
A Real World Identity Management System with Master Secret
Revocation

Elli Androulaki, Binh Vo and Steven Bellovin
{elli, binh, smb}@cs.columbia.edu

Technical Report CUCS-008-10

Abstract. Cybersecurity mechanisms have become increasingly important as online and offline worlds
converge. Strong authentication and accountability are key tools for dealing with online attacks, and
we would like to realize them through a token-based, centralized identity management system. In this
report, we present a privacy-preserving group of protocols comprising a unique per user digital identity
card, with which its owner is able to authenticate himself, prove possession of attributes, register himself
to multiple online organizations (anonymously or not) and provide proof of membership. Unlike existing
credential-based identity management systems, this card is revocable, i.e., its legal owner may invalidate
it if physically lost, and still recover its content and registrations into a new credential. This card will
protect an honest individual’s anonymity when applicable as well as ensure his activity is known only
to appropriate users.

1 Introduction

Existing master secret based privacy preserving identity systems offer many advantages. Users
in these systems may obtain anonymous certificates from a central certificate authority, use these
certificates to register anonymously in various organizations and obtain pseudonymous membership
credentials. The credentials issued are unforgeable and can provide conditional anonymity and user-
activity untraceability that is revokable for misbehaving users. Concurrently, master secret being
so important for their online activity, users are motivated not to share their master secret; thus,
credentials cannot be used by others. Unfortunately, current anonymous credential systems fail to
consider many “real world” issues and this is the theme of this report.

First of all, most credential systems do not have a scalable solution for credential blacklistability.
This is important given the large number of identity theft cases in the real world. Another “real
world” issue is variety in organization registration policies. For example, a bank will probably
require a lot more information to register a user than an online subscription service. However,
the most important deficiency of current credential systems is the the lack of a proper secret
information update procedure. In “master-secret”-driven centralized systems, master secrets may
be compromised or stolen and, currently, there is no efficient way for a user to transfer his old
registrations and credentials to his new account, meaning that he has no advantage over an attacker
who has compromised his old secret.

In this report we address all of these issues in an identity management architecture which will
be the base of our system. In particular, we present a privacy preserving and master secret-based
identity management system, where every individual can generate a single master secret, which he
can

– use to prove identity multiple times unlinkably and anonymously,
– use to register to multiple organizations along with other credentials depending on each orga-

nization’s policy

– update in a manner that recursively updates all generated sub-credentials
– recover, when lost or destroyed

We emphasize the fact that our system is deployable, in other words:

– we make “real world” assumptions on our adversary’s powers,
– we consider “real world” settings for the various organizations
– we propose protocols that scale for a large group of participants

Organization. This report is organized as follows: in sections 2, 3.2 and 3.3 we present the
architecture, threat model and requirements of our system; in section 4 we present our protocols,
while in section 5 we elaborate on how privacy, security and security are incorporated in our
protocols.

2 A centralized privacy-preserving architecture

As mentioned before, in our system individuals have a single identity, register with a public author-
ity, and obtain government-issued credentials. Individuals may use these credentials to participate
in a number of real-world interactions, which include, without being limited to, the most impor-
tant id-based activities of an individual, such as handling of employment, management of bank
accounts, verification of specific attributes of the individual (e.g. legal drinking age), and regis-
tration in multiple online or offline clubs, associations or services. As discussed in section ??, our
identity management system consists of the following entities:

– Users, who may interact with other users or organizations in order to perform various tasks. A
single user should map directly to a citizen.

– The Registration Authority (RA), which is responsible for registering users and managing the
construction, modification, and destruction of government-issued credentials. In keeping with
the mapping between users and citizens, this will likely be realized by a country’s official citi-
zenship registry, for example the social security office.

– Special financial organizations, who include employers that form employment relationships with
users and banks that allow users to open accounts for the purpose of storing cash and handling
financial transactions.

– Non-financial organizations, who may wish to extend membership to users and are not re-
sponsible for tax reporting. Such organizations may include gym centers, schools, commercial
websites, etc.

Currently in the real world, citizens collaborate with an authority similar to RA to issue a national
identity card. This card provides a physical proof of identity which they use to open accounts in
banks, to be employed and receive their payments, and to prove their age. However, users are not
currently required to prove their national identity in online communications and, thus, cannot be
punished for misbehaving in these systems. In order to deal with this, we propose an architecture,
where each valid user interacts with RA to obtain credentials stored in an identity card IDC. Each
user with an IDC can prove that he is associated with a valid national identity without revealing
it. He can thus open bank accounts, register to many other online and offline organizations, while
assuring them that he can be held accountable if he misbehaves according to their established
policy. In the following section we will elaborate on the specifications of our system.

2

3 A model for Privacy Preserving Identity Management

To achieve the required user-activity centralization — imposed by our needs for accountability and
strong authentication — in our system, each user U generates a unique master secret msU, which will
be accounted for when the former misbehaves.1 Users must use their master secret to authenticate
themselves towards multiple organizations and are thus highly motivated not to share it. Seemingly
contradictory to accountability, privacy requires that IDC-ownership demonstration does not leak
any information regarding its owner or link multiple interactions of the latter. To achieve the
aforementioned properties we use [taks07] (see section 4.1) as a base for the user-membership in
our system (RA-registration). The registration authority RA maintains two important databases:
the DBRA, where the registered-user information is stored, and the BLRA, which serves card and
user blacklistability purposes. In addition RA maintains BLholdRA , a temporary list of the anonymous
owners of accounts in debt.

Apart from the generation and validation of his msU, each user U collaborates with the RA
to issue three types of credentials, which are stored in U’s IDC and can be used to demonstrate
U-validity multiple times anonymously:

1. a registration credential regtick, which authorizes U as a valid user of the system and serves
user-blacklistability purposes,

2. a wallet of one-time-use credentials perm-credentials, which can be used for U to register to
various organizations, and

3. a wallet of one-time-use cred-credentials, which can be used for U to register to organizations,
who limit registrations to one per user, i.e., hospitals etc.

Every time U registers to an organization, he makes use of his msU to demonstrate knowledge
of his regtick, and to use one of his credentials. The transcripts of these demonstrations will be
used as the local identity of U within the organization and serve blacklistability purposes when
U misbehaves. Afterwards, U may have credentials generated within that organization using any
known anonymous credential system depending on the type of the organization.

In addition to his registration credentials, U may apply for a number of attribute credentials from
the RA, such as possession of driving license or of a car, adulthood, etc. and their time of validity
may vary. After verifying U’s real-world validity, RA issues blind attribute related permissions, att-
credentials, bound to U’s msU, for the former to deposit to the corresponding attribute services.
Ultimately, proof of possession of attribute att is realized through proof of U-membership to the
corresponding (att) group. U contacts the attribute-agencies anonymously but using his regtick
and att-credential and obtains membership to that group the same way he obtains membership to
organizations.

