P2 PAYL testTCPModel Returns distance between an Permuting the order of the elements in
instance and corresponding the model and multiplying all values by
“normal” instance in the model a constant c affects the result by

a factor of c
S1 SVM distribution- Estimates class probabilities Adding a class that is not strongly

ForInstance for given instance associated with the instance
should not affect the classification

S2 SVM buildClassifier Creates model from set of Randomly permuting the order of the
instances (training data) instances should yield the same model

S3 SVM buildClassifier Creates model from set of Adding a constant to the values of
instances (training data) the instances should yield the same

model but with all values increased
S4 SVM SVMOutput Computes output (distance from If all instances in model have values

hyperplane) for given instance negated, and given instance does as
well, output should stay the same

Table 4.3: Function-level metamorphic properties used in Study #1
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Total Mutants killed with Mutants killed with
Application Mutants system-level properties Metamorphic Runtime Checking
C4.5 28 26 (93%) 10 (38%)
MartiRank 69 69 (100%) 39 (57%)
SVM 85 83 (97%) 60 (71%)
PAYL 40 2 (5%) 29 (73%)
Total 222 180 (81%) 138 (62%)

Table 4.4: Distinct defects found in Study #1

(c) those that were killed only by Metamorphic Runtime Checking, and (d) those that were

not killed by either one.

Mutants killed ONLY
Total Mutants killed by Mutants killed ONLY with with Metamorphic Mutants

Application Mutants BOTH approaches system-level properties Runtime Checking not killed
C4.5 28 10 16 0 2
MartiRank 69 39 30 0 0
SVM 85 59 24 1 1
PAYL 40 2 0 27 11
Total 222 110 70 28 15

Table 4.5: Defects found in Study #1, grouped according to the techniques that discovered
them

Discussion

The fact that Metamorphic Runtime Checking was not as effective overall (Table 4.4)

as testing based on system-level properties is not terribly surprising, since not all of the

functions that contained mutants also had metamorphic properties. If we consider mutants

only in those functions for which metamorphic properties were identified (as listed in Table

4.3), we can see that Metamorphic Runtime Checking is actually more effective when

considering all four applications, as shown in Table 4.6.

The application for which Metamorphic Runtime Checking was more effective was

PAYL. As shown in Table 4.5, Metamorphic Runtime Checking killed 27 mutants that meta-

morphic testing based on system-level properties did not. The improvement is admittedly

low-hanging fruit, since the system-level approach had very little success to begin with. In

particular, only very basic properties could be used: permuting the ordering of the input
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Total Mutants killed with Mutants killed with
Application Mutants system-level properties Metamorphic Runtime Checking
C4.5 11 10 (91%) 10 (91%)
MartiRank 40 40 (100%) 38 (95%)
SVM 60 59 (98%) 60 (100%)
PAYL 29 2 (5%) 29 (100%)
Total 140 111 (79%) 137 (98%)

Table 4.6: Distinct defects found in Study #1, considering only functions identified to have
metamorphic properties

data (which were network packets), and permuting the ordering of the bytes within those

packet payloads. It was not possible to conduct system-level metamorphic tests based on

modifying the values of the bytes inside the payloads (say, increasing them), not because of

a limitation of the approach, but because the application itself only allowed for particular

syntactically and semantically valid inputs that reflected what it considered to be “real”

network traffic. However, once we could use Metamorphic Runtime Checking to put the

metamorphic tests “inside” the application, we were able to circumvent such restrictions

and perform tests using properties of the functions that involved changing the byte values.

Thus, we were able to create more complex metamorphic tests that revealed additional

defects.

An interesting revelation from Tables 4.5 and 4.6 is that Metamorphic Runtime Checking

was able to find a defect that was not found by system-level metamorphic testing in SVM.

This is perhaps the most important finding of the experiment. The defect was in the

“distributionForInstance” function, which, for each classification (label) in the training

data, uses the model to estimate the probability that a given example from the testing data

belongs to that class. The metamorphic property (S1 in Table 4.3) is that adding a class to

the model that is not strongly associated with the instance (i.e., for which there is almost no

probability that the instance will be classified as such) should not affect the classification.

This can be accomplished by adding a new example to the model with attribute values that

are very, very far away (in K-dimensional space) from the example being classified.
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Figure 4.10 shows the code snippet for which Metamorphic Runtime Checking was

able to reveal the defect. On line 1346, an array called result is created to hold the

probabilities that the given instance inst will belong to each class, i.e., result[i]

represents the probability that inst will be classified with label i. On lines 1347 and 1348,

the code loops so that each class is compared to each other class. The call to SVMOutput

on line 1351 determines which of the two classes the instance is more likely to belong to.

Lines 1352-1355 keep a running count of which class “wins” the comparison as a result of

SVMOutput, the idea being that the one that “wins” the most will have the highest value in

the result array, and other classes will have smaller values accordingly.

1346 double[] result = new double[inst.numClasses()];

1347 for (int i = 0; i < inst.numClasses(); i++) {

1348 for (int j = i + 1; j < inst.numClasses(); j++) {

1349 ...

1350 ...

1351 double output = m classifiers[i][j].SVMOutput(-1, inst);

1352 if (output > 0) {

1353 result[j] += 1;

1354 } else {

1355 result[i] += 1;

1356 }

1357 }

1358 }

Figure 4.10: Snippet of code from SVM source used to determine class probabilities for a
given instance.

Now consider a defect on line 1352 in which the comparison operation is switched

from greater than to less than. Now the result array tracks the number of times each class

“loses”. Given the system-level metamorphic properties used in the first experiment, the

results will never change, since adding, multiplying, negating, or permuting the examples

does not affect “winning” and “losing”; even though the final output is incorrect, the

application of the metamorphic property will not change the result of determining the

“winner”, so the property is never violated, and the defect is not discovered.

On the other hand, the defect is discovered by Metamorphic Runtime Checking, because
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of the property (S1) that is being checked. The metamorphic property of this function is

expected to hold because, when extra classes are added, the relative values in result never

change if those new classes always “lose”, since all the other classes will simply get that

many more “wins”. Given the mutant on line 1352, though, now that result is tracking

“losses” instead of “wins”, the newly-added class will have the highest value in result

since it always “loses”. Thus, because it has the highest value, the classification of the

instance will change, in violation of the metamorphic property, thus revealing the defect.

Note also that system-level metamorphic testing did not detect this defect because there

is no system-level metamorphic property that corresponds to function-level property S1. It

is true that a similar property exists: adding a new label to the training data should not affect

the classification of other examples if there is no strong association between any example

and the new class (i.e., it is very unlikely that any example will be classified with the given

label). However, even though the defect on line 1352 causes the output to be incorrect,

this system-level property still holds, because the property calls for the introduction of a

new class that does not affect any of the examples, and none of the classifications change.

When we use Metamorphic Runtime Checking, though, we get more fine-grained detail

and we are able to introduce a new class that we know will not affect a single example, but

as described above, the metamorphic property is violated because of the defect.

As for MartiRank, we noticed that only 40 of the 69 mutants (58%) from the original

study were in functions for which we could identify metamorphic properties, which partially

explains the poor results for Metamorphic Runtime Checking of MartiRank in Table 4.4.

We discovered that almost all of the remaining 29 mutants were in the “main” function,

for which we did not identify metamorphic properties, but constitutes over 40% of the

MartiRank code (approximately 500 lines out of a total of 1200). Since the “main” function

essentially represents the program as a whole, it follows that system-level metamorphic

testing would be more effective at finding defects in it, of course. For C4.5, only 11 of the

28 mutants (39%) were in the functions that had metamorphic properties; the explanation is
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that we only identified two functions with metamorphic properties, yet defects resided in

many others.

Analysis of Metamorphic Runtime Checking

Here we analyze the effectiveness of the different properties used in Metamorphic Runtime

Checking. Tables 4.7, 4.8, 4.9, and 4.10 show the number of mutants killed (in all functions)

by the metamorphic properties for C4.5, MartiRank, SVM, and PAYL, respectively, as

identified in Table 4.3.

Mutation Mutants C1 C2 C3 C4 Total
Comparison 8 2 0 2 0 2 (25%)
operators
Math 15 5 0 7 0 7 (47%)
operators
Off-by-one 5 0 0 1 0 1 (20%)
Total 28 7 0 10 0 10 (38%)

Table 4.7: Results of Mutation Testing for C4.5 using Metamorphic Runtime Checking

Mutation Mutants M1 M2 M3 M4 Total
Comparison 20 10 16 0 4 18 (90%)
operators
Math 23 11 11 0 5 11 (47%)
operators
Off-by-one 26 10 2 0 7 10 (38%)
Total 69 31 29 0 16 39 (59%)

Table 4.8: Results of Mutation Testing for MartiRank using Metamorphic Runtime
Checking

The metamorphic properties based on multiplication (C2, C4, and M3) all were unable

to reveal any defects. This is consistent with the results of the first study using system-level

properties, in which the multiplicative properties were consistently the poorest performers.

The explanation is that for the operations that were changed by the mutations, they would

still yield the same results because of the distributive properties of multiplication. As a
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Mutation Mutants S1 S2 S3 S4 Total
Comparison 30 15 10 16 11 16 (53%)
operators
Math 24 5 18 22 16 24 (100%)
operators
Off-by-one 31 7 20 11 20 20 (65%)
Total 85 27 48 49 47 60 (82%)

Table 4.9: Results of Mutation Testing for SVM using Metamorphic Runtime Checking

Mutation Mutants P1 P2 Total
Comparison 15 7 3 7 (47%)
operators
Math 7 2 4 4 (57%)
operators
Off-by-one 18 14 16 18 (100%)
Total 40 23 23 29 (73%)

Table 4.10: Results of Mutation Testing for PAYL using Metamorphic Runtime Checking

very simple example, consider a function f (x, y) = x + y. We would expect it to have the

metamorphic property f (2x, 2y) = 2f (x, y). Now consider a mutation of this function in

which the plus sign has been replaced with a minus sign: f ’(x, y) = x - y. Although there is

an defect in the code, clearly the metamorphic property f ’(2x, 2y) = 2f ’(x, y) still holds;

thus, the metamorphic property based on multiplication would not show a violation.

However, this is not necessarily the case for properties based on addition (such as S3),

which does not have similar distributive properties. Consider the same function f (x, y) = x

+ y. We would expect it to have the metamorphic property f (x + 2, y + 2) = x + 2 + y + 2 =

f (x, y) + 4. Now consider the same mutation of this function in which the plus sign has

been replaced with a minus sign: f ’(x, y) = x - y. Now the metamorphic property f ’(x + 2, y

+ 2) = f ’(x, y) + 4 no longer holds, because f ’(x + 2, y + 2) = x + 2 - (y + 2) = x - y = f ’(x,

y); thus, the metamorphic property based on addition would show a violation.

Many of the other results were consistent with the system-level metamorphic testing

study, specifically that the property based on negation (C3) was most effective in C4.5
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because of the impact the mutations had on the creation of the decision tree, and that

properties based on permuting (such as S2) were effective at killing off-by-one errors in

applications such as SVM that relied on mathematical calculations; the same was observed

to be true in PAYL, in which the defects that were discovered were in functions that

performed computations.

One of the most interesting findings can be seen when considering the results in Tables

4.4 and 4.6. For both MartiRank and C4.5, Metamorphic Runtime Checking found defects

in functions that did not have metamorphic properties, but rather were in functions other

than the ones in which the metamorphic properties were actually being checked. The

defects actually existed outside those functions, but put the system into a state in which the

metamorphic property of the function would be violated. For instance, the pauc function in

MartiRank uses an array of numbers (which is part of the application state) and performs a

calculation on them to determine the “quality” [76] of the ranking, returning a normalized

result (i.e., between 0 and 1). One of the metamorphic properties of that calculation

(property M1) is that reversing the order of the values in the array should produce the

“opposite” result, i.e., pauc(A) = 1 - pauc(A’) where A’ is the array in which the values of

A are in reverse order. However, a defect in a separate function that deals with how the

array was populated caused this property to be violated because the data structure holding

the array itself was in an invalid state, even though the code to perform the calculation was

in fact correct (we know it was correct, of course, because we know where the defect was

seeded in that case).

As a slight simplification, we can explain this as follows: the values in the array A

were being stored in a doubly-linked list, so that MartiRank could calculate the “quality”

of the list by looking at it forwards (ascending) and backwards (descending). An off-

by-one mutation in the function that created the linked list caused some of the links to

“previous” nodes to point to the wrong ones, as in Figure 4.11. In this case, traversing the

linked list in the forward direction would give ABCDE, but backwards would give EDBCA.
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Figure 4.11: A doubly-linked list in which elements B, C, and D point to the wrong nodes.
The defect that caused this error was detected using a metamorphic property of another

function.

The metamorphic property that pauc(A) = 1 - pauc(A’) would only hold if A’ were, in

fact, the exact opposite ordering of A, but clearly in this case it is not. Note that in this

case, Metamorphic Runtime Checking detected a defect caused by an invalid application

state, and not a defect in the function under test itself (i.e., the one with the metamorphic

property).

These results demonstrate the real power of Metamorphic Runtime Checking: without

much knowledge of the details of the entire implementation, we were able to detect many of

the defects by simply specifying the expected behavior of particular functions, even though

the defects were not always in those functions; rather, those defects created violations of the

metamorphic properties because they put the system into an invalid state. Although we have

yet to demonstrate this quantitatively, alternative approaches to detecting such invalid states

(such as checking data structure integrity [52] or algebraic specifications [143]) require

more intimate familiarity with the source code, such as the details of pointer references

or data structures, or dependencies between variables, as opposed to simply specifying

how a function should behave when its inputs are modified, using the guidelines described

previously to identify metamorphic properties.
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4.5.2 Study #2: Applications in Other Domains

In this experiment, we investigated the same three applications as in the second study of the

previous chapter (Section 3.4.3): JSim [193], a discrete event simulation tool implemented

in Java by researchers at the Laboratory for Advanced Software Engineering Research at

the University of Massachusetts-Amherst; Lucene [6], which is a text search engine library

that is part of the Apache framework and is written in Java; and gaffitter [10], which uses a

genetic algorithm implemented in C++ to solve the bin-packing problem.

Experimental Setup

For each of the three applications, the same mutated versions were used as in the study

from Section 3.4.3. For JSim, there were six versions, each with one mutant; for Lucene,

there were 15; and for gaffitter, 66.

For JSim, the metamorphic properties were identified in the Task class. In particular,

we instrumented the compareTo method, which compares two objects in a semantically

meaningful manner. It has the property that, for objects A and B, A.compareTo(B) should

equal -1 * B.compareTo(A).

For Lucene, we identified metamorphic properties in methods in the same two classes

used in the system-level metamorphic testing experiment. In particular, all of the usable

mutants were in the idf method, which calculates the inverse document frequency (IDF) of

a given search result. The IDF indicates how important a particular word is to a document

in the overall group [163], and is defined as log10(numDocs/(docFreq+1)) + 1, where

numDocs is the number of documents in the corpus and docFreq is the frequency with

which the word appears.

Given this definition, this function has the metamorphic property that if the docFreq

value is multiplied by 10 and then increased by 9, the total value should decrease by

approximately 1 (within the tolerance of the floating point calculation), since:

log10(numDocs/((10*docFreq+9)+1))



CHAPTER 4. METAMORPHIC RUNTIME CHECKING 142

= log10(numDocs/(10docFreq+10))

= log10(numDocs/10(docFreq+1))

= log10((1/10)(numDocs/(docFreq+1)))

= log10(numDocs/(docFreq+1)) + log10(1/10)

= log10(numDocs/(docFreq+1)) - 1 .

Additionally, if numDocs is multiplied by 10, the total value should increase by approx-

imately 1, given that:

log10(10*numDocs/(docFreq+1))

= log10((10)(numDocs/(docFreq+1)))

= log10(numDocs/(docFreq+1)) + log10(10)

= log10(numDocs/(docFreq+1)) + 1 .

Table 4.11 lists the metamorphic properties used for gaffitter. These properties are

discussed further in the “Discussion and Analysis” section below.

