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Abstract. Previous work on the s-complexity of elliptic boundary-value problems Lu = f assumed that the class F of
problem elements £ was the unit ball of a Sobolev space. In a recent paper, we considered the case of a model two-point
boundary-value problem, with F being a class of analytic functions. In this paper, we ask what happens if F is a class of
piecewise analytic functions. We find that the complexity depends strongly on how much a priori information we have
about the breakpoints. If the location of the breakpoints is known, then the £-complexity is proportional to In¢e~1), and
there is a finite element p-methad (in the sense of Babugka) whose cost is optimal to within a constant factor. If we
know neither the location nor the number of breakpoints, then the problem is unsolvable for ¢ < V2. If we know only
that there are & > 2 breakpoints, but we don’t know their location, then the £-complexity is proportional to be~!,and a
finite element A-method is nearly optimal. In short, knowing the location of the breakpoints is as good as knowing that
the problem elements are analytic, whereas anly knowing the number of breakpoints is no better than knowing that the
problem elements have a bounded derivative in the L2 sense.

1. INTRODUCTION

Most work on the e-complexity of elliptic boundary-value problems Lu = f has assumed that the class F
of problem elements f consisted of functions whose smoothness was fixed and known. sce. €.g.. [6]. In
particular, if F is the unit ball of a Sobolev space, then comp(e) is a power of ¢~!; moreover. we found
conditions that are necessary and sufficient for a finite element 4-method’ to be (almost) optimal.

Unfortunately, assuming that F is the unit ball ol a Sobolev space of fixed smoothness mcans that we
- must know the smoothness in advance. In practice, this may often be difficult. One possible way around
this problem is to note that problem elements are ofien either analytic or piecewise analytic. If we restrict
ourselves to such f. then we don’t have to worry so much about quantifying the exact smoothness of f.
Moreover. any lack of smoothness can be confined to a small set of points.

In an earlier paper [7). we looked at the case of analytic F for a simple model two-point boundary-value
problem. These results were encouraging. Rather than depending on a power of ¢!, we found that the
e-complexity was proportional to In(e~") or to In?(e™1). depending on whether or not there was *‘breathing
room” between the domain on which the problem was defined and the interior of the domain of analyticity of
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IHere we use the widely-used classification of finite element methods that was introduced by Babuska and his colleagues:

(1) h-methods, in which the degree of the finite clement method is held fixed and the partition varies (these are the usual finite
element methods),

(2) p-methods, in which the partition is fixed and the degree is allowed to vary,

(3) (A, p)-methods, in which the partition and degree are both allowed to vary.

See [1] for further discussion.



the problem elements. Moreover, we found finitc element methods (FEMs) for computing g-approximations.
whose costs were within a constant factor of the e-complexity. In the case where there was breathing room
between the domains, this FEM was a p-method: in the case where there was no breathing room. this FEM
- was an (4, p)-method.

In this paper, we consider the case where £ consists of piecewise analytic functions. We will assume that
the pieces of a piecewise analytic function belong to a common class of analytic functions with “‘breathing
room.” Our piecewise analytic classes may then be defined in several ways. mainly differing in how much
we know about their breakpoints. We will analyze three such classes.

(1) Suppose we know the locations of the breakpoints. In this case, the complexity is roughly the same
as when the problem elements are analytic. i.e., the e-complexity is proportional to In(¢~!). and a
finite element p-method is nearly optimal.

(2) We next assume that the location of the breakpoints is unknown, in which case we either know or
don’t know how many breakpoints there are.

(a) If we don’t know the number of breakpoints, then the problem is unsolvable. i.e., we cannot
find an e-approximation for uny € < J2.

(b) If we know that there are (at most) b > 2 breakpoints, then the ¢-complexity is proportional
to be~!, and a finite element /i-method is nearly optimal.

