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ABSTRACT 
We have developed a model and a platform for end-to-end 
run-time monitoring, behavior and performance analysis, 
and consequent dynamic adaptation of distributed 
applications. This paper concentrates on how we coordinate 
and actuate the potentially multi-part adaptation, operating 
externally to the target systems, that is, without requiring 
any a priori built-in adaptation facilities on the part of said 
target systems. The actual changes are performed on the fly 
onto the target by communities of mobile software agents, 
coordinated by a decentralized process engine. These 
changes can be coarse-grained, such as replacing entire 
components or rearranging the connections among 
components, or fine-grained, such as changing the 
operational parameters, internal state and functioning logic 
of individual components. We discuss our successful 
experience using our approach in dynamic adaptation of a 
large-scale commercial application, which requires both 
coarse and fine grained modifications. 

Categories and Subject Descriptors 
D.2.4, D.2.5 [Software Engineering]: Software/Program 
Verification – reliability, validation; Testing and 
Debugging – diagnostics, error handling and recovery, 
monitors. 

General Terms 
Measurement, Performance, Reliability. 

 

Keywords 
Dynamic Adaptation, Dynamic Reconfiguration, Perpetual 
Testing, Distributed Systems, Software Process Enactment, 
Workflow, Coordination, Agents, Mobile Code. 

1. INTRODUCTION 
Distributed computing is becoming a commodity. Users 
rely upon distributed systems for a number of value-added 
services that pervade their everyday lives, from work, to 
commerce, to entertainment, to social interaction. Services 
such as Web-based collaboration suites, electronic B2B and 
B2C, on-demand multimedia content provisioning, and 
ubiquitous personal messaging are built on top of a 
networking infrastructure as distributed systems, often 
constructed by composition. The complexity of the 
behavior and interrelationships of these “systems of 
systems” becomes increasingly harder to manage, and it is 
in general impossible to analyze all facets of their 
functional and non-functional characteristics in advance. 
That aggravates the critical problems of managing the 
provisioning of the service and maintaining the intended 
application-level, “soft” quality of service (QoS). In order 
to resolve poor performance or failures, often service is 
interrupted, the underlying application is taken down (at 
least in part), and the spiral of software lifecycle iterates 
back to the installation or deployment phase, and sometimes 
even to earlier development phases. 

While such a drastic response may be obligatory at times, it 
is desirable when possible to resolve problems with lesser 
impacts and costs – while the system is running and without 
bringing it down. Our research addresses the manageability 
and soft QoS of distributed applications, by using external 
automated facilities for their dynamic adaptation. By that 
term we mean any controlled set of actions aimed at 
modifying, at runtime, the structure, behavior and/or 
performance of a target software system, typically in 
response to the occurrence and recognition of some adverse 
condition(s). 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
FSE-10, November 20-22, 2002, Charleston, South Carolina, USA. 
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00. 
 

mailto:Giuseppe.Valetto@tilab.com
mailto:Kaiser@cs.columbia.edu
mailto:Kaiser@cs.columbia.edu


Our approach centers on process-based coordination of 
mobile agents. An external automated entity dispatches 
onto the target system one or more mobile software agents 
to carry out the needed dynamic adaptation. Each agent 
travels to and then operates within an execution 
environment that is co-located with a target component or 
actualized connector. The only preparation required of the 
target is its instrumentation or wrapping with a set of host 
adaptors: those are employed to mediate agent access to 
portions of the internal state and behavior of target units, 
exposed for dynamic adaptation purposes. In certain cases, 
a single agent can traverse a set of target components and 
connectors in sequence; in many others a community of 
agents needs to perform activities simultaneously on 
multiple target units. In at least the latter case, a 
coordination mechanism is needed. For those coordination 
purposes we employ process technology: we design the 
concerted adaptation as a process among these software 
agents, and employ a process enactment (or workflow) 
engine to orchestrate the agents at runtime. 

Others have also proposed to exploit results from process or 
agent research, or their combination, to control the behavior 
and performance of a running application, either as a 
promising generic coordination mechanism [4] [6], or 
attacking specific aspects of dynamic adaptation: for 
instance, dynamic service composition and management 
[12], deployment [10], self-modification [13], and 
“perpetual testing” (see 
http://www1.ics.uci.edu/~djr/edcs/PerpTest.html). 
The major distinctions of our approach are the decoupling 
of the adaptation facilities from the target system and 
further the independence from any underlying support 
framework, which together enable a wide spectrum of 
adaptation, with varying granularity, from the configuration 
of the target architecture as a whole, to the pairwise 
interactions between components, down to the tweaking of 
the inner state of single components. 