ID Function Description Property
G1 Crossover Merges two candidate solutions If the order of the arguments is reversed,

to create a new one the new child should contain all elements
that do not appear in the original

G2 Fitness Determines the fitness of a Permuting the order of the elements in the
candidate solution (how close it candidate solution should not affect the
is the the optimum) result

G3 Fitness Determines the fitness of a Multiplying each element in the candidate
candidate solution (how close it solution by a constant should not affect
is the the optimum) the result is the target is multiplied by

the same constant
G4 Generation Determines which candidate Permuting the ordering of the candidate

solutions survive into the solutions should not affect the result
next generation

Table 4.11: Metamorphic properties of gaffitter used in Study #2.

Results

Table 4.12 shows the number of defects detected by each approach for the three applications

investigated in this study. Table 4.13 breaks down the results according to the testing
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techniques that detected the defects.

Total Mutants killed with Mutants killed with
App. Mutants system-level properties Metamorphic Runtime Checking
JSim 6 6 (100%) 2 (33.3%)
Lucene 15 11 (73.3%) 9 (60%)
gaffitter 66 22 (33.3%) 34 (51.5%)

Table 4.12: Distinct defects detected in Study #2.

Mutants killed ONLY
Total Mutants killed by Mutants killed ONLY with with Metamorphic Mutants

Application Mutants BOTH approaches system-level properties Runtime Checking not killed
JSim 6 2 4 0 0
Lucene 15 6 5 3 1
gaffitter 66 20 2 14 30
Total 87 28 11 17 31

Table 4.13: Distinct defects detected in Study #2, grouped by the testing techniques that
discovered them.

Discussion and Analysis

As in the first study, it is perhaps not surprising that Metamorphic Runtime Checking was

not as effective as metamorphic testing based on system-level properties for JSim and

Lucene, since we were only able to identify a small number of metamorphic properties at

the function level, and not all functions that had defects also had metamorphic properties.

Of the mutants not killed by Metamorphic Runtime Checking, we noticed that four of

them were in the constructor of the JSim Task class, and another was in the constructor of

the Lucene TermScorer class. Given that constructors typically don’t produce “output” per

se, this raised challenges in identifying metamorphic properties, especially given that both

constructors take only a small number of arguments but rely on other methods (sometimes

from other classes) to populate the attribute values. We were thus unable to identify

any metamorphic properties of these constructors, though this is a limitation of our own

understanding of the source code, and not of the approach or testing framework themselves.

Of course, a defect in the constructor could conceivably be revealed by the violation of a

metamorphic property of another method, though this did not happen in our case.
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However, for Lucene, we see from Table 4.13 that Metamorphic Runtime Checking was

able to kill three of the mutants not killed by system-level metamorphic testing. Perhaps

not coincidentally, those three were all in the idf function of the DefaultSimilarity class,

for which function-level metamorphic properties were identified.

In this particular case, the system-level metamorphic properties only considered how

the results of different calculations compared to each other, but not their actual values.

Consider a simple off-by-one mutant such that the idf method returns a value that is one

greater than it should be. At the system level, the properties that were specified could not

access the value returned by idf, since the results of the individual calculations were not

directly reflected in the program output. For instance, for the metamorphic property that the

search results for “romeo OR juliet” should be the same as “juliet OR romeo”, it is clear

that the idf value for each document will still be the same in each case, even though there

is an error in the computation, so the metamorphic property would still hold. However,

when we used Metamorphic Runtime Checking, we could see that there was a violation in

the property of idf, revealing the defect.

For gaffitter, one of the reasons why Metamorphic Runtime Checking was more effective

than system-level metamorphic testing is that we were able to identify more properties.

This is similar to what we found with PAYL in the first study: the restricted input domains

of some applications make it difficult to specify metamorphic properties, but this can be

circumvented once the tests are “inside” the code.

Table 4.14 shows the effectiveness of the different metamorphic properties used for

testing gaffitter. Not surprisingly, the properties based on permuting the input (G2 and G4)

were only effective for killing mutants related to off-by-one errors.

As mentioned in the system-level metamorphic testing study, many of the mutants

related to calculations in gaffitter had only slight influence on the final output, and were

not revealed by system-level metamorphic properties. Consider the pseudo-code in Figure

4.12, which summarizes lines 212-226 in GeneticAlgorithm.cc and is used to create a
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Mutation Mutants G1 G2 G3 G4 Total
Comparison 15 4 0 2 0 4 (27%)
operators
Math 19 6 0 7 0 12 (63%)
operators
Off-by-one 32 10 6 0 5 18 (56%)
Total 66 20 6 9 5 34 (52%)

Table 4.14: Results of Mutation Testing for gaffitter using Metamorphic Runtime Checking

child candidate solution from two parent solutions, CS1 and CS2. One of its metamorphic

properties is that it is easy to calculate the expected result if the ordering of the arguments

is switched, i.e., if we call “crossover(CS2, CS1)”, assuming of course that the random

number generation is deterministic, as explained above. For instance, suppose CS1 = {1, 2,

3, 4} and CS2 = {5, 6, 7, 8, 9} (keeping in mind that the number of elements in each need

not be the same). If the crossover point were the second element of CS1, then the child

should be {1, 2, 7, 8, 9}. If we reverse the ordering of the arguments so that we start with

CS2, we should get {5, 6, 3, 4}. This is easy to predict, given the first result: it just contains

the elements of CS1 and CS2 that were not contained in the original output.

An off-by-one mutant on line 4 may, however, affect the result and would violate

the function’s metamorphic property. For instance, if instead of taking elements up to

length(CS2), the defect caused it only to take elements to length(CS2)-1, then the original

output would be {1, 2, 7, 8} and the follow-up output (after applying the metamorphic

transformation) would be {5, 6, 3}. It is clear that this would violate the property, since

elements 4 and 9 would not be included. As argued in the previous chapter, though, the

exclusion of one element from the child is unlikely to have much effect on the final overall

result, which is why the defect was not found by the system-level property. However, when

we consider the properties of the individual function, this defect is revealed.

As another example of a defect that Metamorphic Runtime Checking discovered but

system-level metamorphic testing did not, consider the simple pseudo-code in Figure 4.13
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1 crossover(CS1, CS2) {

2 if (rand() < crossover rate) {

3 cross pt = rand() * length(CS1);

4 Child = CS1[1, cross pt] + CS2[cross pt + 1, length(CS2)];

5 return Child;

6 }

6 else return null;

7 }

Figure 4.12: Sample code from genetic algorithm to perform crossover between two
candidate solutions

to calculate the “fitness” of a given candidate solution, i.e., how close to the optimal solution

(target) a candidate comes. A metamorphic property of the function is that changing the

ordering of the elements in the candidate solution should not affect the result, since it is

merely taking a sum of all the elements.

If, for instance, there is an off-by-one error on line 3 (so that the last element is omitted

from the calculation), then the metamorphic property will be violated since the return value

will be different after the second function call. However, at the system level, such a defect

is unlikely to be detected, since the metamorphic property simply stated that the quality of

the solutions should be increasing with subsequent generations. Even though the value of

the fitness is incorrect, it would still be increasing (unless the omitted element had a very

large effect on the result, which is unlikely), and the property would not be violated.

1 fitness(CS, target) {

2 total = 0;

3 for (int i = 0; i < length(CS); i++

4 total += size(CS[i]);

5 if (total > target) return -1;

6 else return total/target;

7 }

Figure 4.13: Sample code from genetic algorithm to calculate quality of candidate solution

To summarize, Table 4.15 shows the results when only considering functions that were

identified to have metamorphic properties. These results, as well as the findings for certain

defects in Lucene and gaffitter, indicate that Metamorphic Runtime Checking is more
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effective than testing based on system-level properties alone, particularly for defects in

calculations that only have a subtle effect on the overall output of the program. Although

these small deviations from the specification may not matter from a practical point of view,

they do result in the violation of a sound property, and thus fit our definition of a “defect”.

Total Mutants killed with Mutants killed with
App. Mutants system-level properties Metamorphic Runtime Checking
JSim 2 2 (100%) 2 (100%)
Lucene 9 6 (66.7%) 9 (100%)
gaffitter 38 9 (23.7%) 34 (89.4%)

Table 4.15: Defects detected in Study #2, considering only those functions for which
metamorphic properties were identified.

4.5.3 Study #3: Non-Deterministic Applications

In the third study, we applied Metamorphic Runtime Checking to non-deterministic ap-

plications. The first is MartiRank, which, as noted previously, is non-deterministic in the

ranking phase when there are missing or unknown attributes in the testing data set. The

other application is the simulator JSim, which can be non-deterministic if the timing of

different events is configured to be random over a specified interval.

Experimental Setup

As with the previous studies, we used the same mutated versions as in the system-level

metamorphic testing experiment, described in Section 3.4.4. For MartiRank, there were 59

versions, each with one mutant. For JSim, there were 19 versions with mutants related to

event timing.

In this study, we used the same function-level metamorphic properties for MartiRank

as in Study #1 (Section 4.5.1), summarized again here in Table 4.16. Note that the

non-determinism in MartiRank is found in the sort examples method, for which two

metamorphic properties (M2 and M3) are identified. In order to use Metamorphic Runtime
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ID App. Function Function Description Metamorphic Property
M1 MartiRank pauc Computes “quality” \result = 1 - reverse ranking

[76] of a ranking
M2 MartiRank sort examples Sorts set of examples based Permuting the order of the elements and

on given comparison function negating them returns the same result,
but with the elements in the reverse order

M3 MartiRank sort examples Sorts set of examples based Multiplying the elements by a constant
on given comparison function returns the same result

M4 MartiRank insert score Inserts a value into an array Calling the function a second time with
used to hold top N scores the same value to be inserted should not

affect the array of scores

Table 4.16: Metamorphic properties of MartiRank used in Study #3

Checking with a non-deterministic function, we needed to “force” determinism by using a

special random number generator, as described previously, that would ensure that the same

random number would be returned in the test process.

For JSim, the mutants related to non-deterministic event timing were all in the get

methods of the LinearRangeDuration and TriangleRangeDuration classes, which returns a

random integer in the range [min, max]. These methods have two metamorphic properties:

if get() returns k for range [min, max], then it should return k+10 for range [min+10,

max+10], and 10k for range [10min, 10max]. As we did for MartiRank, in this case we

needed to “force” determinism in the function in the metamorphic tests.

Results

Table 4.17 shows the number of defects discovered by the two testing approaches for

MartiRank and JSim.

Total Mutants killed with Mutants killed with
App. Mutants system-level properties Metamorphic Runtime Checking
MartiRank 59 40 (67.7%) 34 (57.6%)
JSim 19 19 (100%) 19 (100%)

Table 4.17: Distinct defects detected in Study #3.
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Discussion and Analysis

As in the previous studies, system-level metamorphic testing is generally more effective

than Metamorphic Runtime Checking, since the latter is limited by the number of functions

that are instrumented, and where the defects happen to reside. However, further analysis

indicates that under certain circumstances, Metamorphic Runtime Checking can find defects

that are not otherwise revealed.

Table 4.18 shows the results for MartiRank, broken down by the functions containing the

mutations. The first row of data shows the results for the pauc and insert score functions,

which are deterministic and have metamorphic properties M1 and M4; sort examples is

non-deterministic, and has metamorphic properties M2 and M3; the other functions are all

deterministic, but were not identified to have metamorphic properties in this study.

Mutants killed with
Total Mutants killed with Metamorphic Runtime

Function(s) Mutants system-level properties Checking
pauc and insert score 20 16 (80%) 16 (80%)
sort examples 18 10 (56%) 18 (100%)
other 21 14 (67%) 0 (0%)
Total 59 40 (68%) 34 (58%)

Table 4.18: MartiRank defects detected in Study #3.

As in the previous studies, Metamorphic Runtime Checking is shown to be at least as

effective as system-level metamorphic testing when only considering defects in functions

for which metamorphic properties are being checked (pauc and insert score). In this

case, we also see that for the non-deterministic function sort examples, Metamorphic

Runtime Checking was able to reveal a number of defects not found by metamorphic

properties of the entire application.

The explanation is that the similarity metric calculated by Heuristic Metamorphic

Testing (introduced in Section 3.3) was too forgiving to be effective at detecting some of

the mutants. For instance, in some cases, Heuristic Metamorphic Testing determined that

the similarity of the results (using the normalized equivalence measure) was around 80%;
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after applying the metamorphic transformation, the similarity was still around 80% (i.e.,

not showing a statistically significant difference), and the property was considered to be

upheld. Now, 80% is not particularly “similar”, but because Heuristic Metamorphic Testing

is essentially a pseudo-oracle approach, in that one cannot know what is correct but only

checks that the results are as expected, this passed the test.

However, when we used Metamorphic Runtime Checking with the non-deterministic

function, the property was violated and the defect was revealed. This is not to say that

Heuristic Metamorphic Testing (as well as its cousin, statistical metamorphic testing) is not

without merit, since sometimes it may not be possible to identify metamorphic properties

of a non-deterministic function, but this shows that Metamorphic Runtime Checking can be

more effective than system-level metamorphic testing in some cases.

Upon analyzing the MartiRank results, it perhaps comes as no surprise that property M2

(based on permuting) killed all of the mutants in the non-deterministic sort examples

function, whereas M3 (based on multiplying) killed none, since M3 did not detect any

defects in Study #1, either. Given the types of mutants that were placed into the code,

changing their values are not likely to reveal a violation of the metamorphic property (see,

for instance, the bubble sort example from Section 3.4.2).

The effectiveness of Metamorphic Runtime Checking for detecting the defects related to

non-deterministic event timing in JSim is to be expected, considering that all of the mutants

were in the methods that we were checking. We note here that because all invocations of

the methods violated the metamorphic property, a tester would have been alerted to this

defect right away. On the other hand, with an approach like statistical metamorphic testing,

which requires the program to run to completion numerous times, the tester would have to

wait far longer to find out that the implementation was incorrect.

To summarize, this study demonstrates that Metamorphic Runtime Checking is effective

at finding defects in non-deterministic applications, as it can use metamorphic properties to

reveal errors in functions regardless of whether they are deterministic. Although statistical



CHAPTER 4. METAMORPHIC RUNTIME CHECKING 151

and heuristic metamorphic testing approaches were shown to be effective in the study

presented in Section 3.4.4, we have demonstrated here that Metamorphic Runtime Checking

can find defects not found by using system-level properties.

4.5.4 Summary

Here we revisit the research questions that this study sought to answer:

1. Can Metamorphic Runtime Checking reveal defects not found by using system-level

metamorphic properties alone?

2. Is Metamorphic Runtime Checking more effective at detecting defects in functions

for which metamorphic properties have been identified?

For question #1, the answer is “yes”. Of the 109 mutants not killed by using system-level

metamorphic properties in the experiments in Section 3.4, 45 were detected by Metamorphic

Runtime Checking. For question #2, when considering only the 226 mutations in functions

for which metamorphic properties had been identified, system-level metamorphic testing

killed 157 (69.4%), whereas Metamorphic Runtime Checking killed 219 (96.9%).

4.6 Effect on Testing Time

4.6.1 Developer Effort

The effectiveness of Metamorphic Runtime Checking heavily depends on the metamorphic

properties that are specified by the tester or developer. The question often arises, “how long

does it take to find and specify these properties?” We have not yet conducted empirical

studies to measure this, but anecdotally we noted that, for each application used in the

experiments in Section 4.5, it only took slightly more than an hour of analysis to identify

the functions’ metamorphic properties, primarily based on the guidelines suggested in
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Section 2.4. Note that we are not the developers of any of the seven applications, nor had

we performed much code analysis on the programs before using them in the studies. It

follows that the software architect or developer, who would have more knowledge of the

application than we did, would presumably be more efficient at identifying metamorphic

properties.

Perhaps more formally, Hu et al. [85] conducted a study that measured the developer

effort for deriving metamorphic properties. The subjects of the study were 38 graduate

students who had no prior knowledge of metamorphic testing, nor of the applications

to which they would apply the technique. After approximately three hours of training

on the basics of metamorphic testing and some background about the three applications

that they would test, the subjects were asked to identify metamorphic properties. On

average, for each application the subjects were able to identify around four function-level

metamorphic properties in a span of a little more than three hours; their study showed

that these metamorphic properties were actually more effective at revealing defects than

program invariants identified by the same subjects after a similar amount of training (see

Section 6.2 in Related Work for more details). Thus, it can be concluded that with only

about six hours of effort, a developer with no knowledge of metamorphic testing - or even

much knowledge of the application under test - can identify metamorphic properties and

effectively use an approach such as Metamorphic Runtime Checking.