We briefly comment on this last subcase. It tells us that if we know how many breakpoints there are (but
not their location) and that there are at least two of them, then the assumption that the problem elements
are piecewise analytic is not much better than the assumption that they have a bounded derivative in the
L5 sense (see [6. Section 5.5]. In short, piecewise analyticity buys us very little if there are more than two
pieces. Note that the case of one breakpoint whose location is unknown is still open.

We now outline the contents of this paper. In Section 2. we precisely describe the problem to be solved.
including a definition of the threc classcs of piecewise analytic functions. In Section 3, we consider the case
where the breakpoints arc known in advance. Finally, in Section 4, we consider the cases where the location
of the breakpoints is not known in advance. considering the two subcases of whether or not the number of
breakpoints is known.

2. PROBLEM DESCRIPTION

Let I = (—1,1). In what follows. we use the standard notations and definitions for Sobolev spaces of
functions defined on /, as well as Sobolev norms. seminorms. and inner products. See the appendix of [6]
and the references found therein for further details. We use one slightly nonstandard notation; namely, we

define o)
UM
N fligz-vy = sup ARARLICON
vty Wl

That is, we consider H~! (1) to be the dual space of H'(/), rather than of H{ (1). See [6. pg. 127] for further
discussion.
Define a bilinear form B on H'(/) by

Bu.v) = /u’v’—!—uv Yu,ve H(.
I

We let F be one of several classes of piecewise analytic functions defined on /, which will be defined in the
sequel. Then for f € F, we seek Sf € H'(/) satistying

B(Sf.v) = (f vy YveHY).
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It is a standard result that u = Sf is the variational solution of the two-point boundary-value problem

—u"tu=f in/

W=D =u'{)=0 @D
- with natural boundary conditions.

We now describe F, the set of piecewise analytic functions that will be our class of problem elements.
Given p > 1. we let D, denote the open disk in the complex plane with radius p centered at the origin. and
let F(D,) be the set of real-valued functions on [ having an analytic extension to D,. this extension being
boundedby 1 on D,,. Letussay thath = {B1.. ... B} is aset of breakpoints for a piecewise analytic function

f: D, — Cifthere exist functions fi, .... f» € F(D,) such that f|(ﬂ B = fiforl <s <b+ 1, with

,Bo = —1 and ,Bb-i-l =1.
Then we will let F be any of the following [unction classes:

(1) The class F,p, of functions with a known setb = {g1, ... . By} of breakpoints. That is, b is the set of
breakpoints for all f € F, 1.

(2) The class F, . of functions whose breakpoints are unknown. This means that forany f € F, ,. there
exists h = b(f) and asetb = {B;. ..., ) of breakpoints for f.

(3) The class F,; of functions having at most b breakpoints whose locations are unknown, This means
that for any f € F,,. there exists aset b = {f),.... P} of b breakpoints for f. Note that
Fo,oCFo ...

We assume that only standard information is available for solving our problem. Thus. information has the
form

Nf = [f(\]) ..... f(\n(j))],

where the number n( f) and choice x|. ..., X,y of sample points may be determined adaptively. (See [5,
. Chapter 3] for {urther discussion.)

Our model of computation is the standard one given in [5]. The evaluation of any function f from F at
any point in / has cost ¢, and the cost of basic combinatory operations is 1. Typically, ¢ > 1.

In this paper. we consider the worst case setting. Hence, the error of any algorithm ¢ using information N
is given by

e(¢p, N, F) =supISf — dN lmyy.
feF
The radius of information N is
r{N, F)=infe(¢p, N. F),

&

and the ath minimal radius is
rin, Fy=int{r(N, F):card N <n}.
The cost of an algorithm ¢ using N is given by

cost(¢p. N, F) =supcost(¢, N, f).
feF

with cost(¢. N, f) denoting the cost of computing ¢ for a particular problem element f. As always, the
g-complexity
comple. F) = inf{cos{¢p, N, F):e(¢p. N. F) < ¢}

of our problem is the minimal cost of computing an e-approximation. for e > 0.
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3. BRTIAKPOINTS KNOWN

In this section. we consider the case F = F, . That is, we know the breakpoints in advance. We will
show that the nth minimal radius decreases exponentially with n2. and that a there is a finite element method
(FEM) using n evaluations whose error does decrease exponentially with n. Since we will also be using
FEMs in the next section of this paper when we discuss the case F = F, 5, we first describe the FEM in
terms of an unspecified partition A and degree k. Then, we later give a specific choice of A and k for the
classes F = F,pand F = F, 3.