In a preliminary paper [3], we introduced our concepts, 
model and system – called Workflakes - for applying highly 
automated process- and agent-based dynamic adaptation 
facilities “from the outside” of a given target system. At that 
time we had implemented only a proof of concept of 
Workflakes, using a “mockup” of the University of 
Massachusetts Juliette decentralized process system [5]. We 
have more recently completed and evaluated an operational 
implementation based on the Cougaar open–source 
decentralized system as the runtime process engine (see 
http://www.cougaar.org). 

Workflakes has been developed as part of the Kinesthetics 
eXtreme (KX) infrastructure [21] for the Continual 
Validation of distributed systems [2]. KX defines a “meta-
architecture” that superimposes upon generic distributed 
applications an OODA  (Observe - Orient - Decide – Act) 

monitoring and control loop - also known as 
monitor/analyze/respond. KX features  instrumentation and 
probing of target components and connectors, application-
aware functional and extra-functional gauging derived from 
the analysis of posets of probe-generated messages, and 
automated actuation. Workflakes takes within KX the roles 
of automated decision support and actuation coordination, 
that is, choosing and performing dynamic adaptation 
processes, as deemed necessary on the basis of input by the 
KX gauges that diagnose the state of the target system. 

In this paper, we elaborate on our revised Workflakes 
architecture, as well as evaluate the model’s merits and 
limitations based on experience gained by putting it to test 
on a real-world, mass-market Internet service. We also 
discuss a series of conceptual, architectural, technological 
and applicability aspects that we have discovered to be key 
to the effective exploitation of dynamic adaptation 
capabilities. 

2. THE WORKFLAKES APPROACH 
2.1 Background 
Dynamic adaptation as a discipline responds to the 
observation that a running system is likely to be subject to 
condition variations that can be external (i.e., in its 
execution environment) or internal (e.g., degradations, 
faults, other forms of malfunctioning, or even just 
consumption of resources over time, etc.). Such variations 
can influence the provided service in a number of ways, 
which can only be partially predicted and adjusted for from 
within the application code itself, e.g., by striving to make 
the code fault tolerant a priori. 

This leads to a vision of monitoring, analysis, and response 
facilities that are somehow intertwined or connected with 
the target system, to promptly detect changes in its internal 
and external conditions, and then decide upon and exert 
appropriate adaptations upon it. Such a vision is often 
presented as a feedback (reactive) and/or feed forward 
(proactive) control loop. However, one major crucial issue 
is how to achieve the decision and action blocks of the 
control loop. “Standard” APIs have been proposed for 
probing [25] and gauging [26], but not yet for response – 
which is less well understood. 

Our process-based coordination and agent-based actuation, 
follows three basic principles: it enables to keep disjoint the 
adaptation target from the adaptation facilities, which 
operate “from the outside” with respect to the target; it 
maintains a clear-cut separation between coordination and 
computation concerns (as advocated in [1]), to be handled, 
respectively, by the process engine and the agent 
infrastructure; and it provides a foundation for reasoning 
upon any explicit knowledge about the target system’s 
architecture, e.g., as codified in an Architecture Description 
Language (ADL), to tailor the dynamic adaptation process 
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with relevant resources, facts and policies [19] [30]. We 
believe that those principles provide a nice degree of 
generality and flexibility to our approach: on the one hand 
they do not impose too many prerequisites on the nature, 
architecture or implementation of the target system, and on 
the other hand they are not excessively constraining with 
respect to the reach and capabilities we can achieve. 

In the remainder of this section we discuss in depth the 
dynamic adaptation approach of Workflakes within the 
larger context of our KX architecture, and provide some 
details about the most relevant aspects of the current 
Workflakes implementation. 

2.2 The KX Architecture and Workflakes 
KX defines an architecture that is meant to impose an end-
to-end OODA loop upon generic distributed target 
applications. Its goal is Continual Validation, that is, 
ensuring that given critical functional and extra-functional 
parameters of the running target are preserved throughout 
its operation. Continual Validation is not limited to passive 
monitoring of such parameters, but can be intrusive and 
therefore adapt the target system either in a reactive (that is, 
for repair, aiming at restoring the nominal parameters) or a 
proactive fashion (e.g., for plan-ahead reconfiguration, such 
as scaling). 

Figure 1: Monitoring and analysis in KX. 

