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ABSTRACT
This paper explores the use of a statistical technique known
as density estimation to potentially improve the results of
text categorization systems which label documents by com-
puting similarities between documents and categories. In
addition to potentially improving a system's overall accu-
racy, density estimation converts similarity scores to prob-
abilities. These probabilities provide con�dence measures
for a system's predictions which are easily interpretable and
could potentially help to combine results of various systems.
We discuss the results of three complete experiments on
three separate data sets applying density estimation to the
results of a TF*IDF/Rocchio system, and we compare these
results to those of many competing approaches.
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1. INTRODUCTION
Text categorization can help organize documents to allow
for better browsing and search capabilities. In this paper,
we present our research on the use of a statistical technique
known as density estimation [16] to potentially improve the
results of certain text categorization methods. The methods
which are eligible are those that label documents by com-
puting a similarity measure (or other score, such as a prob-
ability estimate) for every document/category pair. These
methods include Rocchio/TF*IDF, Naive Bayes, K-Nearest
Neighbor, certain implementations of support vector ma-
chines, and many other commonly used techniques. Density
estimation converts vectors of such similarity measures to
probabilities of category membership. These probabilities
provide con�dence measures of systems' predictions, and we
will show, through experiments, that the technique also of-
ten improves the accuracy of a system.

In a previous paper [12], we have presented research on cat-
egorization algorithms applied to the categorization of im-
ages using associated text as well as categorization of text
alone. Our system applies a Rocchio-based method involv-
ing TF*IDF text similarity measures [13, 14] in conjunction
with novel features, such as consideration of parts of speech
and di�erent spans of text. Standard TF*IDF/Rocchio com-
putes a similarity measure for every document/category pair
and makes its decisions based on these measures (e.g. by
choosing the category with the highest score). The Rocchio

approach is often used as a baseline for text categorization
[4, 8, 15, 19]. In recent years, advanced methods such as
support vector machines (SVMs) [5] have achieved signi�-
cantly better results.

We will explain how density estimation can be applied to the
results of systems such as ours to convert numerical similar-
ity scores for categories to probabilities of membership in
each category by estimating the proportion of documents
with similar scores in the training set that fall into the cat-
egory. A Rocchio-based system is an ideal type of system
to which density estimation can be applied because it com-
putes similarity scores for categories that do not already
have any intrinsic meaning. We will show that density es-
timation, in addition to providing con�dence measures for
predictions, improves the accuracy of our system in the ma-
jority of cases, boosting results to surpass those of several
advanced methods. Density estimation is a technique which
can be applied to the results of any system which computes,
for every test document, a score for every category.

2. RELATED WORK
Our approach to categorization stems from a long line of
work in measuring text similarity in both information re-
trieval and categorization contexts. Salton and Buckley [14]
generalized Rocchio's method for relevance feedback and ap-
plied it to text categorization. Two other common meth-
ods used for text categorization are Naive Bayes [7] and K-
Nearest Neighbor (kNN) [20]. Recently, many researchers
have attempted to apply more advanced methods to various
text categorization tasks. These include maximum entropy
[10], Widrow-Ho� and exponentiated gradient [8], boosting
[15], and support vector machines [5].

Joachims [4] implemented a probabilistic version of a
Rocchio-based text categorization system that uses TF*IDF
representations of documents and categories to compute prob-
abilities of categories given a test document. The method
which that system uses appears quite di�erent from stan-
dard Rocchio, but Joachims shows that the two are sim-
ilar and that they would be equivalent under certain as-
sumptions. Our system applies standard Rocchio �rst, and
then applies density estimation to convert similarity scores
to probabilities. Joachims tests his system on two repre-
sentative categories of a Reuters corpus, whereas we test
our system on 90 Reuters categories representing a com-



mon benchmark used in recent years to compare advanced
categorization systems.1 Joachims compares his probabilis-
tic TF*IDF system to a standard version and Naive Bayes,
whereas we compare our system against all methods tested
by Yang and Liu [20] for Reuters categorization, and against
several systems which comprise the publicly available Rain-
bow package [9] for categorization of our own corpus.

