Marvel 3.0
Administrator's Manual

Programming Systems Laboratory
Columbia University
450 Computer Science Building
New York. NY 10027
(212) - 854-2736
fax: (212) - 666-0140
TR CUCS-032-91

October 9. 1991

©1991. Programming Systems Laboratory
All Rights Reserved

The Programming Systems Laboratory is supported by National Science Foundation grants
CCR-9106368, CCR-9000930 and CCR-%535029, by grants from AT&T, BNR, DEC and
SRA. by the New York State Center for Advanced Technology in Computers and I[nfor-
mation Systems and by the NSF Eagineering Research Center for Telecommunications
Research.

Contents

1 Introduction

1.1 Who Would Use This Manual
1.2 Conceptual Overview e e e e
1.2.1 Research Goals
1.22 Concepts . - v v v v i e e e e
1.2.3 Selected Publications
1.3 Systemn Overview e e
1.3.1 Svstem Components

2 Installation

2.1 Unloading the Distribution Tape
2.2 Contents of the Distribution Tape
2.3 Installing the MARVEL Daemon

3 MSL Programmer’s Guide

3.1 Introduction e
3.2 Data Model: An Object-Oriented Approach
3.21 Objects e e
322 Classes o i e e e e
3.2.3 Inheritance
3.3 Initialization
3.4 Process Model: A Rule-Based Approach
3.4.1 Introduction e
3.42 Parameters e
3.4.3 Characteristic Function
3.44 Property List
345 Activity . . . L e
346 Effects e

3.4.7 RuleSelection P

o, TN~ N « I o N =}

-3

3.4.8 Importing and Exporting Strategies
3.5 Assistance Model
3.5.1 Backward Chaining0
3.5.2 Forward Chaining
3.5.3 Consistency Maintenance.
3.5.4 Chain Control
3.5.5 Chaining Approach - A Methodology
3.5.6 Hiding Rules
3.5.7 How todrivetheprocess
3.5.8 Passing Arguments Between Rules
3.6 The Environment Directory

SEL programmer’s guide

4.0.1

Envelopes

Administrator’s Built-in commands

5.1 Load: Loading an MSL Environment into MARVEL

3.1.1

[B
[SN]
(9]
17
o
o

M GO
N
=
I
o+
0.
4
=
=

(%] (&,
O
=
=
o
<
e}
g
N
lea]
=]
[]
l%
E-
[x]
o
=
o
=
o]
Pty
w
o
=
g
o
~
o
5
lenad
o
=
2
<
[ea]
=

Usageof Load

....................................

.................................

........

MSL Reference Manual
A.1 The Tokens e e

Al
All.2
A.l3
Ald4

Basicpatterns Lo oo
Keywords e
Special Tokens e

Numbers and Identifiers

A.2 The Productions e e e

B C/MARVEL : An example environment

48
48

52
52
32
33
53
33
53

58
58
38
38
58
39
39

64

B.1 C/MARVEL Data Model 64

B.2 C/MARVELRules e 71
B.3 C/MARVEL Envelopes 96
C Porting an Objectbase across different architectures 137

List of Figures

1 Marvel 3.0 Architecture L. L e 11
2 Attribute typesin MARVEL, 17
3 Class Definition in MSL i 18
4 Tool Class Definition« i 19
5 Class Inheritance 20
6 A class Definition with Initial Values 21
7T MSLsyntaxforarule e e 22
8 Syntaxfor bindings oo o oo 23
9 Instances of ancestor and member operators 25
10 Difference between Characteristic Function and Property List 27
11 Compile rule from C/MARVEL 27
12 A Two-Variable Predicates 28
13 A Two-Variable Predicate with same symbol 29
14 Example of Output Argumentsina Rule 30
15 Assertion on link attributes L Lo 32
16 Inheritance and Polymorphismof Rules 32
17 Rule overloading example 33
18 A connection between predicates oL 35
19 Backward Chaining to Satisfy a Property List e 36
20 An example of a forward rule chain 37
21 Default Rule Network Generation 39
22 Control Over Rule Network Generation 40

23 Chaining approaches 43

24

25

Preface

The MARVEL project began in June 1986 jointly between Prof. Gail Kaiser of
Columbia University and Dr. Peter Feiler of the Software Engineering Institute, when
Prof. Kaiser was a Visiting Computer Scientist at the SEI. The first implementation
was done during the fall of 1986 by Steve Popovich, then a staff member at the SEI,
by modifying the SMILE environment developed at Carnegie Mellon University as
part of Dr. Nico Habermann’s Gandalf project during the early 1980’s. This was the
version 0 implementation of MARVEL. Kaiser, Feiler and Popovich had all been mem-
bers of the Gandalf project. The research effort was inspired by concepts introduced
in SMILE and in the CommonLisp Framework being developed by Dr. Bob Balzer’s
group at the Information Sciences Institute. MARVEL was named after Professor
MARVEL, the name of the Wizard of Oz character in his Kansas incarnation.

The MARVEL project moved to Columbia University, and the first serious implemen-
tation work began in January 1987. PhD student Naser Barghouti headed the effort
involving numerous project students: Russel Goldberg, Joe Milligan, Michael Sacks,
Tam Tran, Wendy Dilliard, Chri: Hong, Wai Keung Hui, and Alexander Mogiel-
eff. During the summer of 1987, £ ..outi and Kaiser conducted frequent discussions
with Dr. Bob Schwanke of Siemens Corporate Research, leading to refinements of the
initial MARVEL concepts. This work resulted in MARVEL version 1.0, which was also
implemented on top of SMILE.

The implementation of the more robust MARVEL 2.x, independent of SMILE, began
in September 1987 with project students Qifan Ju, Christine Lombardi and Mike
Sokolsky. Later, the system was almost entirely rewritten through the joint efforts
of Naser Barghouti and Mike Sokolsky, initially as an MS thesis student and starting
in September 1988 as a research staff associate. MARVEL was by now strongly in-
fluenced by the “process programming” concept promoted by Prof. Lee Osterweil of
the University of California at Irvine and other members of the Arcadia consortium,
as well as by ongoing discussions at the annual International Software Process Work-
shop series. MARVEL 2.01 was demonstrated at the 3rd ACM Practical Software
Engineering Environments conference in November 1988.

MARVEL 2.10 was used in several class projects for the E6123 Programming Environ-
ments and Software Tools course, involving Laura Johnson, Victor Kan, Kok-Yung
Tan and Michael Tannenblatt. There were further contributions by project students
Neil Arora, Issy Ben-Shaul, Laura Johnson. David Robinowitz, Miriam Sporn, Kok-
Yong Tan, and Michael Tannenblatt. Ari Shamash worked on the MARVEL user
interface as a part-time employee during Summer 1989. Project student Mara Cohen
collaborated with Barghouti and Sokolsky on the MARVEL user manual. The MAR-
VELIZER tool was added to make it possible to immigrate existing software into a
MARVEL environment.

The first MARVEL release was version 2.5, in spring 1989. MARVEL 2.6 soon fol-
lowed, in June 1989. MARVEL 2.5 or 2.6 was licensed to 15 sites: IBM, Siemens

Corporate Research, University of Arizona. University of Maryland, Imperial Col-
lege (United Kingdom). University of Pisa (Italy), Software Design & Analysis, Soft-
ware Research Associates (Japan). Instep, University of Nancy (France). University
of Victoria (Canada), Purdue University. Kestrel Institute. Bell-Northern Research
(Canada), and Digital Equipment Corporation. MARVEL 2.6 was demonstrated at
the ACM International Conference on Management of Data in May 1990. A special
version. MARVEL 2.63, was developed at the instigation of Software Design & Analy-
sis, which has been using MARVEL as a platform for investigating the implementation
of their activity structures process modeling formalism.

Work on the first multiple-user MARVEL, version 3.0, began in summer 1990. This ef-
fort was led by Issy Ben-Shaul, first as an MS thesis student and beginning in Septem-
ber 1990 as a research staff associate. together with PhD students Naser Barghouti.
George Heineman and Mark Gisi, and part-time employee Tim Jones. A preliminary
version was used in E6123 in spring 1991 for class projects by all students: Tim Jones,
Kui Mok. Tushar Patel, Ari Shamash, Chikuei James Show, and Bruce Zenel. During
summer 1991, Will Marrero contributed as a part-time employee, and PhD student
Steve Popovich joined the project. Preliminary versions were demonstrated at the
13th International Conference on Software Engineering in May 1991, and at Software
Design & Analysis and the 6th Knowledge-Based Software Engineering conference in
September 1991. MARVEL 3.0 is scheduled for release in October 1991.

Work has already begun on MARVEL 3.1, to incorporate Barghouti’s PhD thesis
results and other improvements. Kevin Lam participated in summer 1991 as a part-
time employee, and there are currently several visitors and project students expected
to contribute during fall 1991. Release is expected in spring 1992.

At one time or another during the MARVEL project, funding was provided by NSF
Presidential Young Investigator Award CCR-8858029, NSF Research Instrumentation
grant CDA-8920080, and NSF grant CCR-9106368; by AT&T Foundation Special
Purpose Grants, a DEC Incentives for Excellence award. a General Electric fellow-
ship, an IBM Research Initiation Grant, and an [BM Fellowship; grants from Digital
Equipment Corporation, Bell-Northern Research, Siemens Corporate Research, SRA
America, Sun Microsystems, and Xerox Foundation; the NSF Engineering Research
Center for Telecommunications and a focal project of the New York State Center
for Advanced Technology - Computer & Information Systems. In addition to the
above, the Programming Systems Laboratory at Columbia University was funded by
NSF grants CCR-8802741 and CCR-900930: grants from Citibank Financial Markets
Group, two IBM Fellowships, and IBM contracts and joint studies; a NYS CAT seed
project. NASA training grant NGT 50583, and an American Association of University
Women dissertation fellowship.

The following publications and dissertations have directly resulted from the MARVEL
project:

e Gail E. Kaiser and Peter H. Feiler. An Architecture for Intelligent Assistance in
Software Development. Ninth International Conference on Software Engineer-

2

ing, March 1987, pp. 180-188.

Peter H. Feiler and Gail E. Kaiser. Granularity issues in a knowledge-based
programming environment. Information and Software Technology, Butterworth
Scientific, 29(10):531-539, December 1987.

Naser S. Barghouti and Gail E. Kaiser. Implementation of a Knowledge-Based
Programming Environment. Twenty-first Hawaii International Conference on
System Sciences, January 1988. volume II, pp. 54-63.

Gail E. Kaiser, Peter H. Feiler and Steven S. Popovich. Intelligent Assistance
for Software Development and Maintenance. [EEFE Software. 5(3):40-49, May
1988.

Gail E. Kaiser, Naser S. Barghouti. Peter H. Feiler and Robert W. Schwanke.
Database Support for Knowledge-Based Engineering Environments. /[EEE Ez-
pert, 3(2):18-32, Summer 1988.

Gail E. Kaiser and Naser S. Barghouti. An Expert System for Software Design
and Development. Invited paper in Joint Statistical Meetings, August 1988, pp.
10-19.

Michael H. Sokolsky, Data Migration in an Object-Oriented Software Develop-
ment Environment, MS thesis, Columbia University, CUCS-424-89, April 1989.

Gail E. Kaiser, Naser S. Barghouti and Michael H. Sokolsky. Preliminary Ex-
perience with Process Modeling in the MARVEL Software Development En-
vironment Kernel. Twenty-third Hawaii International Conference on System
Sciences, January 1990, vol. 11, pp. 131-140.

Naser S. Barghouti and Gail E. Kaiser. Modeling Concurrency in Rule-Based
Development Environments. International Working Conference on Cooperating
Knowledge Based Systems, Springer-Verlag, October 1990, pp. 223-239.

Naser S. Barghouti and Gail E. Kaiser. Multi-Agent Rule-Based Software Devel-
opment Environments. Fifth Knowledge-Based Software Assistant Conference,
September 1990, pp. 375-387.

Naser S. Barghouti and Gail E. Kaiser. Modeling Concurrency in Rule-Based
Development Environments. [EEE Ezrpert, 5(6):15-27, December 1990.

Israel Z. Ben-Shaul. 4n Qbject Management System for Multi-User Program-
ming Environments. MS thesis, Columbia University, CUCS-010-91, April 1991.

George T. Heineman, Gail E. Kaiser, Naser S. Barghouti and Israel Z. Ben-
Shaul. Rule Chaining in MARVEL : Dynamic Binding of Parameters. Sizth
Annual Knowledge-Based Software Engineering Conference, September 1991,
pp- 276-287.

e Naser S. Barghouti and Gail E. Kaiser. Scaling Up Rule-Based Development
Environments. To appear in Third Furopean Software Engineering Conference.
October 1991.

e Mark A. Gisi and Gail E. Kaiser. Extending A Tool Integration Language.
To appear in First International Conference on the Software Process, October

1991.

o Michael H. Sokolsky and Gail E. Kaiser. A Framework for Immigrating Existing
Software into New Software Development Environments. To appear in Software
Engineering Journal, Michael Farraday House, November 1991.

e Naser S. Barghouti. Concurrency Control in Rule-Based Software Development
FEnvironments. PhD Thesis, Columbia University, expected November 1991.

The following publications and dissertations are tangentially related to the MARVEL
project:

o Gail E. Kaiser and Peter H. Feiler. Intelligent Assistance without Artificial

Intelligence. Thirty-Second IEEFE Computer Society International Conference,
February 1987, pp. 236-241.

o Dewayne E. Perry and Gail E. Kaiser. Models of Software Development Envi-
ronments. Tenth International Conference on Software Engineering, April 1988,
pp- 60-68.

o Calton Pu, Gail E. Kaiser and Norman Hutchinson. Split-Transactions for
Open-Ended Activities. Fourteenth International Conference on Very Large
Data Bases, August 1988, pp. 26-37.

e Shyhtsun F. Wu. (Towards a Framework For Comparing Object-Oriented Sys-
tems. MS thesis, Columbia University, CUCS-438-89, July 1989.