4.6.2 Performance Overhead

Although Metamorphic Runtime Checking is able to detect defects not found by metamor-

phic testing based on system-level properties alone, this runtime checking of the properties

comes at a cost, particularly if the tests are run frequently. In system-level metamorphic

testing, the program needs to be run one more time with the transformed input, and then

each metamorphic property is checked exactly once (just at the end of the program execu-

tion); as described in Section 3.2.7, when using the Amsterdam framework to automate
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metamorphic testing, this overhead may be only a few hundred milliseconds if the invoca-

tions are run in parallel. In Metamorphic Runtime Checking, however, each property can

be checked numerous times, depending on the number of times each function is called, and

the overhead can grow to be much higher.

During the empirical studies discussed in Section 4.5, we measured the impact of the

Columbus framework on the time it took to conduct testing. Tests were conducted on a

server with a quad-core 3GHz CPU running Ubuntu 7.10 with 2GB RAM. Tables 4.19,

4.20, 4.21, and 4.22 show the results for C4.5, MartiRank, SVM, and PAYL, respectively,

using the different data sets from the empirical studies and averaged over 10 runs.

Data Set Uninstrumented (ms) Instrumented (ms) Tests Executed Time/Test (ms)
glass 6 60 326 0.2
golf 2 8 28 0.2
heart 25 120 606 0.2
hepatitis 6 59 310 0.2
iris 3 53 300 0.2
wine 8 67 356 0.2
Total 50 367 1926 0.2

Table 4.19: Results of Metamorphic Runtime Checking performance tests for C4.5.

Data Set Uninstrumented (sec) Instrumented (sec) Tests Executed Time/Test (ms)
data1 10.8 24.0 26792 0.5
data2 24.3 38.8 26759 0.5
data3 24.3 37.8 26364 0.5
data4 11.0 23.1 26634 0.4
data5 0.3 2.0 10947 0.2
data6 0.6 4.7 26641 0.2
data7 0.7 4.8 26980 0.2
data8 0.7 4.7 26620 0.2
data9 0.1 5.5 45145 0.2
data10 22.2 58.7 53669 0.7
Total 95.0 223.1 296551 0.4

Table 4.20: Results of Metamorphic Runtime Checking performance tests for MartiRank.

The variations in the results come from the different numbers of functions that were

instrumented in each application, the number of times those functions are called for each
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Data Set Uninstrumented (sec) Instrumented (sec) Tests Executed Time/Test (ms)
glass 0.5 29.1 8492 3.3
golf 0.5 1.9 445 3.1
heart 3.1 216.2 59870 3.6
hepatitis 0.6 23.9 6668 3.6
iris 1.0 46.0 13694 3.4
wine 1.0 56.7 15489 3.6
Total 6.7 373.8 104658 3.5

Table 4.21: Results of Metamorphic Runtime Checking performance tests for SVM.

Data Set Uninstrumented (sec) Instrumented (sec) Tests Executed Time/Test (ms)
training 0.9 7.3 2300 2.7
testing 0.5 1.3 299 2.7
Total 1.4 8.6 2599 2.7

Table 4.22: Results of Metamorphic Runtime Checking performance tests for PAYL.

data set, and the implementation language. The time per test for SVM and PAYL is higher

because the overhead is greater for Java applications: since Java does not have any “fork”

utility, it needed to be implemented via a Java Native Interface call, which added extra

overhead.

On average, the performance overhead for the Java applications was around 3.5ms per

test; for C, it was only 0.4ms per test. This cost is mostly attributed to the time it takes to

create the sandbox and fork the test process. Other overhead comes from context switching

between the original process and the test processes in the cases where there are more tests

than CPUs/cores.

This impact can certainly be substantial from a percentage overhead point of view

if many tests are run in a short-lived program. For instance, Table 4.19 shows that the

overhead is on the order of 10x for C4.5, even though in absolute terms it is just a few

milliseconds. However, we point out that, for most the programs we investigated in our

study, the overhead was typically less than a few minutes, which we consider a small price

to pay for detecting that the output of the program was incorrect.
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4.7 Summary

In this chapter, we have introduced Metamorphic Runtime Checking, a new technique for

testing applications without test oracles, based on checking the metamorphic properties

of individual functions, rather than just those of the entire system, as the application is

running. Metamorphic testing of individual functions is carried out at the point when the

function is called in the running program. If the metamorphic property is violated, then a

defect has been revealed. This work goes beyond applying a system testing approach to

individual functions: rather, we use properties of the functions to conduct testing of the

overall application.

In describing Metamorphic Runtime Checking, we have also detailed an implemen-

tation framework called Columbus, and presented a notation for specifying metamorphic

properties within the source code, so that they can be checked at runtime.

Our case study demonstrated the feasibility of the approach, and the results of our

three empirical studies prove the hypothesis (stated in Section 1.6) that “an approach that

conducts function-level metamorphic testing in the context of a running application will

reveal defects not found by system-level metamorphic testing”. Because we showed in

the previous chapter that system-level metamorphic testing is more effective than other

techniques at detecting defects in applications in the domains of interest, it is clear that a

combined approach that also incorporates Metamorphic Runtime Checking would advance

the state of the art even further.

In the next chapter, we generalize the Metamorphic Runtime Checking approach

and describe how it can be used to check any properties (metamorphic or otherwise) in

various types of applications, and consider the implications of conducting such testing of

applications as they execute in the deployment environment.



Chapter 5

In Vivo Testing

During the development and assessment of the Metamorphic Runtime Checking approach,

a few interesting research questions arose: Would the approach be effective in detecting

defects in other types of applications, specifically those that do have test oracles? Can other

properties be checked besides metamorphic properties? How feasible is it to continue the

checking of such properties while the software runs in the deployment environment?

This chapter generalizes the Metamorphic Runtime Checking approach into a software

testing technique whereby any properties of individual functions (not just metamorphic

properties) can be checked while the application executes, even if the checking of the

property has side effects that would alter the system state. Because the Metamorphic

Runtime Checking approach essentially associates a test function with the original source

code, there is no need for that test function to only execute metamorphic tests. It could,

for instance, execute unit tests, integration tests, or conduct any other types of property

checking.

In this new testing methodology, called In Vivo Testing, tests are continuously executed

in the deployment environment, from within the running application, without altering the

system’s state from the end users’ point of view. The approach can be used for detecting

concurrency, security, or robustness issues, as well as defects that may not have appeared in

156
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a testing lab (the “in vitro” environment). In Vivo Testing can use existing test code, or take

advantage of In Vivo tests that exercise parts of the application as the system is running, no

matter what its current state. These tests improve on traditional unit or integration tests by

foregoing the assumption of a clean state created by a test harness, and focusing on aspects

of the program that should hold true regardless of what state the system is in. These tests

execute within the current state of the program without affecting or altering that state, as

potentially visible to users.

In this chapter, we discuss our In Vivo Testing implementation framework and demon-

strate that such an approach is feasible for testing an application even as it executes in the

field. If the performance overhead can be kept at a minimum, and side effects from the

tests can successfully be hidden from the user, then the tests can execute in the deployment

environment and thus be carried out in a variety of configurations and/or application states

that may not have been tested prior to release.

The rest of this chapter is organized as follows: Section 5.1 introduces In Vivo Testing

and motivates the need for a deployment environment testing approach. Sections 5.2

and 5.3 describe the model and architecture, respectively, of the Invite implementation

framework. Section 5.4 discusses the results of case studies that demonstrate the feasibility

of the approach. Section 5.5 investigates the performance impact of In Vivo Testing, and

Section 5.6 explains how the performance overhead can be reduced by running tests more

efficiently.

5.1 Approach

Thorough testing of a software product is unquestionably a crucial part of the development

process, but the ability to faithfully detect all defects in an application is severely hampered

by numerous factors. A 2008 report [175] indicated that 40% of IT companies consider

insufficient pre-release testing to be a major cause of later production problems, and the
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problem only worsens as changes are rolled out into production without being thoroughly

tested. Furthermore, it is possible that the test code itself may have flaws in it, too, perhaps

because of oversights or incorrect assumptions made by the authors.

A key issue is that, for large, complex software systems, it is typically impossible

in terms of time and cost to reliably test all configuration options before releasing the

product into the field. For instance, Microsoft Internet Explorer has over 19 trillion possible

combinations of configuration settings [46]. Even given infinite time and resources to test an

application and all its configurations, once a product is released, the other software packages

on which it depends (libraries, virtual machines, etc.) may also be updated; therefore, it

would be impossible to test with these dependencies prior to the application’s release,

because they did not exist yet. A last emerging issue is the fact that, as multi-processor

and multi-core systems become more and more prevalent, multi-threaded applications that

had only been tested on single-processor/core machines are more likely to start to reveal

concurrency bugs [110].

One proposed way of addressing this problem has been to continue testing the appli-

cation in the field, after it has been deployed. The theory behind this notion of “perpetual

testing” [148] is that, over time, defects will reveal themselves given that multiple instances

of the same application may be run globally with different configurations, in different

environments, under different patterns of usage, and in different system states.

The foundation of our approach to solving this problem is the fact that many (if not

all) software products are released into deployment environments with latent defects still

residing in them, as well as our claim that these defects may reveal themselves when the

application executes in states that were unanticipated and/or untested in the development

environment. The approach can be used to detect defects hidden by assumptions of a clean

state in the tests, errors that occur in field configurations not tested before deployment, and

problems caused by unexpected user actions that put the system in an unanticipated state;

these flaws may also be due to corrupted states that could arise due to a security violation.
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Our approach goes beyond passive application monitoring (e.g., [145]) in that it actively

tests the application as it runs in the field.

In Vivo Testing is a methodology by which tests are executed continuously in the de-

ployment environment, in the context of the running application, as opposed to a controlled

or blank-slate environment. Crucial to the approach is the notion that the test must not alter

the state of the application from the user’s perspective. In a live system in the deployment

environment, it is clearly undesirable to have a test alter the system in such a way that it

affects the users of the system, causing them to see the results of the test code rather than

of their own actions. The rest of this section motivates and describes the In Vivo Testing

approach.

5.1.1 Conditions

In order for In Vivo Testing to be useful in practice, for a given test and a corresponding

piece of software to be tested, three conditions must be met. First, the test must pass in the

development environment, even though there are unknown defects in the software under

test (if the test fails before deployment, then obviously In Vivo Testing is not necessary).

Second, under certain potentially-unanticipated circumstances, the running application

should give erroneous results or behavior in the deployment environment, i.e., have a defect.

Last, for some process state or condition of use, the test must subsequently fail. If these

conditions are met, it is possible for In Vivo Testing to detect that there is a defect. The

defect may be one in the application code, or in the test code, or both.

5.1.2 In Vivo Tests

Although existing unit and integration tests can be used with In Vivo Testing without any

modifications (for instance, to address configurations or environments not tested prior

to release [121]), developers may find it desirable to create special In Vivo tests that are

specifically designed to take advantage of the approach. These tests ensure that properties
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of the function (or of subsystems, or even the entire application) hold true no matter what

the application’s state is. In the simplest case, they can be thought of as program invariants

and assertions [43], though they go beyond checking the values of individual variables or

how variables relate to each other, and focus more on the conditions that must hold after

sequences of variable modifications and function calls, even if they have side effects (which

would be hidden from the user by the testing framework). These are sometimes referred to

as “parameterized unit tests” [179].

A simple example of an In Vivo test is one that checks the functionality of an imple-

mentation of the Set interface (such as a Vector or ArrayList) in Java. One of its properties

is that, if an object is added to the Set and then removed, a subsequent call to the “contains”

method must return false. This condition must hold no matter what the state of the Set, and

no matter what sort of object had been added. A traditional unit test may investigate this

property by first creating a new, empty Set, but it would not be possible to conduct such a

unit test on arbitrary states of the Set, after it has been used in a real, running application

for some amount of time. Thus, an In Vivo test would be useful in this case.

A more complex example can be found in Mozilla Firefox. One of the known defects is

that attempting to close all other tabs from the shortcut menu of the current tab may fail on

Mac OS X when there are more than 20 tabs open.1 In this case, an In Vivo test designed

to run in the field would be one that calls the function to close all other tabs, then checks

that no other tabs are open; this sequence should always succeed, regardless of how many

tabs were open or what operating system is in use. Particular combinations of execution

environment and state may not always be tested in development prior to release of the

software, and one way to fully explore whether this property holds in all cases is to test it in

the field, as the application is running.

Additionally, many security-related defects only reveal themselves under certain con-

ditions, specifically the configuration of the software together with its current application

1http://www.mozilla.com/en-US/firefox/2.0.0.16/releasenotes/
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state [49]. For instance, the FTP server wu-ftpd 2.4.2 assigns a particular user ID to the

FTP client in certain configurations such that authentication can succeed even though no

password entry is available for a user, thus allowing remote attackers to gain privileges.2

Here, an In Vivo test may be one that attempts to perform actions that the user should

not be able to do with the current permissions; if the test succeeds, and is able to perform

those actions, then the vulnerability has been detected. Since In Vivo Testing allows for the

execution of tests in a variety of configurations and states, these types of defects are more

likely to be revealed.

It is important to note that In Vivo tests are not intended to replace unit or integration

tests; rather, we introduce a new testing technique whereby tests are run within the context

of an executing application, which may be in a previously untested or unanticipated state.

As In Vivo tests are individual functions run inside the application, our approach is like unit

testing in the sense of calling individual functions with specified parameters, but it is also

like integration testing in that we use the integrated code of the whole application rather

than stubs and drivers.

5.1.3 Categories and Motivating Examples

To examine the feasibility of our testing approach, we investigated the documented defects

(mostly caught by end-users after deployment) of some open-source applications to see

which of them could have been discovered using In Vivo Testing. We considered OSCache

[146], a multi-level caching solution designed for use with JSP pages and Servlet-generated

web content, as well as another caching solution, Apache Java Caching System (JCS) [5],

and Apache Tomcat [7], a Java Servlet container.

We identified five different categories of defects that In Vivo Testing could potentially

detect. The categories are listed in Table 5.1. There may be other types of defects that could

be found with In Vivo Testing, but these are the ones identified so far.

2http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2008-1668
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1 Unit tests make incorrect assumptions about
the state of objects in the application

2 Possible field configurations not tested in the lab
3 Deployment environments not simulated in the lab
4 A user action puts the system in an unexpected state
5 Those that only appear intermittently

Table 5.1: Categories of defects that can be detected with In Vivo Testing

The first category of defects likely to be found by In Vivo Testing are those in which

the corresponding unit test assumes a clean slate, but the code does not work correctly

otherwise. By clean slate, we mean a state in which all objects or structures have been

created anew and are modified only by the unit test or functions the test calls, such that

the unit test has complete control of the system. Generally unit tests are written in such a

way that the entities being tested are created and modified to obtain a desirable state prior

to testing [90]. In these cases, the code may pass unit tests coincidentally, but not work

properly once executed in the field, revealing defects in both the test code and the code

itself. State-based testing [181] or static analysis [62] could be used to look for defects in

this category, though these may not be as useful as In Vivo Testing when the system state

depends heavily on external systems or user input sequences.

One of the documented OSCache defects notes that, under certain configurations, the

method to remove an entry from the cache is unable to delete a disk-cached file if the cache

is at full capacity.3 In this case, the corresponding In Vivo test for testing cache removal

may simply add something to the cache, remove it, and then check that it is no longer there.

This sequence of operations should work consistently regardless of the state of the cache.

A unit test that assumes an empty or new cache would pass; however, when the cache is

full, the In Vivo test would fail, revealing a defect that may not have been caught until it

affected a user.

Another example of this type of defect can be found in Apache JCS. Here, the method

3http://jira.opensymphony.com/browse/CACHE-236
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that returns the number of elements in the cache is off by two when the cache is at full

capacity.4 A unit test that simply creates a new cache, adds some number of elements, and

checks the size may pass in the development environment if the number of added elements

is smaller than the capacity. But an In Vivo test that is executed in the field would detect

this defect when it tries to add those elements and thus meets the cache’s capacity.

One could argue that, in both cases, a sufficient set of test cases would consider the

particular equivalence class (namely, when the cache is at or near full capacity), but it

may be easier for the tester to simply specify that these properties should always hold,

rather than explicitly creating the infrastructure needed for the test cases that exercise the

code in particular states. Although the JCS defect could conceivably be caught with a

program invariant (specifically, that the size of the cache after the element is added should

be one greater than before it was added), the OSCache defect could not be, since program

invariants necessarily do not have side effects, and removing an element would obviously

alter the cache’s state; however, an In Vivo test could detect this, because side effects are

hidden from the user.