Recall that the FEM is described as follows. Choose a partition A = {xp. ..., X,y of I, with —1 = x¢ <
Xj <+ <X,=1 Forl <i<m,wewrite A; = [x;-). X;] and hi; = x; — x;j_;. Choose k € Z. The
spline space %4 a is defined to be the set of all v € C(J) such that lef € & forl <i <m, where &

is the space of polynomials of degree at most k. Letting n = dim % 4. we choose a basis {sy, . ... s,} for
%.a. There exist points 1. . .., f, such that 5;(1;) = §;j for | < i, j < n. Then the S -interpolation

operator I,  is defined by
Meaf = Z s
j=1
For f € F.we find u, € %, A for which
Blu,.s)={Mxafs) Vse&Ha.
It is easy to check that u, is well-defined, and that we can write

iU, = (f)u,k.A(Nn.k.Af)-

where

Nn,k.Af = [f(’l)~ s f(fn)]-

The algorithm ¢, ¢ » is the finite element method (FEM) of degree k over A, and N, ¢ 4 is the finite element
information (FEI) that ¢, . a uses. (For further information on FEMs. see [2] and [4], as well as the
references cited in [6].)

A standard error bound is given by

ISf = unllpgyy < inf |ISf = sy + W = Tiea flia-y- 3.1

IE;‘]}‘.A

See the proof of [6. Theorem 5.7.4] for details.

Wenow define the sample points #), . ... f,. Lety;..... Yi21 be the zeros of the Legendre polynomial Py1.
Set
Tij = %hi(l + ¥+ X (<j<k+1.
We then let
Hi-Dg+)+j = Tij (Il<j<k+1l.1<i<m).
_sothat7; ). .... Ty are the sample points belonging to A;. The dimension n of our spline space %% 4 is

n=Gk+bhm—-—m—-0D=km+1,

because functions in .% , must be continuous.

Now that we have given a general description of the FEM of degree k over the partition A, we need to
specify & and A forourclass F = F, 5, of problem elements. Our space .%; 5 must be chosen in such a way
that the breakpoints for F, , arc partition points for A. This means that A must be chosen so that 8; = xy,
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for indices !} < --- < Ip. (Since Bo = —1 = xp and Bpp1 = 1 = x,,. we also let [p = 0 and [, = m.) Let
ns = Bs — Bs— denote the size of the sth breakpoint subinterval for 1 < s < b. Then

Ns

/I,' =
I.v - l.\'—l +35.0 -1

(G.2)
for all indices i such that x; € [B;s—1, B;]. Next, we want the sct of grids to be quasi-uniform in n. This
means that we need to choose the indices [, ...,/ sothat ii; = h for | <i < m. From (3.2). we see that

ls=1:_1+',’—“ (I<s<b+1).
!

whose solution is
1 & 1
I_y:_ l':—-‘ 1 ISSSl 1).
p ;:] 1 h(ﬁs+ ) ( h+ 1)

Lettings = b+ 1, wegeth =2/m, and so

b=imB+1D (I <s<b+1). 3.3)

We are now ready to define our information and algorithm. Choose

"’_['8—1

|20 -D |

k=[n—l‘|‘
m

B4

We then have
THEOREM 3.1.