The concept of converting category similarity scores to prob-
abilities (or recalibrating category probabilities) is not new.
Some recent research exploring this potential is discussed
in two recent papers by Bennett. In [1], Bennett provides
evidence that Naive Bayes systems typically produce proba-
bilities close to 0 or 1, a problem which we have noticed but
have never formally analyzed, and begins to dicuss methods
which could be used to recalibrate the probabilities. In a
later paper [2], he introduces methods of �tting asymmetric
Gaussian and Laplace distributions to the output of a Naive
Bayes classi�er and a linear SVM classi�er. The methods
described in these papers are designed to work for binary
categorization tasks involving separate YES/NO decisions
for all document/category pairs.

In a previous paper [12], we reported detailed results of clas-
sifying images based on associated text as either Indoor or
Outdoor. Even then, our system, which relied on a com-
bination of Rocchio and a much simpler version of density
estimation, performed better for our corpus than a compet-
ing image-based system [17] which was optimized to perform
the same task. In another paper [11], we reported the results
of integrating our system at that time with an image-based
system. We have since improved our system using the gener-
alized method of density estimation described in this paper.
The previous method could only be applied when there were
exactly two mutually exclusive categories, but our current
version can be applied when dealing with any number of
mutually exclusive categories or when we are dealing with
a multi-label, binary categorization task. In addition, our
current method leads to signi�cantly better results even for
the task involving two mutually exclusive categories.

3. DENSITY ESTIMATION
Density estimation is a statistical technique for estimating
a probability density2 for the distribution assumed to gen-
erate a set of empirically obtained data points. Our ap-
proach to using density estimation for the purposes of text
categorization can be applied in conjunction with any text
categorization system that expresses a similarity score be-
tween each document and category. It works regardless of
the number of categories, and it works with either mutually
exclusive categories or with independent, binary categories.

Assume we are dealing with a set of N categories (C1, C2, ...,
CN ). Let us also assume that we have a text categorization
system using a method that can assign to any given doc-
ument d a similarity score to category Ci, namely S(d;Ci).
This can be done for every category, and so we can obtain
for each document a vector of similarity scores, one for each

1Joachims also tests his system on a collection of articles
from 20 newsgroups.
2Or a probability mass function, if the distribution is as-
sumed to be discrete.

category. The vector for some given document d can be
represented as Vd = [S(d;C1); S(d;C2); :::;S(d;CN )].

Rocchio/TF*IDF systems create just such a set of similarity
scores for every document. These scores only have meaning
in comparison with each other, and so this constitutes an
ideal type of system to which density estimation can be ap-
plied. Systems that use methods such as Naive Bayes or
K-Nearest Neighbor generally compute probabilities of cat-
egory membership for each category. These probabilities can
be used in place of similarity scores in the vector above, and
density estimation can be used to re-scale the probabilities.
SVMs, in their basic form, make binary (YES/NO) decisions
for individual categories by deciding whether a transforma-
tion of a representation of a document falls on a particular
side of a hyperplane in a mapped vector space. When used
for mutually exclusive categories, the distances from the hy-
perplanes are sometimes used to determine positive or neg-
ative (depending on the side of the hyperplane) scores for
categories, and these scores could be used for the vectors to
which density estimation could apply. Density estimation
potentially can be applied to most commonly used tech-
niques for text categorization; exceptions include decision
tree approaches and expert systems which follow a speci�c
chain of rules that ends in a prediction of a speci�c category
without generating scores for each category.