The second category targeted by our approach includes those defects that come about

from field configurations that were not tested in the development environment. For

instance, the version of Apache Tomcat that we considered has over 60 different parameters

that can be configured, many of which allow for free-text input or unbounded integer values,

meaning the entire potential configuration space is huge. We note that a testing approach

using a system like Skoll [94, 121] to run tests at the production site before deployment of

the software could potentially find some defects in this category, but others will only reveal

themselves once the application has been running for a while, and would not be detected

prior to the application’s deployment and widespread use.

OSCache has around 20 configurable parameters, and one of its known defects falls

into this category, too. In this defect, setting the cache capacity programmatically does not

4http://issues.apache.org/jira/browse/JCS-16
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override the initial capacity specified in a properties file when the value set programmatically

is smaller.5 A unit test for the method to set the cache capacity may assume a fixed value in

the properties file and only execute tests in which it sets the cache capacity to something

larger; this unit test would pass. However, if a system administrator sets the capacity to a

large number in the properties file, an In Vivo test would fail when it tries to set the cache

capacity to a smaller value, revealing the defect.

The third category of defects concerns those that come about from deployment

environments that were not simulated in the lab prior to release. Java applications may

require testing on multiple platforms with multiple JDK versions and multiple revisions

of the application code, possibly with multiple third-party libraries or application servers;

this is not always feasible for testing in a single test lab. Additionally, a new JDK, OS, or

library may be released after the software is deployed, making testing prior to deployment

impossible. For instance, in OSCache certain functionality works fine with Solaris 8 but

not Solaris 9, which was released after the version of OSCache in question.6 By extending

testing into the various deployment environments, In Vivo Testing would detect such

defects.

The fourth type of defects targeted by In Vivo Testing are ones that stem from a

user action that puts the system in an unexpected state that would not have been tested.

These actions may be legal ones that were simply unanticipated, or illegal actions, e.g.,

a security violation. This could also happen when data elements in the same process are

shared between users, and one user’s activities modify some data such that it causes a

problem for other users.

For example, in OSCache, an uncaught NullPointerException would appear only after

a particular sequence of operations that involves attempting to flush cache groups that do

not exist.7 In this case, an In Vivo test that checks the operation of the flush method would

5http://jira.opensymphony.com/browse/CACHE-158
6http://jira.opensymphony.com/browse/CACHE-193
7http://jira.opensymphony.com/browse/CACHE-173
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detect this invalid state because the test would fail, even though that test would succeed in

normal “expected” states.

The fifth and final type of defect is one that only appears occasionally. These defects

may be discovered by simply conducting more testing during the development phase, but

the fact that our approach continuously tests the application even after deployment increases

the chance of finding such a defect.

Concurrency bugs are a very common type of defect in this category. We noticed one of

the concurrency bugs in Apache Tomcat, in which a particular method used in the creation

of a session is not threadsafe. If the thread that invalidates expired sessions happens to

execute at the same time as a session is being created, it is possible that an uncaught

exception would occur because one of the objects being used in the session creation could

be set to null by the invalidator.8 A unit test that is simply testing the creation of sessions is

not likely to detect this defect because at that time there may not be any other sessions to

invalidate (this is also a case of the first type of defect targeted by In Vivo Testing, in which

the unit test assumes a blank slate). However, in the deployment environment, this unit test

may fail if the session invalidation thread is cleaning up other sessions at the same time.

We found at least ten such examples in the listing of known OSCache defects. For

instance, in one of them, flushing the cache, adding an item, and attempting to retrieve the

item can occasionally result in an error, particularly if two calls to flush the cache happen

within the same millisecond.9 A unit test that tries this sequence of actions may simply

never encounter the error by chance during testing in the development environment, but an

application fitted with the In Vivo framework would catch it when it eventually occurs.

Note that, in all these cases, In Vivo Testing helps find defects in poorly designed

unit tests as much as it does in the applications themselves. Software testers may not

anticipate these types of defects when they write their tests, but we hope that by using In

Vivo Testing, they will consider a different approach that allows them to test functionality

8http://issues.apache.org/bugzilla/show bug.cgi?id=42803
9http://jira.opensymphony.com/browse/CACHE-175
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of the application, regardless of its state or environment.

Also, it is conceivable that the defects documented here could have been discovered

prior to release of the application given more time, better unit tests, and a little luck. But

these examples demonstrate that a testing methodology that continues to execute tests on

an application in the field greatly improves the chances of the errors being detected before

affecting an end-user. More importantly, certain defects will in practice only manifest

themselves in the field (because of limited time and resources in the testing lab, or because

they are heavily dependent on the state), and these are the ones for which In Vivo Testing is

most useful.

As mentioned, other testing approaches such as the use of program invariants or data

structure integrity checking [52] may not be suitable since those do not allow for side

effects, and thus are limited to “read-only” types of tests, but cannot run arbitrary code at

arbitrary execution points to check its consequences. And while In Vivo Testing does not

seek to replace conventional unit and integration testing, others have noted that in some

cases it may be easier for the tester to specify the properties that a function is expected to

have, regardless of system state, as opposed to specifically constructing states in which to

test based on equivalence classes [179]. In that sense, In Vivo Testing acts as a safeguard

against states that were not anticipated during traditional unit testing.

5.1.4 In Vivo Testing Fundamentals

To apply the In Vivo Testing approach, the application vendor must first perform some

preparation steps (described in Section 5.3.1), including the instrumentation of the portions

of the application that are to be tested in the production environment. After these preparation

steps have been performed and the application has been configured to take advantage of In

Vivo Testing, it is deployed in its usual fashion: the application user does nothing special

and would not even know that In Vivo Testing is being performed. In Vivo testing then

works as follows: when an instrumented part of the application is to be executed, with some
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probability a corresponding test is then executed in a separate “sandbox” that allows the

test to run without altering the state of the original application process. The application

then continues its normal operation as the test runs to completion in a separate process,

and the results of the test are logged. Note that the tests are only invoked as a result of the

execution of the code they are testing, so that commonly used code is tested more often.

Although the In Vivo Testing approach is a general testing approach suitable to most

types of applications, it is most appropriate for those that produce calculations or results

that may not be obviously wrong, and do not otherwise make the error obvious, such as

crashing or hanging. For instance, in most of the caching examples above, the user would

not notice that the cache is acting incorrectly, as the data would still be usable and may

appear to be correct; however, in those examples the caches are not working correctly

and/or as efficiently as they should. Applications that include complex calculations may

also benefit from In Vivo Testing because the user may not know whether the calculations

are obviously incorrect, but defects in the implementation could cause slightly erroneous

results (the tests used in Metamorphic Runtime Checking, presented in Chapter 4, are thus

an example of In Vivo tests). Systems that have complex states that perhaps could not be

anticipated in advance are other good candidates for In Vivo Testing, which is designed to

execute tests in such situations.

5.2 Model

Figure 5.1 shows a representation of the model for In Vivo Testing. When a function is

about to be executed, the framework determines whether or not to run a test, based on a

number of factors such as the current number of tests being conducted, the system load,

etc. If a test is to be run, a new environment is created as a copy of the original, so that

the test runs in the same application state as the function it is testing. The function and

its corresponding test are then run in parallel, i.e., the test does not preempt the rest of the
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Figure 5.1: Model of In Vivo Testing

application (note, however, that the test could conceivably be executed at a later time and/or

on a different machine, as long as the state in which the test runs is the same as that of

the function it is testing; this is left as future work) . When the test finishes, its success or

failure is recorded. Meanwhile, the original application continues executing as normal.

5.3 Architecture

The prototype In Vivo Testing framework, which we call Invite (IN VIvo TEsting frame-

work), has been implemented for Java and C applications and has been designed to reuse

existing test code and to allow for the creation of In Vivo tests, while not imposing any

restrictions on the design of the software application. This section discusses the specific

details of the implementation.

5.3.1 Preparation

Here we describe the steps that a software vendor would need to take to use the Invite

framework. It is important to note that these steps do not require any modification or

special constraints on the design of the software application itself; the development of
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any new test code and the configuration of the framework would be done a priori by the

vendor who plans to distribute an In Vivo-testable system, and not by the customer in whose

environment the tests run.

Step 1. Create test code. If unit and integration tests already exist, it is certainly

possible to use the Invite framework without writing a single line of new code. By shipping

these tests with the application and then running them In Vivo as the application executes in

the field, it is clear that defects that appear infrequently are much more likely to be revealed

purely by increasing the number of times the tests are executed. Furthermore, it is also

clear that this approach will help find defects that only appear in certain configurations or

environments, since the tests will run in a broad variety of settings [121]. Thus, one can

take advantage of In Vivo Testing even without writing any new code.

To get the most out of In Vivo Testing, however, application developers should create

In Vivo tests, introduced above in Section 5.1. These tests are designed to check properties

of the application that should hold true regardless of its state, and these are most likely

to reveal defects that were not found (or could not have been found) in the development

environment.

To create In Vivo tests, the software vendor must ensure that the test functions reside in

the same class (for Java) or file (for C) as the code they are testing (or in a Java superclass).

Also, the In Vivo test for a function foo should be a function called INVtest foo, which

indicates whether or not the test passed, so that Invite can log the result and possibly

take some appropriate action. The parameters to INVtest foo should be the same as

those to the original function foo, so that the actual arguments can be used when testing.

Additionally, rather than create new objects or data structures to test in the In Vivo test

functions, those functions should use existing ones, since the goal of In Vivo Testing is that,

when the test is run in the field, it is using the data that has been modified over the course

of the application’s execution.

Figure 5.2 shows a simple In Vivo test that could be used in a Set implementation in Java.
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Upon invocation of the addmethod with an Object parameter, for instance, INVtest add

is called and the argument is passed to it as testObj. Because this test method resides

in the same class that defines the add, remove, and contains methods, it uses the object

reference this to call functions on itself.

public boolean INVtest add(Object testObj) {

this.add(testObj);

if (this.contains(testObj) == false) return false;

this.remove(testObj);

return (this.contains(testObj) == false);

}

Figure 5.2: Example of In Vivo test

It may be possible to automatically detect properties that could be used in the creation

of In Vivo tests, and of course developers may have their own notion of what properties of

the function should hold, regardless of the application state. These properties may relate

not only to functional correctness, but also to security, performance, etc.

For instance, Figure 5.3 shows an In Vivo test that checks for “security invariants” [21],

i.e., security-related aspects of the program that are always expected to hold. The function

being tested is the login function, which takes a username and password as arguments.

On line 2, the In Vivo test attempts to log in as the user. If the login attempt is unsuccessful

(line 3), then the test attempts to read some data (line 4). Here, the security invariant is that

“a user who is not logged in should not be allowed to read data”. In the test, if the user is

not logged in and the reading of data is successful (line 5), then the In Vivo test returns 0

to indicate that the test failed, i.e., that the security invariant was violated. On lines 7-8,

the username and password are set to null, and another login attempt is made on line 9.

The security invariant in this case is “a user should not be allowed to log in with empty

username and password”. If the login attempt succeeds (line 10), then the test returns 0,

indicating that the security invariant was violated and that the test failed. Otherwise, it

returns 1 (line 11) to indicate that the test passed.

Another approach to creating In Vivo tests is to build upon already-created unit tests,
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1 int INVtest login(char* username, char* password) {

2 int loginSuccessful = login(username, password);

3 if (loginSuccessful == 0) {

4 int readSuccessful = readData();

5 if (readSuccessful) return 0;

6 }

7 username = NULL;

8 password = NULL;

9 loginSuccessful = login(username, password);

10 if (loginSuccessful) return 0;

11 else return 1;

12 }

Figure 5.3: Example of In Vivo test

modified so that they use existing objects and data structures, rather than constructing new

ones. Figure 5.4 shows such a unit test in the JUnit [89] style for Java applications. It

is clear that there are only small changes required to convert this into the In Vivo test in

Figure 5.2: (1) the test method has been moved into the same class as the one it is testing;

(2) the name of the test method has been changed to match that of the method it is testing;

(3) the parameter to the test method matches that of the original method, and the parameter

is used in the testing; (4) the return type of the test method has been changed, and a return

statement is used instead of an assert; and (5) the reference to the object being tested (in

this case, the Set) in the test function is now “this” instead of a newly-created object. Future

work could look into the potential of automating this conversion.

private Set set;

@Before public void setUp() {

set = new MySetImpl();

}

@Test public void testAddRemoveContains() {

Object testObj = new Object();

set.add(testObj);

assert(set.contains(testObj) == true);

set.remove(testObj);

assert(set.contains(testObj) == false);

}

Figure 5.4: Example of JUnit test
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As noted above, the modification of unit tests into the style of In Vivo tests is not strictly

a requirement for using the Invite framework. Existing unit and integration tests can be

used without any modifications whatsoever, and the different types of tests are not mutually

exclusive. However, our intention is to demonstrate that it is possible to create In Vivo tests

only with small changes to existing unit tests.

Step 2. Instrument classes. In the next step, the vendor must then select the functions

in the application under test for instrumentation. Aside from acting as jumping off points for

the tests, the instrumented functions are also the same ones that will be tested by the Invite

framework, and should be selected according to which ones the vendor wants to test (this

could certainly be all of the functions, of course). The list is specified in a configuration file.

To achieve instrumentation, a pre-processor “wraps” the original code with the calls to the

framework and to the test code; this is further described below in Section 5.3.2. Although

this requires recompilation, this restriction could be lifted by use of a system like Kheiron

[69], which would dynamically insert the test harness code into the application after it is

already compiled.

Step 3. Configure framework. Before deployment, the vendor would then configure

Invite with values representing, for each instrumented function, the probability ρ with which

that function’s test(s) will be run. This configuration specifies the name of the function and

the percent of calls to that function that should result in execution of the corresponding

tests (if a function is associated with multiple tests, these are all specified separately). The

file is read at the application’s startup-time (not at compile-time) so it can be modified by a

system administrator at the customer organization if necessary. A “default” value can be

specified as well: any function not explicitly given a percentage will use that global default.

If the global default is not specified, then the default percentage is simply set to zero, which

provides an easy way of disabling all In Vivo Testing for all but the specified functions. To

disable testing for all functions in the application, the administrator can simply put “disable”

in the first line of the file.
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Note that if function foo is called twice as frequently as function bar, and both

have equal ρ values, then INVtest foo is going to be called twice as frequently as

INVtest bar, which we feel is desirable since that function should be tested more often

since it is called more often. However, it may also be the case that more defects may

reside in less frequently-executed (and presumably less frequently-tested) functions, so the

developer has the option of setting different values of ρ for the individual functions; this is

discussed further in Future Work (Section 7.2).

Step 4. Deploy application. It is assumed that the application vendor would ship

the compiled code including the tests and the configured testing framework as part of the

software distribution. However, the customer organization using the software would not

need to do anything special at all, and ideally would not even notice that the In Vivo tests

were running.

5.3.2 Test Execution

Figure 5.5 shows the pseudocode for an instrumented function foo. When the function

is called (line 8), a check is performed (line 9) to see whether an In Vivo test should

be run at this point, using the specified percentage value ρ for that function, as well as

other parameters described below. The purpose of running a function’s corresponding test

function is so that the test is executed at the same point in the program (the same state)

as the function itself, which is preferable to arbitrarily choosing a random test to execute,

since there may be states when such a test is not expected to work correctly.

If it is determined that a test should be run, Invite then forks a new process (line 10),

which is a copy of the original, to create a sandbox in which to run the test code, ensuring

that any modification to the local process state caused by the In Vivo test will not affect

the “real” application, since the test is being executed in a separate process with separate

memory. Performing a fork creates a copy-on-write version of the original process, so

that the process running the test has its own writable memory area and cannot affect the
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1 /* original function */

2 int foo(int p1, int p2) { ... }

3

4 /* In Vivo test function */

5 boolean INVtest foo(int p1, int p2) { ... }

6

7 /* wrapper function */

8 int foo(int p1, int p2) {

9 if ( should run INVtest foo()) {

10 create sandbox and fork();

11 if (is test process()) {

12 if ( INVtest foo(p1, p2) == false) fail();

13 else succeed();

14 destroy sandbox();

15 exit();

16 }

17 }

18 return foo(p1, p2);

19 }

Figure 5.5: Pseudo-code for wrapper of instrumented function

in-process memory of the original. Once the test is invoked (line 12), the application can

continue its normal execution, in which it invokes the original “wrapped” function (line

18), while the test runs in the other process. Note that the application and the In Vivo test

run in parallel in two processes; the test does not preempt or block normal operation of the

application after the fork is performed.