The KX SmartEvents model [21] fulfills the Observe and 
Orient OODA steps with a semantics-aware pipeline 
architecture (see Figure 1), built on top of a 
publish/subscribe event bus [23]. Streams of XML-
formatted events are generated by probes placed within the 
target code (e.g., via active interfaces [22]). Probe events 
(Observe) are propagated to subscribing Event Packagers, 
which variously manipulate the contained information to 
extract bits of semantic content, with the support of a 
flexible XML parsing engine (the Metaparser) and of a 
repository of known XML schemas and dynamically 
applicable transformations (the XML Oracle); Event 
Packagers can also convert probe events in other formats 
used within the common framework. The contents of 
multiple streams of events get finally correlated by rule-
based Event Distillers to derive application-dependent high-

level facts. Distillers function as gauges (Orient), i.e., they 
measure, express and report knowledge about the state of 
the target system: its health, compliance with the parameters 
subject to Continual Validation, and any other conditions 
formulated for input to dynamic adaptation decisions. 

In the KX context, Workflakes is complementary (and 
orthogonal) to the SmartEvents model, and is concerned 
with the Decide and Act part of the OODA loop. KX 
gauges provide Workflakes with continually updated 
knowledge about various aspects of the target system, some 
of which can trigger a dynamic adaptation process 
(Decide). Workflakes’ enactment typically results in the 
end in the orchestrated dispatching of mobile agents that 
travel to the target components and carry out appropriate 
local computations (Act). As agents terminate their duties, 
they report back their outcomes to the process engine, 
possibly triggering other process fragments.  

The interactions between KX gauges, the Workflakes 
process engine, and the actuator agents are entirely 
automated, that is, no human intervention is needed to close 
the loop; however, either gauges or Workflakes (or both) 
may be configured to report their status externally, and 
human-oriented steps may of course be inserted in the 
process, for instance to allow for auditing or confirmation 
before initiating a particularly critical adaptation. 

2.3 Workflakes in Detail 
The current implementation of the Workflakes system, 
embodying the dynamic adaptation principles and features 
discussed above, relies on the integration of the worklets 
mobile agent platform [24] [3] with a Cougaar-based 
process engine specialized for agent coordination. 

Worklets are multi-transport mobile agents written in Java. 
Each worklet acts as a carrier of one or more computational 
snippets, named worklet junctions. Agent transport facilities 
are provided by Worklet Virtual Machines (WVMs) 
residing at the origin and destination. WVMs also define an 
execution environment for worklets, exposing via a host 
adaptor an interface to match the computational capabilities 
of incoming worklet junctions, and to enable access to 
portions of the state and behavior of the target component. 
A host adaptor provides a degree of abstraction and 
information hiding to junctions that implement a given kind 
of functionality, thus mediating any idiosyncratic properties 
of different native implementations of target elements, and 
presenting them consistently for adaptation purposes. A 
junction is deposited at each WVM corresponding to a step 
of the worklet’s programmable trajectory, and is executed 
there. The execution of a deposited junction can be micro-
controlled via a worklet jacket. Jackets are interpreted by 
the WVM and can regard a variety of optional aspects, such 
as junction priorities, pre- and exit conditions, subsumption 
of a previously (or possibly subsequently) arriving worklet, 
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repetition, suspension or resumption at time intervals or 
upon other conditions, and so on. Partial or final results of 
the junction execution can in some cases influence the 
remaining trajectory of the corresponding worklet. Further 
details are outside the scope of this paper. 

The Workflakes process enactment engine is a modification 
of Cougaar, specifically constructed to dispatch, coordinate 
and receive worklets, and exploits this capability in two 
fundamental ways. First, worklets originate from WVMs 
that are incorporated within the decentralized task 
processors (clusters) of Cougaar, and travel to the target 
components to be adapted. One of the major responsibilities 
of the process is therefore to decide what are the most 
appropriate actuations, i.e., (sets of) worklet junctions to be 
dispatched, in order to fulfill a given dynamic adaptation 
task. For that reason, the process engine integrates a 
repository of junction descriptions and a junction factory, 
so that actuation junctions can be treated as first-class 
process resources that need to be assigned and instantiated 
by the process logic according to the task at hand. 
Furthermore, Workflakes uses worklets also to dynamically 
load process definitions onto task processors, either with a 
pull or a push modality. Specific process definition junction 
types have been implemented to that end, which enable the 
dynamic deployment via worklets of portions of the process 
to the most convenient task processor for execution.  

Such process delivery may for example be used in the pull 
modality to incrementally retrieve process fragments when 
requested to handle certain gauge events, or in the push 
modality for on-the-fly process evolution across a 
distributed Workflakes installation. 