To fully recover his msU and the content of his card, when lost or compromised, U participates
in a recovery setup protocol which has two important phases. The first one is performed at the
end of his RA-registration, where U shares his msU and a recovery secret key dkU in a shared se-
cret fashion; dkU will serve U-authentication purposes. The second phase takes place at the end of
each organization-registration procedure, when the organization U collaborates with uses a central
database, DBMS, to store confidentially subscription information anonymously but authoritatively
information. The latter is encrypted with the encryption key ekU which corresponds to dkU. Second
level authentication information stored in RA (RegInfoU) and the organizations (AuthData) for each

1 As we will see later on, in our system misbehavior is a concept, whose definition varies across different organizations.

3

member, authorize an honest user, who has lost his card and properly recovered his dkU to order
the blacklisting of his old regtick, trace his subscriptions, prove ownership and blacklist all the
credentials issued with his old master secret. An attacker in this case, would not have the appro-
priate information to succeed in this authentication and will thus be unable to make use of the card.

3.1 Operations

To define the operations of our system more strictly we will use the following notation: when an
operation is an interactive procedure (or a protocol consisting of multiple procedures) between two
entities A and B, we denote it by 〈OA, OB〉 ← Pro(IC)[A(IA), B(IB)], where Pro is the name of
the procedure (or protocol). OA (resp. OB) is the private output of A (resp. B), IC is the common
input of both entities, and IA (resp. IB) is the private input of A (resp. B).

1. (pkRA, skRA)← RAKeyGen(1k) is the key generation algorithm for the registration authority.
2. (pkO , skO)← OKeyGen(1k) is the key generation algorithm for the an organization O.
3. (pkU, skU)← UKeyGen(1k) is the key generation algorithm for users. We call pkU the (master)

public key of U, and skU the master secret key of U.

4. 〈(siregtick,W
att
U ,W

perm/cred
U), (regtick,DBRA

′)〉/〈⊥,⊥〉 ←

← RARegistration(pkRA)[U(skU),RA(skRA,DBRA)]

is the registration of a user to the registration authority RA. The common output of this
procedure is U’s public registration and recovery information regtick and RegInfoU respectively.
U’s private output is the corresponding secret information siregtick, and wallets of various

credentials Watt
U ,W

perm/cred
U . RA’s private output is information related to U’s (and credentials’)

blacklisting and U’s activity tracing which are stored in DBRA.
5. 〈siUatt,CLogatt〉 ← GrantAtt(att, gpkatt) [U(pkU, skU), att(gskatt)]. This interactive procedure be-

tween a user and an attribute service of RA and the user U to generate a certificate for ownership
of attribute att. The output for the user is the secret information siUatt regarding the att-credential
credatt. The output for the organization is some information CLogatt for the credential.

6. 〈>,>〉/〈⊥,⊥〉 ← ShowAttribute(pkV, pkRA, att) [U(siUatt, skU),V(siV)]. A user U shows possession
of attribute att to a verifier V.

7. 〈>,SID〉/〈⊥,⊥〉 ← UserAuthenticate(BL)[U(skU, siregtick)V(skV)], where a user U proves to a
verifier V that he is not among the users in the blacklist BL. The result for the V is the transcript
of U-authentication SID.

8. 〈(WU
′, S, π), (S, π)〉/〈⊥,⊥〉 ← CredDemonstrate(pk,RApkV)[U(sk,UWU),V(skV)]. A user U, using

his wallet WU of some type of registration credentials (perm/cred /rev), demonstrates ownership
of one of them to a verifier V. Here S is the serial number connected to the credential and π is
the proof of a valid demonstration of it.

9. 〈(Wperm/cred
U

′
,MemSecOU), (π,MemPubOU , SID,AuthData,RecData,DO

′)〉/〈⊥,⊥〉 ←

← OrgRegistration(pkO , pkRA,BLRA)[U(skU, siregtick,W
perm/cred
U),O(skO ,DO)]

is the registration of a user U to an organization O. U’s private input consists of his master
secret skU, the secret related to his RA-registration siregtick, as well as the wallets of his

credentials W
perm/cred
U . His private output is secret information regarding his O-membership

4

MemSecOU . The common output consists of U’s membership public information MemPubOU ,
and information to enable U to authenticate himself in case of IDC-loss AuthData. O obtains
U-blacklisting information SID, credential validity information π and updates his members’

database DO with the U’s membership data: MemPubOU , π, SID, AuthData. Both parties also
obtain obtain RecData, which will be anonymously uploaded to DBMS by O.

10. 〈(TempSec,Wrev
U ,RegInfoU), (TempPub,BLRA

′)〉/〈⊥,⊥〉 ←

← LossReport(pkRA, pkU, regtick)[U(skU, siregtick),RA(skRA,BLRA)],

where a user U reports the loss of his IDC, recovers his registration data RegInfoU, and blacklists
his membership credential regtick. U obtains revocation credentials Wrev

U and a temporary RA-
membership (TempPub, TempSec) to update his registrations.

11. 〈>, (BLRA′)〉/〈⊥,⊥〉 ← RegBlackList(pkRA, regtick)[O(skO ,SID, proof),RA(skRA,SID)], where
an organization O blacklists a userU with session id SID, who has misbehaved. O provides the
session id of the misbehaving party along with proof of his misbehavior.

12. 〈>,BLRA′〉/〈⊥,⊥〉 ← AttBlackList(Satt)[U(skU,TempSec,Wrev
U),RA(skRA,BLRA)], where the

user U contacts again the RA to blacklist all of his attribute-related credentials.
13. 〈(O,RecData),>〉/〈⊥,BLRA′〉 ← OrgRegistrationRecovery

(pkRA)[U(TempSec, skU,W
rev
U ,S),DBMS(BLRA,RecData)]

In this procedure, the user U utilizes his revocation permissions and the recovered serial numbers
to trace the organizations he has registered to. U uses a piece of information contained in RecData
to authenticate himself and immediately advertise blacklisting information for O.

14. 〈MemSecOU
′
, (BLO

′,MemPubOU
′
)〉/〈⊥,⊥〉 ← OrgRegistrationUpdate

(pkRA,RecData)[U(skU,TempSec,Wrev
U),O(skO ,AuthData,DO)],

where the user U contacts the organization to change his credentials. U authenticates himself
using RecData and the corresponding AuthData stored in DO. He then obtains new membership
credentials.

15. 〈>,DBRA
′〉/〈⊥,⊥〉 ← CredValidityCheck(pkRA, S, π)[E(skE),RA(skRA,DBRA)]. An entity E (which

may be either a user or an organization) deposits the credential (S, π) to the RA, to check its
validity. If the the credential (S, π) is valid and not double-used, then the credential is stored
in the history database of DBRA.

16. (pkU, ΠG)/⊥ ← Identify(S, π1, π2). If a perm or cred credential is double-used with (S, π1) and
(S, π2), the RA can find the person who double-used a credential using this operation. Here, ΠG

is a proof that pkU double-used the credential with the serial number S.
17. >/⊥ ← VerifyGuilt(S, ΠG, pkU) outputs > if the user U (represented by pkU) indeed double-used

the credential with the serial number S.