When dealing with mutually exclusive categories, a stan-
dard text categorization system, after generating a vector
of category similarity scores for a document, would assign
the document to the category with the highest score. While
this seems intuitive, it is not always the best solution, be-
cause the similarity measures do not always have an intrin-
sic meaning, and the scale is not always the same for ev-
ery category. When dealing with binary categories, there
are several standard methods of converting similarity scores
to YES/NO decisions for every possible document/category
pair. One, known as Scut [19], involves determining the
optimal threshold for each category based on training data.
(Optimality can be determined, for example, by maximizing
F1 measures, which will be described in Section 6). Another
method, known as Pcut [19], involves measuring the percent-
age of training documents that fall into each category in the
training set and assuming a similar percentage will fall into
the category in the test set. Therefore, for each category, we
assign the category to the x test documents with the high-
est similarity where x is chosen based on the training set.
A third method is to create, for each category, a separate
category consisting of all documents not in the actual cate-
gory. To obtain a YES/NO decision for the actual category,
we compare the similarity score of a test document and the
actual category to the similarity score of the test document
and the created category, thus converting our multi-label,
binary categorization task to a set of categorization tasks
each with two mutually exclusive categories.

The use of density estimation replaces those methods de-
scribed in the previous paragraph. First, the system is used
not only to obtain similarity score vectors for each test doc-
ument, but also for each training document. (Of course, the
vectors for the training documents only need to be calcu-
lated once ahead of time.) So, a vector of category similar-
ity scores, as described above, is computed for every training



document as well as every test document. Let d1 and d2 be
two documents in the corpus. We can then measure the Eu-
clidean distance between the similarity score vectors for d1
and d2 as follows:

D(d1;d2) =

vuut NX
i=1

[S(d1;Ci) � S(d2 ;Ci)]
2

To use density estimation to label a test document d, dis-
tances are computed between the document's similarity score
vector and those of every training document. The k train-
ing documents with the closest similarity score vectors to
that of d, and thus the smallest distances according to the
above formula, are selected. In other words, we are choos-
ing training documents whose similarity score vectors fall
within an N-dimensional hypersphere centered at the point
speci�ed by the similarity score vector for d. The labels of
these document will be used to determine the predicted la-
bel of the test document as described below. We select the
same number of training documents for each test document
(as opposed to examining a hypersphere of �xed radius) due
to the potential variability in sparseness of data for di�erent
values of similarity scores. The parameter k (the number of
training documents used) can be chosen arbitrarily, or it can
be determined based on cross-validation experiments within
the training set.

Once training documents with similarity score vectors close
to that of d have been identi�ed, density estimation provides
a probability of membership of d in each category C, esti-
mated as the proportion of those neighbors from the train-
ing set which were assigned the label C. In calculating this
proportion, individual training documents are weighted in-
versely proportional to the distance of their similarity score
vectors from the center of the hypersphere (corresponding
to the similarity score vector of the test document d). A sep-
arate decision can be made for each category based on the
(weighted) percentage of close training documents that have
been assigned to the category, and probability estimates for
all possible categories can be assigned to the test document.
More formally, let ti be the i

th training document out of the
k training documents selected as described above, and let
I(ti;C) be 1 if ti belongs to category C and 0 otherwise. The
estimated probability that the current document d belongs
to some speci�c category C is:

P (Cjd) =

Pk

i=1 I(ti;C)
1

D(d;ti)
+�Pk

i=1
1

D(d;ti)
+�

Note that the numerator and denominator in the above for-
mula are the same except for the I(ti;C) term, so that doc-
uments which belong to category C contribute to both the
numerator and denominator, and documents that do not
belong to category C contribute only to the denominator.
The epsilon in the formula is just an arbitrary, very small
constant to avoid in�nities in the case that there is some
training document with a similarity score vector that ex-
actly matches that of d.

Density estimation as just described can be applied with
any number of categories and it can be used as described re-
gardless of whether we are dealing with mutually exclusive
categories or binary categories. If we are dealing with mutu-

ally exclusive categories, every selected training document
will have exactly one label, and the probabilities assigned to
categories for a given test document will add up to 1. If we
are dealing with binary categorization, each individual cat-
egory will be assigned a probability ranging from 0 to 1, but
there is no further restriction on the sum of these probabil-
ities (since the categories are independent and a document
may belong to more than one category or none at all). When
dealing with binary categorization, density estimation is ap-
plied to the raw similarity scores between a test document
and categories; this method replaces the use of Scut, Pcut,
or conversion to a set of mutually exclusive categorization
tasks described earlier in the section.