In the current implementation of Invite, test modifications to network I/O, the operating

system, external databases, etc. are not automatically undone; the sandbox only includes

the in-process memory of the application (through the copy-on-write forking). To address

this limitation, we have integrated Invite with a “process domain” sandbox [147] to create a

virtual execution environment that isolates the process running the test and gives it its own

isolated view of the file system and process ID space. However, this virtualization layer

does not include external entities (see Future Work in Section 7.2 for more details), and

the overhead of creating the sandbox may be prohibitive to running tests in the field in the

general case. Thus, this type of sandbox is only used when indicated by a special notation
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in the configuration file.

When the test is completed, Invite logs whether or not it passed (Figure 5.5, lines 12-13),

and the process in which the test was run is terminated (lines 14-15). Invite provides a

tool for analyzing the log file and providing simple statistics like the number of tests run,

the number that passed/failed, and a summary of the success/failure of each instrumented

function’s corresponding test(s). Additionally, results can be reported back to a central

server (presumably at the vendor’s location), as described for the Amsterdam framework in

Section 3.2.6. The results of the tests could then be processed, and configuration parameters

(like the frequency of test execution or even the list of functions to test) could conceivably

be modified and sent back to the application instance [145]; the implementation of this part

of the solution is left as future work.

Unlike other testing approaches that test the application as it is running [54, 126], Invite

avoids the “Heisenberg problem” of having the test alter the state of the application it is

testing. This is one of the major contributions and differentiating characteristics of the In

Vivo Testing approach.

5.3.3 Scheduling Execution of Tests

We have also considered other policies for determining how frequently unit tests should be

run, aside from the static configuration value. The relative effects of these different policies,

however, are outside the scope of this thesis. For instance, if it is desirable to have all the

test cases run equally often, then the ρ value could be automatically adjusted to increase

probability for a function that, empirically, runs rarely, and lowered for one that runs often.

Another policy would be to multiply the weighting (which treats all essentially equally but

considers how often they run in practice) by some factor that is larger for functions where

more defects were found during lab testing and/or more field defects were reported, so as

to increase the likelihood of finding a defect in a potentially flawed function.
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5.3.4 Configuration Guidelines

In order to help a system administrator or vendor understand the configuration’s impact

on performance and testing, Invite periodically records to a log file the total number of In

Vivo tests that have been run, the average time each test takes, and the number of tests run

per second. All of these statistics are tracked in total for the entire application, but also for

the separate functions, since they may have different ρ values. From this data, it is then

possible to estimate how altering the value of ρ will affect the system’s performance and

number of tests executed.

Specifically, the rate of tests run per second is proportional to ρ: for instance, to double

the frequency of execution of a particular test, simply double the function’s ρ value. This

simple calculation will help guide how to adjust ρ so as to execute more (or fewer) tests for

a given function, assuming constant usage of that function over time.

To estimate the performance overhead caused by the unit tests, one can multiply the

number of In Vivo tests by the average time each takes to see what additional time is being

spent running those tests. Then, by calculating the effect that ρ has on the number of tests

being run per unit time, one can then calculate the additional overall time cost of increasing

or decreasing ρ. We surmise that, in practice, the ρ values would presumably be very

small. However, these are heavily dependent on the number of instrumented functions, the

frequency with which they are called, the desired amount of testing to be performed, and

the acceptable performance degradation. We discuss more performance issues in Section

5.5.

Even with small values of ρ, there is a danger of the test processes flooding the CPU, so

that the original process (as seen by the user) is prevented from running. To address this,

the Invite framework can be configured to limit the maximum number of concurrent tests

that the system is allowed to execute at any given time. This prevents the testing framework

from launching so many simultaneous tests that they flood the CPU and essentially block the

main application. A system administrator can also set a maximum allowable performance
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overhead, so that tests will be run only if the overhead of doing so does not exceed the

threshold. The system tracks how much time it has spent running tests compared to how

much time it has been running application code, and only allows for the execution of tests

when the overhead is below the threshold.

To take advantage of multiprocessor/multicore architectures, it is possible to configure

Invite so that each process runs independently and does not interrupt the others. Each

process is assigned to a separate CPU/core using an affinity setting (this is not currently

supported in Java but is possible through a JNI call), thus ensuring that the tests do not run

on the same CPU/core as the main process and limiting the overall impact on the application.

For instance, on a quad-core machine, one core could be executing the application, allowing

for up to three simultaneous tests, each on a separate core, so that none of them would

preempt the original application process, or each other.

In the case in which a test fails in the field, the failure is logged to a local file. Addi-

tionally, the system administrator can configure what action the system should take when a

failure is detected, on a case-by-case basis. In some cases, the administrator may want the

system to simply continue to execute normally and ignore the failure; it may be desirable

to notify the user of the failed test; and, last, the administrator may choose to have the

program terminate.

5.3.5 Distributed In Vivo Testing

Although the Invite framework can be configured so that the performance impact is not

great enough to be noticeable, reducing the overhead comes at a cost of reducing the number

of tests. Given that many applications are used in numerous installations, it follows that a

group of applications instrumented with Invite would be able to run many tests globally,

without putting too much testing load on a single instance. This section introduces the idea

of distributed In Vivo Testing: applying the In Vivo Testing approach to an “application

community” (a collection of autonomous application instances running across a wide-area
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network) [108], where the size of the community can be leveraged to detect defects and

reduce overhead.

Applying a distributed approach to In Vivo Testing is motivated by two reasons. First,

amortizing the workload over many instances tackles the issue of performance overhead,

without sacrificing the quantity of tests being conducted globally. Second, In Vivo Testing

relies upon testing as many permutations of state as possible, in the hopes that one will

be encountered that causes an error to be revealed in the code. Having a community of

applications collaboratively working together increases the possibility that at least one

instance will find such a fault-revealing state.

To distribute the In Vivo testing load, we extended the original Invite framework with a

distributed component that follows a simple server-client model, where each application

under test includes the Invite client. The Invite server is a separate standalone component

that runs on a separate machine, most likely hosted by the vendor.

The distributed Invite framework seeks to reduce the overhead of each Invite client by

reducing the number of tests each instance has to run while maintaining the same global

quantity. This distributed effort is coordinated by the central Invite server. The basic

protocol is:

1. The Invite server is initialized and ready to receive Invite client requests.

2. When an instance of the instrumented application begins, it logs into the Invite server

for the first time and registers itself as an Invite client as part of its initialization

process. The Invite client receives a unique client id, a list of tests to run, a probability

ρ to run the tests, and a time t to reconnect to the Invite server.

3. The application under test executes normally, except that with probability ρ the

Invite client (randomly) executes one of the assigned tests using the In Vivo Testing

approach.

4. At time t the Invite client connects to the Invite server with its identification, sends
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the results of its testing, and receives a new time t’ to reconnect, as well as possibly

a new list of tests and/or a new probability ρ’. In this way the Invite server can

dynamically adjust to changes in community size by modifying the values it assigns.

The Invite server handles all the bookkeeping of maintaining client ids, distribution

and assignment of the test suite to the community, the results of each test and the Invite

client that executed it, and the reconnect times. The full test suite is intelligently partitioned

by the Invite server based on the size of the community, and these partitions are rotated

periodically (as in [121] and [145]). There is also a simple console client that allows a

developer to query the Invite server for reports. Currently, the server can report the number

of clients in its community, the number of tests run by each client, and the results of each

individual test.

5.4 Case Studies

Given the motivating examples listed in Section 5.1, we sought to apply Invite to some

of those applications to demonstrate that In Vivo Testing would have quickly detected

those defects, even assuming the presence of sufficient unit tests that could be used in the

development environment.

We first investigated OSCache 2.1.1, which contained three of the known defects listed

in Section 5.1. Unfortunately the unit tests that are distributed with that version of OSCache

do not cover the functions in which those defects are found, so we asked a student (who was

not aware of the goals of this work) to create unit tests that would reasonably exercise those

parts of the application. As expected, those tests passed in the development environment

during traditional unit testing, primarily because the student had created the tests assuming

a clean state that he could control. This took a total of two hours.

We then asked the same student to develop In Vivo tests, using those unit tests as a

starting point; it took less than one hour to complete this task. Next we instrumented the
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corresponding classes in OSCache with the Invite framework. Although we did not have

a real-world application based on OSCache for our testing, we created a driver that used

the OSCache API to randomly add, retrieve, and remove elements of random size from a

cache, and randomly flushed the cache. All three defects were revealed by Invite in less

than two hours. The last to reveal itself was the one that only happened when the cache was

at full capacity, which happened rarely in our test because the random adding, removing,

and flushing did not allow it to reach capacity often; however, this defect may have revealed

itself more quickly in a real-world application.

A similar experiment was conducted with Apache JCS version 1.3. Here we were

looking for a defect that only appeared when the cache was at full capacity, and this defect

was revealed in less than one hour, but again may have appeared sooner in the real world.

Although these defects were discovered in our own testing environment (as opposed to

a deployment environment), these examples demonstrate that certain intermittent defects or

those that only are revealed under certain circumstances may not be revealed in traditional

unit testing, but would be detected with In Vivo Testing. More importantly, these case

studies demonstrates the technical feasibility of our approach and is indicative of its efficacy

in such situations.

5.5 Performance Evaluation

To understand the performance impact of the In Vivo Testing approach, we revisited the

machine learning applications used in the studies in the previous chapters, and measured the

impact of the Invite framework on the time it took to conduct testing. For the applications

C4.5, MartiRank, SVM, and PAYL, we instrumented the functions listed in Table 5.2 with

the Invite framework, and varied the probability ρ with which an In Vivo test would be

executed while the application ran. In order to get a better measurement of the upper

bounds of the effect of In Vivo Testing, we did not place any limits on the maximum
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allowable performance overhead or on the number of simultaneous test processes, though

the framework still tracked these values.

Application Function Function Description
C4.5 FormTree Creates decision tree
C4.5 Classify Classifies example
MartiRank pauc Computes “quality” [76] of a ranking
MartiRank sort examples Sorts set of examples based on given

comparison function
MartiRank insert score Inserts a value into an array used to hold

top N scores
PAYL computeTCPLenProb Computes probability of different lengths

of TCP packets
PAYL testTCPModel Returns distance between an instance and

corresponding “normal” instance in the model
SVM distributionForInstance Estimates class probabilities for given

instance
SVM buildClassifier Creates model from set of instances

(training data)
SVM SVMOutput Computes output (distance from hyperplane)

for given instance

Table 5.2: Instrumented functions for In Vivo performance test

Tests were conducted on a server with a quad-core 3GHz CPU running Ubuntu 7.10 with

2GB RAM. For C4.5, we used the “ad” dataset from the UCI machine learning repository

[138]; for MartiRank, we used one of the data sets from the experiments in Section 4.5.1;

for SVM, we used the “iris” data set [138]; and for PAYL, we used data collected on our

department’s LAN over a one-hour period.

Table 5.3 and Figure 5.6 show the results of the experiment, with the baseline mea-

surement (no instrumentation), ρ equal to 0% (with the functions instrumented but no tests

executed), 25%, 50%, 75%, and 100% (with all instrumented function calls resulting in

tests).

The linear nature of the resulting graphs indicates that, as one would expect, the

overhead increases linearly with the number of tests that are executed. The slope of the
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Figure 5.6: Performance overhead caused by different values of ρ for the different
applications.
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Application # tests Baseline ρ = 0% ρ = 25% ρ = 50% ρ = 75% ρ = 100%
C4.5 4,719 1.3s 1.3s 1.7s 2.2s 2.6s 3.0s
MartiRank 26,792 10.6s 10.8s 13.7s 16.2s 18.1s 20.4s
PAYL 2,300 1.1s 1.1s 2.8s 3.9s 5.6s 7.3s
SVM 13,694 0.9s 0.9s 13.1s 24.9s 37.4s 49.1s

Table 5.3: Results of Performance Tests. The five rightmost columns indicate the time to
complete execution with different values of ρ.

lines results from a combination of the number of tests that are run and the implementation

language: the line for SVM is very steep because many tests were run and the overhead

is greater for Java applications (since Java does not have any “fork” utility, it needed to

be implemented via a Java Native Interface call, which added extra overhead); the line for

C4.5 is less steep because fewer tests were run and there is less overhead for C.

On average, the performance overhead for the Java applications was around 3.5ms per

test; for C, it was only 0.4ms per test. These numbers are consistent with the overhead of

the Columbus framework for Metamorphic Runtime Checking (Section 4.6) and indicate

that additional instrumentation (e.g., checking for a maximum number of simultaneous test

processes) is negligible.

Despite the large overhead incurred by running numerous tests very frequently, the

results show that incurring an overhead of just one second still achieves thousands of tests

for a single application instance written in C, and hundreds of tests for a Java application.

This experiment demonstrates that it is possible to gain the benefits of In Vivo Testing with

limited performance overhead.

5.6 More Efficient Test Execution

One of the issues of the Invite implementation described in Section 5.3 is that there is a

possibility that a function’s In Vivo tests will run multiple times in the same application

state, potentially causing unnecessary overhead. In this regard the following question arises:

“Can the technique be made more efficient by only running tests in application states it has
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not seen before?” Invite currently runs tests probabilistically or according to the testing

load; however, certain states may unnecessarily be tested multiple times. If the results of

the test are deterministic, in that they depend only on the system state, then we can possibly

make Invite more efficient by having it run tests only in previously-unseen states.

Of course, these approaches are not mutually exclusive. For example, we could run

tests only in previously-unseen states and with some probability, so that when we encounter

a state that has not been tested, there is only a specified probability that we will actually run

the test. The downside of that, however, is that some states may never be tested, depending

on the probability and the number of times they are encountered. Thus, in this section

we investigate whether we can improve the efficiency of In Vivo Testing by reducing any

unnecessary overhead, but without making any sacrifices regarding the set of states in which

tests are run.

5.6.1 Analysis

An approach designed to increase the efficiency of In Vivo Testing (or any approach, for

that matter) based on running tests only in previously-unseen states is heavily dependent on

the assumption that a given function will, in fact, run in the same state multiple times. In

the best case, if the function always runs in the same program state, then the In Vivo test

will only be run once, i.e., the very first time, and the performance overhead will approach

the theoretical minimum of never running any tests, give or take a little bit of overhead from

the instrumentation. In the worst case, if the function never runs in the same state, then In

Vivo tests will run for every invocation of the function, which will incur worse performance

overhead than the “standard” In Vivo approach, since not only are test functions being run,

but there is extra overhead from determining whether the state had been seen before. It

follows, then, that there must be some percentage of previously-seen states such that the

new approach will, in fact, be more efficient.

The theoretical analysis is rather straightforward. We define the Distinct State Percent-
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age (DSP) as the number of distinct states in which a function is called, divided by the total

number of times the function is called. We define the Repeat State Percentage (RSP) as 1 -

DSP. For example, if a function is called in states A, B, A, C, B, C, A, and A, then the DSP

is 3/8 (since it was called 8 times and had three distinct states) and the RSP is 1-DSP = 5/8

(since five of the times, the function was called in a state it had already seen).

We also define the following:

• ts = the time it takes to create the sandbox in which the In Vivo test will be run

• td = the time it takes to determine whether the function had already been run in the

current state

• tu = the time it takes to update the data structure storing previously-seen states

• N = the number of times the function is called

Given these definitions, we can simply calculate the overhead from “standard” In Vivo

Testing (assuming that the tests are executed on every function invocation) as:

Tinvivo = N*ts.

Note that the overhead Tinvivo could be reduced by a constant factor if tests are only

executed with some probability ρ. However, this would mean that tests may not be executed

in some application states. Our evaluation here is based on the assumption that it is desirable

to conduct tests in all observed application states during program execution, which, after

all, is the point of In Vivo Testing.

We can also calculate the overhead from the suggested new approach, in which tests are

only conducted in states that have not already been encountered. The time taken when tests

are run in previously-unseen states is:
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Tunseen = N*DSP*(td + tu + ts).