3.2 A “real world” threat model

The threat model of our identity management system has been presented in chapter ?? The as-
sumptions we make regarding our adversaries are based on “real-world” settings and motives. In
particular, we assume that:

– Users may try to cheat. A user may try to avoid paying for his purchases or bills or falsely claim
he has not received a payment. In addition, he may try to impersonate other users to use their
funds (impersonation attack) or frame other users for various misbehaviors.

5

– (Non-)Financial Organizations are “honest but curious”. Aiming to maintain their clientele,
banks, and other organizations, are trusted to perform all their functional operations correctly,
i.e., they issue credentials, open and update accounts as instructed by their customers. However,
they may attempt to learn more than is appropriate from their views of these transactions (this
could be motivated by profiting from this information, i.e. selling behavior profiles to advertising
companies). They may also try to collaborate with each other to improve their information
advantage.

– The Registration Authority is considered to be “honest but curious”. We assume that is operated
by the government who wants to protect honest users, but it is not trusted to protect users’
privacy.

3.3 Requirements

Privacy and security are our system’s core requirements, which we adjust to the context of a cen-
tralized identity management system.

Privacy consists of user anonymity and user activities’ Unlinkability. User anonymity requires that

1. given the transcript of the demonstration of ownership of a RA-membership credential that does
not belong to a corrupted party SID, the adversary can learn which user owns SID no better
than guessing at random among all non-corrupted users that appear consistent with SID.

2. given the transcript of proof of ownership of a perm/cred credential by a non-corrupted user,
CredTrans(π,S) the adversary can learn which user owns CredTrans no better than guessing at
random among all non-corrupted users.

3. given a public organization membership information MemPubOU that does not belong to a cor-

rupted party, the adversary can learn which user owns MemPubOU no better than guessing at
random among all non-corrupted users that appear in the system.

4. given the transcript of the demonstration of ownership of an attribute AttTrans, that does not
belong to a corrupted party, the adversary may identify the user who owns AttTrans no better
than guessing at random among all non-corrupted users who have been granted that attribute.

5. assuming that RA is not corrupted, given the transcript of the authentication procedure at the
OrgRegistrationRecovery procedure of a non corrupted user, the adversary cannot learn which
user participates in that procedure no better than guessing at random among all non-corrupted
users; if we now include RA in the adversary, user anonymity is satisfied if the adversary cannot
distinguish the user among all honest users who have run the LossReport procedure.

6. assuming that RA is not corrupted, given the transcript of OrgRegistrationUpdate operation of a
non-corrupted user U with an organization O, the adversary cannot learn U’s identity no better
than guessing at random among all non-corrupted users; if we now include RA in the adversary,
this user-anonymity is satisfied when the same holds among users who have run the LossReport
procedure.

User activity unlinkability requires that activities of the same user cannot be linked as been com-
mitted by the same individual. In particular, we require:

– given the transcripts of two UserAuthenticate procedures SID1 and SID2, that do not belong to
a corrupted party, the adversary has no advantage in telling whether SID1 and SID2 belong to
the same user or not.

6

– given the transcripts of proof of ownership of two perm/cred /rev credentials CredTrans1 (π1, S
1)

and CredTrans2 (π2,S
2) that do not belong to corrupted parties, the adversary has no advantage

in telling whether CredTrans1 and CredTrans2 belong to the same user or not.

– given two memberships MemPub
Oi/RA
U1

and MemPub
Oj/RA

U2
to any organizations Oi, Oj or the

RA, that do not belong to corrupted parties, the adversary has no advantage in telling whether

MemPub
Oi/RA
U1

MemPub
Oi/RA
U2

belong to the same user or not.

– given the transcripts of two OrgRegistrationRecovery or OrgRegistrationUpdate operations, not
performed by corrupted users, the adversary has no advantage in deciding whether they belong
to the same user or not.

In any case, privacy is conditional on proper user behavior. On the other hand, security, is consists
of:

• Strong authentication; no party can lie about his identity. It consists of credential unforgeability,
credential non-transferability and mis-authentication resistance:

– Credential unforgeability requires that no user or coalition of users may issue RA-membership
credentials or any other type of credentials (perm/cred /rev) such that the UserAuthenticate
and CredValidityCheck accept.

– Mis-authentication resistance requires that the probability that UserAuthenticate accepts
when a user does not have valid RA-membership is negligible, as well as the probability
that UserAuthenticate rejects when the user has valid membership credentials.

– IDC and Credential non-transferability implies that no one but the legal owner of the card
may demonstrate ownership of the card or possession of the corresponding credentials. More
specifically, assuming two users U1 and U2 and a credential cred1 of U1, we require that the
probability that U2 runs CredValidityCheck, CredDemonstrate or UserAuthenticate using cred1
successfully is negligible.

• Accountability ; misbehaving parties are punished. More specifically, we assume a misbehaving
user U with an RA-membership regtick. Accountability requires that the probability that User-
Authenticate accepts is negligible.
• Unframability - Denial of Service attack resistance; no party should be able to frame another

user for misbehavior or cause malfunction of his card’s credentials. In particular, we require
that no coalition of users, even with the collaboration of the RA, can forge a proof ΠG that
VerifyGuilt(pkU, S,ΠG) accepts where pkU is an honest user U’s public key who did not double-
used a credential with the serial number S.
• Forward secrecy, even if IDC is compromised, no entity or collaboration of entities, except for the
IDC’s owner can learn his memberships or activities.

Because our system is intended for real-world use, we also have the requirement of Deployability.
This is partially expressed in our threat model and security requirements, which are made to reflect
a real world environment. Furthermore, we require that our protocols scale for large systems.

4 A Centralized Privacy-Preserving Credential system

In this section we first describe the building blocks we made use of and we proceed with the details
of our protocols.

7

4.1 Building Blocks

Electronic cash An E-Cash [chl05,jcl06] system consists of three types of players: the bank,
users and merchants. The input and output specifications of the basic operations are as follows.
For convenience, we will assume that the operations take place between a merchant M, a user U
and the Bank B.

• (pkB, skB)← EC.BKeyGen(1k, params) and (pkU, skU)← EC.UKeyGen(1k, params), which are the key generation
algorithm for the bank and the users respectively.

• 〈W,>〉 ← EC.Withdraw(pkB, pkU, n) [U(skU),B(skB)]. In this interactive procedure, U withdraws a wallet W of n
coins from B.

• 〈W ′, (S, π)〉 ← EC.Spend(pkM, pkB, n) [U(W),M(skM)]. In this interactive procedure, U spends a digital coin with
serial S from his wallet W to M. When the procedure is over, W is reduced to W ′, M obtains as output a coin
(S, π), where π is a proof of a valid coin with a serial number S.