Those who are familiar with K-Nearest Neighbor approaches
to text categorization may notice a strong resemblance be-
tween these and density estimation. In each case, we are
choosing certain training examples and using their cate-
gories to predict the category or categories of a test docu-
ment. The important distinction is that density estimation
is not comparing the actual test document to any train-
ing documents. It is only comparing the category similarity
score vector of the test document to category similarity score
vectors of training documents. It is very possible that a
document that might not share any words in common with
a test document will have a very similar (maybe even an
identical) category similarity score vector. The purpose of
density estimation is not to �nd training documents which
are similar to the test document, but rather to interpret the
category similarity scores of the test document which can be
the result of some entirely di�erent system. For each exper-
iment discussed in this paper, we do compare the results of
our system using density estimation to those of one or more
kNN systems.

4. DATA SETS
We have evaluated the bene�ts of density estimation through
experimentation on three data sets taken from two corpora.
For each data set, we consider a di�erent text categorization
task. The �rst task involves non-topical categories (catego-
rization of images as either Indoor or Outdoor), the second
task involves broad, high-level topical categories (catego-
rization of news documents into general categories), and the
third task deals with Reuters topic categories. The �rst two
tasks use data sets that we have created using our own cor-
pus (as described below), and we have de�ned the categories
for these tasks to be mutually exclusive. The third task uses
a commonly used, publicly available data set in which the
categories are binary (i.e. each document can have any num-
ber of labels up to the number of categories).

4.1 Data Set 1
The raw data from our �rst corpus consists of news postings
from November 1995 through January 1999 from a variety
of Usenet newsgroups. All of the postings contain a text
article and some contain one or two images with associated
captions. For our experiments on this corpus, we de�ne
a document as an image along with its caption and corre-
sponding article; there are 2,312 documents in total. Most
captions are two or three sentences long. Usually, the �rst
sentence describes the associated image and the rest give
background information about the related story.



In order to create training and test sets for our �rst two
experiments, we set up two user-friendly, web-based inter-
faces that allow users to label documents manually. Detailed
instructions including de�nitions and guidelines for the cat-
egories were provided. The �rst such interface asked users
to categorize images according to the Indoor versus Outdoor
distinction, and the choices given were Indoor, Likely Indoor,
Ambiguous, Likely Outdoor, and Outdoor. The instructions,
category de�nitions, guidelines, and interface for this set of
categories can be viewed at http://www.cs.columbia.edu/
~sable/research/readme.html.

Using the �rst interface, three volunteers manually labeled
a total of 1,675 images, and the same 1,675 images were
also labeled by the �rst author of this paper. These four
evaluators were given access to the images along with their
captions. A total of 1,339 images (79.9% of the 1675) were
assigned a de�nite label in the same direction by both eval-
uators, and these 1,339 images comprised the data set for
the �rst experiment discussed in this paper. 401 (29.9%) of
these images were classi�ed as Indoor and 938 (70.1%) were
classi�ed as Outdoor.

4.2 Data Set 2
The second interface asked users to categorize entire docu-
ments into one of the mutually exclusive categories Struggle,
Politics, Disaster, Crime, or Other. We will refer to these as
our Events categories in the remainder of this paper. The
information provided for this set of categories can be viewed
at http://www.cs.columbia.edu/~sable/research/instr.html.

Using this interface, 28 volunteers manually labeled a total
of 1,750 documents, and the same 1,750 documents were also
labeled by the �rst author of this paper. This time, we asked
evaluators to categorize entire documents, each consisting of
an article, an image, and a corresponding caption. A total
of 1,328 (75.9%) of the 1,750 documents were assigned iden-
tical labels by both evaluators, and these 1,328 documents
comprised the data set for the second experiment discussed
in this paper. 417 (31.4%) of these documents were classi-
�ed as Struggle, 387 (29.1%) were classi�ed as Politics, 296
(22.3%) were classi�ed as Disaster, 150 (11.3%) were classi-
�ed as Crime, and 78 (5.9%) were classi�ed as Other.