(1) Letq) = (p ++/p* + D2 Then
r(n, Fop) = Qq[") asn — oo.
(2) Let N, i.n and ¢y A be the FEI and FEM determined by the parameters (3.2). (3.3). and (3.4). Then
e(Pnras Nara) = 0(q;")  asn = o0

for any q» < exp (2(p — 1)/e).

. PROOF: To see that the lower bound in part (1) holds, note that F(D,) C F, 1. and so
r(n, Fon) = rin, F(D)) =Qq[") asn — 00,

the latter by [7, Theorem 3.1).

We now tum to the upper bound in part (2). Choose f € F,andletu = Sf. Writce = u — I au and
€ = f — i s f. Note that f and u are analytic on each subinterval (8;_;. B;). Thusfor j =0and j = 1,
we have

b+1 b+1 !,
2 RO _ )2
HePNTuy = D NPy = 2 D 1@l
s=1 s=1i=l,_1+1

w



From Lemmas A.1. A.2, and A.4 of [7], we have

2

M N h; 243
”elIZL,(A.) < 2N——7(p _ 1)3 ( 1 )
o k+ 1 4(p— 1)

and

b %41 M2 M2 B
12 —_— Y (p—-Dt+———(p— 1D+ 3 3}.
Ile ”Lz(Ai).SJT (4(0 — ”) |:(k+2‘)2(p ) + T 1)2(;0 Yk +3)

Similarly, we have

b+l A
ez =2 D leliay
s=1 i=l;_1+1
with
” h; A3
ez ay =270 =1 <4(p _ 1))

by Lemmas A.1 and A.3 of [7]. Combining these results and using (3.1), we find

"“ - un“H‘(/) = ()(V km) (m) = O(A\/E) (.p—-) .

the latter since m = 2//h. Using (3.4), we see that

lu — uall iy = O(Vn) exp(=2rn/e).

Since f € F is arbitrary. the desired conclusion follows. 0O

We remark that since exp(—2/¢) = 0.479. we find that e(@n.r.a. Nag.a) = 027D,

Note that since ¢; > ¢». the ratio of the upper bound in part (2) of Theorem 3.1 to the lower bound in
part (1) is not bounded by a constant. Hence there is a gap between the estimates provided by these bounds.
Despite this, we can determine the e-complexity to within a constant factor.

Suppose that F is a class of problem clements such that the following hold:

(1) For any information N. there exists a linear optimal error algorithmusing N. That is. if

Nf = [f(‘l)a ceey f(xn)]s

then there exist functions vy, ..., v, € H(I), which may be computed in advance, such that the
linear algorithm ¢~ given by

n
$YNFY =Y FEy (3.5)
j=1
is an optimal error algorithmusing N, i.e.,
e(p", N, F) = r(N, F).
(2) We do not charge for precomputation, i.c.. calculations that may be done in advance, independent of
any f € F. In particular. this means that we do not charge for determining the functions vy. . .., U,

in (3.5) that characterize the linear optimal crror algorithm using N.

6



Then
comp(e, F) = O(cm(e, F)) ase = 0.

where the e-cardinality number is given by
m(e, F)=inf{neZ:r(n) <e}.

For further discussion and details, see (5, Chapter 4].
Let
COS[FE(& F) = inf{ COSt(hy &, A, Nuoka) i ¢(@nra. Nn.k.A) <e}

denote the minimal cost of using an FEM to compute an g-approximation. From the discussion in the
previous paragraph and Theorem 3.1, we immediately have

COROLLARY 3.1.

(1) The e-complexity satisfics
comp(e, Fpp) = Oc In(e™h) ase — 0.
(2) Let o, ;. be the FEM using FEI N, ;. a of cardinality

Ing!

no~
Ing,

and whose degree k and partition A are determined by (3.2). (3.3), and (3.4). Then

e(d)n,k‘A- Nn,k.A~ Fp.b) <e&
and ‘
coSUE(Pyp.an Nukar Fpp) = Oc In(e™))  ase =0
ase — 0.