• 〈>/⊥, L′〉 ← EC.Deposit(pkM, pkB) [M(skM, S, π), B(skB, L)]. In this interactive procedure, M deposits a coin
(S, π) into its account in the bank. If this procedure is successful, M’s output will be > and the bank’s list L of
the spent coins will be updated to L′.

• (pkU, ΠG) ← EC.Identify(params, S, π1, π2). When the bank receives the two coins with the same serial number
S and validity proofs π1 and π2, it executes this procedure, to reveal the public key of the violator accompanied
with a violation proof ΠG.

• >/⊥ ← EC.VerifyGuilt(params, S, pkU, ΠG). This algorithm, given ΠG publicly verifies the violation of pkU.

• {(Si, Πi)}i ← EC.Trace(params, S, pkU, ΠG, D, n). This algorithm provides the list of serials Si of the ecoins a
violator pkU has issued, with the corresponding ownership proofs Πi.

• >/⊥ ← EC.VerifyOwnership(params, S,Π, pkU , n). This algorithm allows to publicly verify the proof Π that a coin
with serial number S belongs to a user with public key pkU .

[jcl06] is a money-laundering prevention version of [chl05], where anonymity is revoked when the
spender spends more coins to the same merchant than a spending limit. In this case ecoins are
upgraded to

C = (S, V, π),

where V is a merchant-related locator, while EC.Identify and EC.VerifyGuilt procedures are upgraded
to the DetectViolator and VerifyViolation to support the extended violation definition.

Security Properties: (a) Correctness. (b) Balance. No collection of users and merchants can ever
spend more coins than they withdrew. (c) Identification of Violators. Given a violation and the
corresponding proofs of guilt, the violator’s public pkU key is revealed such that EC.VerifyViolation
accepts. (d) Anonymity of users. The bank, even when cooperating with any collection of malicious
users and merchants, cannot learn anything about a user’s spendings other than what is available
from side information from the environment. (e) Exculpability. An honest user U cannot be accused
of conducting a forgery attempting to fool EC.VerifyViolation. (f) Violators’ Traceability. Given a
violator Uwith a proof of violation ΠG, this property guarantees that EC.Trace will output the
serial numbers of all coins that belong to U along with the corresponding proofs of ownership, such
that for each one of them VerifyOwnership accepts.

Blacklistable Anonymous Credentials Blacklistable credential systems BAC serve user au-
thentication purposes, i.e., provide the means for a user to prove that he is a member of a group
multiple times anonymously and unlinkably, nevertheless accountably. A misbehaving person will
not be able to use his credential any more. The entities in BAC [taks07] are the Group Man-
ager GM, a set of service providers SPs (or verifiers) and users. The procedures supported are the
following:

• 〈gpk, gsk〉 ← BAC.Setup[GM(1k)]. This algorithm generates a group public key gpk and the GM’s secret group
information gsk.

8

• 〈credU, JLogU〉 ← BAC.Register(gpk)[U,GM(gsk)]. When this interactive registration ends, U has obtained his mem-
bership credential credU.

• 〈>/⊥〉 ← BAC.Authenticate(gpk) [U(credU), SP(BL)]. In this interactive procedure, U proves to SP that he is a
valid (non-blacklisted) member of the group.

• 〈BL′〉 ← BAC.BLAdd[SP(BL)], where a service provider ads a credential (ticket) to the blacklist BL.

• 〈tick〉BAC.BLExtract[SP(BL)], where SP extracts an element from the blacklist.

• 〈BL′〉 ← BAC.BLRemove[SP(BL)], where SP removes a credential from the blacklist.

Security Properties: (a) Correctness. (b) Mis-authentication Resistance. No unregistered user or
collection of unregistered users should be able to authenticate themselves. (c) Blacklistability. SPs
may blacklist any misbehaving user of the system and restrict him from any ability of authenticating
himself. (d) Anonymity. SPs may only learn whether a user is blacklisted or not; no identification
information may be leaked. (e) Non-framability. An honest user should never be blocked from
access.

Anonymous and Unlinkable Credential System, Pseudonym Systems Pseudonym sys-
tems have three types of players: users, organizations, and verifiers. Users are entities that receive
credentials. Organizations are entities that grant and verify the credentials of users. Finally, verifiers
are entities that verify credentials of the users. See [lrsw99,cl01] for more details. The standard
operations supported are the following:

• (pkO, skO) ← PS.OKeyGen(1k). This procedure generates a public/secret key pair for an organization. We denote
a key pair for an organization O by (pkO, skO).

• (pkU , skU)← PS.UKeyGen(1k). This procedure generates a public/secret key pair for a user. We denote a key pair
for a user U by (pkU , skU). Sometimes we refer to the secret key of a user as a master secret key for the user.

• 〈(N,NSecrN), (N,NLogN)〉 ← PS.FromNym(pkO) [U(pkU , skU), O(skO)]. This interactive procedure between a
user and an organization generate a pseudonym (or simply nym). The common input is the public key of the
organization O. The output for the user is a nym N and some secret information NSecrN , and for the organization
the nym N and some secret information NLogN .

• 〈credN ,CLogcredN 〉 ← PS.GrantCred(N, pkO) [U(pkU , skU ,NSecrN), O(skO,NLogN)]. This interactive procedure
between a user and an organization generate a credential for a nym N . The common input is N and pkO. The
output for the user is the credential credN for the nymN . The output for the organization is some secret information
CLogcredN for the credential.

• 〈>,>〉/〈⊥,⊥〉 ← PS.VerifyCred(pkO) [U(N, credN), V]. In this interactive procedure between a user and a verifier,
the user proves that he has a credential on the nym N issued by the organization O.

• 〈>,>〉/〈⊥,⊥〉 ← PS.VerifyCredOnNym (N, pkO, pkO1
) [U(N1, credN1), O(NLogN)]. In this interactive procedure

between a user and the organization O, the user proves that N is his valid nym of the organization O and that he
has a credential credN1 on the nym N1 issued by the organization O1.

Security Properties. (a) Unique User for Each Pseudonym. Even though the identity of a user who
owns a nym must remain unknown, the owner should be unique. (b) Unlinkability of Pseudonyms.
Nyms of a user are not linkable at any time better than by random guessing. (c) Unforgeability of
Credentials. A credential may not be issued to a user without the organization’s cooperation. (d)
Consistency of Credentials. It is not possible for different users to team up and show some of their
credentials to an organization and obtain a credential for one of them that the user alone could not
have gotten. (e) Non-Transferability. Whenever Alice discloses some information that allows Bob
to use her credentials or nyms, she is effectively disclosing her master secret key to him.

Group Signature Scheme In a typical GSS [nf06,ckl05,ky05,bsz05,cs97] with member revo-
cability, there is a group manager (GM), the group-members, who act as signers (let each be S) and
produce signatures on behalf of the group. If necessary, the group manager can remove members
from the group. The procedures supported are the following:

9

• (gpk, gsk)← GS.Setup(1k). This algorithm generates a group public key gpkand the GM’s secret group information
gsk.