4.3 Data Set 3
For the third experiment, we used the ModApte split of the
Reuters-21578 [6] corpus, a common benchmark for com-
paring di�erent methods of text categorization [5, 15, 20].
This split includes 9,603 training documents and 3,299 test
documents. To allow for direct comparison with Yang and
Liu [20], we eliminated all categories which did not contain
at least one training document and one test document and
then discarded unlabeled documents. This left 90 topic cate-
gories, 7,770 training documents, and 3,019 test documents.
Most of the documents (9160 of the 10,789, or 84.9%) were
assigned to exactly one category, and the rest were assigned
to more.3 The most categories assigned to any one document
was 15, and the average number of categories assigned to

3This is because we have eliminated documents with no as-
signed categories to be consistent with Yang and Liu. It is a
bit unusual for binary categorization, and our system does
not assume that a document has at least one category.

a document was approximately 1.24. Category distribution
was quite skewed. The most common category had 3,964 in-
stances (2,877 training instances and 1,087 test instances),
while, on average, each category had approximately only 148
instances, and some categories had only two instances.

5. EXPERIMENTS
For each of the data sets described in section Section 4,
we �rst applied our own TF*IDF/Rocchio system which we
have previously described in [12] and then we applied density
estimation to the results of the system to measure its e�ect
on performance. TF*IDF/Rocchio systems base categoriza-
tions on similarities between documents and categories. The
term document here is used in a general sense to refer to
whatever type of entity is being categorized. Each docu-
ment and each category is represented by a weighted word
vector. Each word is weighted according to the product of
the word's TF, or term frequency, and the word's IDF, or
inverse document frequency [13, 14]. Once every document
and category is represented by a vector of TF*IDF values,
a document can be compared to a category by taking the
dot product of the document's vector and the category's
vector. Our system also allows many parameters which are
not typical of other systems using this methodology (e.g.
the restriction to words of speci�c grammatical categories
as determined by a statistical part-of-speech tagger [3]).

Our system automatically performs cross-validation exper-
iments within the training set to choose the settings for
the optional parameters that are likely to maximize per-
formance. For the experiments discussed in this paper, we
performed these cross validation experiments with and with-
out density estimation, as it is possible that the use of den-
sity estimation will change the optimal settings for certain
other parameters. For example, one of our parameters deals
with normalization of category word vectors, which becomes
more important when density estimation is not used since
both normalization and density estimation can account for
skewed category sizes. For the cross-validation experiments
using density estimation, we also tried out multiple possible
values of k which, as described in Section 3, is the number
of training documents used to determine the predicted label
or labels of each test document.

In addition to measuring the e�ect of density estimation on
the performance of our system for each data set, we also
wanted to compare our results against those of other recent,
advanced methods. For our �rst two experiments, we there-
fore also tested six competing systems which comprise the
publicly available Rainbow package (cited in Section 2). All
of these systems use text categorization techniques which
have been previously described in literature. Since we were
particularly interested in comparing our results with those
of a K-Nearest Neighbor system, and that which is part of
the Rainbow package seemed to perform poorly, we also im-
plemented our own version of a kNN system which uses the
same word vectors for documents as does our TF*IDF Roc-
chio system. For our third experiment, which uses binary
Reuters categories, we could not test the Rainbow systems
or our own version of a kNN system because these were im-
plemented to handle only data sets with mutually exclusive
categories. Instead, we compare results against all systems
test by Yang and Liu [20] (including a kNN system) in a



controlled study conducted using the same data set. These
systems were chosen because they use well-known methods
and achieved strong performance scores in previously re-
ported studies discussing similar experiments [20].

6. EVALUATION MEASURES
For our �rst two experiments, the main measure we con-
sider is overall accuracy. Each test document is assigned
one category, and the overall accuracy of the system is the
percentage of such assignments that are correct. We also re-
port the F1 measures for each category. The F1 measure [18]
combines precision and recall into a single measurement:

F1 =
2� Precison�Recall

Precision+Recall

This measure computes a score which is closer to the lower
of precision and recall, and thus requires good results for
both measurements to achieve a high F1 score.