The Workflakes implementation relies on the Cougaar 
concept of plugins. Plugins allow to customize the 
functionality of Cougaar clusters by inserting components 
that implement a particular logic or a specific capability,  

and get access to the process state and other data via the 
Cougaar distributed blackboard. As shown in Figure 2, we 
use several Logic Data Model (LDM) plugins to import and 
convert KX gauge events in terms of process facts, to 
maintain the target system architectural knowledge, and 
represent the junction repository; an Expander plugin to 
load process definitions and spell them out as 
concatenations of tasks; an Allocator plugin to map tasks to 
actuation junctions as needed; an Executor plugin that 
employs the resident WVM to handle worklet instantiation 
and shipment. 

In Workflakes, plugins are initially idle and devoid of any 
hardcoded logic related to any particular process; for that 
reason, we call them shell plugins. The set of shell plugins 
launched within a cluster at start time is therefore merely 
indicative of the kinds of service and functionality that the 
cluster is meant to offer within the overall Workflakes 

engine. Shell plugins can get activated at any time via the 
injection of the abovementioned process definition 
junctions; from that moment on, they acquire a definite 
behavior that is coded in those junctions, and start taking 
part in the enactment of the process in a modular fashion. 

Figure 2: Cougaar Representation of a Workflakes Task 
Processor. 

3. DYNAMICALLY ADAPTING AN 
INTERNET MASS-MARKET SERVICE 

3.1 Application Context and Results 
We have been experimenting with a multi-channel instant 
messaging (IM) service for personal communication, which 
operates on a variety of channels, such as the Web, PC-
based Internet chat, Short Message Service (SMS), WAP, 
etc. The service is currently offered on a 24/7/365 basis as a 
value-added service to thousands of users. It is 
implemented using J2EE and relational databases. 

Our goals are twofold: We want to achieve service 
optimization, with respect to the overall QoS perceived by 
the end users, which can be achieved by adapting the 
functional and/or extra-functional characteristics of the 
various service components as well as their interactions. 
The requirements include on-the-fly architectural 
modification for scalability, in response to the detection of 
host- and component-specific load thresholds; and on-the-
fly re-configuration of the server farm hosting the service. 
We also aim to support dynamic monitoring and control of 
the running service, that is, simplify and resolve a number 
of concerns, related to the continuous management of such 
a complex distributed application. These requirements 
involve automated deployment of the service code; 
automated bootstrapping and configuration of the service; 
monitoring of database connectivity from within the 
service; monitoring of crashes and shutdowns of IM 
servers; monitoring of client load over time; support for 
“hot” service staging via automated rollout of new versions 
and patches. 

Our study is organized as a series of iterations, which aim at 
incrementally fulfilling requirements originating from needs 
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discovered in the field by the service provisioning 
organization, and elicited from the application development 
and maintenance team. For each iteration, results are first 
evaluated in the lab; then new requirements are accepted for 
the next iteration, while the results produced are delivered 
and put to test on the field. We have now reached the end of 
the first iteration. 

The service runtime environment consists of a typical three-
tiered server farm1: a load balancer provides the front end 
of the service to all end users and redirects all client traffic 
to several replicas of the IM components, which are 
installed and operate on a set of middle tier hosts. The 
various replicas of the IM server all share a relational 
database and a common runtime state repository, which 
make up the back end tier, and allow replicas to operate in 
an undifferentiated way as a collective service. 

As shown in Figure 3, some of the IM servers may provide 
additional facilities, which handle access to the service 
through specific channels, such as SMS or WAP, and 
interoperate with third-party components and resources that 
remain outside of the scope of the service, e.g., the 
gateways to the cell phone communication network. Those 
extra facilities wrap the core IM functionality in various 
ways. Given this kind of modularity, it is possible to 
achieve the continual validation of all of the service 
components in a server farm in a rather consistent way, by 
applying probing, gauging and actuation in the first place 
on the core IM server components (as we did for the first 
interation), and extending them as needed to validate any 
critical features of the additional wrapping components. 

The current implementation successfully addresses all of 
the requirements using a specific set of probes, gauges and 
actuators on top of the common facilities provided by the 
KX platform. Workflakes addresses the manageability 
requirements by taking responsibility to correctly initiate 
the service software via a set of worklets and a completely 
automatic process, which replaces the original manual 
procedures and scripts for the installation, deployment and 
bootstrapping of service components. This process is 
enabled by the explicit codification – among the logic and 
data loaded at startup onto the Workflakes bare engine – of 
knowledge about the service architecture and the runtime 
environment of the server farm that hosts the service. 
Furthermore, Workflakes addresses QoS requirements, 
responding to scalability needs with a reactive process that 
orchestrates new deployments of IM servers, and opportune 
reconfiguration of the load balancer. 