¢ Gail E. Kaiser. A Marvelous Extended Transaction Processing Model. Eleventh
World Computer Conference IFIP '89, Elsevier Science Publishers B.V., August
1989, pp. 707-712.

e Gail E. Kaiser. Al Techniques in Software Engineering. In Hojjat Adeli, ed.,
Knowledge Engineering, Vol. I, Applications, McGraw-Hill, 1990, ch. 7. pp.
213-244. .

¢ Gail E. Kaiser. A Flexible Transaction Model for Software Engineering. Sizth
International Conference on Data Engineering, February 1990, pp. 560-567.

e Gail E. Kaiser. Interfacing Cooperative Transactions to Software Development
Environments. Office Knowledge Engineering, IEEE Computer Society Techni-
cal Committee on Office Automation, 4(1):56-78, February 1991.

e Gail E. Kaiser and Dewayne E. Perry. Making Progress in Cooperative Trans-
action Models. Data Engineering, 14(1):19-23, March 1991.

¢ Dewayne E. Perry and Gail E. Kaiser. Models of Software Development Envi-
ronments. [EEE Transactions on Software Engineering, 17(3):283-295, March
1991.

o Naser S. Barghouti and Gail E. Kaiser. Concurrency Control in Advanced
Database Applications. To appear in ACM Computing Surveys. September
1991.

e Gail E. Kaiser and Calton Pu. Dynamic Restructuring of Transactions. To ap-
pear in Ahmed K. Elmagarmid, ed.. Database Transaction Models for Advanced
Applications. chapter 8, Morgan Kaufmann, 1991.

Gail E. Kaiser

Associate Professor of Computer Science
Columbia University in the City of New York
4 October 1991

ot

1 Introduction

This manual is neither a user’s manual for MARVEL, nor an implementor’s manual;
it has no information on how to use MARVEL or how to modify the source code. We
assume the reader has a working knowledge of MARVEL and software development
environments in general. [f this is the first time you use MARVEL, it is strongly
recommended to follow the user’s guide tutorial once the basic installation steps were
made (see section 2), rather then launching into writing an environment without prior
experience with using MARVEL .

1.1 Who Would Use This Manual

There are basically three groups of people who interact with Marvel. The first are
end users who use the system for development purposes. They should refer to the
user’s manual.

The second group of people are implementors who want to modify the kernel code.
They should refer to the implementor’s manual.

The third group of people are the system/project administrators, for whom this man-
ual is directed. A project administrator writes specifications of the project’s process,
data, and consistency models, which are loaded into MARVEL and tailor its behavior
accordingly.

1.2 Conceptual Overview
1.2.1 Research Goals

The long-term goal of the MARVEL project is to develop a kernel for multi-user
software development environments that allows teams of programmers to cooperate
on developing a large-scale software project. The kernel provides concurrency con-
trol and object management primitives that enable project administrators to build
an environment that implements concurrent software process models that describe
a spectrum of interactions, ranging from cooperation among members of the same
development team to isolation of teams who work on unrelated parts of the project.

1.2.2 Concepts

MARVEL is a rule-based software development environment kernel that provides as-
sistance in carrying out the software development process. MARVEL is built on top
of an object management system that abstracts the components of the project under
development as objects and stores them in an objectbase. The software develop-
ment process of the project is modeled in terms of rules, each of which encapsulates
a development activity. MARVEL assists software developers by applying forward

and/or backward chaining among the rules, automatically invoking the development
activities modeled by these rules.

A project administrator writes a specification of the project data model, process
model and consistency model. All specifications are written in the MARVEL Strategy
Language (MSL). The administrator loads these specifications into the kernel, cre-
ating a MARVEL environment that supports the data management and consistency,
and the process enaction requirements of the project.

The data model is specified in terms of classes, each of which consists of a set of
typed attributes that can be inherited from multiple superclasses. Attribute types
include primitive types, files, single and set of contained objects, and single and set of
directed links. Set attributes contain instances of other classes as their values, thus
implementing composite objects, and giving the MARVEL object management system
(OMS) a hierarchical traversal capability. Links are typed and point to any instances
in the objectbase thus giving the MARVEL OMS arbitrary graph traversal capability.
Existing software systems can be immigrated into MARVEL using the MARVELIZER
tool. The MARVEL OMS supports creation and deletion of objects according to the
data model.

The process model is described in terms of rules and envelopes. Rules specify the
behavior of the tailored MARVEL environment in terms of what commands are avail-
able and what kind of assistance is provided. Envelopes interfaces between the
tools/activities and MARVEL rules and objects. MARVEL supports several models
of assistance, ranging from automation to consistency maintenance models. The set
of rules that are loaded into a MARVEL environment form a network of possible for-
ward and backward chains. MARVEL rules are more complicated then their expert
systems ancestors; each rule contains a condition that must be satisfied for the rule
to fire, an activity, which is a general mechanism to execute arbitrary external tools,
and multiple effects that assert the results of the tool into the MARVEL objectbase.

The consistency is defined by the administrator in terms of consistency predicates in
the rules and in terms of default values as defined in the class definitions.

1.2.3 Selected Publications

There are numerous publications about MARVEL for reference. A selected list follows:
(the full list is presented in the preface).

The concept of MARVEL and the implementation details of the single-user version are
covered in [7. 12, 2, 8, 13].

Our experience using single-user MARVEL is documented in [6].

The concept of the multi-user version of MARVEL and the problems encountered when
scaling up the system are described in [3, 4, 5].

Our experience integrating external tools through SEL, our shell envelope language,
are described in [10].

-]

Further work on the rule processor, in particular the dynamic binding of parameters
during chaining. is described in [9].

1.3 System Overview

The MARVEL system is based on a client/server architecture[5], where the clients
communicate with the server via tcp/ip sockets. A MARVEL server can support zero
or more clients sharing access to the same objectbase. When some user starts a
client. a special daemon (marveld) installed in the operating system (/etc/inetd.conf
on SunOS and Ultrix) checks whether or not there is already a server running for that
objectbase. If so. it connects them up and if not it brings up a server on the same
machine as the client. When all its clients have quit, the daemon shuts the server
down. The daemon triggers the installed version of the MARVEL server. A server can
also be started manually (e.g., to test new versions of the server or if the daemon is
not installed in your system). Only one server can execute for a given objectbase at a
time, and a special file (.server_port) in the objectbase indicates whether or not there
is a server currently running and provides information that clients use internally to
connect to this server.

A MARVEL objectbase is stored persistently in a particular file system directory,
known as a “MARVEL environment”. A MARVEL environment is a directory that
contains a set of MARVEL Strategy Language (MSL) files, a set of envelopes, a binary
objectbase, an internal representation of the contents of the MSL files, a “hidden”
file system for binary and text file attributes, and some additional subdirectories
and files for things like failure recovery logs and maintaining a persistent counter
for generating clientIDs. The binary representation of the in-memory objectbase is
stored in a gdbm! file, while file attributes (text and binary) are stored in a “hidden”
file system. This file system includes directories representing objects containing set
attributes (see section 3.6 for more details).

All MARVEL environments are entirely independent of each other, and there is no
identifier resolution of any sort across environments. MARVEL environments are
set up by “administrators”, charged with defining appropriate data organization and
behavior for a (class of) software project, and the typical end-user need know nothing
about their contents. The administrator usually loads a set of MSL files into a MARVEL
environment, and thereafter end-users simply use that environment without further
recourse to the load command.

A MARVEL client corresponds one-to-one with an operating system process. A client
is-a very important concept with respect to MARVEL ’s implementation. Every client
executes as a “session” running from its invocation to its exit, where the session
provides various client-specific information such as the controlling user’s Unix envi-
ronment variables. A client, i.e., a session, is in the middle of zero or one rule chain
at a time. A MARVEL server keeps a “context” for each session, and performs rule

'gdbm is a package for efficient storage/retrieval of byte streams on disk

chaining with respect to a session.

When a client is not in the midst of chaining, this does not mean it is inactive; a client
may also execute built-in commands. This includes load (the data. process, and con-
sistency models), quit (exit the client), help (obvious), a large number of commands
for browsing the objectbase (including commands related to various display options),
and another large number of commands for directly modifying the objectbase (add,
delete, move, copy, etc.).

There is currently no ability for a client to run anything in the background except
through envelopes (using the normal facilities of the operating system to fork new
processes). [t is possible, however, for an envelope to invoke a new MARVEL client in
batch mode, feeding it a script to execute, and terminate. It is not possible to create
a client in this manner and hand it off to a human controller. Thus batch clients
cannot become interactive.

A MARVEL end-user may have multiple clients for the same server running under his
userid, either on the same or different machines. If the graphical front end is used,
then multiple clients for the same server belonging to the same user would correspond
to multiple windows. The MARVEL graphical user interface for a single client appears
to have several subwindows, but from the X11 windows point of view, there is exactly
one window. The internal windows are manipulated by MARVEL itself and cannot
be manipulated using conventional X11 facilities. Even the top-level window does
not respond normally to X11 user commands provided by the user’s choice of window
manager (because the MARVEL graphical user interface is implemented directly in
Xlib). An end-user can also interact with multiple clients through the command line
interface, by using operating system commands to move them between the background
and foreground, or separate user jobs controlled by multiple terminals (or X windows
xterms).

A MARVEL user corresponds one-to-one with an operating system userid. If multiple
humans are logged in under the same userid, then they appear to be the same user.
The notion of a user is not an important concept from MARVEL s viewpoint. Its only
distinction is as a built-in type (and the corresponding CurrentUser variable) for use
by environment administrators in writing classes and rules. MARVEL itself does not
distinguish between clients controlled by the same versus different users.

The MARVEL server currently supports a fairly conventional scheduling mechanism
among the clients. The scheduler does not round robin time slices among the clients,
but instead feeds off a queue of messages from clients. The messages might indicate
either a new command (either built-in or a rule) or the completion of an activity. The
server takes a message from the queue. If it is a built-in, it executes the command
atomically — even if it is an extremely long duration command, notably Marvelizer[13].

MARVEL 3.0’s concurrency control mechanism supports relatively conventional seri-
alizability among multiple users. Rules are subtransactions and rule chains are nested
transactions. Two-phase locking is used to enforce serializability. The main difference
from standard mechanisms is that a rule or rule chain never blocks waiting for a lock,

but instead is either terminated or aborted if it cannot acquire the necessary locks.
Thus if two activities attempt to acquire conflicting locks, one will be aborted or ter-
minated, depending on which reflect consistency and/or automation. (The distinction
between these will be explained in section 3.4).

MARVEL currently runs on Sun 3s (running SunOS 4.0.3), Sun 4s (SunOS 4.1.1) and
DecStation 3100s (Ultrix 3.1; an old version, note the most recent version distributed
by Digital is something like 4.2). There are no restrictions on mixing and matching
clients, i.e., clients and server can run on same or different machine and or same or
different architecture. However, an objectbase created by a server executing on a
particular architecture can only be accessed later by servers executing on the same
architecture because of binary incompatibility problems. However, a binary object-
base can be manually converted from one architecture to another using special utility
programs called bin2ascii and ascii2bin utilities (see appendix C).

MARVEL 3.1 (expected to be released around January 1992) will support relaxation
of serializability as defined by the administrator in the coordination model, specified
in terms of control rules, which describe how to handle conflicts among particular
kinds of rules. Refer to [1] for an extensive discussion of these issues.

1.3.1 System Components

Figure 1 illustrates the internal structure of MARVEL. For more information refer to
the implementor's manual and to [3].

The server is composed of the following modules:

o Storage Manager (SM) - This bottom layer provides persistent storage and
controls the flow of data from main to secondary storage. This layer has no
knowledge of the data model and therefore can be easily replaced. SM provides
services for, and communicates with, the OM. It is built on top of the gdbm
package.

o File Manager (FM) - This module manages the interface between the OM and
the “hidden” file system, by providing system calls to access files on the file
system.

o Object Manager (OM) - This module implements the object-oriented data model.
The upper layers deal only with the object abstraction. OM communicates with
SM to transform the raw data into objects, and provides services to LM. SM,
FM, and OM together comprise the Data Management part of MARVEL (DM).

o Lock Manager (LM) - This layer, usually considered as part of the transaction
manager, is treated as a separate layer, to support the complete separation be-
tween transactions and object management. LM is the conflict-detection layer,
and it serves as a mediator between TM and OM and provides the handles

10

Interactive Appl

Batch Appl.

—

, lient
Graphical User Command-Line ¢
Interface (GUI) Interface (LUI)
Activity Command
Manager Pre-Processor
. (AM) (PP)
Client \/ Client
Inter Process Communication (IPC)
\ ,,,..L:.. TTTSTTTTesesastsaessaesy T/r
e L

Inter Process Communication (IPC)

Session Manager

(SEM)

/\

Built-Ins
(BI)

Query

(QP)

Processor

Rule Processor
(RP)

— 7 =

Server

Transaction Manager
(T™)

[

)

Lock Manager
(LM)

Object Manager

(OM)

Pl

—~—_—

(DM)

M)

Storage Manager

File Manager
(FM)

Figure 1: Marvel 3.0 Architecture

11

for the transaction manager to enforce its policy. LM reads in a file (com-
patibility.matrix) that specifies the lock modes and their compatibility. Thus,
modifying the contents of the matrix can be done without recompilation of the
code. Modifying the dimensions of the matrix (by adding lock modes) can also
be done but then TM has to be augmented with support for the new locks.

Transaction Manager (TM) - This layer is responsible for controlling concur-
rent access to the data and maintain its consistency. It does so by enforcing
concurrency control, transaction recovery, and crash recovery policies. TM com-
municates with LM when it needs to access the objectbase, and is called from
RP and QP.

Query Processor (QP) - This layer translates the queries expressed in a query
language into calls to the TM. The QP is accessible only through RP at the
moment.