The ©-constants that appcar here are independent of the number and the locations of the (known) break-
points. O

Hence, the finite element p-method described in Corollary 3.1 is quasi-optimal, i.e., its cost is within a
constant factor of being optimal.

4. BREAKPOINTS UNKNOWN

In the previous section. we showed that when we know the breakpoints. the complexity for piecewise
" analytic functions is reughly the same as that for analytic functions. We now look at what happens when the
breakpoints are unknown.

We first suppose that F, . is our class of problem clements. That is, for any problem element f, there is
an unknown set of breakpoints. For any information N, we define the zero algorithm ¢ as

d(Nf)y=0 Vf eF,..

THEOREM 4.1, Foranyn € Z.
rin, F,.) = V2,

and the zero algorithm is an nth minimal error algorithm.
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PROOF: Let
Nf =[fxD), ..., fFlxapn)] Vfe€Fp.

be information (possibly adaptive) of cardinality n. Let 1y, ..., & be the N-evaluation points for the zero
function f = 0, so thatk = n(0) < n. Choosing small ¢ > 0, we let

e () 0 if|x — ] < a forsome i,
le (X) = .
« 1 otherwise.

Then hy € F, . and Nh, = 0. Since §1 = I, we may use [5. Chapter 4], to see that

r(N.Fp.o) = ISk iy = Wy — 1S = he)ll gy

Since
NS = he) gy SN = hellg-ray S N1 = hallL,gy < V2ak
and
ey = V2,
we have

FN.Fp) > V2 —2ak  Ya>0.

Since o can be chosen arbitrarily small and & < n, we have
r(N.F,,)> V2.
Since N is arbitrary adaptive information of cardinality n, we have
rn, Fou) > V2. “.1)

Now consider the zero algorithm ¢o. We have

ISF — do(NOlmay = 1Sy = 1=y < 1y < W flleayw/ 11 < V2.

Since f € F, . is arbitrary we have
¢l N, Fp) < V2. “2)

The theorcm now follows from (4.1) and (4.2). a

From Theorem 4.1. we immediately find

COROLLARY 4.1. The g-complexity satisties

0 fore> ﬁ

O
~ fore < V2.

comp(e, F, ) =

Hence if our class of problem clements is a family of piecewise analytic functions with a set of unknown
breakpoints. we do not have enough knowledge about our problem to compute an g-approximation unless
£ > V2. This means that we need to have additional knowledge about our problem class. So, we now
consider the case where our problem class is F, 5. That is, we know that there are b breakpoints, but we
don’t know where they are.



THEOREM 4.2. Forany b > 2,
rin, Fop) = S2(bn™h.

The constant is independent of b and n.

PROOF: Let
Nf=1f(xD..... flan))  VfeF,.
be information (possibly adaptive) of cardinality n. Let r..... 1 be the resulting N-evaluation points
" for the function f =-1, so that ¥ = n(1) < n. Without loss of generality. we assume that fp := —1 <
o< - <t < gy =10 Write h; = 1,4y —1; for 0 < i < k. Choose indices iy, ..., ix4+1 So that

hi, > hiy = -+~ > h,,, > 0. Forsmall § > 0, let

t

3 { —1 in UM, + 8,8, - 8.

3 .
l otherwise.

Since f, f € Fopwith Nf = Nfs. we may use (5, Chapter 4] to find

2r(N,Fpp) > d(N, Fop) 2 ISf = Shillmay = I f — fsllu-y = f (f = f5). (4.3)
1
Since ,
poge (P U
‘ 0 otherwise,
we have
I LTIy b/2]
/(f ~f=> f 2dr =2 (h;, —26). (4.4
! s=1 Ju ¥ s=1

_ Since 8 > 0 can be chosen arbitrarily small, we may combine (4.3) and (4.4) to find that

/2
r(N, Fop) = ) hi,.
s=1

Since h;, > hi, > --->h;,, > 0and }:{fif h;, = 2,itis easy to see that
1572} 5 1
hi, = ———— =0 hH.
2 2 TajioT
The desired conclusion now follows from these last two inequalities. O