When dealing with binary categorization, such as is the case
with our third experiment, values of precision, recall, and
F1 can be computed for each category and then averaged
together (macro-averaging), or they can be computed once
based on all binary decisions being made (micro-averaging).
The former method treats all categories equally, while the
later method treats all documents equally. Yang and Liu
[20] report micro-averaged precision, micro-averaged recall,
micro-averaged F1, macro-averaged F1, and overall error
(which is 1 minus overall accuracy), so we do the same for
our third experiment to allow for direct comparison. We
focus on the micro-averaged F1 score which has been more
widely used for comparing methods and systems than the
macro-averaged alternative [20].

7. RESULTS AND EVALUATION
7.1 First Experiment
For our �rst experiment, we randomly selected 894 (approx-
imately two thirds) of the 1,339 images in our �rst data
set (those that had de�nite agreement between two evalu-
ators on the Indoor versus Outdoor classi�cation question)
for training, and we used the remaining 445 images for test-
ing. The training set contained 276 (30.9%) indoor images
and 618 (69.1%) outdoor images, while the test set con-
tained 125 (28.1%) indoor images and 320 (71.9%) outdoor
images. Therefore, a baseline classi�er which labels every
image as Outdoor achieves an overall accuracy of 71.9% (al-
though the F1 measure of this classi�er would be 0 for the
Indoor category).

Using the chosen parameters based on the cross-validation
experiments discussed in Section 5 (with and without den-
sity estimation), we trained our system on the entire train-
ing set and tested on the previously unseen test set. The
overall accuracy of our system when density estimation was
not used was 80.7%. Table 1 shows the precision and recall
values achieved on our test set for each category. The F1
measures for the Indoor and Outdoor categories were 69.9%
and 85.7% respectively. The overall accuracy of our system
after density estimation was applied rose to 86.1%.4 Ta-
ble 2 shows the precision and recall values achieved on our
4Whichever category has the highest probability according
to density estimation is considered to be the system's pre-
diction.

Actual
Indoor

Actual
Outdoor

Precision

System
Indoor

100 61 62.1%

System
Outdoor

25 259 91.2%

Recall 80.0% 80.9%

Table 1: Results for the �rst data set without den-

sity estimation.

Actual
Indoor

Actual
Outdoor

Precision

System
Indoor

87 24 78.4%

System
Outdoor

38 296 88.6%

Recall 69.6% 92.5%

Table 2: Results for the �rst data set using density
estimation.

test set for each category. The F1 measures for the Indoor
and Outdoor categories were 73.7% and 90.5% respectively.
So density estimation not only had a signi�cant e�ect on
the overall accuracy of our system (a chi-square test shows
a P-value of 3.8%), but it also improved performance (based
on the F1 measure) for both categories.

Table 3 shows the results of all systems tested on our �rst
data set. As mentioned in the previous paragraph, density
estimation led to a signi�cant increase in accuracy for this
experiment. In addition, our system with density estima-
tion performed better than all but one competing system,
that being a Probabilistic Indexing system which beat our
system with density estimation by only one test document.
All systems beat a baseline of 71.9% accuracy which could
be achieved by a system which chooses the largest category
every time. For this data set, we also measured the perfor-
mance of humans who were asked to predict whether the
images in our test set were Indoor or Outdoor by looking
only at the textual captions. The overall accuracy of hu-
mans was 87.6%, and we consider this to be a reasonable
upper bound for how well an automatic system using only
text might be expected to do. Note that the best systems,
including our system with density estimation, were within
2% of this result.