Rule Processor (RP) - A central part of the system, it processes requests for
rule firing and implements the chaining engine to enact a specific process. It
assumes the set of rules that were loaded into MARVEL using the load command
(see section 5).

Built-Ins (BI) - A set of kernel commands available from any environment.

Inter Process Communication (IPC) - This layer provides the communication
between the client application and the server, and is responsible for receiving
and sending messages. Like OM. IPC must preserve the object abstraction when
transferring objects between the client and the server via a sequential medium.

Command Pre-Processor (PP) - This layer does pre-processing of built-in com-
mands and other requests to the user before sending them to the server.

Activity Manager (AM) - This module manages the activities run in the client
and interfaces them to MARVEL through envelopes.

User Interface (UI) - This is the uppermost layer of MARVEL . It interfaces
between the human user and the environment. It provides both graphical and
command-line interface. The latter is mainly used for batch processing, using
the execute command. An important component of the graphical Ul is a
display of an image of the objectbase and its structure.

2

Installation

This section outlines the installation procedure required in order to be able to run
Marvel. It does not describe the procedure for creating or setting up a specific en-
vironment. This is described in detail in section 3 and in the user’s guide. Basic
familiarity with Unix is assumed throughout this section.

2.1

Unloading the Distribution Tape

Skip this section if MARVEL has already been installed on your system.

(84

. Select a userid. If you unload the tape as root, all the files will probably be

owned by a user not on your system. Otherwise, the user who unloads the tape
will own all the files. The file system must have at least 75 Megabytes of free
storage. (large parts of what comes in the distribution tapes does not have to
reside on disk, but it would be a good idea to at least unload everything once
and inspect the contents.)

Find an appropriate tape drive. The Sun tapes were made on a standard Sun
drive on a sun4. The DEC tapes were made on a TK50

cd to a directory under which you desire to have the MARVEL release reside.
There must not exist a directory or file called marvel there, and it must have
write permissions.

Insert the distribution tape into the tape drive

. Unload the tape with tar:

tar xvf /dev/rst0 > tar.out

When done, look at the file tar.out and verify that all files were unloaded prop-
erly and remove tar.out.

Remove the tape

2.2 Contents of the Distribution Tape

The directory listing in the new directory should consist of the following:

(3]

. README. setup - Setup procedure to start up a MARVEL session.

administrators - This file contains userids of people who are allowed to log in
to MARVEL as administrators. You should modify it to include the administra-
tors in your group.

13

3. bin - all binaries and shell scripts that are used in order to maintain and run
MARVEL live here. There are executables for all architectures but you should
not be concerned with those since all programs have shell front-ends that invoke
the appropriate executable.

1. compatibility.matrix - This file defines the default locking policy in 3.0.
Do NOT modify this file unless you are fully acquainted with the concurrency
control mechanism in MARVEL (refer to the implementor’s manual for further
information).

5. doc - This directory includes all the documentation on-line.

6. environments - This directory contains several example environments for refer-
ence. In particular, Marvel.3.01s an environment that contains all the sources
of MARVEL 3.0.

. flatsrc - All sources are arranged here in a flat directory. Useful for using
tags to browse through the sources.

-1

8. help - online help files used by MARVEL.
9. src - the complete source tree.
10. 1ib - libraries for compilation.

11. buglist - files listing all known bugs in MARVEL.

2.3 Installing the MARVEL Daemon

The MARVEL daemon (marveld) is an optional program that starts up and terminates
a MARVEL server on demand. If not installed, MARVEL can still.be used, but the
server has to be manually started and terminated. You might want to try running
MARVEL without installing the daemon and install it at a later point, once you are
familiar with manual operation of the server.

The installation of the server daemon requires modifying some system configuration
files and restarting a system daemon. If you're not an experienced system adminis-
trator, you're probably best off asking one at your site to help you with this.

Installing the server daemon requires the addition of a line to /etc/group, /etc/inetd.conf,
/etc/passwd, and /etc/services on each machine that you’'ll want to run a server

on. If you're using NIS (YP) with a “group”, “passwd” and/or “services” map, you

need to modify the appropriate map(s) on the NIS master.

1. Set MARVELHOME and PROJECT to be shell environment variables denoting
the MARVEL system directory where you installed the system.

2. Become root on the system

14

3. Pick an unused IP port for the daemon to listen to. This should be some num-
ber between [IPPORT_RESERVED and IPPORT_USERRESERVED (defined
in /usr/include/netinet/in.h on most systems) that does not already appear in
/etc/services. Call this number X.

4. Add the following line to /etc/services (or the “services” map on the NIS mas-
ter):
marvel X/tcp # Marvel SDE server daemon
5. Create a group named marvel by adding a line similar to the following to
/etc/group (or the “group” map on the NIS master):
marvel:*:x:peter,paul,mary
(Replace the x with some unused gid at your site. Also, replace peter, paul,
and mary with the userids of the people who will be using marvel at your site.)
6. Create an account named marvel by adding a line similar to the following to
/etc/passwud (or the “passwd” map on the NIS master):
marvel:*:y:x:Marvel SDE:/dev/null:/dev/null
(Replace the y with some unused uid at your site. Use the same value for x as
in step 6.)
7. Add the following line to /etc/inetd.conf:
For Sun systems:
marvel stream tcp nowait marvel $MARVELHOME/bin/marveld
For DEC systems:
marvel stream tcp nowait $MARVELHOME/bin/marveld marveld
If you're installing this on another platform, you’ll have to figure out how the
entry should read by looking at the man page for inetd.conf. To help you out,
here are some values for the most common fields:
e service-name = marvel
e socket-type = stream
e protocol = tcp
¢ wait-status = nowait
e user-id = marvel
¢ server-program = $MARVELHOME/bin/marveld

argv[0] = marveld (not required on some systems, such as Sun)

8. Restart inetd by sending a HUP signal to it. One way of doing this is by:
kill -HUP ‘ps axlgrep ’inetd’|grep -v ’grep’lcut -4’ ’> -£3°

From now on, every time you run MARVEL on a specific environment, the daemon
will start the server for you if there is no server running already.

15

3 MSL Programmer’s Guide

This section outlines the MSL language in full, provides detailed examples of all the
constructs with full explanations, and provides the source for the C/MARVEL envi-
ronment, complete with full documentation. It is intended for those who are planning
to design and write environments for MARVEL.

3.1 Introduction

In order to learn how to write and design environments in MARVEL, one has to
understand the main concepts that comprise a coherent environment and how to
customize it to the project’s own needs. This is a multi-step process that is best
described by detailing each of the following subjects:

1. data model

[S)

. process model

3. assistance and consistency model

Throughout this manual we will be using the C/MARVEL environment as our pri-
mary example; Appendix B, page 64 contains the full source code for this environ-
ment. However, the methods described in this manual can be generalized to any
environment.

This section ends with a description of the contents of the “environment” directory
that stores all the environment-specific information.

3.2 Data Model: An Object-Oriented Approach

The first step in designing an environment is to provide an organization of its compo-
nents. In MARVEL, these specifications are described in terms of a set of object-
oriented (0O) class definitions. The reader is expected to be familiar with this
paradigm, and the following concepts are described with reference to MARVEL.

3.2.1 Objects

An object is the basic component in the data model; it is a sequence of bytes in
memory that has a defined class and a set of attributes. As in other object-oriented
systems, every object has a name, a unique object identifier, and a state, denoted
by the values of its attributes. In addition, every object is persistent. Persistence is
handled by the Object Management System (OMS) component of MARVEL. (More

16

SMALL ATTRIBUTB TYPES

MEDIUM ATTRIBUTE TYPBS

integer: -107(%) ... 10~

text: A Mapping to a :.le on
tre file system.
real: -107(-37) ... 107(3M
binary: A Mapp‘mg to a file on
string: A null terminated seg.ence the file systenm.

of characters

boolean: FALSE. TRUZ
ime A timestam
time: inestare LARGE ATTRIBUTE TYPES
user: A atring which represerts
> User INSTANCE
enumerated: A Finite domain of poassible set_of INSTANCE

{string) values.

link INSTANCE

clientid: An intege:. set_of link INSTANCE

Figure 2: Attribute types in MARVEL

information about the OMS can be obtained in the implementor’s manual). The
behavior of an object, usually expressed with associated methods, is determined by
rules that manipulate it (see section 3.4). However, rules may apply to multiple
objects, thus they are treated as multi-methods.

3.2.2 Classes

A class defines a set of objects, and specifies the attributes that each object has. In
MARVEL, an attribute is defined as one of the following four types: small, medium,
large, and link attributes.

Small attributes denote the state of an object and can be formed from a set of primi-
tive types. The current set of primitive types consists of integer, real, boolean, string,
enumerated and three special attributes namely user, clientid, and time. The user
type corresponds to a Unix userid. In addition to verifying that a given string maps
to a real userid in the system, MARVEL provides special operators for manipulating
this attribute, namely Current User, which returns the userid of the owner of the client
process that is currently served by the MARVEL server, and ResetUser, which resets
the user field to NULL value. The clientid type corresponds to the unique client
identifier given by the system at login time. It is mostly used to provide access con-
trol to objects at the client level. (Note that a user can have multiple clients running
at the same time so the user type is not sufficient for controlling each client sepa-
rately.) The clientid type can be accessed only by the CurrentClient and ResetClient
operators, with the same semantics as the analogous user operators described above.
time corresponds to an internal representation of the time. It can be manipulated
only by the CurrentTime operator, which returns the system time.

Medium attributes map to files in the “hidden” file system. In order to provide “black-
box” integration of tools, MARVEL provides an interface from the object-based OMS

17

FILE is the generic class for anything that is represented as a unix
file. There are specializations (subtypes) for CFILE, HFILE and DOCFILE
in this system.

FILE :: superclass ENTITY;
owner : user;
timestamp : time;
reservation_status : (CheckedOut, Available, Initialized) = Initialized;
contents : text;
end

Figure 3: Class Definition in MSL

to the file-based tools. (See section 4 for explanation of the interface.) The OMS itself
maps the request for files needed by the tool into the corresponding file attributes.
Note that an object can map to zero, one, or more files/directories in the file system.
There are two kinds of file attributes: text and binary.

The large attributes represent a containment relationship among objects, thus cre-
ating the composite-object hierarchy. The composition hierarchy is an important
concept in MARVEL, since it allows to abstract the project’s components via compo-
sition. When designing the data model for a project, the administrator has to identify
carefully how to devise the project into sub-components that can be handled inde-
pendently. Two types of large attributes exist: single and set_of. The former allows
only one child of that type to be created, while the latter allows arbitrary number of
objects to created as children.

Finally, link attributes allow the data model to maintain arbitrary semantic connec-
tions between two objects in the objectbase, outside of the composite-object hierarchy.
One major difference between link and large attributes is that an object connected
via large attribute to its parent is considered to be part of that object. This means
that deleting an object implies deleting all its children connected via large attributes,
but the linked objects are not affected. Like in large attributes, there are two types of
link attributes, namely single and set. Figure 3 shows an example of a class definition
in MSL .

In addition to data-object classification, MSL provides another type of class, for def-
inition of tools that represent the external activities that MARVEL allows the rules
to use. However, these classes are used merely for the definition of tools and not for
instantiation. Figure 4 shows an example of a tool class definition. In here, COMPILER
is a class of tools that are semantically similar. There are three TOOL_METHODS, com-
pile, lex_compile, and yacc_compile, that operate on objects of class CFILE, LFILE, and
YFILE respectively. Each tool_method is a string attribute which maps to an envelope
on the file system. The tool interface is described in more detail in section 3.4.5.

18

COMPILER :: superclass TOOL;
compile : string = compile.c;
lex_.compile : string = compilelex;
yacc_compile : string = compile_yacc;
end

Figure 4: Tool Class Definition

Appendix B.1. page 64, contains a graphical depiction of the composite-object hierar-
chy for the C/MARVEL environment. The reader should examine this now, for some
examples in this manual refer to this. Note how a given class can appear more than
once in the hierarchy, at different levels.

3.2.3 Inheritance

MARVEL provides for inheritance, that is, one can define a subclass/superclass re-
lationship among classes. A subclass usually denotes a specialization property, i.e.,
a subclass has additional properties besides the properties defined by its superclass.
A subclass can denote specialization in either the data or the behavior or both. Be-
havioral aspects are dealt in section 3.4. For now it suffices to say that behavioral
properties are also inherited.

For example, if class C has attributes att, and atty, C, has attribute atty, and class
C, is defined to be a superclass of C;, then C; inherits the atf, attribute. Inheri-
tance is a recursive process, so in this example, C; inherits any attributes that C,
also inherited. MARVEL also allows for multiple-inheritance, so a class can inherit
attributes from a set of classes. In case a class inherits an attribute that is defined in
multiple superclasses, the first superclass (as defined in the list of superclasses) has
the highest precedence. Every data class in MARVEL is defined to be a subclass of the
ENTITY superclass. Tool classes are defined as subclasses of the TOOL class but there
is no inheritance mechanism with respect to tool classes. Figure 5 is an example of
inheritance relationship between the CFILE class and the FILE class. In this example,
any object instantiated from class CFILE inherits the attributes from the FILE class.

3.3 Initialization

When defining classes, each attribute can be defined with a default value that will
be assigned to objects at instantiation time. If a default value is not provided by the
administrator, the system will provide its own default values. In general, it is a good
practice to provide initial values in order to make sure that an object is instantiated
with the right values. Initialization is also important from the consistency-model

19

FILE is the generic class for anything that is represented as a unix
file. There are specializations (subtypes) for CFILE, HFILE and DOCFILE
in this system.

FILE :: superclass ENTITY;
owner : user;
timestamp : time; .
reservation_status : (CheckedOut, Available, Initialized) = Initialized;
contents : text;
end

Extra information is needed to record the state of compilation and
analysis (lint, in our case) for CFILEs. A CFILE contains links to
various HFILEs that it #includes.