• 〈bguskS, JLogS〉 ← GS.Join(gpk)[S,GM(gsk)]. When this interactive join procedure ends, an S obtains a secret
signing key bguskS, and the GM (group manager) logs the join transcript in the database D.

• σ ← GS.Sign(gpk, bguskS,m). This algorithm generates a group signature on a message m.

• 〈>/⊥〉 ← GS.Verify(gpk,m, σ). This is a verification algorithm.

• 〈gpk/⊥〉 ← GS.MembershipRevoke(gpk, gsk, JLogS). In this operation the group manager GM removes the member
with group-membership transcript JLogS.

• ms← GS.Open(gsk, σ,D). With this algorithm the GM determines the identity of the group member who generated
the signature σ.

Security Properties: (a) Anonymity. Given a signature and two members, one of whom is the origi-
nator, the adversary can identify its originator among the group members no better than randomly.
(b) Unforgeability. The adversary or group of adversaries cannot produce a valid group signature
without owning current group membership information. (c) Non-framability. The adversary can-
not create a valid group signature that opens to another group member. (d) Unlinkability. Given
two signatures, it is infeasible that anyone except the signers and the group manager to determine
whether they were produced by the same person.

Blind Signature Scheme In a typical BSS, there are signers (let each be S) who produce blind
signatures on messages of users (let each be U). The procedures supported are the following:

• (pkS, skS)← BS.KeyGen(1k). This is a key-generation algorithm that outputs a public/secret key-pair (pkS, skS).
• 〈>/⊥, σ/⊥〉 ← BS.Sign(pkS)[S(skS), C(m)]. At the end of this interactive procedure, the output of the S is either

completed or not-completed and the output of U is either the signature (σ) or a failure sign (⊥).
• 〈>/⊥〉 ← BS.Verify(m,σ, pkS) is a verification algorithm.

Security Properties: Apart from Unforgeability, Blindness is the most important security property
of blind signature schemes: S does not learn any information about the message m on which it
generates a signature σ.

4.2 The Protocols in Depth

Moving on to the details of our protocols, for the system setup, the RA generates through PS.OKeyGen
a digital signature key-pair (pksRA, sk

s
RA) to identify itself. RA also generate a blind signature key-

pair (pkbRA, sk
b
RA)) and runs EC.Setup multiple times: once for each digital cash-based credential

system (perm, cred, rev credentials) and once for each attribute supported. In addition, it runs
BAC.Setup and for the setup of users’ RA-registration credentials (regtick).

All the organizations of the system generate a digital signature key-pair to be identified in the
system. Let (pkO , skO) denote the O-identification key-pair. Organizations’ setup depends entirely
on the level of accountability they want to enforce:

– Important Financial Organizations, i.e., banks, employers, require high level of both security
and privacy. It is thus reasonable to assume that (if adopting privacy) they are implemented as
the credential systems of [cl01,cl02a], which combines strong transaction privacy (complete
transaction unlinkability of honest individuals) with strong accountability in case of misbehavior
(recovery of misbehaving user’s master secret). See section 4.1 for more details. Under this
context, each organization O runs the PS.OKeyGen procedure to generate its identification key-
pair (skO , pkO).

10

– Non financial Organizations, i.e., online magazines, which do not require any level of security,
user may register multiple times, but whose privilege of extending the prescription can be
revoked if the user misbehaves, i.e., he uses bad language in a forum. In this case, the identity
of the users is not required for their registration. Organizations of this type may be implemented
as group signature systems with membership revocation enabled, and — thus — run GS.Setup
to generate group administration information: (gpkO, gskO).

– Other Financial Institutions, who do not involve large monetary amounts and require a reason-
able degree of accountability, i.e, any type of online service providers, may choose any of the
aforementioned systems: blacklistable anonymous credentials, pseudonymous systems or group
signature schemes.

In what follows we will use the following notation:

– SigE(M) (SigHE (M)) for the signature of entity E on M (H(M)).

– GSig
(H)
g,E (M) for the g-group-signature of entity E on M (H(M)).

– {M}K for the encryption of M under key K. For efficiency, we induct every asymmetric encryp-
tion a symmetric one. Therefore, {M}PK denotes {K}PK ||{M}K for a random K.

RA Registration This procedure takes place between the RA and the user U, who requests to
enter the system. After providing strong identification credentials, i.e., birth certificates, passports,
etc., U runs EC.UKeyGen or PS.UKeyGen to generate his master secret msU and engages with the
RA to the following series of interactions:

1. msU-Validation. U↔ RA: run PS.FormNym and PS.GrantCred procedure, to generate a pseudonym
and a credential for U which is blindly linked to msU. The RA stores in DBRA all the public
msU-information, pubU.

2. Registration Credential’s Issue. U↔ RA: run BAC.Register, to grant U a registration credential,
regtick, which will serve blacklistability purposes.

3. Credentials’ Issue. U ↔ RA: run EC.Withdraw operation twice to generate wallets of perm-
credentials and cred-credentials. They both serve authentication purposes for user registrations
to organizations: the perm-credentials are realized as accountable ecash [jcl06], where the
constant N is set to two (see section 4.1) and aim for organizations where users may have at
most one entry; the cred-credentials, are implemented as any ecash scheme and may be used
for any entity or organization. The key attributes of these credentials are that they are non-
transferable, enable anonymous user-authentication, while through their serials provide a degree
of traceability to their owner. The latter is particularly useful when their owner loses his card
and wants to trace his previous activities.

4. Recovery Mechanism Setup, where U creates and stores some credential and master secret re-
covery information:
(a) U generates his recovery encryption key pair (ekU, dkU).
(b) U encrypts the serials of both types of credentials into

RegInfoU = {msU, perm-serials, cred-serials, att-serials, date}ekU ,

where att-serials are related to attribute-credentials (see section 4.2).
(c) U→ RA: RegInfoU; both entities agree on a hash H and exchange proofs of the final form of

RegInfoU: SigHRA(RegInfoU||date) and SigHU (RegInfoU||date).
(d) U shares in a shared secret fashion[s79] his msU and dkU.

11

Organization Registration This procedure takes place between an organization Oi and a user
U, and allows U to obtain membership in Oi. Depending on its setting, Oi may restrict user-
registrations to one per user. Thus, depending on the case, membership pre-requisites of Oi may
include proof of perm or cred credentials, U’s identity or ownership of attributes. We emphasize on
the fact that as perm-credentials have the form of accountable ecash [jcl06] (see, 4.1) if more than
two perm- credentials of U are used for the same organization-merchant, U’s identity is revealed.