7.2 Second Experiment
For our second experiment, we randomly selected 885 (ap-
proximately two thirds) of the 1,328 documents in our sec-
ond data set (those that had agreement between two eval-
uators for our Events categories) for training, and we used
the remaining 443 documents for testing. The largest cat-
egory in the training set was Struggle, which accounted for
282 (31.9%) of the training documents and 135 (30.5%) of
the test documents. Incidentally, the largest category in the
test set was Politics, which accounted for 243 (27.5%) of the
training documents and 144 (32.5%) of the test documents.
A baseline classi�er which predicted the largest category ev-



System
Overall Indoor Outdoor

Accuracy % F1 % F1 %
Rocchio/TF*IDF 80.8 69.9 85.7
Density Estimation 86.1 73.7 90.5
K-Nearest Neighbor 82.7 65.8 88.4
Naive Bayes (Rainbow) 85.4 73.5 89.9
Rocchio/TF*IDF (Rainbow) 84.5 73.2 89.1
K-Nearest Neighbor (Rainbow) 77.8 65.3 83.6
Probabilistic Indexing (Rainbow) 86.3 78.1 90.0
SVMs (Rainbow) 82.0 66.9 87.7
Maximum Entropy (Rainbow) 84.5 70.9 89.4

Table 3: Density estimation led to a signi�cant increase in accuracy for the Indoor versus Outdoor data set.

System
Overall Struggle Politics Disaster Crime Other

Accuracy % F1 % F1 % F1 % F1 % F1 %
Rocchio/TF*IDF 87.1 85.0 88.4 98.8 79.2 60.0
Density Estimation 84.9 83.7 86.0 97.3 80.0 34.3
K-Nearest Neighbor 84.0 81.1 82.1 93.9 81.3 65.0
Naive Bayes (Rainbow) 87.6 86.2 86.3 96.7 89.1 61.5
Rocchio/TF*IDF (Rainbow) 87.4 81.1 85.3 97.7 88.4 68.3

K-Nearest Neighbor (Rainbow) 81.9 80.0 79.7 95.6 75.6 63.2
Probabilistic Indexing (Rainbow) 86.5 83.6 84.8 97.2 89.4 65.0
SVMs (Rainbow) 88.7 88.1 89.2 96.2 87.0 57.9
Maximum Entropy (Rainbow) 88.3 88.1 87.9 95.7 87.9 55.6

Table 4: Density estimation degraded performance for our Events categories.

method miR % miP % miF1 % maF1 % error %
Rocchio/TF*IDF (Pcut) 71.21 70.72 70.96 50.14 0.803
Density Estimation 78.93 87.48 82.98 40.52 0.446
Combo 80.48 83.90 82.15 51.18 0.482
Support Vector Machines 81.20 91.37 85.99 52.51 0.365
K-Nearest Neighbor 83.39 88.07 85.67 52.42 0.385
Least Squares Fit 85.07 84.89 84.98 50.08 0.414
Neural Net 78.42 87.85 82.87 37.65 0.447
Naive Bayes 76.88 82.45 79.56 38.86 0.544

Table 5: Density estimation leads to a huge improvement for the Reuters data set.

ery time (based on the training set) would therefore achieve
only a 30.5% overall accuracy.

On this particular data set, our TF*IDF/Rocchio system
achieved a better performance without density estimation.
Without density estimation, the overall accuracy of our sys-
tem was 87.1%. The F1 measures for the categories Strug-
gle, Politics, Disaster, Crime, and Other were 85.0%, 88.4%,
98.8%, 79.2%, and 60.0% respectively. With density estima-
tion, the overall accuracy was 84.9%. The F1 measures for
the categories Struggle, Politics, Disaster, Crime, and Other
were 83.7%, 86.0%, 97.3%, 80.0%, and 34.3% respectively.
Therefore, density estimation degraded performance on this
data set by 2.2%, and performance was worse on four of
the �ve categories according to F1 measures. This does not
necessarily mean that a user would not want to use den-
sity estimation. The di�erence in overall accuracy is not
statistically signi�cant (a chi-square test shows a P-value
of 38.4%), and using density estimation assigns con�dence
measures in terms of probability to all predictions, whereas

with a standard approach, the best one can get is a ranked
list of categories.