CFILE :: superclass FILE;

compile_status : (Compiled, NotCompiled, Initialized) = Initialized;
compile_log : text;

analyze_status : (Analyzed, NotAnalyzed, Initialized) = Initialized;
analyze_log . text;

contents : text = ".c";

object_code : binary = ".o";

ref : set_of link HFILE;
end

Figure 5: Class Inheritance

20

VERSIONABLE :: superclass ENTITY;
version_num : integer = 0;

state : integer = 0;

locker . user;

reservation_status : (CheckedOut,Available,None) = None;
version : text = ",v'";

end

Figure 6: A class Definition with Initial Values

point of view. This will be discussed in section 3.5.3.

Figure 6 gives an example of initial values of attributes. Small attributes are assigned
simply by asserting a literal value following the declaration. The user, clientid and
time attribute can be initialized using one of the special operators mentioned above.
Medium attributes are initialized by assigning a quoted string. This string represents
an extension (postfix) that will be given to the file. The full name of the corresponding
file on instantiation will be “object-name” concatenated with the extension. Note that
the *.” is not provided by MARVEL and has to be explicitly added to the default
extension value. Extensions are important since some tools depend on such extensions
in their processing of files. Finally, large or link attributes cannot take default values,
since their values are instances themselves which are not known at definition time.

Rule [parameters]:
characteristic function:
property list
{ activity }

effectl;
effect2;

Figure 7: MSL syntax for a rule

3.4 Process Model: A Rule-Based Approach

This section shows how the rules, as a whole, form the notion of process programming.
Because there are two aspects to this concept, it is broken up into two sections which
cover the rule and assistance models, respectively.

3.4.1 Introduction

MARVEL is a rule-based software development environment. The software develop-
ment process is described in terms of rules that specify the behavior of the tailored
MARVEL environment. Ideally, any action would be modeled as a rule. Currently,
however, built-in commands are not modeled as rules?. The syntax for a rule in MSL
is depicted in Figure 7.

The parameters are the run-time objects that the rule is invoked with. The charac-
teristic function section binds other objects (also referred to as derived parameters or
bound variables) that the rule needs to have in the activity or property list section.
The property list is a logical expression that must be satisfied for the rule to fire. The
activity encapsulates the action of invoking an external tool with the specified argu-
ments. Finally, the effects are a set of multiple, mutually exclusive assertions onto
the objectbase that logically describe possible effects of the tool’s execution. Before
we show an actual example, we will first describe each of these five sections.

Rule Construction
3.4.2 Parameters

The parameters to a rule are specified by a list of VARIABLE:CLASS pairs, e.g., COM-
PILE [?F:CFILE]. In MARVEL a variable is represented by a “7" followed by an

2Marvel 3.1 is expected to have the capability to overloaded built-in commands as rules.

22

(QUANTIFIER CLASS VARIABLE suchthat (EXPRESSION)

QUANTIFIER : forall, exists.
CLASS : A class defined in the Data Model.

VARIABLE : The unique identifier used to name this set of objects which satisfy
the given expression.

EXPRESSION : A combination of AND. OR, NOT with any of the following elements.

Navigational Relational
(ANCESTOR (VAR VAR]) (BVAR operator BVAR)
(MEMBER [BVAR VAR}) (BVAR operator OP)
(LINKTO [BVAR VAR])

Figure 8: Syntax for bindings

identifier (see Section A.1.4). When the user invokes the COMPILE rule with an
object of class CFILE, MARVEL invokes its overloading mechanism (as described in
section 3.4.7) to find the appropriate rule to fire.

3.4.3 Characteristic Function

The characteristic function section binds objects beyond the parameters. that are
needed for the evaluation of the property list or for the execution of the activity.
There are several reasons why a rule might want to bind other objects. The primary
reason is that the firing of that rule is dependent upon the values of attributes of
other objects. An example of this can be found in the BUILD rule in the C/MARVEL
environment (see Appendix B). Before the rule builds a program, it checks to make
sure that all the libraries that it uses have been archived by evaluating its property
list. (The property list is explained in section 3.4.4.) Another reason is that the rule
might need additional information to execute properly. In the BUILD rule, the activity
needs to have a list of include files, which it passes to the cc tool (the activity section
is described in detail in section 3.4.5).

The characteristic function is composed of possibly multiple bindings connected by
AND. The AND keyword is in fact redundant and does not represent a logical AND.
The syntax of an individual binding is outlined in figure 8.

The difference between BVAR and VAR in the example is that BVAR refers to a specific
attribute of an object, whereas VAR refers to an entire object.

The quantifiers are mainly used in the property-list and are not part of the charac-
teristic function, although they appear there. The only time a quantifier affects the
characteristic function is when an expression returns an empty binding set and the
variable is quantified with an EXISTS quantifier. In this case the property list is not
evaluated at all and returns FALSE. Quantifiers will be discussed in section 3.4.4.

The CLASS VARIABLE pair specifies a formal parameter and the class of objects that
are allowed to be bound to it. The terms derived parameters and bound variables

23

will be used interchangeably to denocte these parameters. Note that the inheritance
mechanism applies here as well, i.e., any object of any subclass of CLASS that meets
the expression will be bound as well.

The binding expression consists of nested subexpressions connected by the logical
operators AND, OR and NOT.

There are two types of binding expressions: navigational and associative. The navi-
gational type uses the large and link attributes to determine the value of the bindings,
while the associative kind filters all the objects of the given class by evaluating a log-
ical expression based upon small attribute values. Medium attributes are never used
in this section. In fact they are only used in the activity section of the rule as a ref-
erence to files in the file system. There are three basic operators for the navigational
binding, which we address now in turn. As a result of the binding, the VARIABLE will
be bound to zero, one, or more objects. Note that this is different from a parameter
symbol, which is always bound to a single object.

The ancestor operator allows the rule to bind a VARIABLE to an object in the
composite-hierarchy that is an ancestor of a given object. For example, the following
finds all ancestors of object 7x that are of type PROJECT:

(exists PROJECT ?p suchthat (ancestor [?p 7?x]))
P P

The member operator is a more restricted version of ancestor in that it binds objects
based upon direct parent-child relationship. For example, suppose there exists an
object ?x that has an attribute ?z.cfiles, which is a SET_OF CFILE. To gather all of
?x’s children together into ?¢, the binding is as follows:

(forall CFILE ?c suchthat (member [?x.cfiles 7c 1))

Linkto is similar to member since it only probes one level deep, but it works on link
attributes (as defined in section 3.2.2). For example, suppose there exists an object
?x that has an attribute ¢z.reference, which is a SET_OF link CFILE. Here is the
binding that collects all the objects of class CFILE that ?x links to:

(forall CFILE ?c suchthat (linkto [?x.reference ?c]))

All three operators can be applied to get the inverted operation when the bound
variable is used as the second argument in the expression, i.e., the ancestor operation
binds descendants, the member operation binds children and the link operation binds
object that point to the first argument through a named attribute. For example, the
following expression will bind all descendants to ?desc.

(exists CFILE ?desc suchthat (ancestor [?p 7desc]l))

24

GROUP

PROJECT

MODL’LE1

LFILE CFILE, YFILE

|Pania] Composite-Hierarchy I

[sampie 2¢-FILE] is invoked on C |

esessaensesnncannia.

Ancestor
(forall MODULE ?m suchthat (ancestor [7m ?f] }) m={ M‘ .
(exists MODULE ?m suchthat ancestor [*m ?f])) m={ M‘ }
(forall PROJECT ?p suchthat (ancestor [7p X])) = P2 }
(forall YFILE ?y suchthat (ancestor { % ?f])) dy=(}
Member
(forall MODULE ?m suchthat (member [Pm.cfiles 7f])) ?m={ Mj }

l Sample Partial Objectbase for this Hierarchy I

| Sample (21:LFILE] is invoked on L, |

Linkto

M (exists YFILE 7y suchthat (linkto [%y) %y =(Y, }
Combination
(and (exists GROUP ?g suchthat (ancestor [2g 71]))
(forall MODULE ?m suchthat (ancestor {?g *m]))
(forall CFILE 7%c suchthat (member [?m.cfiles 7¢])))

?g:(Gl)
‘m={M .M. M . M]
1 2 3)

'.’c=[Cl.C2. C}.C4.C5}

Figure 9: Instances of ancestor and member operators

Figure 9 provides more examples for the ancestor and member operators. These three
operators are powerful enough to allow a rule to traverse the composite-hierarchy to
bind any objects that it needs.

The associative operator allows the rule to choose objects from a specific class based
upon a logical expression evaluated for each object. For example, a rule could select
all the CFILE objects that have been analyzed but not yet compiled with:

(forall CFILE ?c suchthat (and (?c.analyze_status = TRUE
(?c.compile_status = FALSE)))

Note that this completely ignores the composite-object hierarchy. Although naviga-
tional queries can be quite expensive (e.g., when using the “descendent” operation),
typically, an associative expression is more expensive since it needs to traverse all
the objects for a given class and all its subclasses. It is not recommended, therefore,
to use only associative query in an expression. However, it is useful sometimes to
combine navigational and associative expressions with AND clause, to restrict the set
of bound objects.

3.4.4 Property List

The property list of a rule specifies the logical state of the objectbase that must
be true for the rule to fire on the given arguments. Since the characteristic function
section allows the rule to collect an arbitrary number of objects together, the property
list can be very expressive, and is not limited to the parameters of the rule. There
is often confusion between the role of the characteristic function and the role of the
property list. The main difference is that the characteristic function deals with binding
objects, whereas the property-list evaluates specific properties on those objects. The
output of the characteristic function is a set of objects bound to each of the symbols,
and the output of the property-list is either TRUE of FALSE. Thus, even though
a syntactically identical expression can appear in the characteristic function (as an
associative expression) as well as in the property-list, they serve different purposes:
the first will be used to filter objects that don’t meet the expression whereas the
second will be used as a predicate and will return a boolean value that tells whether
the set of bound objects meets the condition or not.

The following example clarifies the distinction between characteristic function and
property-list and how to use them properly.

Figure 10 provides the characteristic function and property list for two rules that
appear similar to each other, COMPILE-1 and COMPILE-2.

However, they might behave differently on certain inputs. COMPILE- 1 will bind to 71
only member include files that are archived and will check that the cfiles bound to 7f
are analyzed and compiled, whereas COMPILE-2 will bind to ?i all member include files
and will check that they are all archived as part of the evaluation of the property-list.

26

Compile-1 {f:CFILE]: Compile-2 [?f1:CFILE]:

(and (exists GROUP ?g suchthat (ancestor {?g ?f])) (and (exists GROUP ?gr suchthat (ancestor (?gr fi]))
(forall INC i suchthat (and (forall INC ?in suchthat (member [?gr.includes ?in})))
(member (?g.includes ?i])

(?i.archive_status = tre))))

: .(and (?in.archive_status = true)
(and (?f.analyze_status = true) (?fi.analyze_status = true)
(?f.compile_status = false)) (?fi.compile_status = false))

Figure 10: Difference between Characteristic Function and Property List

cra g, . ENVELOFE
Cempile [?£:CFILE): SHELL sh:
{snd (exists GROUE g suchthat {incestor [2g 2£])) et L chefie.
{exizts PROJECT ?p =uchth:t (ancestor [?p ?f1)) b:.-; N éb’ f;le-
(forall INC ?i zuchthat (or {member [7g.includes ?ij) se: ;‘; HFILE) 'E:Ies- !
(member [7p.includes 2i]) cext . error_msg:
(linkto [?p.link_ine 2i]})) ‘?T;t“ : Céfuagrg‘
r HFETLS 2 I A [t slaz ?h} -5 - . r N
(forall HFILE °h suchthat (member (7i.hfiles ?hii}) CUTPUT
fand {?i.archive_status = TRUE) a
{?¢.analyze_status = TRUE)) BECIH
) =NT mpile Envelo
{ COMPILER campile 2f{.contents ?f.object_code *h.ccntents ?f.error_msg *-g* |} XD Co pi 4

{?f.:ompile_status = TRUE):
12f.conpile_status « FALSE):

Compile Rule

Figure 11: Compile rule from C/MARVEL

Thus, assuming that the properties on ?f are TRUE, in the case where some of the
member include files are not archived. COMPILE-1 will return TRUE (with a subset
of include files bound to ?i) whereas COMPILE-2 will return FALSE. Besides this
logical difference in functionality, there is another important reason why the condition
part of the rule has been divided into a characteristic function section and property
list section: The administrator has more control over defining the assistance model,
which applies only to the property-list section of a rule. MARVEL’S assistance model
provides a way to automatically satisfy the property list of a rule if it is not currently
satisfied. Thus, COMPILE-1 does not provide any means for the rule processor to
affect the states of the include file objects bound to ?i, whereas COMPILE-2 does.
This is discussed in detail in section 3.5.

Quantifiers

As mentioned above, quantifiers are specified in the characteristic function but are
actually applied in the evaluation of the property-list. Each bound variable has a
quantifier attached to it, which determines how to evaluate a predicate in the property
list. In the presence of only a single bound variable in a predicate, the evaluation is
straight forward: for a universally quantified variable all bound objects must satisfy
the predicate and for an existentially quantified variable at least one must satisfy the
predicate. For example, in the compile rule in figure 11, both predicates in the

SV}
-1

Compile[?c:CFILE]:
(exists HFILE 7?h suchthat (linkto [?c.reference ?h]))

(?c.time_stamp < ?h.time_stanp)
{ COMPILE ...}

(and
(?c.compile_status = TRUE)
(?c.time_stamp = CurrentTime));

(?c.compile_status = FALSE);

Figure 12: A Two-Variable Predicates

property list apply to ?f. a universally quantified variable, and thus all bound objects
must satisfy the predicates in order for the predicate to return TRUE.

