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Abstract: We present an information-based complexity problem for which
the computational complexity can be any given increasing function of the
information complexity, and the information complexity can be any non-

decreasing function of e~!, where ¢ is the error parameter.




Introduction

Information-based complexity, IBC. studies the computational complex-
ity of continuous problems. The &-complexity of a problem is the infimum
cost among all information and algorithms that compute an e-approximation
to the solution, and we denote it by comp(g), see TWW/[88].

As defined in WW[92], the information complezity, comp!™©(¢), is the
minimal cost of computing an e-approximation when there is no charge for
combining the information. On the other hand, the combinatory complexity,
comp®®™P(g), is the minimal cost of computing an e-approximation when
there is no charge for computing the information.

Assume we are charged a constant ¢ for the computation of each infor-
mation evaluation and unity for each arithmetic and comparison operation.
Usually ¢ > 1. For a given problem, let m(e) be the minimal information,
i.e.. the minimal number of information evaluations, needed to compute an
¢-approximation. The information complezity is thus equal to cm(e). Obvi-
ously, comp(e) > ecm(e).

We know tight bounds on the complexity for many problems. To date,

for problems for which the complexity has been obtained, the complexity is

a linear function of m(g); that is,
comp(e) = ¢y m(e) for ¢; = ¢+ O(1).

This means that the complexity is dominated by the information complexity.
We stress, however, that m(e) can be any increasing function of 7', see
TWW][88] for examples.

In this note, we will construct a problem for which the complexity is

dominated by the combinatory complexity. More precisely. we prove that for



a given increasing function g, we define a problem for which
comp(e) = cm(e) + ¢ g(m(e)),

where | < ¢ < 3. Hence, if g(z)/x goes to +oo as = goes to +oo, then the
combinatory complexity ¢; g(m(e)) dominates the information complexity
cm(e). Furthermore we can define the problem in such a way that m(g) =

q(e™?!) for any given increasing function q from N to N if e7! € N.

Basic Definitions

We consider the problem of approximating S(z) where
S:FCFhR -G

is a given operator, [ is a subset of a linear space F} over R, and G is a
metric linear space with metric p over R.
Let A be a given class of linear functionals L : F; — R. By an approxi-

mation U(z) to S(z) using the information
N(z) = [Li(2), Ly(z). ..., La(2)]
we mean the mapping
U(z) = $(N(x)), where ¢ : N(F) = G,

and the L; are from A. The choice of L; as well as the number n = n(z) of
functionals may depend adaptively on the values of already computed func-
tionals. The cardinality of N. denoted by card N, is defined as sup_¢p n(z).

We wish to compute U with error at most €. The worst case error of U

is defined by

e(U) = sup p(S(z),U(z)).
zeF




If e(U) < € then U(x) is called an e-approximation of S(z).

Our model of computation is based on the real number model for which
we can exactly perform the four arithmetic operations and the comparison
operation on real numbers. In addition, we can add two elements of G and
multiply a real number by an element of G. We are charged unity for each
such operation.

We assume that precomputation is allowed. That is, we can precompute
a finite number n = n(e) of elements from G and use them for free. We are
also charged a constant ¢ for computing each L(z) for L € A. Usually ¢ > 1.

The worst case cost of U, denoted by cost(U/), is defined by

cost(U) = sup(cost(N, ) + cost(¢. N(x)),
z€F

where cost(N,z) denotes the cost of computing N(z), and cost(¢. N(zx))
denotes the cost of computing ¢(y) for given y = N(z).

The worst case e-complexity, comp(e). is defined by
comp(e) = inf{ cost(U) | U such that e(U) < ¢}.
Finally, the minimal information, m(g), is defined by

m(e) =inf{ n | 3U = (N, @) such that card N < n and e(N, ¢) < e}.

Obviously, comp!™®(¢) = cm(e).

Main Result

We now state the main result of this paper. For simplicity we vary € such

that e~! € N.



Theorem: Letg, q: N — N be any given increasing functions with g(1) =

q(1) = 1. Then there is a problem such that
1. m(e) = qle”"), Ve~l € N;

2. comp(e) = cm(e) + ¢y g(m(e)), Ve~ € N, where 1 < ¢; < 3.

Proof:

For the given functions g(-) and ¢(-) we define the problem as follow. Let
X1 ={z € R® | the number of nonzero components of z is finite } .

Now we define the metric p on X;.

Denote k; = g(¢) and ¢; = q(z) for ¢ > 1. Then K = {k;} and Q = {¢:}
are subsequences of N with ¢; = k; = 1.