For further comparison, we tested all of the same systems
used in our �rst experiment. Table 4 shows the results.
In this experiment, several of the competing systems had a
higher overall accuracy than our own. All systems far out-
perform the baseline of 30.5%, and our system with density
estimation still beats both versions of kNN systems tested.

7.3 Third Experiment
Table 5 show the results of all systems tested on the Reuters
data set. The �ve columns of results represent micro-averaged
recall, micro-averaged precision, micro-averaged F1, macro-
averaged F1, and overall error (equal to 1 minus overall ac-
curacy). The bottom �ve rows of the table are a repro-
duction of Table 1 from [20], summarizing the results of all
categorizers Yang and Liu tested. The �ve methods used
were Support Vector Machines, K-Nearest Neighbor, Least



Squares Fit, Neural Net, and Naive Bayes. They are ranked
from top to bottom in the table based on micro-averaged
F1, generally considered to be the most important of these
performance measures [20].

The top row of the table shows the results of our system
without density estimation. Without density estimation,
some other technique is needed to convert category simi-
larity scores to YES/NO decisions for each category as de-
scribed in Section 3, since Reuters is a binary categoriza-
tion corpus. We tried all three of the standard methods
described in Section 3, and Pcut worked by far the best,
so that was used for the result shown in the �rst line of
the table. The micro-averaged F1 measure, the one that we
tried to optimize, was only 70.96%, far lower than the �ve
methods tested by Yang and Liu. This is not surprising, as
standard Rocchio does not generally fare well against other
methods for binary categorization. For example, see Yang
[19] in which she includes Rocchio among the compared sys-
tems tested on similar Reuters corpora. Interestingly, the
macro-averaged F1 measure was higher than three of the
�ve systems tested by Yang and Liu.

The second row of the table shows the results of our system
with density estimation. As can be seen, the micro-averaged
F1 went up from 70.96% to 82.98%, a major improvement.
In addition, the overall error went down from 0.803% to
0.446%. These scores are better than those for the Naive
Bayes approach and marginally better than those for the
Neural Net approach examined by Yang and Liu. Density es-
timation took a system which was far under-performing top
competing systems and improved its performance to such a
degree that it was in the pack.

Interestingly, density estimation actually lowered the macro-
averaged F1 of our system from 50.14% to 40.52%. This led
us to believe that density estimation may perform better for
large categories while the standard approach may perform
better for small categories (since macro-averaged F1 treats
all categories equally). We therefore performed a �nal ex-
periment combining the two approaches. For all categories
for which density estimation performed better according to
F1 measures based on cross-validation within the training
set, we also used density estimation on the test set, but
for other categories we used Pcut on the test set. It turns
out that Pcut was used for 52 of the 90 categories, but these
categories accounted for only 1,257 assignments in the train-
ing set, whereas density estimation was used for only 38
categories, but these categories accounted for 8,626 assign-
ments in the training set. The results of our �nal experiment
are summarized in row 3 of Table 5. As can be seen, the
micro-averaged F1 and overall error were slightly worse than
when density estimation was used for all categories, but still
much better than Pcut and better than the Naive Bayes ap-
proach examined by Yang and Liu. The macro-averaged F1
of 51.18% was better than when either Pcut or density es-
timation was used alone, beating three of the �ve methods
tested by Yang and Liu.

8. CONCLUSION
This paper has presented a novel application of an estab-
lished mathematical technique, density estimation, that sig-
ni�cantly improved the performance of our Rocchio-based

text categorization system in two out of three experiments.
This technique could be applied to the results of any sys-
tem which categorizes documents by computing a similarity
score for every category. In addition to improving perfor-
mance, density estimation provides probabilistic con�dence
measures for a system's predictions, whereas a standard
Rocchio-based system (and many other alternatives to which
density estimation could be applied) can only provide cat-
egory rankings or YES/NO decisions. We suggest that the
use of density estimation should be considered for catego-
rization tasks; experiments within the training set can be
used to determine whether it is likely to improve the perfor-
mance of a system.
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