In the presence of two variables in a predicate, the evaluation is more complex. Figure
12 shows a simple example of a predicate that involves two variables. In this example,
there is a comparison between the timestamp attributes of ?c and ?h. 7?c is a
parameter, so we treat it as an existentially quantified. ?h is a bound variable, so it
might be bound to a set of objects. Since ?h is existentially quantified, the property
will be TRUE if at least one of the objects bound to 7h satisfies the predicate. When
both symbols are bound variables, each of them can be quantified in either way, so
there are four possible ways to evaluate a two-variable predicate in a property-list.
All evaluations involve the cross product of the sets of objects bound to each symbol.
(For more information, refer to the implementor’s manual). In addition, there is a
special, fifth case, where both variables refer to the same symbol (See figure 13). In
this case, instead of looking at the cross product, each element of a set is compared
against itself only, since it is more natural to think of such a comparison as between
different attributes of the same object.

3.4.5 Activity

The Activity section of a rule specifies the actual external tool to be invoked and the
interface to it, i.e., the input and output arguments. MARVEL’s approach to tool
integration is “black-box” integration. This means that any off-the-shelf tool that is
available on Unix can be integrated into MARVEL as-is, without further modifications.
However, since Unix tools are file-based and MARVEL is object-based, there has to
be some interface in which objects are mapped to the corresponding files and vice
versa. This is done through a mechanism called an envelope. Section 4 explains in

28

Compile[?c:CFILE]:
(?c.source_time_stamp > ?c.object_time_stamp)
{ COMPILE ...}

(and
(?c.compile_status = TRUE)
(?c.time_stamp = CurrentTime));

(?c.compile_status = FALSE);

Figure 13: A Two-Variable Predicate with same symbol

detail the envelope mechanism and how to write envelopes. For now it is sufficient
to describe how an envelope and its arguments are specified in MSL. The MSL syntax
for the invocation is:

{ tool_name tool_method input-arguments RETURN output-arguments }

where tool_name is the tool’s class name, tool method is the specific method within
the class, input-arguments are the arguments to be sent to the tool, return is a
keyword that specifies that all following arguments are output arguments, and the
output-arguments are the output from the tool back to MARVEL.

An example of a tool name and a tool method was given in figure 4 in the defini-
tion of the COMPILER class: There, the tool name is COMPILER, and the specific
tool method is COMPILE.

Input arguments can be small attributes, literals, or medium attributes. Medium
attributes are in fact MARVEL’s interface to the “hidden” file system, and they enable
to pass files to the tool. For backward compatibility, input arguments can be also
objects, which are being translated internally to a directory in the file system, but new
MARVEL environments should not use objects as input parameters. Small attributes
are translated into their ASCII representation and then passed to the envelope.

Figure 11 provides an example of the invocation of an envelope that compiles a
cfile file. The characteristic function collects all the objects that the compiler needs
in order to compile this file. Specifically, the rule needs the hfiles that the cfile
might reference. The input arguments then are:

o ?f.contents is the medium attribute that maps to the file(s) on the file system
that contains the source code for this object(s).

29

Assign [?child:AS_0, 7SO:test4]:
(?S0.state0 = Ready)

{ ASSIGN get_user return ?uA }
(?child.owner = ?7uld);

Figure 14: Example of Output Arguments in a Rule

o ?fobject_code is the medium attribute that specifies where the object code re-
sulting from the compilation will be stored.

?h.contents is the medium attribute that specifies where the source code for the
include files are on the filesystem.

?f.error_.msg points to a file that records the compilation process and reports
any errors that occurred.

“-g” is a literal sent to the compiler to specify that the compiler should produce
additional symbol table information for the debugger.

Output arguments are limited at this point to being an untyped stream of bytes,
which are typed later on, when actually used®. As an example of such a rule, con-
sider figure 14.

Here there are no input arguments and 7uA is a single output argument. When the
envelope returns, 7uA will be bound to a string, which is asserted to the ?child.owner
attribute.

3.4.6 Effects

The final section of a rule is a list of mutually-exclusive effects, which MARVEL
can assert once the envelope’s execution has completed, and not before. Since the
activity is treated as a “black box”, it must report back to MARVEL the results of
its execution. Currently, the envelope returns an integer that MARVEL uses as an
index to choose the proper effect to assert. That is, if the envelope returns zero, the
first effect will be asserted, if it returns one the second one will be asserted, and so
on. If the envelope returns a return code outside the scope of possible effects, none
of the effects is asserted and an error message is printed to the user’s screen. Note
that the return code is different then the return arguments mentioned above. An
envelope always returns a return code back to MARVEL as an implicit argument. [t
is the responsibility of the envelope to provide a meaningful return code that will
correspond to the effect to be asserted by MARVEL. Conventionally, a zero return

3A useful extension planned for 3.1 is for the envelope to return a set of strings that represents
a selection of a subset of files sent to the envelope, based on their contents.

30

code corresponds to a successful invocation and the various non-zero return codes
correspond to various exceptions or errors in the invocation of an envelope. However,
nothing in MARVEL restricts the administrator to follow this approach.

In the compile rule (figure 11), there are two effects: The first, which asserts that
(?f.compile_status = TRUE), is used when the compilation process is successful,
and the second, (?f.compile_status = FALSE) is used in the case of failure. Since
the envelope can modify only files, (thus indireclty it modifies medium attributes)
while MARVEL modifies the small and large attributes, great care must be taken to
ensure that the envelope and rule coordinate their actions, so that the contents of the
file system and the objectbase will be consistent with each other.

Assertions can be made only on small attributes and on link attributes. Link at-
tributes can be used with either l1inkto or unlink operators. Figure 15 gives an
example of rules that assert link attributes. In the first rule, the ?root object is being
linked to three parameter objects in an effect. In the second rule, the characteristic
function locates and binds linked objects, and the effect unlinks them from the object
bound to ?root. Note that while the first rule’s assertions are only on parameters there
will be a single link operation per effect, whereas the second rule’s assertions involve
bound variables, and therefore might imply zero, one, or more unlink operations per
effect.

An important restriction in the effects part of the rule is that it is not allowed to make
assertions on bound variables, except in link/unlink assertions. The main reason for
this is due to the assistance model (see section 3.5) and due to the current concurrency-
control mechanism in MARVEL. There is, however, a workaround to get the effect of
modifying bound variable using chaining. It will be explained in section 3.5.

3.4.7 Rule Selection

MARVEL allows for multiple rules with the same name to co-exist. Two kinds of rules
with the same name can co-exist in the system: Rules that have identical number,
types. and order of parameters, and rules that differ in one or more of the above. When
a rule is invoked with actual parameter objects, MARVEL applies an overloading
procedure that selects the most appropriate rule(s) for execution. Once this set
of rules is determined, MARVEL'’s rule processor fires the first of these rules whose
condition is satisfied.

Rule Overloading

Like multi-methods, rules are identified through the unique combination of their name
and the types, order and number of their parameters. MARVEL performs a variation
of Breadth-First-Search (BFS) on the class hierarchy to find the “closest” rule. For
each rule, a vector of BFS numbers that corresponds to the number of parameters
is generated. The vector represents, for each object, the distance, in BFS order (left
to right at same level), between the type (class) of the actual object parameter and
the type of the corresponding formal parameter of the rule. If there is no ancestral

31

link first three parameters to ?root, which is an ancestor of the
fourth parameter.

Bind [?7a:DOCFILE, ?b:DOCFILE, ?doc:DOCUMENT, ?S0:AS_3]:
(exists ROOT_CLASS ?root suchthat (ancestor [?root ?50]))
{1}

(and (linkto [?root.a 7a])

(linkto [?root.b ?bl)
(linkto [?root.doc ?docl));

bind in the char. function all DOCUMENT and DOCFILE objects linked to
?root (an ancestor of ?S0) via the doc, a, and b attributes,
and unlink them from ?root.

Unbind [?S0:AS_3]:
(and (exists DOCUMENT ?doc suchthat (linkto [?root.doc ?doc]))
(exists DOCFILE ?b suchthat (linkto [?root.b ?b]))
(exists DOCFILE ?a suchthat (linkto [?root.a ?al))
(exists ROOT_CLASS ?root suchthat (ancestor [?root ?S0])))
{1}
(and (unlink [?root.a ?al)

(unlink [?root.b ?b])
(unlink [?root.doc ?doc]));

Figure 15: Assertion on link attributes

CLASS A :: superclass ENTITY; 1.RULE R[?a:A,7:B];
CLASS B :: superclass ENTITY; 2.RULE R[?a:A,7d:D];
CLASS C :: superclass ENTITY; 3.RULE R[?%:C,2d:D];
CLASS D:: superclass A, B; 4, RULE R [2d:D, 7c:C J;
CLASS E:: superclass D; 5.RULE R[?C};

CLASS F:: superclass D, C;

Figure 16: Inheritance and Polymorphism of Rules

32

Class Inheritance Scheme Rule Set

FILE
CFILE YFILE 1. Compile [?f:CFILE)
CFILE :: superclass FILE 2. Compile [?f:FILE |

YFILE :: superclass FILE

Figure 17: Rule overloading example

relationship between a formal type and an actual type, or if the number of actual
and formal parameters is different, the rule is disregarded. Then, the rule with the
“minimal” vector. i.e., the rule whose formal parameters are closest in BFS order
to the types of the actual parameters entered by the user. is selected. For example,
assume there are six classes A,B,C,D,E and F and five rules, all of which have the
name R but whose formal parameters are of different types, as shown in figure 16. If
a user requests to fire a rule with two parameters that are instances of class E and F,
respectively, MARVEL will produce the following vectors for the five rules: [2,3], [2.1],
disregard, [1,1], and disregard. Hence, the fourth rule is the one that will be selected
for execution. Note that the third rule was disregarded because there is no ancestral
relationship between class E, the first actual parameter’s type, and class C. the rule’s
first formal parameter’s type.

In another, simpler example (figure 17), If the COMPILE rule is invoked with an
object O, of class CFILE, then the first COMPILE rule will be selected. If, however,
the COMPILE rule is invoked with an object O, of class YFILE, MARVEL chooses the
second rule, since YFILE is a subclass of FILE and the second rule operates on objects
of class FILE. Note that if there were a third COMPILE rule with a parameter of class
YFILE, then COMPILE[O,] would activate this third rule since it is more specific than
the second rule. If the second rule didn't exist and the user requested the COMPILE
rule on an object Oy of class FILE, MARVEL would report that the COMPILE rule
can’t be invoked with that argument. :

For more information refer to [11].

3.4.8 Importing and Exporting Strategies

Rules are written in files called strategies. Each MSL source file must have a “.load”
extension since the loader searches only for such files. MARVEL provides for some
degree of modularity in writing rules, using the import and export operators. An
MSL file can tmport arbitrarily many other MSL files, by listing them after the import
keyword. During translation, import is like an Ada with clause rather than a C

33

include. That is. classes and tools defined in an imported MsL file mav be used in
the importing file; however, rules defined in an imported MsL file are not considered
in any way by the translator. During loading, import is treated like an include, in
that all imported files (and the files they import, etc.) are automatically taken by
the loader and converted to MARVEL ’s internal representation.

It is not meaningful to say anything except all following the exports keyword. True
export restrictions have not been implemented in MARVEL.

3.5 Assistance Model

The assistance model is intended to perform two main tasks: To enact the process
by means of automatic invocation of activities and to maintain the consistency of
the objectbase by means of propagation. Note that the assistance model does NOT
help in the definition of the consistency of the project, but only in preserving con-
sistency. Both of these tasks are carried out through a chaining engine managed by
the rule processor. We first describe the general chaining mechanism as applied for
automation, and then talk specifically about consistency maintenance.

Chaining

A chainin MARVEL is a logical connection between two rules, specified by a match of
a predicate in the effect(s) of one rule with a predicate in the property list of another.
Figure 18 shows one such example: The (7?f.analyze_status = TRUE) predicate
in the effect of the ANALYZE rule satisfies the predicate in the property list of the
COMPILE rule. MARVEL maintains a static rule network for all the rules loaded in
the system, which specify these connections for all the predicates of all the loaded
rules. It can be modified by the administrator to operate in special modes (will be
explained in section 3.5.4) or when a new set of rules is loaded dynamically. (See
section 5 for more information.)

When a rule is invoked by a user via the client process (as explained in section 1.3), the
rule processor first checks whether the condition is met on that rule. If the condition
is not met, MARVEL attempts to satisfy it by backward chaining. If the condition is
already satisfied or backward chaining succeeded in satisfying the condition, the rule’s
activity is being sent to the client for execution. When the activity ends, it returns
to the rule processor all the necessary information, and the rule processor asserts
the right effect(s). After the assertion, the rule processor checks whether other rule’s
conditions are met as a result of the recent assertion. If there are such rules, forward
chaining is applied to fire these rules.

Conceptually, backward chaining can be viewed as a process of “repairing” the state
of the world, by recognizing a situation and enabling a desired activity to fire, whereas
forward chaining can be viewed as a process of “improving” the state of the world by
triggering other activities. We now explain backward and forward chaining in detail.

34

Analyze {?{:CFILEj}:
< Characteristic Function »>:
(?f.analyze_status = FALSE)

< Activity o

® (7f.analyze_status = TRUE):
{?f.analyze_z:ratus = FALSE);

Compile [?f:CFILE]:

< Characteristic Function >

- (2t.analyze_status = TRUE)

< Activity >

{?f.compile_status = TRUE):
(?f.complle_status = FALSE):

Figure 18: A connection between predicates

3.5.1 Backward Chaining

Backward chaining attempts to satisfy the property list of a rule that has been in-
voked. Currently backward chaining is initiated only when a user requests a rule to
fire. When a rule is invoked. and the property list is not met by the objects bound to
the rule, it is because one of the predicates in the property list failed. This predicate
is named the failed_predicate and the object that caused it to fail is the failed_obj.
The rule processor then searches the rule network for a rule that asserts this par-
ticular predicate, and thus can potentially make the failed attribute true and satisfy
the condition of the user-invoked rule. Figure 19 provides an example of backward
chaining; C-2 is an object of class CFILE whose C-2.analyze_status is FALSE.