1. U Authentication. U ↔ Oi:
(a) run BAC.Authenticate for U to prove that he is among the valid users of the system. Let

SID be the transcript of this demonstration.
(b) engage in an EC.Spend procedure for U to bind one credential of his to Oi. As mentioned

before, if there is a restriction regarding how many registrations a user should maintain in

Oi, a perm-credential should be used; otherwise, a cred -credential may be used. Let S
perm/cred

U→Oi
denote the credential’s serial. It is apparent that if U uses the same credential twice or more
than two perm-credentials for the same organization, his identity will be revealed.

2. Actual Registration. As mentioned before, the exact procedures that take place in this step
depend on the type of the organization and on the level of accountability the latter wants to
enforce. For strong accountable systems, U and Oi run PS.FormNym and PS.VerifyCredOnNym
for U to create a pseudonym to Oi, which is blindly connected to his actual master secret. In the
general case, U and Oi interact so that the former obtains his secret membership information

MemSecOi
U and Oi the corresponding public information MemPubOi

U . Henceforth, for simplicity,
we assume that U is known to Oi as PU.

3. Second Level Authentication Mechanism. In this phase, the user creates and stores information
locally which will enable him to authenticate himself and manage his organization credentials
in the case where he loses his card and all his organization membership information:

(a) U creates an Oi-specific recovery encryption key pair: (ekOi
U , dkOi

U), computes

εdkPU
= {dkOi

U }ekU
.

(b) Ugenerates secret and computes HOi
(secret), and

εsecPU
= {secret}

ekOi
U

, σsecPU
= Sig

HOi
PU

(secret),

where HOi
is an Oi-specific hash.

(c) U → Oi: AuthData = {εdkPU
, εsecPU

, σsecPU
}. U is the only one who knows secret. AuthData will

be used to authenticate U, when the latter loses his credentials.
Finally, Oi creates U’s entry in his DBOi

, where he stores the following:

EntryOi
U = {Sperm/cred

U→Oi
,MemPubOi

U ,AuthData}.

Attributes Credentials Issue This is the procedure by which a user obtains attribute credentials
(e.g., proof of age, medical status, marital status, etc.). We assume that for each possible attribute
there is a separate service-group that U can visit right after his RA-registration. For each of these,
RA runs GS.Setup during setup. After U proves to RA that he corresponds to pubU and that he is
entitled of attribute atti, the following take place:

12

1. RA↔ U: run EC.Withdraw for U to obtain one ecoin-token AttTicki, using the atti-related ecash-
setting. RA updates U’s entry in DBRA accordingly.

2. U↔ atti-Service:
(a) U-Authentication. U runs BAC.Authenticate to prove that he has registered to RA and that

he is not among the blacklisted users in BLRA. Let AttTrans be the authentication transcript.
(b) U-Membership to atti-Service-group. U↔ atti-Service: run GS.Join, for U to obtain member-

ship to the corresponding group of attribute-possessors. Thus, U issues group membership
key-pairs (gskattiU , gpkattiU).

(c) Registration Recovery Mechanism. Similar to the organization registration procedure, atti-
RecData is generated for U to be able to authenticate himself and invalidate his membership
when his master secret is compromised.

At the end of this procedure, atti-Service stores the U-attribute related info:

(AttTrans, AttTicki, gpk
atti
U , atti-RecData).

Attributes Demonstration This is the procedure by which a user U proves ownership of an
attribute att to a verifier V. V may be either a person or an organization.

1. Both parties participate to generate a challenge R.
2. V downloads the updated att-group public information: gpkatt.
3. U uses his gskatt membership (GS.Sign) and sign the dated challenge:

σatt = GSigatt,U(R || timestamp).

4. V runs GS.Verify to validate the signature produced.

It is apparent that in case someone misbehaves, V may collaborate with the att-Service in GS.Open
procedure to (locally) identify and remove the misbehaving group member from the group. In
addition, att-Service, may blacklist that user’s regtick using the AttTrans associated with the mis-
behaving gpkattiU .

Master Secret compromise - IDC Content Recovery This procedure has three phases. In the
first phase, a user U contacts the RA to report the loss or compromise of his IDC. To authenticate
himself, provides strong identification credentials, i.e., birth certificates, passports, etc. Then U
using RA-issued permissions contacts an external database DBMS to recover confidential information
regarding his registrations, i.e., in which organizations he has registered to, so that he eventually
contacts the latters to update his memberships. More specifically, the following take place:

1. U– RAinteraction.
(a) U → RA: authenticated report for IDC-loss or IDC-compromise.
(b) U recovers his master secret msU and recovery dkU using a shared secret recovery protocol[s79].
(c) RAruns BAC.BLAdd to blacklist the old regtick. In this way, RA aims to prevent the attacker

from registering using the card elsewhere.
(d) RA(DBRA) → U: RegInfoU; U then uses the recovered dkU to recover the serials of his cre-

dentials (perm, cred and AttTick).
(e) U ↔ RA: run EC.Withdraw once more to issue one-time-use revocation credentials, rev-

credentials. Attribute specific rev-credentials, are issued according to the information in U’s
entry in DBRA, for U to invalidate his old attribute credentials.

13

(f) U↔ atti-Service: U anonymously authenticates himself to atti-Service (through atti-specific
rev-credentials) as the owner of a compromised master secret. After having recovered his
AttTicki serial number, U uses RecData, to authorize himself to order the blacklisting of
the corresponding atti-group membership information. Both parties collaborate so that U
obtains a atti-Service blind confirmation of their interaction, aimed for RA.

(g) U ↔ RA: run the RA Registration procedure again for U to generate a temporary msU and
IDC. RA updates U’s entry in DBRA.

2. U– DBMS interaction. In this procedure, U recovers the list of his registrations, i.e., which
organizations he has registered with his old msU. This will be covered extensively in the following
subsection.

3. U– Oi interaction. For each organization Oi, U has registered to, the following series of proce-
dures take place:

(a) U ↔ Oi: run EC.Spend procedure, for U to bind one of his rev-credentials to Oi. It is
important to note that because of their ecash nature, rev-credentials are also unlinkable to
U’s identity, nevertheless non-transferable. U shows the serial Sperm/cred, which he used to
register to Oi.

(b) Oi: checks rev-credential’s validity; if valid, Oi looks up Sperm/cred up in its DBOi
.

(c) Oi → U: εsec.

(d) U: uses the recovered dkU to decrypt his secret and demonstrates knowledge of it to Oi.

(e) U↔ Oi: run BAC.Authenticate procedure for the temporary membership of U. The transcript
of this interaction SID’ will serve blacklistability purposes in cases U misbehaves. Note that
the blacklist corresponding to the temporary master secrets is considerably smaller than the
regular one.

(f) Oi blacklists all the credentials issued for the MemPubOU — using a technique similar to
[cl02a,taks07] or [nf06], depending on its setting.

(g) U contacts Oi using his new credentials to open a new privacy preserving account.

4. U – RA interaction. U collaborates with RA in a BAC.Authenticate procedure for all the recently
blacklisted items for both his old and temporary RA-registrations. Assuming that organizations
report accounts that have not been accessed for a month, in this way, we want to avoid cases
where the user falsely claimed loss of his IDC to erase accounts of his without being traced.
After being cleared, both repeat a procedure similar to the RA registration for U to issue his
new credentials.