The time taken when tests are not run because the state had already been seen is simply:

Tseen = N*RSP*td = N*(1 - DSP)*td.

The total overhead for the suggested new approach is their sum, Tunseen + Tseen.

To achieve the benefits of running tests only in states that have not previously been

seen, we seek a low DSP such that the overhead for running tests only in previously-unseen

states is less than that of running tests in every state, i.e.:

Tunseen + Tseen ≤ Tinvivo.

Replacing with the formulas above and solving for DSP, we get:

N*DSP*(td + tu + ts) + N*(1 - DSP)*td ≤ N*ts

=⇒ DSP*(td + tu + ts) + (1 - DSP)*td ≤ ts

=⇒ DSP*(td + tu + ts) + td - DSP*td ≤ ts

=⇒ DSP*(tu + ts) + td ≤ ts

=⇒ DSP*(tu + ts) ≤ ts - td

=⇒ DSP ≤ (ts - td) / (tu + ts)
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If we can construct a solution such that the time to do a lookup (td) or update (tu) is much

less than the time to create a sandbox (ts), we can see that the right side of the inequality

comes close to 1. This means, then, that even for a DSP of almost 100%, i.e., even if almost

all of the states in which the function runs are distinct, then it still is better to incur the

overhead of checking the state and only run tests in states that have not previously been

encountered.

5.6.2 Implementation

In developing a new, more efficient implementation of the Invite testing framework, a

number of questions immediately arise:

• How do we define a “state”?

• How do we represent the state?

• How can we quickly determine whether the state has already been seen?

• In practice, is any performance gain from running tests only in previously-unseen

states outweighed by the overhead of the instrumentation required to track the states?

The following subsections discuss our new prototype, and the implementation decisions

that were made in answering these questions.

Determining Function Dependencies

For our purposes, we define the “state” of the application at any given point during its

execution as “the values of all variables that are in scope at that point”. We acknowledge

that this definition is somewhat limiting in that it does not include the state of the entire

process heap or stack, or the program counter, but we expect that these would be too

complex to represent in a format that can be represented and compared efficiently enough

to meet our goals. We also do not include external elements such as the state of other
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processes, the underlying virtual machine and/or operating system, the file system, etc., for

similar reasons. If any In Vivo test relies on these, then this feature of Invite can simply be

disabled for the given test, so that it executes regardless of the system state.

Note that a given function may not rely on all variables that are in scope at that point

in the program’s execution. Thus, in determining whether a function has already been

executed in the current program state, we only need to consider the variables on which that

function depends, i.e., that are read during the function’s execution.

To determine which variables a function uses during its execution, we developed a

simple pre-processor to parse the source code. For a given function, the pre-processor

returns a list of all the global variables (i.e., those declared outside the function definition)

that the function uses, and also determines which of the parameters the function depends

on, since it may not actually use all of them. Alternative approaches would have been to

use data dependence analysis or data flow analysis, but simply parsing the source seemed

to be the easiest solution, given that we only need to identify the global variables that are

read in the function, and do not need to enumerate all possible values or determine how

the variables came to get their respective values at that particular point. Also, although this

approach does not detect aliases (i.e., two variables that refer to the same piece of data), we

are not concerned with modifications to variables, only with listing the variables that are

read during the function’s execution.

1 int f(int p1, int p2, int p3) {

2 int k = 8;

3 int t = a + 1;

4

5 if (p1 > p2) return k + t;

6 else return p2 - t;

7 }

Figure 5.7: Sample function. The Invite pre-processor scans the function looking for
variables, to determine the function’s dependencies.

Figure 5.7 shows a simple function that can be scanned using the pre-processor. On
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line 1, the parameters p1, p2, and p3 are specified; at this point, they are not yet added

to the dependency list, since we do not know for certain that the function will actually

use them (though it is admittedly rare that they would not be used). On line 2, the local

variable k is declared, but because it is assigned a constant value, there is no dependency

on this line, either. On line 3, the local variable t is declared; this statement uses the global

variable a, which we assume to be declared elsewhere. Because a is on the right side of

the assignment, i.e., its value is read, we can add a to the dependency list. In line 5, the

conditional compares p1 to p2; thus, because those values are read, they are added to the

dependency list. Also on line 5, the return value uses k and t, but we know that these

are both local variables, thus there is no extra dependency. Line 6 does not use any new

variables so nothing is added this line. Once we reach the end of the function on line 7,

we know that the function f depends on the parameters p1 and p2 (line 1), as well as the

global variable a (line 3); as it turns out, the function does not use the parameter p3.

Given this list of dependencies, we can then claim that, at the point when f is called,

only the values of p1, p2, and a will affect its outcome; if those three variables are the

same for additional executions, the output of f will not change, nor will the result of the

corresponding In Vivo test.

1 int f1(int p1, int p2, int p3) {

2 int k = 8;

3 int t = a + 1;

4

5 if (p1 > p2) return g(p3);

6 else return p2 - t;

7 }

8

9 int g(int p) {

10 int m = p * b;

11 return m * m - b;

12 }

Figure 5.8: Example of two functions, one of which inherits the set of dependencies from
the other.
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Now consider the code in Figure 5.8, in which the function f1 is the same as f from

the previous example, except that it calls the function g on line 5. To determine the

dependencies of f1, when scanning line 5, we then need to determine the dependencies of

g. We can see on line 10 that g uses the parameter p and the global variable b; those are the

only dependencies of g. When that dependency list is returned to f1, the parameter p is

replaced with the argument p3. Thus, the overall dependency list for function f1 becomes:

parameters p1 and p2, and global variable a, for the reasons described in the previous

example; global variable b, inherited from function g; and parameter p3, which was passed

as an argument to g.

Note that this approach works for other data types besides primitives, including arrays

and values referred to by pointers.

In situations in which the pre-processor does not have access to the source code, e.g., if

the code makes a system call or uses some external library, then it is impossible to know for

certain what the dependencies are, and thus this approach cannot be used. In these cases,

the In Vivo tests will be run regardless of the current application state.

Representing States

Once we know the variables on which a function depends, we then need a way of represent-

ing the state so that it can be compared to other states to determine whether it has previously

been encountered. We can at this point consider the state as a map of a set of variables to

their corresponding values. Comparing the sets of values can be time consuming (at least

O(n), assuming we know the ordering of the elements to compare) if done element-wise;

we require a fast way of comparing the sets, ideally with no false positives (thinking two

sets are the same, when actually they are not) or false negatives (thinking two sets are not

the same, when actually they are).

In the best case, if we assume that the elements of the sets are numerical, then we can

attempt to devise a hashing function such that every set has a distinct value. This would



CHAPTER 5. IN VIVO TESTING 191

allow us to effectively represent different program states with a single number.

A hashing function that meets this criteria is a Cantor pairing function [161], which

assigns one distinct natural number to a pair of natural numbers. Note that this function

has one key characteristic that is crucial in our state formalization, in that it is simple yet

effective as the implementation is simply:

f(k1, k2) = (1/2)(k1 + k2)(k1 + k2 + 1) + k2.

Using this mathematical tool, we can now take a set of values in the function’s dependent

state and create a single distinct value, which is critical in determining whether the state

had previously been seen. The method for achieving this is to recursively apply the Cantor

function to the values, i.e., f(a, f(b, f(c, ...))). This can be done for array elements

or by values referred to by pointers, as well.

Tracking Execution States

Given that we have a distinct representation of each execution state, we can then select an

efficient data structure to determine whether the function has already been called in the

given state, by comparing it to those that it has already seen. We started by investigating

the use of a hash table, but a hash table is O(n) in the worst case (where n is the number of

elements, i.e., the number of states already seen), and we were hoping for something that

would give a better guarantee.

We also considered using a Bloom filter, which is O(1), but a Bloom filter allows for

false positives, in that we may think we have already seen a state before, even though we

have not. This is not desirable for In Vivo Testing, because it might mean that tests are not

executed even though the state has not already been seen. We could, however, allow for

false negatives, which would have the result of running tests in previously-seen states; this

is not ideal, but at least we do not miss the opportunity to run tests in states that have not

previously been encountered.
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Our investigation led us to a data structure called a Judy Array10, which has been proven

to demonstrate the properties that we need in a state-management tool. It is space efficient,

in that it is a dynamically allocated structure that will not take up space when simply

declared for later use. The Judy Array also has the property of consuming memory only

when it is populated, yet can grow to take advantage of all available memory if desired.

These are especially important features since potentially all functions in the program will

need an array to represent which states have previously been seen. A Judy Array is also

speed efficient, and is O(log256n) for lookup operations [47]. Last, it is scalable: this data

structure has the potential to use all the available memory on a machine and also claims to

be able to hold from zero to billions of elements [47].

Given the selection of a Cantor function for hashing states and a Judy Array for tracking

them, we now state the process by which the In Vivo tests of a given function run using the

more efficient Invite framework.

1. A pre-processor is used to read the source code and determine which parts of the

state (i.e., which variables) the specified function depends on.

2. Another pre-processor creates the necessary instrumentation in the source code so

that In Vivo tests become logically attached to the function that they are testing. This

generated code makes use of a function that indicates whether a test has already been

run in the current state.

3. When the function to be tested is called, the required parts of the current application

state are hashed using the Cantor function, which generates a distinct value for that

state.

4. The code then checks the function’s corresponding Judy Array to determine whether

the value already exists in the data structure. If so, then the state has already been

encountered, and no test is run. If the value does not exist in the array, though, the
10http://judy.sourceforge.net/
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state has never previously been encountered, so the value is added to the array, and

the Invite framework is instructed to run the test.

5. At this point, In Vivo Testing continues as normal.

Figure 5.9 shows the pseudocode for the instrumentation of a function f, which depends

on global variable g and parameters p1 and p2.

When the function is called (line 21), a check is performed (line 22) to see whether

an In Vivo test should be run at this point. The function that performs this check (line 8)

uses the Cantor function, recursively if necessary, to generate a distinct value to represent

the parts of the state on which the function depends (line 10). If the Judy Array for that

function already contains the state (line 12), then there is no need to run the test again

(line 13); otherwise, the state is added to the Judy Array (line 15), and the framework is

instructed to run the test (line 16).

If it is determined that a test should be run, Invite then forks a new process (line

23), which is a copy of the original, to create a sandbox in which to run the test code,

ensuring that any modification to the local process state caused by the In Vivo test will

not affect the “real” application, since the test is being executed in a separate process with

separate memory. Once the test is invoked (line 25), the application can continue its normal

execution, in which it invokes the original “wrapped” function (line 31), while the test runs

in the other process. Note that the application and the In Vivo test run in parallel in two

processes; the test does not preempt or block normal operation of the application after the

fork is performed. When the test is completed, Invite logs whether or not it passed (lines

25-26), and the process in which the test was run is terminated (lines 27-28).

5.6.3 Evaluation

Although the theoretical analysis provided above shows that the new In Vivo approach will

be more efficient even when the function runs in many different distinct sets, we know that
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1 /* original function */

2 int f(int p1, int p2) { ... }

3

4 /* In Vivo test function */

5 boolean INVtest f(int p1, int p2) { ... }

6

7 /* Determines whether the state has already been seen */

8 boolean should run INVtest f(int g, int p1, int p2) {

9 /* use Cantor function to get distinct value for state */

10 double value = Cantor(g, Cantor(p1, p2));

11 /* determine whether value is already in Judy Array */

12 boolean alreadySeen = JudyArray f.contains(value);

13 if (alreadySeen) return false;

14 else {

15 JudyArray f.add(value);

16 return true; // indicates that test should be run

17 }

18 }

19

20 /* wrapper function */

21 int f(int p1, int p2) {

22 if ( should run INVtest f(g, p1, p2)) {

23 create sandbox and fork();

24 if (is test process()) {

25 if ( INVtest f(p1, p2) == false) fail();

26 else succeed();

27 destroy sandbox();

28 exit();

29 }

30 }

31 return f(p1, p2);

32 }

Figure 5.9: Pseudo-code for wrapper of instrumented function, in which In Vivo tests are
only executed in previously-unseen states

in practice the variables used in the calculations may not actually be constant, and we do

not know for certain whether the time to fork a new process is significantly higher than the

time to do a lookup and update in the Judy Array implementation.

To demonstrate that the new approach is, in fact, more efficient, we conducted a simple

experiment in which we measured the time it took to run an application with no In Vivo

tests at all (the theoretical minimum time), the time to run with the “standard” Invite
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framework that always executes tests regardless of the state, and the time to run with the

new Invite framework, using varying percentages of distinct states. In this study, we used

the sandboxes created by simple process forking (rather than creating the more heavyweight

virtualization layer) to demonstrate that even a small amount of instrumentation overhead

can be mitigated by running tests only in previously-unseen states. The goal is to show that,

even when the percentage of distinct states is relatively high, the new approach is still more

efficient.

The results we present here are for a C implementation of the Sieve of Eratosthenes

algorithm, which is given a single number as its parameter and returns a list of all prime

numbers less than that number. We chose this program because it only uses one function,

but takes a good deal of time to execute, so that we could get meaningful results over many

executions. The experiment was conducted on a multi-processor 2.66GHz Linux machine

with 2GB RAM.

For inputs, we used data files consisting of 100 random numbers, so that the function

would run 100 times. We generated a number of different files with different percentages of

distinct values, ranging from 0% distinct (meaning that all values were the same) to 100%

distinct (meaning that all values were different).

Figure 5.10 shows the results of the experiment, using the average running time of 10

executions per data set. As expected, the running times for “always” running the In Vivo

tests (as in the standard approach) and the time for “never” running tests are more or less

constant; they are not exactly constant because of the different values used in the different

data sets. More importantly, we see that “sometimes” running In Vivo tests (based only on

previously-unseen states) usually outperforms “always” doing it, even with the additional

instrumentation, and even when the percentage of distinct states is as high as around 90%.

The results of this experiment demonstrate that our approach does, in fact, make In

Vivo Testing more efficient, assuming the percentage of distinct states in which a function

is run is less than 90%. Further analysis will be required, however, to determine how true
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Figure 5.10: Performance impact caused by different variations in the percentage of
distinct states.
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this assumption is in general.

5.6.4 Limitations

Although it is more efficient to run tests only in states that have not already been encountered,

there is a memory cost associated with tracking all the previously-seen states. Regardless

of how space efficient the solution may be, a program with many instrumented functions

and many distinct program states could have fairly large memory requirements. Future

work could assess the practical implications when it comes to additional memory usage.

Aside from the general issue related to memory cost, the specific prototype implemen-

tation we have presented here does have some limitations, based on the assumptions stated

above. The use of the Cantor function to create a unique hash value for each state does

have a practical upper bound in that we cannot store arbitrarily large values in a single

variable in C or Java. The Cantor function could conceivably reach the limit of the “double”

datatype depending on the values and the number of variables. A solution that scales to

arbitrarily large states may not be able to take advantage of the speed of the O(1) hashing

function and O(log256n) lookup in the Judy Array (thus making its usefulness questionable),

or would need to allow for false positives and/or false negatives.

Also, we have made some assumptions regarding the types of variables that can be

tracked as part of the state, specifically limiting to primitive datatypes (int, float, char, etc.),

arrays of those types of data, and values referred to by pointers, but not arbitrarily complex

types such as Objects, structs, and such. This can conceivably be addressed by using

type-specific hashing functions, analogous to the Cantor function used for numerical values;

however, depending on the uniqueness of the hash codes, this too may introduce false

positives, meaning that the system incorrectly believes that the current state has previously

been observed. Clearly this would not be desirable, since the result would be that tests or

analyses are not performed, even though they should be.

Future work could consider using distributed In Vivo Testing [40] to devise an approach
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so that tests are only run in globally-unseen states. It may also be possible to distribute

the test cases in advance [91, 121], so that a particular instance of the application is not

concerned with all previously-seen states, only the ones for which it is responsible.

5.6.5 Broader Impact

The ability to quickly determine at runtime whether the current program state has previ-

ously been encountered has practical application for many testing and dynamic analysis

approaches beyond In Vivo Testing.

For instance, model checking techniques could benefit from knowing whether a function

has already been run in a given state. A function may be executed once in a particular state,

and then be revisited later via a different execution path, but be set for execution in the same

state as before. If it were known that the function had already been checked in that state,

then pruning could occur at that point, reducing the number of paths that later need to be

investigated. This would be particularly useful for distributed model checking frameworks

[91], which require knowing which parts of the state space to distribute, based on which

ones have already been considered.