[f the COMPILE rule from figure 11 is invoked with C-2 as its argument, the property
list is not satisfied. Since the rule network has a connection between the ANALYZE
rule and the COMPILE rule (see figure 18), MARVEL attempts to satisfy the failed
predicate by backward chaining to the ANALYZE rule with C-2 as its argument. If
the ANALYZE activity decides that the object was successfully analyzed, then the first
effect is asserted, that C-2.analyze_status = TRUE. Note that this is the state of the
objectbase necessary for the original COMPILE[C-2] invocation to fire. In this case,
we say that the backward chaining succeeded in satisfying the property list of the
COMPILE rule. On the other hand, if the ANALYZE rule asserted the second effect,
that C-2.analyze_status = FALSE, then the state of the objectbase has not changed,
hence COMPILE [C-2] is unable to fire. [n this case, we say that the backward chaining
failed to satisfy the property list of the COMPILE rule.

The backward chaining algorithm follows the AND-OR tree mechanism of typical back-
ward chaining systems, with one significant exception. Assume that r; has been in-

35

Compile [C-2)

I Evaluate Property List

failed_pred = (?f.analyze_starus = TRUE)
falled_ob) =C-2

1 Backward Chain

Assert Effect
[CL.anslyze_starus =TRUE) | [(2f.analyze_status =FALSE) |
Property List satisfied / Property List NOT satisfied

Compile [C-2} Not Satisfied

Compile {C.2] Satisfied

Figure 19: Backward Chaining to Satisfy a Property List

voked, and the system attempts to satisfy it by firing rule r;, if possible. Since rules
may have multiple alternative effects, it is possible for the property list of a rule r;
to be true, but firing the rule does not produce the required effect for the backward
chaining on rule r; to succeed; this is the exact situation outlined above when the
second effect is asserted. In other words, failure to satisfy a condition can happen
either because the condition of the backward chained rule is not met, or because the
effect asserted after firing the rule was different than the one that actually satisfies
the condition of the original rule. The algorithm will repeatedly try all possible rules
that could satisfy a failed predicate until the predicate is satisfied, or the list of can-
didate rules is exhausted. As in other backward chaining systems, it is a recursive
procedure, i.e., if the condition of the rule that is applied by previous invocation of
backward chaining is itself not satisfied, backward chaining is applied to it in order
to satisfy it. :

3.5.2 Forward Chaining

Forward chaining can be viewed as an opportunistic approach. Once assertions of a
rule take place, the rule processor looks for all opportunities to fire other rules whose
conditions became satisfied. As in backward chaining, forward chaining is a recursive
process, i.e., a forward-chained rule that was fired triggers other rules and so on.
However, only rules whose condition is fully satisfied can be fired. In other words,
MARVEL does not provide for backward chaining while forward chaining in order to
satisfy a condition of a rule. Another important characteristic of forward chaining
is that it is event-driven. That is, rules will forward chain only on objects that are
directly affected by the previous assertion. Section 3.5.8 explains how parameter
objects are selected for rules during chaining.

36

Touch3 forward chain to Touch? Touchl { ?p:PJ:
Touch2 backward chaln to Touch3 (exists M ?m suchthat (member ?p.modules ?m])):

Touch2 forward chain to Touch2 m.status =

Touch2 forward chain to Touchl E)‘ tus = Bad]

Touchl backward chain to Touch2 { ?p.status = Bad J;

Sample Rule Network Touch2 [?m:M]:
P (and (exists M ?n suchthat (member [>m.modules al))
s P :: superclass ENTITY {exists C 2c suchthat (member [?m.cflles el
/ \ status : (Bad, OK) =OK; (or [?n.status = Bad]
™ M modules : set_of M; [?c.status = Bad])
: R end {)
/\ [*mstatus = Bad);

‘ . C, M M :: superclass ENTITY;

3 status : (Bad, OK) =OK; | [Touchd [?¢:C):
modules : set_of M; H

cC ¢ cfiles :set_of C; {} ‘
(A end [?c.status = Bad); |Sample Rules
C :: superclass ENTITY
Sample Objectbase ms;alus : (Bad, OK) =OK;

Sample Class Hierarchy

Assume that every object of class C, M, and
P has their status attribute setto OK.

Characteristic
Forward Chaln Function bindings Conditions Assertions

Touch3 { C5) none none [CS status = BAD]

l

Touch? [M3] m = (M3) {CS.status = BAD) [M3.status = BAD)

Touch2 { M2) :ﬂ\ = [A\%’ [M3.status = BAD] [M2.status = B‘\D]

II
g
=)
]
)
©

Touchl [P1] m = (M1, M2} [M2.status = BAD] (P1.status = BAD]

Figure 20: An example of a forward rule chain

Figure 20 provides a detailed example of a typical forward chain. As stated in the
figure. it is assumed that every object in the given sample objectbase has its status
attribute set to OK. When the user invokes TOUCH3 on C5, there are no conditions
to satisfy, so the rule is executed (it has no activity) and asserts a change on the
objectbase, that C3.status = OK. This triggers the forward chain to TOUCH2 on
Ma3. It evaluates its characteristic function and creates the sets for ?m, ?n, and ?c.
When the property list is evaluated, it is found to be true since C5.status = BAD.
This rule executes its null activity and asserts M3.status = BAD on the objectbase.
This triggers the forward chain to TOUCH2 on M2. After its characteristic function
is evaluated, its property list is found to be satisfied since M3.status = BAD. This
triggers the chain to TOUCH1 on P1, whose property list is satisfied by M3.status =
BAD, and it asserts its effect on the objectbase, completing the chain.

37

3.5.3 Consistency Maintenance

Up to now the chaining mechanism was explained in the context of automation. We
now explain how it used for consistency maintenance. The consistency of the object-
base is defined by the combination of initial values as specified in the class definition
and by a special kind of predicates in the rules, called consistency predicates. The role
of chaining is then to ensure that the consistency of the project is preserved according
to its definition. Consistency predicates are identical to automation predicates except
that they are enclosed with “[]” brackets. Just like automation predicates, they can
appear either in a property-list or in the effects of a rule. The main difference between
these kinds of predicates is that automation predicates imply “best-effort™ request to
enact the process, that is, if a chained rule cannot be invoked for some reason (e.g..
conflict with another user), then the chain will be stopped. On the other hand, a
consistency predicate implies that the propagation must take place or else the chain
must be rolled back. In other words, any chained rule must be fired (recursively) and
either all or none of the propagations take place.

Thus, we can distinguish between two types of chains, namely automation and consis-
tency chains. Consistency chains are characterized by having a consistency predicate
as the source of each edge of the chain. Thus, a link between a consistency predicate
to an automation predicate is still considered a consistency link. All other chains
are considered automation chains. This means that one chain can consist of consis-
tency sub-chains and automation sub-chains. For purposes of concurrency control,
consistency implications have higher precedence over automation implications.

A problem arises when a chain that involved some activities has to be rolled back, since
some of the activities cannot be reversed. (e.g., sending mail, printing a document,
etc.). For that matter we distinguish between inference rules and activation rules .
Inference rules are rules with empty activities and activation rules do have activities.
Consistency chains then, are restricted to consist of inference rules. Another property
of inference rules is that they do not have to go to the client for execution, and
therefore the entire chain is executed atomically at the server. (If you need to refresh
your memory with the architecture and its terminology refer to section 1. For more
information on the implementation of the architecture and the concurrency control
see the implementor’s manual.)

Finally, consistency chains happen only in forward chaining. The reason is that as-
suming the project is consistent when initiated, and assuming the atomicity property
of consistency chains, there is never a reason why a consistency backward chain should
take place. The implication is that any consistency predicate in the property list is
assumed to be true for all objects in the objectbase that can be accessed by the
predicate at the time the rule is fired. If this is not the case for some reason, (e.g..
the initial value of an object does not match the requirement in the predicate), there
is a problem with the consistency model. We don’t have currently ways to detect
“wrong” definitions of consistency.

For example, if the user modifies an HFILE, the CFILES that access this HFILE should

38

Reserve [f:FILEZj:

p0 (?f.reserve_status = FALSE

< Actiwvity >
pl (Zf.reserve_status = TRUE);
p2 (?f.reserve_status = FALSE);

Forward Chain

Backward Chain (

Figure 21: Default Rule Network Generation

Deposit (?f:FILE):

q0 (?f.reserve_status = TRUE }:
< Activity >
?f.reserve_status = FALSE

—

be marked as being not analyzed. The primary difference between these methods is
transaction recovery. If an automation forward chain aborts, there is no specific need
to undo the effects of the forward chain. On the other hand, if a consistency forward
chain aborts, MARVEL should reverse the effects of the rule chain to maintain the
objectbase in a consistent state. Transaction recovery is outside of the scope of this
manual, but it should be noted that it has some support in the MSL language.

3.5.4 Chain Control

When a set of rules is loaded into the MARVEL kernel, MARVEL creates the rule
network where nodes represent rules and edges represent chains among rules. Recall
that a chain between two rules is determined by a match between a predicate in
one rule and other predicate in other rule. (Self edges are not allowed). However,
by simply matching predicates in such way, the edges are not directed. i.e., an edge
between two rules represent a chain in both directions. This network might result in
a behavior that the project administrator does not want. A clear example is seen in
figure 21.

Without any constraints, these two rules will generate two forward chains and two
backward chains, denoted by F; and B; respectively. For example, the RESERVE rule
has a forward chain F; (from predicate pl) to the DEPOSIT rule (to predicate ¢0).
This means that RESERVE might forward chain to DEPOSIT, meaning that it is not
reserved anymore. This is clearly not desired. Furthermore, this can easily lead
to an infinite-loop, if the same effects are asserted over and over. (Notice that in
general MARVEL will not prevent the creation of cycles in the network, since cycles
in the network do not represent the actual runtime invocation sequence due to the
multiple effects property.) In general, we want to be able to “direct” the graph, so
that edges in one direction will not necessarily imply the existence of edges in the
opposite direction. Furthermore, we would like to be able to “trim” the graph as we

39

Reserve [Z?Z:TILE]:

p0 (?f.reserve_status = FALSE !

< Activity > N
pl no_for (?f.reserve_status = TRUE); F()rward Chaln
p2 (?f.reserve_status = FALSE):

Deposit [?£:FILE]: Backward Chain

q0 no_back (?f.reserve_status = TRUE)

< Activity >
ql (?f.reserve_status FALSE }:

Figure 22: Control Over Rule Network Generation

wish by eliminating any outgoing or incoming chain (edge) on a predicate basis.

For this matter, MARVEL provides chaining directives to control the chaining network.
The available directives are no_backward, no_forward, and no_chain, and any of
them can be applied to predicates in the effect or in the condition . The no_backward
directive on an effect prevents any condition predicate to backward chain into it, and
when applied on a condition it prevents the rule to backward chain to another rule.
Similarly, no_forward, when applied to an effect predicate, means that no forward
links are generated from the predicate, and when applied to a condition predicate it
means that no rule can forward chain into it. Finally, the no_chain directive prevents
any kind of chain from or into the predicate. Thus, we get full control over chaining.
Another notation for no_chain is (* .. *)

Figure 22 shows a possible modification of RESERVE and DEPOSIT rules. Here, pl
is augmented by the no_forward directive, which prevents MARVEL from forward
chaining from the RESERVE rule to the DEPOSIT rule. In addition, ¢0 predicate of
the DEPOSIT rule is augmented with a no_backward directive, which will prevent it
from backward chaining to reserve. B, and F;, are left, with the semantics that a file
cannot be reserved if it is already reserved without depositing it first, and one cannot
deposit anything unless it was reserved first. If this behavior is not desired it can be
easily modified by adding directives.

Chaining Modes

In addition to the static and local specifications, the administrator can toggle between
two modes of operation with respect to chaining:

1. Full - Chaining as specified. This is the default mode.

2. No_Automation - Disable automation chains.

40

For more information on invoking this command refer to the users manual.

Note that once a mode is selected, it affects all users of the environment, that is,
chaining mode is global and not per-user parameter.

3.5.5 Chaining Approach - A Methodology

The task of chaining is to enact a process as defined by the rules and the data model.
The problem is how to write the rules in order to define the process so that chaining
will reflect the intended purposes of the process writer. The simplest approach is
to treat each rule in isolation, i.e., specify for each rule the conditions and effects
as implied by the activity of the rule and let the rule processor infer the necessary
chains. This approach is used in forward chain systems (e.g., expert systems) in which
the main task of the system is to make the inferences implied by the facts and rules
and conclude a (new) result. However, it is usually not suitable for MARVEL for the
following reasons:

1. MARVEL is using rules in order to enact a specified process model. In order to
have a coherent process model, the administrator has to look at chains that he
explicitly wants to have and for chains that he wants to eliminate as part of
his process. Furthermore, chains can be used as a flow-of-control mechanism in
which each rule in a chain is a “subroutine” that performs a specific task on a
specific set of arguments. As an example, using chains one can have the effect
of asserting values on a bound variable through chaining to another rule that
receives those variables as parameters.

2. The fact that MARVEL uses both backward and forward chaining complicates
the processing of rules and thus may lead to unexpected and not desired results
if one assumes the writing of each rule in isolation. An example is the chains cre-
ated in the reserve-deposit rules. Furthermore, the multiple mutually-exclusive
effects complicate even more the chaining possibilities. Thus, it is very easy to
lose control over the process.

3. The consistency model necessarily requires looking at a set of rules and how
they interact since it implies propagation of effects on objects throughout the
objectbase, which entails chaining of rules to assert those values. Note that
unlike automation, if consistency predicates are not specified correctly they
will impose an effective consistency model that is different then the one the
administrator had in mind.