We construct a sequence {\;} such that 2 > Ay > Ay > ... > 0 in the
following way. First we define a subsequence of {A;} by

Ak, = 1[5, forg=1,2,....
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Note that 1 = Ag, > Ay, > ... > 0. Then for each ¢ € N — {k,,}, define X;

sothatlZ/\1>)\2>...>0.
For z = (21, 22,...), y = (y1,¥2,...) € X; we define the metric on X; by

0 ifzx=y;
plz.y) =19 2 ifzy # yi:
A ifxj=y;forj=1....,2and x4y # yinr.

Then (X;.p) forms a metric linear space over R.
We define F; = X, and G = X, with metric p(-.-). Thus, F; is a linear

space over R and G is a metric linear space over R.



Define S: F = F} — G by

a2 kp—k1 1 2 k3—k 1,2 kigr—ki
S(x) = (zy, 27, ..., 22 ™M oy, 25, 227 g ar T T L),
This means, S has the form
oo kig1-1 K
PR
1=1 j=k;
where e; = (0,...,0,1,0,...) with the 1 on the jth place. Note that S is not

linear if K # N.
We assume that the classs A consists of all linear functionals jFrom F; to
R. That is, L € A is of the form L(z) = 332, viz;, for some v € R*®. This

concludes the definition of our problem.

We now prove that for our problem we have m(g) = ¢(¢7!) for ¢! € N.

Indeed, denote j = £~!. Then ’\’v‘q, = ¢ by the definition of )"qu' Suppose
U(z) = ¢(N(z)) is an e-approximation to S(x). We want to show that
card N > g;.

We have e(U) < €. By the discreteness of the metric p on G and the
definition of e(U). there is n € N such that A, = e(U). Hence the first n
components of U(z) are exactly equal to the corresponding components of
S(z) for any z € F.

Since A, < € and {);} is a monotonically decreasing sequence, /\qu > A,
which implies that k, < n.

To compute the first k, components of S(z) exactly, one must know
T1,T2,...,Z,,. (From the definition of S(z), one can only obtain the values
of z1.z,,...,2,, by using information operators, and one needs at least ¢; of
them. Hence card N > ¢; = q(e™'). Thus m(e) > g(e71).

To prove the reverse inequality, it suffice to compute z,,x,..., x4, by

using the information operator N(z) = [L¢,(2), Ley(2), -, Leg, (z)]. Then



we obtain the rest of n components (i.e., the Ith component of S(z) for
I <nandl ¢ {ki, kg, ---.kg}) by computing the corresponding powers of

Ty, T2,....%q,. Finally we define

g;=1kig-1 N n 141~k
U(z) = Z Z l'H ‘e + Z L, e,
1=1 =k I= qu

Then U=(z) is an e-approximation to S(z). Hence m(e) < ¢(e7'). This
proves the first part of the theorem.

We now show the second part of the theorem. Let m = m(e) be the min-
imal information for an e-approximation to S(z). Then any e-approximation
U(z) = ¢(N(z)) to S(x) has to compute at least the first k,, components of
S(z) exactly for any x € F. Therefore U has to agree with U~ for the first

k,, components. Thus
comp(e) > em(e) + kn,

since k,, is the minimal cost of combining 4, real numbers to form the

element U(z) in G. Recall that k, = g(m), we have
comp(e) > cm(e) + g(m(e)).

Finally, we want to show that comp(e) < cm(e) + 3 g(m(e)).

Since ™' € N, & = 1/j = A, for some j € N. Since ¢; = q(j) =
q(e™) = m(e), € = A, withm —m(e)

Let N(z) = [Le, (2 ) e(2), -+, Le,(7)]. Using N(z), we can compute

m—1kiz1—1 1k
U(z) = Z Z e+ ek,
i=1 =k

Note that the above U consists of k,, terms. To compute U(z), we com-

pute zi*1"% for I + 1 — k; > 1 using k,, —m multiplications, then we multiply
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15 by ¢ using once more k,, multiplications, and finally we form U(z) by
adding :vi"'l_k"el together using %,, —1 additions. The total cost of elementary
operations is k,, — m(e) + 2 k,, — 1, which is less than 3k,,.
Therefore, we see that comp(e) < cm(e) + 3k, = em(e) + 3 g(m(e)).
Hence we have comp(e) = em(e) + ¢, g(m(e)) for some 1 < ¢; < 3. as

desired.

Comments

We remark that the construction of the problem presented in the proof

can be generalized for
S(.L) = (h](JE]), hz(.l)z) ey h,(’L’,) .o )
with the same F; and G as in the proof. Here ; : R +— R fori =1,2,...

are the functions such that the computation of h;(x;) requires m; operations
in the worst case. Then it can be shown that
m(e)
comp(e) = cm(e) + ¢ > my,
=1
with 1 < ¢ < 3.
Hence, if we choose h; with large m;, the complexity can be once more

much larger than the information complexity. For example, let m; = 2.

Then
comp(e) = cm(e) +2¢ (zm(s) _ 1)

and the complexity is the exponential function of m(g).
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