If the set of states in which a function had been executed were known, then checking

the set of previously-encountered states could also be used for security testing. We have

previously demonstrated [49] that tests in deployed software could be used to check for

“security invariants” [21], the violation of which indicate a vulnerability in the software. In

that approach, the invariants are test cases written by the tester or developer. However, if

the set of acceptable good states (or known bad states) were automatically pre-populated

in advance, then it would be easy to determine whether a given function execution should

or should not be allowed, given the current state; control could then be sent to a “rescue

point” [169] if a known bad state were encountered. Even if the set were not pre-populated,

the approach could be used for anomaly detection, i.e., determining whether a particular

execution occurs in a state that varies greatly from previous executions.
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The application state data collected at runtime could also be sent back to the developers,

as it may be useful for the developers of the software to know which functions are being

called with what arguments, the number of times the functions are called, the frequency

with which they are called in the same state, etc. This information could then be used in

regression testing and test case selection [56]. If the sequence of function calls and their

corresponding states were also recorded, the data could then be used for fault localization:

once an test fails in the field, the developers could investigate the history of function calls

in the different application states, culminating with the failed test, and then compare it to

executions that did not fail and use techniques such as delta debugging [200] to determine

where the defect may have occurred.

Last, such a technique could be used for automatic memoization [142], in that the

results (i.e., the output and any side effects) of functions can automatically be cached, thus

speeding up the application further. That is, if it can quickly be determined that the function

has already been called with the same set of arguments and/or in the same application

state, then if the results of the function are already known, there is no need to perform the

calculation a second time. Rather, the cached results can be returned, without having to

actually execute the function.

5.7 Summary

In this chapter, we have presented In Vivo Testing, a novel testing approach that supports the

execution of tests in the deployment environment, without affecting that application’s state.

This technique addresses the problem of not being able to sufficiently test an application in

a limited amount of time prior to its release, and can be used to detect defects hidden by

assumptions of a clean state in the tests, errors that occur in field configurations not tested

before deployment, and problems caused by unexpected user actions that put the system in

an unanticipated state
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We have also presented In Vivo tests, which execute within a running application and

test properties of the application that must hold regardless of the state the process is in.

Additionally, we have described an implementation of our framework in C and Java, called

Invite, which adds limited overhead in terms of system performance and code modification.

In doing so, we have proven the third and final part of the hypothesis stated in Section

1.6, that “it is feasible to continue this type of testing in the deployment environment,

without affecting the user.”



Chapter 6

Related Work

6.1 Addressing the Absence of a Test Oracle

Baresi and Young’s 2001 survey paper [15] describes common approaches to testing

software without a test oracle. Each of the general approaches from that paper are discussed

here. Although other researchers have looked into domain-specific techniques for creating

test oracles (e.g., for testing GUIs [120] or web applications [174]), we are not aware of any

other significant advances in testing applications without test oracles in the general case,

particularly in the domains of interest: machine learning, scientific computing, simulation,

and optimization.

6.1.1 Embedded Assertion Languages

Programming languages such as ANNA [111] and Eiffel [124], as well as C and Java, have

built-in support for assertions that allow programmers to check for properties at certain

control points in the program [43]. In Metamorphic Runtime Checking and In Vivo Testing,

the tests can be considered runtime assertions; however, approaches using assertions

typically address how variable values relate to each other, but do not describe the relations

between sets of inputs and sets of outputs, as we do in Metamorphic Runtime Checking,

201
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or allow for the execution of arbitrary test code, as in In Vivo Testing. Additionally, the

assertions in those languages are not allowed to have side effects; in our approaches, the

tests are allowed to have side effects (in fact they almost certainly will, since the function is

called again), but these side effects are hidden from the user. Last, complex assertions (such

as checking for data structure integrity [52]) typically preempt the application by running

sequentially with the rest of the program, whereas in Metamorphic Runtime Checking

and In Vivo Testing the program is allowed to proceed while the properties are checked in

parallel.

Others have reported on the effectiveness of runtime assertions in general [100, 160],

and of the invariants created by Daikon in particular [141, 153]. Although some have

specifically considered using invariants in place of test oracles [39], the empirical studies

presented in Section 3.4, as well as studies independently conducted by Hu et al. [85],

demonstrate that metamorphic testing is more effective overall than runtime assertion

checking in detecting defects in programs without test oracles.

Note that the techniques described in this thesis do not preclude the use of the embed-

ded assertions. As demonstrated by the experiments in Section 3.4, the combination of

metamorphic testing and runtime assertion checking is more effective than either technique

alone. Additionally, we suspect in practice that the identification of metamorphic prop-

erties (at the system level or function level) would likely occur at the same point in the

software development process as the identification of invariants and assertions, making the

approaches complementary.

6.1.2 Extrinsic Interface Contracts and Algebraic Specifications

One approach identified in Baresi and Young’s paper is the use of extrinsic interface

contracts, which are similar to assertions except that they keep the specifications separate

from the implementation, rather than embedded within. Examples include languages like

ADL [165] or techniques such as using algebraic specifications [45].
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Algebraic specifications often declare legal sequences of function calls that will produce

a known result, typically within a given data structure (e.g., pop(push(X, a)) == X in a Stack

implementation) [164], whereas metamorphic properties typically describe how the outputs

of a single function should relate when the input is changed in a particular way. Additionally,

algebraic specifications are typically used to formulate axioms that are then employed to

create test cases for particular data structures [66], but are not as powerful for system-level

testing in general, since the system itself may not have such properties. Although the tests

that are generated do have oracles for the individual cases, the approach cannot be used

to create general oracles for arbitrary test cases, i.e., for program operations that do not

have associated algebraic specifications, or for the entire system. This is analogous to the

fact that Metamorphic Runtime Checking is principally only effective for functions that

have metamorphic properties; in our case, though, we also address the use of system-level

metamorphic testing to consider metamorphic properties at the application level, which is

not a part of the algebraic specification approach.

The runtime checking of algebraic specifications has been explored by Nunes et al.

[143] and by Sankar et al. [164], though the implementations of these runtime checking

frameworks address the issue of side effects either by cloning objects [143], which raises

issues of deep cloning and is only suitable for languages like Java; or by rolling back any

side effects [164], which the authors admit may not be possible in all cases. The approaches

described in this thesis use a process fork or a virtualization layer, which circumvents these

issues by giving the test its own process in which to run. More importantly, these previous

works have considered the specification of only small parts of the application, such as data

structures, and do not consider properties of functions in general, nor do they investigate

mechanisms for using the properties to conduct system testing, as we do here.

Others have looked at the automatic detection of algebraic specifications [80]; the

automatic detection of metamorphic properties is outside the scope of this work, but is

discussed in Future Work in Section 7.2.
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6.1.3 Pure Specification Languages

Coppit and Haddox-Schatz [48] have demonstrated that formal specification languages can

be effective in acting as test oracles, by converting the specifications into assertions and

invariants that can be checked at runtime. As shown by the empirical studies in Section 3.4,

however, metamorphic testing is typically more effective than such an approach, particularly

for non-deterministic applications. For instance, consider the case in which a function

should return a random number in the range [a, b], but because of a defect actually returns

a number in [a, b-1]. An invariant created from the formal specification would not detect

this defect because no single execution violates the property that the result should be in [a,

b]. However, statistical metamorphic testing would detect this defect because, over many

executions, the observed mean and variance differ from what is expected.

Richardson et al. [159] presented a technique for developing a test oracle (as state-based

test cases) from a specification, and others have looked into the generation of test oracles

from program documentation [41, 150], on the assumption that it represents a reasonable

approximation of the specification of the system.

As mentioned earlier, though, the specifications used in these approaches need to be

complete in order to be useful [164]. Others have pointed out that specification languages

often must make a trade-off between expressiveness and implementability, such that if the

language is sufficiently expressive, it becomes hard to write an implementation [182], or

to automatically determine whether the software under test is actually adhering to that

specification [15]. Further investigation into this phenomenon could determine which, if

any, specification languages are most effective from a practical point of view at revealing

defects in programs without test oracles.

Approaches to using specification languages as oracles are limited in practice to smaller

applications (or small parts of applications), for which it may be easier to write a formal

specification. The metamorphic testing approaches presented in this paper should scale to

arbitrarily-large applications, assuming metamorphic properties can be identified. Given
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that most applications in the domains of interest (machine learning, simulation, scientific

computing, etc.) are likely to be developed by scientists and not by software engineers [26],

the likelihood that a complete formal specification exists may be quite small. However,

metamorphic testing only requires knowledge of what the application is meant to do, not

necessarily how it is (or should be) implemented. Thus, the scientists or researchers who

develop the application would be in the best position to identify the metamorphic properties

and test the software.

6.1.4 Trace Checking and Log File Analysis

Last, it may be possible to perform trace or log file analysis to determine whether or not the

program is functioning correctly, if for instance it is conforming to certain properties (like a

sequence of execution calls or a change in variable values) that are believed to be related to

correct behavior; or, conversely, to see if it is not conforming to these properties. Some

researchers have investigated the effectiveness of these techniques for specific domains,

such as network communication protocols [64] or graphical user interfaces [122], or by

using anomaly detection based on models that are assumed to already exist [187]. However,

others have demonstrated that the content of the log/trace files must be carefully planned

out, often by someone with great knowledge of the application, in order to be of use in

the general case [4], especially if it is necessary to learn a new specification or analysis

language [196]. That is, the creation of an oracle to tell if the trace is correct can be just as

difficult as creating an oracle to tell if the output is correct in the first place, assuming it is

even possible at all.

If the correct model of execution cannot be known in advance, a related approach is

to observe numerous program executions that are assumed to be correct for a set of given

inputs, and then look for deviations or anomalies in subsequent executions with a different

set of inputs. Such techniques are common in the security domain, e.g., intrusion detection

based on anomalous sequences or patterns of system calls [59, 189], or virus detection
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based on anomalous access to the Windows registry [8]. However, these approaches are

likely not applicable to the problem of detecting the types of calculation defects investigated

in this thesis. Anomaly detection has been used for fault localization [11, 101, 106] or for

fault detection using dynamic [75] or static [57] analysis, though these testing techniques

typically represent the model of observed (and assumedly correct) execution as a set of

program invariants, which in Section 3.4 were shown to be less effective than metamorphic

testing in detecting defects in applications without test oracles.

6.2 Metamorphic Testing

The idea of applying metamorphic testing to situations in which there is no test oracle was

first suggested by Chen et al. [37], though these works only presented the idea in principle,

considering situations in which there cannot be an oracle for a particular application [36, 38],

or in which the oracle is simply absent or difficult to implement [28]. Others have applied

metamorphic testing to specific domains such as bioinformatics [33], network simulation

[35], machine learning [195], and graphics [71], using domain-specific or application-

specific metamorphic properties. In our work, we have attempted to identify general

classes of metamorphic properties that can be used in many different domains, including

simulation and optimization (two areas to which metamorphic testing had not previously

been applied). Additionally, previous work has conducted metamorphic testing using

system-level properties and/or function-level properties that are tested in isolation (akin to

standard unit testing), whereas we have introduced a new concept in Metamorphic Runtime

Checking, and demonstrated its effectiveness compared to system-level metamorphic testing

in Section 4.5.

The study presented in Section 3.4 is most similar to that of Hu et al. [85], in which

they compare metamorphic testing and runtime assertion checking. However, their study

only compares deterministic applications. To our knowledge, we are the first to compare
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metamorphic testing to other approaches for testing applications that are non-deterministic

and do not have a test oracle. Also, in their study the assertions are created manually by

graduate students, and not automatically detected with a tool such as Daikon, as we do

here. This stems from the fact that the programs used in their experiments are considerably

smaller than the applications we investigate; manually generating the assertions would

likely have been error-prone in our experiment, given the complexity of the applications.

Although this seems to reduce the novelty of our work, we point out that the authors did

not consider an approach based on simple inputs (i.e., the partial oracle) in their evaluation;

given the apparent ease of such a testing technique, it is an important contribution to

empirically show that metamorphic testing can actually reveal more defects, as we have

shown here. It is worth mentioning, though, that our results are consistent with theirs in

that metamorphic testing is shown to be more effective than assertion checking at revealing

defects in programs that do not have test oracles.

Gotleib and Botella coined the term “automated metamorphic testing” [68] to describe

how the process can be conducted automatically, but their work focuses on the automatic

creation of input data that would reveal violations of metamorphic properties, and not on

automatically checking that those properties hold after execution. That is, for specified

metamorphic property of a given function, they attempt to construct test data that would

violate that property. Like most static techniques, this approach has issues related to

scalability, as it only is useful in practice for individual functions and not for entire

applications; additionally, the implementation is limited in scope because of necessary

assumptions related to the use of constraint logic programming [118], which cannot handle

arbitrary data structures and pointers.

Beydeda [18] first brought up the notion of combining metamorphic testing and self-

testing components so that an application can be tested at runtime, as we do in Metamorphic

Runtime Checking, but did not investigate an implementation or consider the effectiveness

on testing applications without oracles. I contacted Dr. Beydeda and he said that this paper
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was the only work he performed in this area, and he is not researching it any further [19].

Our work extends that initial idea by providing implementation details and evidence of

feasibility and effectiveness.

Metamorphic Runtime Checking is in a sense similar to fuzz testing [177] in that

function inputs are modified during program execution, and then the function is re-run with

the new inputs. However, in fuzz testing, there is no expected relationship between the

original output and the output that comes from the modified input, unlike in metamorphic

testing, in which there is an expected relationship between the outputs, and a violation of that

relationship is indicative of a defect. In fuzz testing, the goal is to force erroneous behavior

(e.g., a program crash), which is more appropriate for detecting security vulnerabilities than

for the types of defects investigated in this thesis.

Outside of Guderlei and Mayer’s work on statistical metamorphic testing [71], we are

not aware of any other investigation of using metamorphic testing techniques for testing

non-deterministic applications. As noted in the description of Heuristic Metamorphic

Testing (Section 3.3), statistical metamorphic testing can only be used for applications

that produce outputs that have statistical properties, such as mean and variance, whereas

Heuristic Metamorphic Testing is applicable to the more general case of non-deterministic

applications in which profiles of outputs can expected to be “similar” (according to some

domain-specific definition of similarity) across multiple executions.

6.3 Self-Testing Software

While the notion of “self-checking software” is by no means new [197], much of the

recent work in self-testing components has focused on commercial off-the-shelf (COTS)

component-based software. This stems from the fact that users of these components often do

not have the components’ source code and cannot be certain about their quality. Approaches

to solving this problem include using retrospectors [104] to record testing and execution
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history and make the information available to a software tester, and “just-in-time testing”

[105] to check component compatibility with client software at the time of its use. Work

in “built-in-testing” [188] has included investigation of how to make components testable

[17, 20, 22, 117], and frameworks for executing the tests [53, 116, 123], including those in

Java programs [54], or through the use of aspect-oriented programming [115]. However,

none of these address the issue of testing applications without test oracles, or of using

properties of the individual functions to perform system testing.

In light of all these important contributions, In Vivo Testing differentiates itself by pro-

viding the ability to test any part of the system without requiring extensive modification to

the original source to provide special functional and testing interfaces [9, 185], or enforcing

a rearchitecture of the application to allow for the use of testers and controllers/handlers

[14, 126, 185]. The advantage of the In Vivo Testing approach over these others is that

we are providing a framework for allowing an application to test itself with minimal or no

modification, as opposed to prescribing a methodology for developing an application so

that it may be tested after its deployment. However, it may be interesting to consider how

an application should be designed in order to maximize the effectiveness of In Vivo Testing;

this is described in Future Work (Section 7.2).

6.4 Runtime Testing

6.4.1 Testing in the Deployment Environment

All of the testing approaches presented in this thesis allow for the software to test itself,

conceivably after the software has been deployed into the field. This is inspired in part by

the idea of “perpetual testing” [148, 158, 199], which suggests that analysis and testing of

software should not only be a core part of the development phase, but also continue into the

deployment phase and throughout the entire lifetime of the application. Perpetual testing

advocates that these should be on-going activities that improve quality through several
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generations of the product, in the development environment (the lab, or “in vitro”) as well

as the deployment environment (the field, or “in vivo”). The In Vivo Testing approach is

a type of perpetual testing in which the tests are executed from within the context of the

running application and do not alter the application state from the user’s perspective.