User Registrations’ Recovery In this stage, a user U who has already reported the loss of
his IDC to the RA, recovers his registrations, i.e., information regarding which organizations he
has become a member to using his old msU. The registrations’ recovery procedure is subjected to
many caveats. First of all, aiming to maintain U’s privacy towards the RA, the serial numbers of the
withdrawn credentials are only visible to U and — when eventually used — to the organization they
are used for. Revealing the serials to the RA would enable the latter with the collaboration of all
organizations to trace U’s activities. However, there should be measures to prevent U from claiming
ownership of false numbers and causing DoS to honest users who own these numbers. Therefore,
we introduce an external database DBMS used strictly by authorized organizations or users to
upload registration related information. We assume that users maintain anonymous accounts with
DBMS and can read DBMS-data from their accounts only through rev-credentials, while they The
registrations’ recovery protocol includes two phases, one which takes place after each registration,

14

and the actual recovery procedure. For the purposes of these protocols, we assume that there are two
serial-number–specific hash functions Hserial and Hintserial and that the user chooses a OWF function
F with id number FID from a public pool of OWFs. The series of actions are the following:

1. Recovery Setup. It takes place at the end of each user U- organization Oi registration. Let
Sperm/cred be the serial number of the credential U used (see subsection 4.2). The following take
place:

(a) U↔Oi: choose two hash functions F1 and F2 from the pool of hashes with id numbers FID1
and FID2 respectively.

(b) U → Oi:

εser = {Sperm/cred}Hserial
KU

, εser,f = {Hintserial(ε
ser) || FID, FID1, F ID2}KU

, and FID,

where KU is a ekU-generated symmetric key.
(c) Oi, U: compute εorg

Oi
= {Oi}Kf

, where Kf = F (Sperm/cred) is a Sperm/cred-generated key.

(d) O anonymously uploads to DBMS:

RecData = εser || εser,f || εorg
Oi
.

2. Serial LookUp phase, which takes place after the IDC loss declaration phase. In particular

(a) U ↔ DBMS: collaborate in BAC.Authenticate and EC.Spend procedures for U to prove that
he is a valid user who has reported the loss of his IDC. U makes use of his temporary msU
for these purposes. Let SID be the transcript of it.

(b) For each serial Sperm/cred U has recovered, he computes the corresponding εser, which he then
uses as a lookup key in DBMS.

(c) U decrypts the corresponding εorg
Oi

to recover the name of the organization Oi related to that

serial.FID1, 2 are used for avoiding DoS attacks by users who try to blacklist credentials
they never owned.

U may occasionally decide to publish through DBMS the Sperm/cred he has recovered. In fact, DBMS

publishes with U’s collaboration (εser, F1(S
perm/cred)||F2(S

perm/cred), SID) records. After its regular
check O, freezes automatically the credentials that correspond to Sperm/cred’s registration. If U fails
to contact O within a prefixed time, the freezing stops and SID is sent to RA, who depending on
the type of O and its policy may blacklist U.

5 Discussion

In this section we will illustrate how privacy and security are achieved in our system, while we
discuss deployability issues.

5.1 Privacy-Security

The following theorem states the correctness, privacy and security of our general scheme:

Theorem. if the underlying primitives (anonymous credential system, e-cash system, blind signa-
tures) are secure, then our scheme satisfies correctness, user anonymity, user activity unlinkability,

15

credential unforgeability, credential non transferability, mis-authentication resistance, user unfram-
ability, forward secrecy and accountability.

We use prove this theorem with the following lemmas.

Lemma 1. If the underlying primitives (anonymous credential system, e-cash system, group sig-
natures) are secure, then our scheme satisfies Correctness.

Lemma 2. If the underlying primitives (blacklistable anonymous credential system, ecash system)
are secure, then our scheme satisfies user-anonymity and user-activity unlinkability.

Proof. Let that a user U has registered with the RA and obtained a registration membership

regtick and wallets of perm/cred credentials W
perm/cred
U respectively. In addition, U has obtained a

wallet of att-related credentials and has been granted attributes att1, att2. U has also registered to

organizations O1 and O2, with memberships MemPubO1
U and MemPubO2

U respectively.

Anonymity property of the blacklistable anonymous credential and ecash scheme used guaran-

tee that regtick ownership demonstration(SID) and the honest use of W
perm/cred
U will not reveal U’s

identity, which implies that MemPubOU s are also unlinkable to U. In a similar way, the anonymity
property of ecash schemes guarantee that U’s identity is not known to att-service, while the same
property of group signatures guarantees that demonstration of possession of any of att1, att2 (Att-
Trans) will not be linked to U’s identity. User Anonymity in case of card loss is achieved through
the blacklistable anonymous credential nature of the temporary registration credentials and the
ecash nature of the revocation authorizations.

In a similar way, unlinkability of user-activity is satisfied through the unlinkability properties
of the underlying ecash and blaclistable anonymous credentilas’ schemes.

Lemma 3. If the underlying primitives (blacklistable anonymous credential system, ecash system)
are secure, then our scheme satisfies credential unforgeability, card non transferability and mis-
authentication resistance.

Proof. Credential unforgeability is directly satisfied through the unforgeability property of the un-
derlying ecash and blacklistable anonymous credential system, while mis-authentication resistance
is achieved through the mis-authentication resistance property of the blacklistable anonymous cre-
dentials, according to which the transcript of a demonstration of regtick ownership is enough to
effectively blacklist a user. Non transferability property is implicitly achieved in our system. In
particular, we adopt an ”all or nothing” method according to which for a user U1 to be able to lend
his credentials to another user U2, U1 should reveal his master secret to U2, which is a property
supported by the underlying ecash schemes used.

Lemma 4. If the underlying primitives (blacklistable anonymous credential system, ecash system)
are secure, then our scheme satisfies accountability and user-unframability.

Proof. It is directly achieved through the Identification of Violators and exculpubility properties of
the anonymous ecash scheme, which guarantee that a user cannot be framed by any other party
as, while if a user U uses the same credential twice or uses more that one perm credentials to the
same organization, U’s identity is revealed.

16

Lemma 5. If the underlying primitives (blacklistable anonymous credential system, ecash system)
are secure, then our scheme satisfies forward secrecy and resistance to DoS attacks.
Sketch Proof. Accountability and Credential non- transferability provides a degree of protection
against DoS attacks at the IDC-registration recovery phase. Users trying to blacklist credential
serials of other users, will fail to identify the corresponding organization and FIDs; will thus be
reported and blacklisted.

Forward secrecy in case of IDC-loss or compromise has been discussed in the previous section.
Because of the anonymity property of ecash (rev-credentials) and anonymous credentials (TempPub),
the RA, even when collaborating with organizations or DBMS, cannot link a particular serial to a
user. FID-based user authentication for the temporary serial organization-membership blacklisting
does not reveal also any information leakage regarding U.