After startup, Workflakes selects one of the hosts from its 
internal representation of the runtime environment of the 

                                                                 
1 A very similar example is employed in [19] as a generic, typical 

architectural style for Internet service provisioning. 

server farm and sends out a worklet to it. This worklet 
executes bootstrapping code for the IM server and 
configures it with all the necessary parameters (such as the 
JDBC connection handle to the DBMS, the port numbers 
for connections by clients and other IM servers, etc.). 
Notice that not only the configuration information, but also 
the executable code of the IM server is deployed and 
loaded on demand from a code repository made available to 
the incoming worklet, taking advantage of a code-pulling 
feature of the Worklets agent platform; that allows to do 
away with any preliminary installation of the application 
code on all machines taking part in the server farm, a fact 
that greatly simplifies on its own the bootstrapping, staging 
and evolution of the service. (This approach is also 
followed in Software Dock. [10]) 

Figure 3: The IM service architecture. 

When the worklet instantiates an IM server, certain probes 
are activated to track its initialization. In the event of an 
unsuccessful initialization, the likely cause is inferred by 
KX on the basis of the probes’ output and reported to a 
dashboard GUI for the human management of the service, 
as well as to the process, which may react by deciding to try 
to bootstrap an IM server on the same machine again, or on 
another one. When the initialization is successful, instead, 
the process dispatches another worklet onto the load 
balancer, to instruct it to accept traffic for the IM service 
and pass it to the initialized server at the right host address 
and port. 

Following the initial bootstrapping phase, Workflakes takes 
a reactive role, while the KX platform starts monitoring the 
dynamics of service usage. Certain probes and gauges are 
activated to track user activity, such as logging in and out of 
the initialized server. IM servers have an associated load 
threshold, which in the case of this particular service is 
most simply expressed in terms of the number of 
concurrently active clients in relationship with the memory 
resources of their host. When that threshold is passed, 
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Workflakes is notified and reacts trying to scale the service 
up. It selects some unused machine that is still available in 
the server farm, and repeats the bootstrapping process 
fragment on that machine, including the updating of the 
load balancer configuration. Of course, this scaling up 
policy can be repeated as many times as the number of 
machines in the server farm, Notice that the worklet 
bootstrapping a new IM server must carry an extra piece of 
configuration, that is, the indication of some other alive IM 
server, in order to enable the new instance to synch up with 
the IM server pool and its shared state, and function as an 
undifferentiated replica. After a successful initialization of 
an IM server, client requests begin to arrive at that server 
via the re-configured load balancer, achieving scalability 
and thus enhancing reliability and performance overall. 
Other conditions that can prompt new deployments and 
bootstrapping of IM servers include failures of some 
existing server replicas, which are inferred from specific 
sequences of probe events. 

The logic described above is enacted by Workflakes and 
reified by actuator worklets carrying code for the IM server 
bootstrap and the load balancer reconfiguration, and feeds 
off KX gauging events for the reactive parts. It effectively 
fulfills our deployment, bootstrapping and scalability 
requirements, supporting at once both the service 
monitoring and control goal and the service optimization 
goal in a flexible and dynamic way. Minor changes to the 
bootstrapping process sketched above enable any service 
evolution campaign to be expressed as a process with tasks 
that withdraw from the load balancer old server instances 
(thus disallowing new traffic to be assigned to them), shut 
them down when traffic is absent or minimal, and 
conversely start up, register on the load balancer, and thus 
make available to users other server instances with the new 
code release instead. 

3.2 Evaluation and Lessons Learned 
To date, we have been confronted primarily with what are 
nowadays typical application management [7] concerns for 
a complex, real-world, mass Internet service, and only 
secondarily with soft QoS assurance requirements such as 
scalability. (Notice that this reflects only the set of 
requirements we have received for the first iteration, rather 
than the reach of our dynamic adaptation approach.) The 
granularity of the adaptation policies coordinated by 
Workflakes has consequently remained relatively coarse, 
covering aspects such as deployment, instantiation and 
initialization of service components, and only in some cases 
finer-grained aspects - notably the reconfiguration of the 
load balancer. We compare here these more coarse 
adaptation features with what is available from commercial 
application management software packages, which typically 
exploit generic management facilities exposed by the host, 

such as starting and shutting down an operating system 
process, inspecting its state and resource usage, and so on. 