Another approach would be to write all rules with full awareness of chaining, i.e.,
each predicate is written in the context of how and where it will chain. The problem
with this approach is that as the rule base grows, it becomes harder to predict all
possible chains.

41

We found out that the best way to program a process using MARVEL rules is by a
hybrid approach:

1. Define the data model, with the process model in mind.

2. Define a set of rules with some chains in mind. In particular, design chains
that describe automation activities that you want to chain, and eliminate some
other chains using the predicate directives.

3. Define carefully consistency chains in order to make the required propagations.
This implies writing new rules and possibly modifying rules already defined in
step 2. Note that inference rules are usually used to propagate consistency.
section 3.5.6 gives a way to hide those rules from the end-user.

4. Load the set of rules into MARVEL using the load command, and examine the
rule network using the chaining-graph utility (see the user’s manual).

5. Build a prototype objectbase or use the MARVELIZER tool (section 5) to migrate
an existing directory into MARVEL's data model. Now you can test your rules
on the data and see if they perform properly.

6. If you have to change the rules but not the data-model, simply change the rules
and goto step 4. If the data model needs to be changed, remove the prototype
objectbase, reload, and rebuild a new objectbase, and continue testing. Note
that currently there is no utility in MARVEL to evolve the schema.

Once you are satisfied with the behavior, build the “real” objectbase and allow
clients to use the environment.

-]

3.5.6 Hiding Rules

An administrator can prefix a rule with the keyword hide in order to tell MARVEL
that this rule should not be visible to the end-user and is used internally, usually by
the consistency-propagation rules. The idea here is to hide these rules from the user,
both to prevent him from invoking them, and to avoid confusion with respect to these
rules, which usually do not map to activities.

3.5.7 How to drive the process

Since MARVEL has both forward and backward chaining, the rule writer has several
options for determining how to chain rules together to drive a certain task. A specific
task can be backward-chain driven, forward-chain driven or both. One guideline to
follow is the focus of the task. If it is well defined, and there is a set of well-understood
goals (and sub-goals), then backward chaining should be used to enact the control. On
the other hand, forward chaining is used to propagate changes through the objectbase.

42

Sample Objectbase IForward Chain Approach I

Edit-1[?h:HFILE]:

{ EDITOR edit ?h.contents)
{?h.recompile = TRUE];
[?h.recompile = FALSE];

Touch-1 [?2¢:CFILE]:
(forall HFILE ?h suchthat (linkto [?c.reference ?h})):
[?h.recompile = TRUE]
{}

(?c.compiled = FALSE);

Touch-2[C-2) Edit-1[H-1] IBackward Chain Approach I
f ‘ Edit-2 [2h:HFILE];
Touch-2(C-4] Touch-1[C-2] (forall CFILE ?c suchthat (linkto { ?c.reference ?h])):
[?c.compiled = FALSE]
f ‘ { EDITOR 9dit ?h.contents }
Edit-2[H-1] Touch-1{C-4] {?h.recompile = TRUE};

Backward Approach Forward Approach Touch-2 [2¢:CFILE};

0
[?c.compiled = FALSE];

Figure 23: Chaining approaches

Figure 23 gives two examples that enact the same task by backward and forward
chaining respectively. Given an HFILE that is included by CFILE objects as a header
file, we want to mark the CFILES as NotCompiled when the HFILE is edited. We
assume that there are links from the CFILES to the HFILE through a link attribute.

The EDIT-1 rule of the forward chain approach edits an HFILE and marks it for
recompilation by asserting the 2h.recompile attribute to be TRUE. Then, during the
forward chaining cycle, MARVEL chains off of the [?h.recompile = TRUE] predicate
to the TOUCH-1 rule. This rule is invoked for all the CFILE objects that link to this
HFILE.

The EDIT-2 rule of the backward chain approach has a constraint that requires all
the CFILE objects that refer to this HFILE to be first marked so that their ?c.compiled
attribute is set to FALSE. MARVEL backward chains to the TOUCH-2 rule for each of
the CFILES, then executes the EDIT-2 rule.

43

Edit[?h:HFILE]:

{ EDITOR edit ?h.contents)
(?h.recompile = TRUE);

Compile [?c:CFILE]:
(exists HFILE ?h suchthat (linkto [?c.reference ?h]))

z’.’h.recompile = TRUE)
{ COMPILER compile ?c.contents ?h.contents }

(?c.compiled_status = TRUE);
(?c.compiled_status = FALSE):

Figure 24: Inversion Example

3.5.8 Passing Arguments Between Rules

When chaining between rules occurs, the rule processor has to determine the proper
parameters of the chained rules. Since chaining is predicate-based, when the target
predicate is on a bound variable (defined in the characteristic function of the rule),
it is not clear what objects to choose as parameters.

Recall from section 3.4.3 that the characteristic function of a rule has a set of known
objects (the parameters) and generates a set of bound variables based upon naviga-
tional and associative queries to the objectbase. This is a well-defined process that,
given the same objectbase state, produces the same set of bound variables for the
same input. If we attempt to reverse this procedure, we find the results are not as
well defined. Specifically, if we are in the process of chaining, and are chaining to
a predicate which is based on a bound variable, we have to determine the proper
arguments to use for this chained-to rule. This situation is clearly seen in figure 23
when the user invokes TOUCH-2 with C-4 as an argument. This asserts C-4.compiled
= FALSE on the objectbase, which causes a forward chain to EDIT-2 based on the
predicate in its property list. However, we must still determine the parameter 7h
that this rule will use. By inspection, we see that either H-1 or H-2 will satisfy the
property list of EDIT-2 (we assume the administrator wishes to have this behavior. If
that is not the case, then the administrator must write the predicates so as to control
the chaining, as in section 3.5.4).

The Algorithm

The intuition behind this approach is that each navigational-query is itself invertible
(not as in mathematics, but as a shorthand for reverse-evaluate). For example, in
figure 24, we want to establish the constraint that if an HFILE object is edited, all
CFILES that link to it must be (re)compiled.

44

The COMPILE rule’s characteristic function

(exists HFILE ?h suchthat (linkto [?c.reference 7h]))

returns all HFILEs that are linked-to by ?c through the reference attribute. In this
case, 7c is bound to an object (the parameter of the rule) and ?h is bound to a set
of object after evaluation.

In the case of a chain from EDIT to COMPILE through the predicate:

(?h.recompile = TRUE) :

We have ?h bound to an object (passed from the EDIT rule) but we don’t have the
parameter 7c bound. However, as seen in section 3.4.3, the evaluation process can
be inverted to bind to 7c all CFILE objects that link to ?h through the reference
attribute.

The general algorithm follows:

1. start from the predicate that caused chaining. This predicate has an object
bound to a symbol in the predicate, passed to it by the chained rule.
If the symbol happens to be the parameter symbol, we are done. The parameter
object is found.

(o)

“Climb-up” the characteristic function and invert the evaluation to get a newly
bound symbol. Each time, check if the new symbol is the parameter symbol. If
it is, the parameter is found.

Several notes about this algorithm:

e At any point in the algorithm, an evaluation might result in a set of objects
bound to a symbol. This means that each object has to be considered in the
evaluation of the next step, resulting in sets of objects bound to the various
symbols. The outcome is that multiple instantiations of a rule, (each with
different parameter object) will be chained for execution, if multiple objects are
bound to the parameter symbols.

o The algorithm works only for single-parameter rules. Passing arguments be-
tween multi-parameter rules is not implemented yet. This means that you
cannot plan on chaining into a rule with multiple parameters, although you can
chain from a rule with arbitrary number of parameters, as long as the destina-
tion rule has a single parameter.

o If all queries in the characteristic function are navigational, the process is guar-
anteed to succeed. If a characteristic function has a clause which is purely
associative, the algorithm might not find the parameter object. This is another
reason why purely associative queries are not encouraged in MARVEL . How-
ever, a combination of associative and navigational queries in an AND clause,
will still allow to find the parameter objects always.

For more information on parameter-passing refer to [9].

45

3.6 The Environment Directory

All the information about a specific environment is contained in a specific directory,
called the “environment” directory.

When either the server or the client are invoked, they try to connect to the current
directory as the environment. Alternatively, one can specify the full path of the
environment directory as an argument to the client or the server. If the server or
client think it is an invalid MARVEL environment, it will refuse to connect and will
exit. The way MARVEL identifies a directory as being a MARVEL environment, is by
looking for the existence of a special file called .marvel_id. Note, however, that if the
daemon is running and the client didn't specify a directory and its current directory
is not valid the daemon will not be able to start the server, since it not being run
interactively. See the user’s manual for instructions on how to invoke the server and
the client.

The actual contents of the environment directory consists of the following types of
files/directories that reside on a typical MARVEL environment:

e MSL source files, denoted by a “.load” (mandatory) extension

¢ Envelopes - there are two types of envelopes: source envelopes, written in SEL ,
”

and target envelopes, generated by SEL . The latter type of files have an “.env’
extension. the source files have no special extensions.

o data directory - This directory is maintained by the MARVEL server. It con-
tains an objectbase file, which is a binary file accessed through gdbm, and the
most recent backup copy of it named objectbase.old. In case of a disaster
that might have corrupted your objectbase, you might want to replace your
objectbase with the backup copy of it. Another important file in this directory
is the strategy file. It is an ASCII file that contains an intermediate represen-
tation of the data, process model, and the chain network. The loader keeps a
copy of that file in the directory. You should not modify either the strategy
or the objectbase files manually as this can lead to an undefined results (and
a likely crash of MARVEL when invoked on this directory).

¢ hidden file system - all the binary and text attributes that represent files are
stored there along with the file system hierarchy that represents the objectbase
hierarchy. Each top-level root object in the objectbase will have a directory
named after it in here.

e system files and directories for use by MARVEL are :

— .clientid_ctr - a file that maintains a persistent counter of the clientid to
ensure that clientids are not recycled.

— .server_port - This file is there only when a server is running. It should not
be there if no server is being run on that directory. If you are absolutely

46

sure that no server is running on the directory and the file is still there
remove it, otherwise no server will be bale to run on this directory.

txlog - this directory is used by the recovery manager to recover in case
of a transaction has to be rolled back.

Marvel-client.xxxxx.log - these are log files generated by the client.
the “x” stands for a unique number that prevents from multiple logs from
different clients to end up in the same file. They should be inspected upon
unexpected crash of either the server or the client.

Marvel-loader.log - This is log generated by the loader process.

Marvel-server.log- This is log generated by the server. Of all three log
types, it has the most important information. This log file is appended, so
records of previous invocations are available for inspection.

47

4 SEL programmer’s guide

4.0.1 Envelopes

The tool invocation process occurs in the envelope. We have extended the standard
UNIX shell scripts to support typed passing of parameters and returning multiple
typed values. The envelope writer is required to explicitly declare all the attributes
that it is receiving. Not only does this allow for type-checking, but it provides a
very clean interface between MARVEL and the envelopes. For example, observe the
following envelope which compiles a given CFILE (recall the activity invocation from
figure 11):

ENVELOPE

SHELL sh;

INPUT
text : thefile;
binary : obj_file;

set_of INC : ifiles;

text : error_msg;
literal : CCFLAGS;

QUTPUT none;

BEGIN

tmp_dir=/tmp/compile$$
mkdir $tmp_dir

we need to make the -I list
idir=""
if ["x$ifiles" != "x"]
then
In -s $ifiles $tmp_dir
idir="-I$tmp_dir"
fi

cc $CCFLAGS -c $idir $thefile -o $obj_file -11 -lc -1lm -1X11
cc_status=$7

if [“x$tmp_dir" != "x"]
then

rm -r $tmp_dir
fi

if [$cc_status -eq 0]
then

48

echo compile successful

RETURN "0";

else
echo compile failed
RETURN "1";

fi

END

An envelope consists of an SEL framework, specifying the input and output parame-
ters of the envelope and the shell to be used for interpreting it, surrounding the shell
script that will actually be executed.

The framework begins with a line containing the keyword “ENVELOPE” and an
optional name for the envelope. If a name is provided, it must be followed by a semi-
colon. Next comes a line specifying which shell is to be used to run the script; the
choices available here are sh, ksh, and csh. After this preamble comes the parameter
specification. The input parameters come first, followed by the output parameters.
Each parameter declaration contains, the type and name of the parameter, separated
by a colon. Note that the TYPE appears FIRST, contrary to the way that declara-
tions are specified in MSL. Each declaration is terminated by a semicolon. Both the
input and output sections are required; if one is to be empty, the keyword “none”
should be used. After the output section is the shell script, between BEGIN...END
delimiters.

The shell script in an envelope has four conceptual parts. First, the envelope takes
the objects passed to it and performs some initialization procedure. (In this case, a
temporary directory is created in /tmp which contains soft links to all of the included
HFILE that this CFILE needs. The second part executes the tool(s). The third part
“cleans up” after running the tool. The fourth and final part collects and returns the
envelope outputs and status code. In this case, only a status code is being returned.
Note that the status code returned to MARVEL is an integer value greater than 0,
and must match against an effect in the effects section to be asserted.

Envelopes should use the RETURN statement, rather than the shell’s own exit com-
mand, to return their status code and any output parameters that the envelope may
have. In the RETURN statement, the return status must be written as a string;
the double quotes are required. The make envelope program will not complain about
scripts that use exit instead of RETURN, but such scripts will produce incorrect
behavior?.

As an example of an envelope that returns something other than a status code,
consider the Assign envelope from section 14. For convenience, we reproduce this
envelope below. The envelope takes no input parameters, but produces a single string-
valued output parameter in addition to its return code. The user name entered is

*For backward compatibiltity, SEL currently supports “old-format” scripts that are simply shell
programs, and do use exit instead of RETURN, but new scripts should be written in SEL

49

returned as the output string, while the return code is 0 if a non-null string was
entered as the user name and 1 if a null string was entered.