In Vivo Testing is also a form of “residual testing” [149]. This type of testing is

motivated by the fact that software products are typically released with less than 100%

coverage, so testers assume that any potential defects in the untested code (the residue)

occur so rarely so as not to bear consideration. Much of the research in this area to date has

focused on measuring the coverage provided by this approach by looking at untested residue

[137, 149] or by comparing the coverage to specifications [136]. However, this work does

not consider the actual execution of tests in the deployment environment, as we explore

here. Those approaches describe measurements of the residue, whereas we are attempting

to discover the residual defects by conducting tests. The In Vivo Testing approach does not

currently address coverage, but could be extended to do so, e.g., emphasizing testing of

the residue but not restricting the testing to only the residue, since defects could reside in

already-tested code.

Other approaches to testing software in the field include the monitoring, analysis, and

profiling of deployed software, as surveyed by Elbaum and Hardojo [56]. These include

the following:

• Skoll [94, 121] has extended the idea of round-the-clock “continuous testing” [162]

into the deployment environment by carefully managed facilitation of the execution

of tests at distributed installation sites, and then gathering the results back at a central

server. The principal idea is that there are simply too many possible configurations

and options to test in the development environment, so tests can be run on-site to

ensure proper quality assurance. Whereas the Skoll work to date has mostly focused

on acceptance testing of compilation and installation on different target platforms, In

Vivo Testing is different in that it seeks to execute tests within the application while it
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is running under normal operation. Rather than check to see whether the installation

and build procedure completed successfully, as in Skoll, In Vivo Testing executes

tests as the application runs in its deployment environment. Additionally, although

the In Vivo approach does not currently address performance testing, as Skoll does,

our approach could be enhanced to maintain records of resource utilization of the

individual units tested, for instance to help detect bottlenecks where optimization

may be warranted, or in cases where a priori assumptions about resource utilization

turn out to be off base in the field for a particular installation.

• Gamma [144, 145] uses an approach called “software tomography” to divide mon-

itoring tasks and then reassemble gathered information. Unlike In Vivo testing,

Gamma does not seek to actively test the application as it runs in the field. Rather, it

only monitors the program, typically considering coverage (statement, basic block,

method, or class) for purposes of profiling. This information can then be used for

onsite modification of the code (for instance, by distributing a patch) to fix defects,

but the approach does not detect defects on its own. It has, however, been used to

perform anomaly detection [11], though this only considers program execution paths

and not whether tests pass or fail when run in the field. It is possible, then, that the

approaches described in this thesis could be used in conjunction with Gamma, which

could dynamically modify the profiling tasks at runtime according to the results of In

Vivo Tests or Metamorphic Runtime Checking.

• Cooperative Bug Isolation [101] enables large numbers of software instances in

the field to perform analysis on themselves with low performance impact, and then

report their findings to a central server, where statistical debugging is then used to

help developers isolate and fix defects. This approach is more suited towards fault

localization than fault detection, as it requires some other mechanism to indicate that

a particular program execution is faulty, so that it can then be debugged using data
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collected from non-faulty executions. The work on Cooperative Bug Isolation to

date has considered cases in which the fault cause the program to crash or hang. For

faults related to functional or computational correctness, however, In Vivo tests could

conceivably be used to indicate that there is a defect.

6.4.2 Reducing Performance Overhead

In Section 5.6.5, we described how it is possible to reduce the overhead of runtime moni-

toring and testing by only conducting tests in previously-unseen states. Other approaches

to reducing this overhead have included the use of static analysis to remove unnecessary

instrumentation [198], or pre-determining when to execute uninstrumented “fast cases”

instead of instrumented “slow cases” [101]. The techniques could possibly be combined to

reduce performance costs even further.

Much of the work in the representation of application state at runtime has focused on

anomaly detection, i.e., determining that the application is in a state that is outside the

range of what is expected [75]. These works also deal with the issue of “has this state been

seen before?”, but the representation of state in those approaches is based on a finite state

machine that considers the execution path up to that point, and not the set of variable values.

However, future work could investigate how state-based anomaly detection techniques and

the approach presented here could be combined, for instance by further simplifying the

representation of expected states according to semantic equivalence.

6.5 Domain-Specific Testing

The work we have presented in this thesis is particularly applicable to domains in which

there is no test oracle, specifically machine learning, simulation, and optimization, but also

areas of scientific computing.
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6.5.1 Machine Learning

Although there has been much work that applies machine learning techniques to software

engineering in general and software testing in particular [23, 30, 201], we are not currently

aware of any work in the reverse sense: applying software testing techniques to machine

learning applications, particularly those that have no reliable test oracle. Orange [51] and

Weka [194] are two of several frameworks that aid machine learning developers, but the

testing functionality they provide is focused on comparing the quality of the results, and

not evaluating the “correctness” of the implementations. Repositories of “reusable” data

sets have been collected (e.g., the UCI Machine Learning Repository [138]) for the purpose

of comparing result quality, i.e., how accurately the algorithms predict, but not for the

software engineering sense of testing.

Testing of intrusion detection systems [119, 139], intrusion tolerant systems [113],

and other security systems [13] has typically addressed quantitative measurements like

overhead, false alarm rates, or ability to detect zero-day attacks, but does not seek to ensure

that the implementation is free of defects, as we do here. An intrusion detection system

with very few or no false alarms could still have bugs that prevent it from detecting many

(or any) actual intrusions, making it completely undependable.

6.5.2 Simulation and Optimization

Researchers concerned with the verification of simulation software often acknowledge the

need for software testing, but typically do not present techniques beyond what is common

for all types of software [12, 92, 166], such as test-driven development or using code

reviews. Others have focused on using formal specifications [180], as have researchers

investigating the verification of optimization software, as in compiler optimizations [96, 99].

However, as described above, the use of formal languages to act as an oracle can be

challenging from a practical point of view, given that the specification often needs to be

complete in order to be useful. Additionally, the creation of a formal specification can
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be fairly complex after the software has already been developed, and requires intimate

knowledge of the algorithm being implemented. In the studies presented in Section 3.4,

however, we showed that even with a basic understanding of the simulation (JSim) and

optimization (gaffitter) software, we were able to create metamorphic properties that were

more effective than other approaches at finding defects.

6.5.3 Scientific Computing

Some of the recent research presented at the 2009 ICSE Workshop on Software Engineering

for Computational Science and Engineering addressed many of the issues that arise in

testing applications in domains without test oracles. Hannay et al. pointed out that

scientific computing software is often developed by scientists (as opposed to professional

programmers or software engineers) who understand that software testing is important, but

generally feel that they have insufficient understanding of software testing concepts [77].

Heroux and Willenbring suggested a test-driven approach for developing such software

[81]; as pointed out in Section 2.4, the identification of metamorphic properties early in the

specification phase would likely enhance the effectiveness of metamorphic testing. Hook

and Kelly described a testing approach for scientific software that, aside from algorithm

verification and scientific validation, calls for “code scrutinization”, i.e., specifically looking

for common defects such as off-by-one errors or incorrect use of array indices [84]. As

demonstrated by our empirical studies, metamorphic testing may be used instead of code

inspection to effectively detect such errors instead.

Last, although we did not apply any of the metamorphic testing techniques to applica-

tions in scientific computing per se, we note that many such applications depend on machine

learning components, which we have investigated here. Also, Chen et al. [33] have applied

metamorphic testing to scientific computing programs (specifically in bioinformatics), with

favorable results.



Chapter 7

Conclusion

7.1 Contributions

In this thesis, we have presented new techniques for applying metamorphic testing to

software without test oracles, evaluated those techniques, and demonstrated that the tech-

niques can also be applied to testing any type of application as it runs in the deployment

environment. The main contributions of this thesis are as follows:

• We are the first to present a general set of metamorphic testing guidelines (Section

2.4) that can be followed to assist in the formulation and specification of metamorphic

properties. We have demonstrated that numerous applications in domains without

test oracles exhibit metamorphic properties that fall into the seven categories that we

identified, based generally on linear transformations, translations, or set modification.

We have also provided suggestions on how metamorphic testing can fit into the

overall software development process.

• We have introduced a new testing technique called Heuristic Metamorphic Testing

(Section 3.3), which is specifically designed to test non-deterministic applications

that do not have test oracles. In this approach, the application is run multiple times to

create a profile of the expected outputs, according to a domain-specific heuristic, and

215
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then the metamorphic transformation is applied to the input. The application is then

run multiple times again with the new input, and a measurement is taken to see if the

profile of the new outputs is statistically similar to what is expected. If not, then a

defect has been detected.

• We have presented the results of new empirical studies (Section 3.4) showing that the

metamorphic testing approaches are more effective at detecting defects in applications

without test oracles than other software testing techniques, including the use of partial

oracles and runtime assertion checking. We are the first to conduct such studies on

non-deterministic applications.

• We have described a new type of testing called Metamorphic Runtime Checking

(Section 4.1). Rather than test the application using system-level metamorphic

properties, this approach involves the execution of function-level metamorphic tests

from within the running application, i.e., the application launches its own tests at

designated points in the program, within its current runtime context and using the

current function inputs. We have demonstrated that this approach can detect defects

not found by system-level metamorphic testing alone, and is more effective overall at

detecting defects in functions for which metamorphic properties have been identified.

• Last, we have presented a new technique called In Vivo Testing (Section 5.1). This

approach allows software to perform any type of test (not just metamorphic tests) as

defined by the programmer, including unit or integration tests, or special “In Vivo

tests” that are designed to check properties of the system that should hold in any

application state. The In Vivo Testing framework, called Invite, ensures that any side

effects from the tests do not affect the state of the application from the end users’

perspective. We have also demonstrated that our implementation is feasible for use

in the deployment environment, in that hundreds or even thousands of tests can be

run with only one second of performance overhead.



CHAPTER 7. CONCLUSION 217

This work has also led to the publication of four conference papers on metamorphic

testing [131, 132, 133, 195], and four conference and workshop papers on In Vivo Testing

[40, 49, 130, 134]. Additionally, six graduate students and three undergraduates gained

research experience by participating in the work described in this thesis.

7.2 Future Work

There are a number of interesting future work possibilities, both in the short term and

further into the future.

7.2.1 Immediate Future Work Possibilities

• Ensure that the test code does not modify anything external to the system. The

most critical limitation of the current Amsterdam, Columbus, and Invite implementa-

tions is that anything external to the application process itself, e.g., database tables,

network I/O, etc., is not included in the sandbox and modifications made by a test may

therefore affect the external state of the original application. Although this appears

to limit the usefulness of the approach, we note, however, that in our experiments,

the current sandbox implementation (which provides the test process with its own

memory space and own view of the file system) was sufficient for the applications

we tested: none of the applications used an external database or network I/O (the

network intrusion detection system PAYL has an offline mode that was used in our

experiments). For database-driven applications, it may be possible to automate the

creation of sandboxed database tables using copy-on-write technology (as in Mi-

crosoft SQL Server 1) or “safe” test case selection techniques that ensure that there

will be no permanent changes to the database state as a result of the tests [191, 192].

• Support automatic fault localization. Although the approaches can record a test

1http://msdn.microsoft.com/en-us/library/ms175158.aspx
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failure and know which test failed, it may not be obvious what is the root cause of the

failure (invalid system state, invalid function arguments, configuration, environment,

combination thereof, etc.). Thus, the system could take a snapshot of the relevant

parts of the state (i.e., the ones that could have affected the outcome of the test)

and record those in the failure log as well, for further analysis. If these logs are

aggregated by the software developer, a failure analysis technique (e.g., [11] or [101])

could be used to try to isolate the fault. However, given that research into fault

localization techniques it typically targeted at defects that cause the application to

crash, or assume the presence of an oracle, challenges will arise in determining the

source of the error in applications for which the correct output cannot be known in

advance.

• Automatically detect properties that can be used to aid in the generation of

tests. Although prior work has been done in automatically determining algebraic

specifications [80] and in categorizing metamorphic properties [131], as of now it is

necessary for the software developer or tester to discover and specify the properties

and/or write the tests required for metamorphic testing. As discussed in Section 2.4,

it may be possible to automate this process, using static or dynamic techniques.

7.2.2 Possibilities for Long-Term Future Directions

• Explore soundness of metamorphic properties. The violation of a metamorphic

property does not necessarily indicate a defect: it is possible that the property may

not be sound. Future work could investigate how a tester would be able to tell the

difference. On a related note, others have demonstrated that, at the risk of false

positives, when using model-based testing approaches, an unsound model (or, in our

case, unsound metamorphic properties) may reveal defects that more restrictive sound

properties would not [72]. For instance, we previously pointed out a metamorphic

property in the ML ranking algorithm MartiRank that permuting the order of the
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input data should not affect the output, but only assuming that the values in the

input are all distinct, since MartiRank uses stable sorting. However, we can remove

this assumption and concede that although this metamorphic property is not sound

(because for some inputs, it will not be true), it may reveal actual defects that may

not be detected if we included the original constraint that all values must be distinct.

That is, there may be a tradeoff of accepting false positives in the hopes of finding

more errors.

• Multi-process or distributed applications. As multi-core processing and cloud

computing become more and more prevalent, many applications in domains like

scientific computing use parallel and/or distributed processing techniques to reduce

execution time. This raises new challenges of testing these applications, particularly

when using approaches based on checking properties of the code in various appli-

cation states (such as Metamorphic Runtime Checking or In Vivo Testing), since

those states may be distributed across multiple processes and/or multiple machines.

Static techniques have been suggested for testing such applications [170], but run

into issues of scale and the need for a representative model to act as an oracle. Future

work could consider ways of checking properties (metamorphic or otherwise) in these

applications when the properties rely on data that may not all be in a single process.

• Enable collaborative defect detection and notification. Aside from just sharing

the performance load of conducting the In Vivo tests, the frameworks could be

modified to allow instances in so-called “application communities” [108] to notify

each other when a defect is discovered, so that other instances can try to reproduce the

failed test, which would further aid in fault localization. In some application domains,

for instance scientific computing, it may also be desirable for the system to notify the

user that a defect may have been detected, and that the results of the calculation may

not be correct. Additionally, the distributed In Vivo Testing approach (Section 5.3.5)
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could be modified so that the server dynamically reassigns testing responsibilities

based on global testing load or global overhead, e.g., ensuring that the overhead

across all instances is minimized. Whereas other systems, such as Skoll [121], do

this statically by using an a priori planning algorithm, testing responsibilities could

be dynamically assigned based on each instance’s execution profile, so as to increase

the likelihood of running tests in a variety of different environments, configurations,

and application states.

• More efficient test execution. Future work could also consider which functions to

instrument so as to increase the probability of detecting defects, the percentage of

function calls that should launch tests, the optimal timing for when tests should be

run, or how to test code that is not in the execution path, since the current frameworks

only execute tests based on actual invocations of the instrumented functions. This

would most likely vary greatly depending on the type of application and the defects

that are being targeted.

• Evaluate impact on the software development process. As described previously

in Section 2.4, in practice we would expect that the metamorphic properties would be

identified as part of the planning and architecture phase, and included in the program

specification. However, the fact that metamorphic testing (at either the function level

or the system level) will be used may affect the design of the application, e.g., creating

smaller functions that are easier to test, or that take inputs and produce outputs for

which it is easy to check the metamorphic properties. Some application designs may

be more amenable to metamorphic testing than others. Moreover, we can consider

the way that software is developed in the domains of interest (scientific computing,

machine learning, etc.) and get an understanding of how metamorphic testing can be

integrated into the processes used in those fields.
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7.3 Conclusion

In this thesis we have explored approaches and frameworks for testing software applications

for which there is no reliable test oracle. In some cases, developers’ knowledge of the

software’s properties is used to create tests that are executed “from within”, but do not

affect the state of the executing program. In other cases, properties of the entire application

can easily be specified so that system testing can be performed while the program runs. We

have demonstrated that such approaches are feasible for revealing defects in real world

programs, and are more effective than using other testing techniques.

Testing in the deployment environment and addressing the testing of applications

without oracles have been identified as two of the future challenges for the software testing

community [16]. As programs without test oracles - such as those in the domains of

machine learning, simulation, optimization, and scientific computing - become more and

more prevalent and mission-critical, ensuring their quality and reliability gains the utmost

importance.
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