Target awareness: our probes, gauges and actuators are 
derived from generic code instrumentation templates that 
are then instantiated with a limited amount of situational 
logic (around 15 Java code lines for probes, around 10 for 
adaptors, less than 100 for worklets in this case), rather than 
general-purpose (i.e., derived from OS-level monitoring 
facilities). Thus they provide considerable expressiveness 
and flexibility in predicating on fine-grained internal 
characteristics of the application, such as expressing load 
thresholds in terms of the number of concurrent users, and 
weighing those thresholds in terms of host capabilities. 

Enhanced active management: commercial application 
management is still primarily concerned with collecting and 
reporting data. Active management [7] [8] is less mature, 
still limited to basic actuations, such as scripted 
instantiations and shutdowns of components, and not 
particularly customizable or fine-grained. Workflakes 
process- and agent-based approach emphasizes active 
management, enabling effective closing of the control loop 
upon the managed system, either reactively (feedback) or 
proactively (feed forward). 

Highly automated management: here is where the benefit 
of a full-fledged process engine becomes most evident. 
Most application management tools report warnings, alarms 
and other information derived from the monitoring facilities 
to a dashboard console, where some knowledgeable human 
operator can recognize situations as they occur, and take 
actions if needed, with a very limited amount of support, 
guidance and automation on part of the management 
platform. Our approach allows to capture the knowledge 
inherent in the process of managing applications, formalize 
it as an enactable coordination “program”, and 
automatically execute it. Our platform – in turn - provides 
the technical means to fulfill that promise. Therefore we 
offer a high level of guidance, coordination and automation 
to enforce what is a complex but many times largely 
repeatable and codifiable process. 

Employing Workflakes for application management in the 
lab shows higher levels of automation, flexibility and 
repeatability to the deployment of the target service, all 
benefits which can now be extended to the field. Previous 
manual procedures had been complex, error-prone and 
effort-consuming, requiring even several days of work by 
dispatched application specialists. Moreover, whenever a 
new installation or release had to be undertaken, the amount 
of labor did not decrease much, independently from the 
increased experience of the deployment team. With 
Workflakes, a completely new installation comports only 
changing those few elements in the process knowledge base 
that capture the runtime environment. 



Another set of observations from this first iteration is 
related to the impacts on development. Our team embraced 
the working hypothesis that no code change in the target 
system itself was to be made, or requested to the service 
development team. In other words, we positioned ourselves 
past the end of the development phase of the project life 
cycle and just prior to the deployment phase. We treated the 
target service as a complete legacy, although a legacy for 
which all the specifications, software artifacts and 
accumulated project knowledge did happen to be available 
to us. We were able to superimpose all the needed dynamic 
adaptation features without interfering with the 
development process. Notice that another kind of legacy 
was also addressed: the load balancer we actuated is also 
commercial software, written in Java by IBM as part of 
their Web Sphere Edge Server suite. It allows for limited 
programmatic extensions, and – of course – only the 
extension API was available to us. We were able to work 
within these limitations to devise process tasks and 
actuators that successfully instructed it to accept traffic for 
certain hosts and ports on the fly. 

A relatively low level of effort was needed to fulfill the 
goals of our first iteration. The process and actuators for 
Workflakes consisted of about 1100 lines of Java source 
code, while KX probes and gauges added another 450 lines 
(Java and XML). This should be compared with a size of 
about 36000 lines of Java, JSP and SQL code for the subset 
of the service components that are currently subjected to 
probing, gauging and actuation (that excludes the 
commercial load balancer, for which we cannot produce 
figures). 

We observed, however, that the amount of effort to set up 
and analyze the target system and its behavior was greater 
than the effort spent in developing the corresponding 
solution. In addition, a substantial portion of the code we 
wrote is intended to capture architectural information, 
relationships and inferences and represent them to 
Workflakes and KX. That suggests that being able to 
capture, describe and expose in an abstract and machine-
readable way knowledge about the target architecture may 
be possibly the single most powerful enabling factor for 
automated dynamic adaptation of software, which further 
motivates our plan to exploit formal ADLs in our follow-up 
research (see Section 5). 