5.2 Deployability

It consists of applicability and scalability. Regarding applicablity, as shown in previous sections, we
have taken in consideration “real world” in our threat model and architecture. Scalability is achieved
through (a) the tree-structure of the suggested credential system, and (b) the scalability of the un-
derlying primitives. As demonstrated before, the credential-issuing procedure of each user may be
parallelized with a tree, whose root is the user’s regtick and whose leaves are attribute or organiza-
tion credentials. Each organization maintains local blacklists according to its policies and notifies
the RA-blacklist when necessary. In this way, user-authentication does not create bottlenecks: for
regtick-authentication the user-perceived delay for a blacklist of 1600 entries is 4 seconds[taks07].
User-authentication against the global RA-blacklist, i.e., in cases when a user applies for a passport
or a visa, does not create a bottleneck either since these procedures currently take much longer than
a week. For attribute demonstration, [nf06,ckl05] group signature schemes offer the possibility
to prove group-membership in O(1) time regardless of the size of the group. These schemes also
provide the possibility for the attribute service to activate a user’s group-membership at a later
time from his request without the need of that user to update his card. This is particularly useful
in cases of age credentials. In the recovery protocol case, the detection of the credential serials
and their blacklisting are done immediately through the secret sharing protocol and the use of the
hashes at the DBMS.

6 Related Work

There has been some work indicating the problem of online privacy. Brands [b00] and Camenisch
and Lysyanskaya [cl01] were the first to provide a big overview of privacy issues caused by the
extended online use of PKI and provided a series of constructions of privacy preserving creden-
tials, tickets and certificates based on blind signatures and zero knowledge proofs. There has been
some work on blacklistable anonymous credentials [cl02b,taks07,amo08]. Although the privacy
provided in the aforementioned schemes is very strong, they do not refer to systems with multiple
operations each requiring a different privacy level.

Centralized identity management systems applying the primitives of [b00,cl01] have been sug-
gested in the past. In Idemix [cvh02] , Camenisch and Herreweghen developed additional func-
tionality for service providers and credential issuers to configure and enforce resource access control
and credential issuing decisions. Higgins [f], OpenID [fpvfogtoit] and iCard [jllp03] Founda-
tion are examples offrameworks handling many identities of the same user across different websites.

17

The PRIME project [g] is a European initiative for privacy preserving identity management for
online commercial interactions. Although the existing work in the field refer to multiple types of
user-interactions, they do not provide accountability when the user misbehaves, or consider real
world issues deriving from master identity compromise, i.e., the complete recovery of the user’s on-
line subscriptions, automatic invalidation of the corresponding compromised credentials, advanced
user-authentication to manage these operations etc.

7 Conclusion

In this report we presented a centralized, card-based identity management system which addresses
many online and offline activities of individuals achieving different levels of privacy. It thus consti-
tutes the core of the system presented in this dissertation. As opposed to most existing credential-
based identity management systems, in our system the card is recoverable: when lost or compro-
mised the card’s legal owner may recover its content completely — his master identity and the
subscriptions he has obtained through the latter — or even invalidate it. Including the cases of
card loss or compromise, this card will protect an honest individuals anonymity when applicable
as well as ensure his activity is known only to authorized users.

References

[amo08] N. Akagi, Y. Manabe, and T. Okamoto. An efficient anonymous credential system. pages 272–286,
2008.

[b00] S. A. Brands. Rethinking public key infrastructures and digital certificates: building in privacy. Cam-
bridge, Mass. : MIT Press, 2000.

[bsz05] M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case of dynamic groups.
In Topics in Cryptology - CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science, pages
136–153. Springer-Verlag, 2005.

[chl05] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact e-cash. In Advances in Cryptology -
EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 302–321. Springer-
Verlag, 2005.

[ckl05] E. Y. Choi, H.-J. Kim, and D. H. Lee. Efficient member revocation in group signature schemes. In
TrustBus, pages 195–205, 2005.

[cl01] J. Camenisch and A. Lysyanskaya. An efficient system for non-transferable anonymous credentials
with optional anonymity revocation. In Advances in Cryptology - EUROCRYPT 2001, volume 2045
of Lecture Notes in Computer Science, pages 93–118. Springer-Verlag, 2001.

[cl02a] J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In International Con-
ference on Security in Communication Networks – SCN, volume 2576 of Lecture Notes in Computer
Science, pages 268–289. Springer Verlag, 2002.

[cl02b] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient revocation of
anonymous credentials. In CRYPTO ’02: Proceedings of the 22nd Annual International Cryptology
Conference on Advances in Cryptology, pages 61–76, London, UK, 2002. Springer-Verlag.

[cs97] J. Camenisch and M. Stadler. Effcient group signature schemes for large groups. In Advances in
Cryptology — CRYPTO ’97, volume 1296 of Lecture Notes in Computer Science, pages 410–424.
Springer-Verlag, 1997.

[cvh02] J. Camenisch and E. Van Herreweghen. Design and implementation of the idemix anonymous creden-
tial system. In CCS ’02: Proceedings of the 9th ACM conference on Computer and communications
security, pages 21–30, New York, NY, USA, 2002. ACM.

[f] T. E. Foundation. Higgins: Open source identity framework.
[fpvfogtoit] O. Foundation and I. C. F. publish vision for open government through open identity technologies.

Openid foundation.
[g] P. R. Group. Prime project.

18

[jcl06] S. H. Jan Camenisch and A. Lysyanskaya. Balancing accountability and privacy using e-cash (ex-
tended abstract). In Security and Cryptography for Networks, 2006.

[jllp03] Z. Jiang, H. Luo, Y.-N. Li, and H. P. icard - foundation for a new ubiquitous computing architecture.
In ICC ’03: Proceedings of the IEEE International Conference on Communications, 2003., pages
1211– 1217, 2003.

[ky05] A. Kiayias and M. Yung. Group signatures: Provable security, efficient constructions and anonymity
from trapdoor-holders. In Progress in Cryptology - Mycrypt 2005, volume 3715 of Lecture Notes in
Computer Science, pages 151–170. Springer-Verlag, 2005.

[lrsw99] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. In Selected Areas in Cryp-
tography ’99, volume 1758 of Lecture Notes in Computer Science, pages 184–199. Springer-Verlag,
1999.

[nf06] T. Nakanishi and N. Funabiki. Group signature schemes with membership revocation for large groups.
IEICE Transactions, 89-A(5):1275–1283, 2006.

[s79] A. Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.
[taks07] P. P. Tsang, M. H. Au, A. Kapadia, and S. W. Smiths. Blacklistable anonymous credentials: blocking

misbehaving users without ttps. In CCS ’07: Proceedings of the 14th ACM conference on Computer
and communications security, pages 72–81, New York, NY, USA, 2007. ACM.

19