We now show that this lower bound is sharp. Consider the FEM with

m=n-—1,
2

hi=h=— (1 <i<m). 4.5)
m

k=1,

Hence our spline space is .7}, 5, a space of continuous piecewise lincar functions on a uniform grid.
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THEOREM 4.3. Let N, | A and ¢, 1 » be the FEI and FEM determined by the parameters (4.5). Then there
is a positive constant C, independent of b and n. such that
e(¢n1,a. Na1.a. Fpp) < Cbn™"

for any positive integers b and n.
PROOF: In what follows. Cj, C,. and Cs will denote positive constants. independent of n. b, and any
particular problem element f € F, 5.
- Let f € Fppandlet {B1. ..., By} be the set of breakpoints for f. Suppose that 8, € Aj, for1 <s < b.

From the proof of [6, Theorem 5.7.4], we find that

1SF = dura(Nuaa Ollingy < M8lp-1gy + O™,
where & = f — [,1 4 f and the O-constant is independent of n and b. Since f € F, 4 is arbitrary, we will
be done once we show that
el sy = O™ (4.6)

To prove (4.6), let v € H' (1) with |[v|| 1(sy. Then

b

=)

s=1

. 4.7

D

i€yl

fE(.r)v(.r) dx
1

/ e(x)v(x)dx

Ajs

/ e(x)v(x)dx
A;

b

2

s=1

From the proof of [6, Theorem 5.7.4], we {ind that
a+h
< bllelLyuy sup f lv(x)ldx.
a

f e(x)vinvydy
AI;: 0<a<l-h

lell Loy < Cill fllLomy < Ch,

a+h 4
sup f [v(x) | dx < /=)
O<azl—h Ja 3

b 16 Cib
3 / Fx)w(x) dx 5\/—; 4.8)
s=1 AIr

In+l
On the other hand, if i € {j,, ..., j»}, then

/ e(x)v(x) dx
A

From [6, Lemma A.2.3.3]. we have

Hence we have

< el Lanlivile,an < N€llLaan-

~ =2
el Laan < Con ™I f Laa0)

while from [7. Lemma A.3], we have

1 N aan < P72

/ e(xyv(x)dx
.‘3,

Hence
<Cn~'p7t 4.9)

i€ bl

From (4.7). (4.8) and (4.9). we find that

f e(xv(x) dx

I

e
< (\/ TGCMJ +Cip 2 n k.

Since v is an arbitrary function in the unit ball of H'(J), the bound (4.6) holds as claimed, completing the
proof of the theorem. O

From Theorems 4.2 and 4.3. we immediately find
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COROLLARY 4.2. Leth > 2.

(1) The e-complexity satisfics
comp(e, F, ) = @be™") ase — 0,

the ©®-constant being independent of b and ¢.
(2) Let ¢, o be the FEM using FEI N, | a of cardinality

<]

n=|—

£

(where C is as in the statement of Theorem 4.3). and whose partition A is determined by (4.5). Then

e(¢n.l..&~ Niia, Fp.b) <e

and
cost (P15 Nuts, Fop) = O0e™Y)  ase -0,
the @-constant being independent of b and ¢. a

Thus. we have shown that if our class of piecewise analytic functions has a fixed number b of breakpoints.
the e-complexity is proportional to be~! if b > 2. Moreover, the FEM described in Corollary 4.2 is a
quasi-optimal algorithin. Note that this FEM is an h-method. i.c.. we decrease its error by decreasing the
mesh size.

As a final remark. we point out that the proof of Theorem 4.2 depends on the assumption that b > 2. We
do not know the complexity of our problem when b = 1. The best upper bound known for the e-complexity
is proportional to ¢!, while the best lower bound known is proportional (o In(e~"). Hence there is a huge
gap in our knowledge of the complexity for the case of one breakpoint.
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