4. RELATED WORK 
Workflakes advocates the separation between the target 
system and the facilities used for its dynamic adaptation, at 
the conceptual, architectural and implementation levels, as 
a means to simplify the tasks of designing, building, 
maintaining, evolving and activating/deactivating dynamic 
adaptation features with minimal disruption to the 
development or operation of the target. That contrasts with 

fitting (or retro-fitting, in the legacy case) the target with 
built-in code, e.g., internal fault tolerance provisions, which 
for component-based systems typically affect individual 
components in isolation, rather than working across the 
whole target system in a coherent, coordinated manner. For 
example, [18] employs a rule-based inference engine for 
decision support in application-level QoS assurance. Like 
in Workflakes, it is a separate coordination entity that 
enacts scripted management policies by controlling a set of 
computational actuators. However, the coordinator and 
actuators must both be embedded with each component 
subject to adaptation. That requires much heavier 
instrumentation of the target system, and results in a lack of 
flexibility in the adaptation actions that can be carried out 
without re-building the target. 

A natural extension of embedded fault tolerance is 
represented by built-in mechanisms that offer system-
encompassing dynamic adaptation capabilities at the price 
of designing and building the target system as a whole 
around such facilities. Such an approach often advocates 
the adoption of middleware with native dynamic adaptation 
properties. For example, Conic [17], Polylith [15], and 2K / 
dynamicTao [9] [16] offer a set of reconfiguration 
primitives as a premium for applications built with and 
operating on top of those environments.  

With respect to our reference problem in Section 3, such an 
approach would require that all service components, plus all 
of the server farm’s support features, such as clustering, 
load balancing, state and data persistence and distribution, 
were assembled from the start with the dynamic adaptation 
middleware and its requirements in mind. Besides posing a 
considerable barrier to the dynamic adaptation of legacy 
software and violating the aforementioned separation 
between target system and dynamic adaptation facilities, 
middleware-based dynamic adaptation also introduces a 
very strong dependency of the former upon the latter, where 
the spectrum and granularity of possible adaptations is 
effectively restricted by the set of primitives made available 
by the middleware. Similar observations apply also to those 
works that exploit the characteristics of established 
component frameworks to facilitate certain aspects of 
dynamic adaptation. For example, BARK [14] deals with 
dynamic (re-)deployment limited to the Enterprise Java 
Beans component model. 

Several approaches effectively separate coordination from 
computation, as we do, and some even use process-based 
capabilities to define, enact and coordinate dynamic 
adaptation. However, all those we are aware of still employ 
a middleware-like paradigm and exert the coordination 
“from the inside”, that is, on the target’s own computations. 
For example, [13] introduces the concept of Containment 
Units, as modular process-based lexical constructs for 
defining how distributed applications may handle self-



repair and self-reconfiguration. Containment Units define a 
hierarchy of processes that predicate on constraints and 
faults, and take action in terms of component substitution 
and resource reallocation to handle faults within the defined 
constraints. The enactment of Containment Units is under 
the responsibility of a process engine that is integral to the 
system being adapted, and proceeds by directing changes 
on the target components, which must also be process-
aware to some degree. 

PIE [11] is another example of a process-based 
middleware, which supports the assembly and management 
of a federation of components. PIE adds a control layer on 
top of a range of inter-component communication facilities. 
The control layer implements process guidance via handlers 
that react to and manipulate the communications exchanged 
by the components in a federation. Dynamic adaptation is 
thus limited to the reconfiguration of the service 
architectural connectors and is carried out by plugging in 
appropriate handlers, as directed by the process. In our 
example, such reconfiguration could be used to adapt the 
load balancing features and the server-to-server 
interactions. 

TCCS [12] has considerable similarities with Workflakes, 
since it employs its process engine to direct the work of 
agents, whose execution in turn carries out the dynamic 
adaptation tasks. That is consistent with our idea of 
separating coordination and computation concerns; 
however, TCCS is the epitome of the middleware approach, 
since the complex services obtained with it as dynamic 
compositions cannot exist independently from its process 
and agent-based framework: TCCS carries out the 
scheduling and sequencing of all interactions between the 
service components. Also, the scope of the dynamic 
adaptation is limited, as in PIE: finer-grained adaptation of 
the internal computational logic of components remains 
inaccessible. For example, TCCS, could hardly modify on 
the fly the routing table of a legacy load balancer product, 
as we do, to handle the dynamic addition or removal of 
server replicas. 

In contrast to all of the above, Workflakes remains 
conceptually independent from any support framework, and 
hence quite general with respect to the reach, granularity 
and kinds of dynamic adaptation that it can exert. The target 
of dynamic adaptation is regarded as legacy; the process 
engine does not do anything directly to that target system, 
but only deals with dispatching and coordinating the mobile 
actuator agents. The only requisite with respect to target 
components and connectors is their wrapping or 
instrumentation with the host adaptors. Finally, the use of 
mobile agents guarantees that new forms of adaptation 
computations can be easily deployed at any time with 
minimal disruption to service operation. 

The ABLE group at CMU also proposes external dynamic 
adaptation facilities aimed at automated system repair, 
which are driven by explicating and reasoning about multi-
faceted architectural knowledge about the target system 
[19]. That knowledge is captured in a set of ADL 
descriptions, which enable to express repair tasks as sets of 
changes to the architectural model. Those tasks are then 
delegated to an Environment Manager in charge of 
actuating those changes upon the target system. However, 
such actuation is currently coded ad hoc for each target 
application. ABLE and Workflakes can therefore nicely 
complement each other2: Workflakes can take the role of 
the Environment Manager and at the same time derive its 
dynamic adaptation processes from an explicit, formal, 
machine-readable notation. 

Also other architecture-driven approaches aim at guiding 
and controlling the implementation and its configuration to 
some degree. Some, like ArchJava [27] strive to maintain 
architectural integrity of an application throughout code 
development iterations: therefore, they operate in a context 
disjoint from dynamic adaptation. Others include explicit 
mechanisms to predicate upon runtime instantiations of the 
architectural model. For example xADL 2.0 [28] includes 
provisions not only to bind a model to the artifacts used for 
its implementation (such as Java classes and artifacts), but 
also to track down dynamically the runtime instances of 
such artifacts and link them back to the original elements of 
the model. A feature of that kind can greatly simplify the 
interaction between an ADL environment and a dynamic 
adaptation platform such as Workflakes, because inherently 
unifies the view of the former over the model and the view 
of the latter over the “real world” that needs to be adapted. 

Willow [20] finally, is a proposed architecture for the 
survivability of distributed applications, analogous to our 
KX vision of superimposed OODA capabilities. It is meant 
to address fault avoidance, fault elimination and fault 
tolerance. In particular, Willow can implement reactive as 
well as proactive dynamic adaptation policies, which are 
driven by codified architectural knowledge, and enacted via 
a process-based mechanism exerted upon their previously 
developed Software Dock (re)deployment engine [10]. It 
appears, however, that the Willow process facility would be 
restricted to coarse-grained reconfigurations, such as 
replacing, adding and removing entire components, perhaps 
even entire nodes, from the target application, while it 
would presume conventional embedded approaches for 
local fault tolerance. 

                                                                 
2 In fact, we are working with the CMU authors to integrate their 

ADL-based approach with Workflakes as an enhancement to 
our KX platform, not discussed here. 



5. CONTRIBUTIONS AND FORECAST 
Workflakes not only brings in a considerable level of 
automation and dynamism to the adaptation of complex 
applications and value-added services. The principles at its 
foundation also provide additional benefits. The decoupling 
of the target system from the dynamic adaptation facilities 
has proved to be an advantage during the development, test, 
and maintenance of dynamic adaptation features for a 
service. The clear conceptual separation between 
coordination and computation concerns highlights the 
process element of dynamic adaptation, thus opening the 
way to auditing, measuring and continuously improving 
dynamic adaptation processes, and posing a good basis for 
enabling the reuse of both processes and agents. The 
independence from any underlying specialized support 
frameworks or computing platforms results in a wide 
dynamic adaptation spectrum, in terms of both granularity 
and applicability. 

There are multiple directions for future research. On the 
applicability side and with the next iterations over the 
chosen example service, we want to pursue further the issue 
of application-level QoS assurance, and would like to 
evaluate the impact of dynamic adaptation processes (and 
their reuse, assessment and improvement) on service quality 
levels. We also plan to explore other application domains, 
with the goal to extend the reach of Workflakes, for 
example to dynamic and controlled service composition. By 
that term we intend on-the-fly lookup, recruitment and 
orchestrated invocation of service components, functional 
matching and impedance resolution between heterogeneous 
components with appropriate worklet-mediated connectors, 
and subsequent control and adaptation throughout the life 
cycle of the composed service. To that end, we plan to 
experiment Workflakes in conjunction with the Service & 
Contract language developed for Cougaar [29]. Finally, we 
will integrate dynamic adaptation processes with 
architectural descriptions, to achieve “round-trip”, 
consistent adaptation support, driven from the service 
model all the way down to the service implementation, and 
going back up with updates to the model that would reflect 
the modifications effected onto the running service as a 
result of actuation. 
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