ENVELOPE Assign;
SHELL sh;

INPUT
none;

OUTPUT
string : ret_string;

BEGIN

echo "Enter userid to be assigned:"
read ret_string

if ["x$ret_string" = "x"]

then
echo '"Must specify a user id"
RETURN "1 @ ""

fi

RETURN "0" : $ret_string;

END

This envelope is much simpler than the Compile envelope. It has no initialization
section, and the tool section simply prompts for and reads a string from the terminal.
Since there was no initialization, there is also no clean-up, and the output section
checks for a null input string and returns an appropriate status code, also returning
the input string in the successful case.

The declaration of an output parameter looks exactly like that of an input parameter,
except that it appears in the OUTPUT rather than in the INPUT section. Due
to implementation restrictions, currently only single-valued output parameters are
supported; set-valued output parameters should be supported in a future version of
MARVEL. Basically, any value that can be represented as a single string of characters,
containing no spaces or special characters, can be returned as an output parameter.

In the script, output parameters may be used and set in the usual manner for shell
variables, with the restriction that they will not have an initial value and so should
be set before they are used.

50

If there are multiple output parameters, they should be separated by commas in the
RETURN statement. All output parameters are required, that is, a value must be
provided for each output parameter in every return statement in the envelope. This
serves the purpose of reminding the SEL programmer to provide some value for each
output parameter in every case, avoiding any possible problems that could be caused
by not having a value set at a later point, after the values have been returned to
MARVEL.

While the value provided to the RETURN statement will usually be the variable
declared for the parameter in the OUTPUT section, as in the normal return in the
example envelope, it may also be a literal string or any other shell variable. The error
return in the example envelope returns a literal null string as the ret_string parameter.

For more imformation on the envelope mechanism, refer to [10].

51

5 Administrator’s Built-in commands

This section describes the subset of the MARVEL commands that can be invoked only
by the administrator. For the rest of the commands, refer to MARVEL user’s manual.
For actual help on invocation of a command, refer to the user’s guide, or the on-line
help or usage commands. In order to run as an administrator, use the -a option
when calling MARVEL , and make sure that your userid is in the administrators
system file (section 3.6).

5.1 Load: Loading an MSL Environment into MARVEL

The load command is used to load a set of MSL files that represent an environment
into MARVEL. This command invokes a separate program, called simply “loader”,
which translates the MSL specifications into an intermediate representation that is
loaded to the server. After an environment is loaded once, there is no need to re-load
it on subsequent invocations of the server, unless the administrator wants to modify
the environment. In this case he invokes the load command again with the new set
of strategies. The load command replaces the entire existing environment with the
new one, i.e., it ignores the previous environment. Thus, there is no way to replace or
merge a subset of the strategies and leave the others intact, although the same effect
can be achieved by loading the unchanged strategies along with the new ones.

The current interface to the loader requires to have one main file that imports all
the other MSL files. The translated files are kept in an intermediate form in the data
directory of the environment, for subsequent invocations of the server.

The loader can also be invoked externally to MARVEL . This might be sometimes
useful since it runs faster outside of MARVEL . However, you have to be familiar with
the usage of it. Typing loader with no arguments will print the calling sequence.

5.1.1 Usage of Load

Load is rather straight forward. Click on the load box. In the text window you
will be prompted with

Enter strategy name:

You respond with the name of the main strategy of the environment. Do not specify
the .load extension. The tutorial in the user’s manual has an example of loading a
strategy.

Qt
(8]

5.2 Reset

The reset command is used to fix inconsistencies in an objectbase, mainly in the
debugging phase of the environment. It allows the administrator to change any at-
tribute of any object to any acceptable value, at any time. reset is not intended to
be used normally, and is a dangerous command since it interferes with the process
model. reset performs type conversion followed by type checking to verify that the
new value to be assigned has the appropriate type.

When the user clicks on reset, the following line appears on the screen:
Enter parameters < class object > attribute < value >:
Where:

e class and object denote the object to be modified and its class. If omitted,
the current object is assumed. :

e attributeis a mandatory parameter that denotes the name of the attribute to
be changed.

e value is the value to be given to the attribute. If omitted, the default value is
assigned.

5.3 CRload

The crload command should not be used.

5.4 Shutdown

This command is used to shut down a server, if it was started manually. If the server
was started by the daemon there is no need to use the command since the server shuts
itself down when no users are logged in. The invocation is straight forward. The
server will wait sixty seconds before actually exiting. Since there is no asynchronous
communication between the server and the client, clients are not notified unless they
actually interact with the server within that period.

5.5 MARVELIZER : Immigration of software into MARVEL

This section contains a description of the MARVELIZER , an immigration tool for
constructing or augmenting MARVEL objectbases to represent existing software arti-
facts copied from the data repository of some source SDE. The immigration process
depends heavily on the source SDE’s structure. MARVEL 2.6 had two immigration

tools available: The MARVELIZER, for simple immigration, and the Complex Mar-
velizer (CM), for immigration of complex source SDEs. However, MARVEL 3.0 has
only a simple MARVELIZER . More information about the complex MARVELIZER can
be found in [13].

The MARVELIZER is intended for immigration of data repositories that are charac-
terized by the fact that they don’t have a database that holds state or connective
information and a DBMS to manipulate it, or alternatively. it is sufficient to migrate
the data repository without interaction with the database management utilities. In
the very simple case, the data repository can be a flat, unorganized group of files, all
within the same directory, where control and management of the files is placed upon
the user. The data repository can also be in the form of a file system directory struc-
ture that implies relations among directories and the files that they contain, where a
data item is represented as a file or as a directory containing component items (files).
Finally, it can have, in addition to the file system structure, specially formatted files
and directories maintained by tools that are treated as part of the SDE. Thus, this
form includes “private” data repositories of individual tools, such as the delta files
of RCS or the Unix sccs tool, whose contents are intended to be hidden from users.
Notice that in this case, the tools that manipulate the “private” data must also be
copied or converted into Marvel.

We’ll describe the practical steps a user would take to prepare to use MARVELIZER,
and then describe the process itself by an example.

Preparation Steps

1. Prior to Marvelizing (immigrating), the MARVEL administrator must create a
MARVEL data model to define the structure of the destination object base. The
data model could be defined with either of two goals in mind. The MARVEL
class lattice could be defined to mimic all or most of the structure of the source
SDE; this of course makes Marvelization relatively easy, but would be done only
when a new MARVEL environment was being developed specifically to take over
the role of the source SDE. The alternative is for a MARVEL administrator to
develop a data model suitable for the purposes of the new MARVEL environment,
independent of whether or not the environment is planned to encompass existing
data items from some other SDE that will later be Marvelized. In all our
examples, here and in following sections, the data model was developed prior
to the MARVELIZER tool, and thus was conceived entirely independently of the
formats of any potential source SDEs.

8

Write File Conversion (FC) specifications for all the files in the original system.
FCs provide information about the kinds of files that can be encountered in the
source data repository, and how these map to the kinds of data items represented
in MARVEL. These specifications specify filename patterns, generally suffixes
(e.g., filename extensions) of all the different source file types that map to the

94

given destination classes. Patterns may also match entire filenames, but do not
involve the contents of files.

<d-class> <s-f-pattern-1> ... <s-f-pattern-n>

<d-class> refers to a destination class in MARVEL. and <s-f-pattern> refers
to a filename or pattern matching files in the source data repository.

3. Write Directory Conversion (DC) specifications for all directories that might be
automatically converted. DCs show how directories in the source data reposi-
tory map to particular classes in MARVEL. It is also possible to map suffixes or
prefixes of directory names, as with files.

<d-class> <s-d-pattern-1> ... <s-d-pattern-n>

<s-d-pattern> refers to a directory name or pattern matching directories in
the source data repository. In verbose mode, the user will be queried for any un-
specified directories. These specifications are consulted before the immigration
of each data item.

4. Choose either verbose or automatic modes to proceed, in general, automatic
mode is used if the user doing the Marvelization does not want to monitor the
process.

MARVELIZER algorithm

Immigration is accomplished via two simultaneous preorder traversals, one over the
source data repository’s filesystem directory structure, and the other over the MAR-
VEL object base, starting at the destination object specified by the user. In the
following description, there are notions of “current” object and ctass. The current
object is the one being examined at some particular instant in the traversal of the
destination MARVEL object base; the current class is that object’s class.

When a file in the source data repository traversal is encountered, MARVELIZER
checks whether the file’s suffix matches a specification in the table, and if that speci-
fication’s class matches either the current class (the class of the current object in the
MARVEL object base), or a set attribute of the current class. In the first case the
file is simply copied into the appropriate place in MARVEL’s hidden filesystem space,
as determined by the current object. It copies the file under a text attribute, and
if there are multiple text attributes it picks the first one. In the second case, which
gets priority in case both cases are true, a child object is hierarchically added to the
current object; then the (source) file is copied to a place in the hidden filesystem de-
termined by the new child object. Files not specified by a specification are skipped.
MARVELIZER generates messages specifying those files that were skipped, with the
explanatory content of these messages depending upon the verbosity mode chosen.

[}
()]

When a directory in the source data repository is encountered, MARVELIZER first
looks to see if there is a matching specification. If so, and if the specification’s class
is the current class of the destination object base traversal, then a corresponding
new object is added to the destination object base, as described above. Otherwise,
MARVELIZER determines the set of possible classes this directory could be an instan-
tiation of, based on the attributes of the current object in the (destination) object
base traversal. If there is more than one matching attribute type or class, the user
is queried (possibly skipping the directory is an option). This is the only direct in-
teraction with the user once the process has started, and can be turned off, to only
generate messages for the user to look at later.

This process continues recursively, until the traversal of one or the other data reposi-
tory is complete. If the MARVEL objectbase traversal completes first, those remaining
portions of the filesystem traversal must not match MARVEL’s current data model.
and must be separately Marvelized. [f MARVEL’s graphics interface is being employed,
the visual display of its object base is updated after Marvelization. At this point,
any software artifacts that were not successfully immigrated (i.e., were skipped) can
be reMarvelized individually, by running MARVELIZER again using a different user-
designated object as the starting point and a subset of the source.SDE’s filesystem
as the source root. Such failures happen when MARVELIZER cannot recognize the
structure of an existing source directory hierarchy, for example, when insufficient
specifications were provided.

Example

We present here an example of immigrating an SDE into MARVEL using C/MARVEL'’s
data mode] as described in appendix B.l. The initial dialog with the MARVELIZER
for the above Marvelization is shown in figure 5.3; user responses are in italics. The
steps are:

1. Specify the location of the original SDE in the filesystem.

2. Pick the root object for Marvelization, i.e., where the marvelized tree will link-
to as sub-tree in MARVEL . This option is available only in the graphical
user interface, where objects can be clicked. In the command-line interface
marvelizations must start at the top-level.

3. type the attribute to connect the marvelized information to the root-object
(Again, only when a root object exists).

Optionally, one can save the state of the objectbase before marvelization.

Enter mode of operation.

Enter FCs
Enter DCs

N o e

Enter the root directory of the information to be Marvelized:
/ezample/SDE

Pick the parent object for Marvelization, or <cr> for top-level:
user picks an object, e.g “src”

Enter attribute to connect marvelized information to
modules

Do you wish to record the current objectbase? [Y/N]:
Y

(v)erbose, (q)uiet or (s)ilent mode? (any other key to exit):

v

Now enter all file suffixes for each class.

Format is:

CLASS.NAME <suffix-1> <suffix-2> ... <suffix-n>

Enter a q when finished, or an e to exit.

Enter string: FILE .c .o Makefile

Enter string: VERSION v

Enter string: ¢

Now enter specific directories and the classes to immigrate them to.
Format is:

CLASS NAME <directory-1> <directory-3> ... <directory-n>

Enter a q when finished, or an e to exit. '

Enter string: MODULE sort search

Enter string: ¢

Ready to Marvelize /example/SDE. Are you sure [y/n]: y

‘fsrc’’:

Figure 25: A dialog with Marvelizer

37

A MSL Reference Manual

This is the full definition of the MSL language. It is written in the forms of tokens (ter-
minals) and productions. The parser and semantic analyzer are implemented in yacc,
an LALR(1) shift-reduce parser generator, and the lexical analyzér is implemented
in lex, a lexical-analysis generator, which recognizes regular expressions. Familiarity
with yacc and lex will help to understand this section but is not required. Familiarity
with context-free grammars is required.

A.1 The Tokens

A.1.1 Basic patterns

DIGIT [0-9]

LETTER (a-zA-Z]

BOTH {LETTER} |{DIGIT}
LETTERS {LETTER}+

SPACES [\t]

IDSTRING ~ {LETTER} ({LETTERS}|{DIGIT}+|_)*
SUFFIX ({BOTH}I\,I\.)*
COMMENT \#.*

QUOTEID "[0-9a-zA-Z]*"
QUOTESTR "\" (L \"TI\N\\")#\"
COMMENT "#.%

A.1.2 Keywords

These keywords are reserved.

CurrentClient clientid imports no_forward
CurrentTime consistency insert not
ResetClient end integer objectbase
ancestor end_objectbase link or

and exists linkto real
automation exports member remove
binary false nil return
boolean forall no_backward rules
built_.in_overload hide no_chain set_of

A.1.3 Special Tokens

(Y>{}rr(C]

58

strategy
string
suchthat
superclass
text

time

true
unlink
user

ajousp saujua o[diyny

AWYN ITId
dlsT3arond
ar-aiond
ar

H1vd

Wydvd
yvad
JTVIHVA

TVAY

TVAI

6%

‘leultlla)-ucu e JO SUOIJRALIID 9AlleUla)}|e

‘rewwreld ayj jo suorjonpoid ayj [[® S9UI[INO UOIFIAS SIY T,

suoljonpoid 9yl 'V

-- «{XId4dnS}.
- {dls3lonb}
-- {a13ronb}
- {PNIY¥LISAI}
-- +({ONIYLISAI}./){ONIH1ISAI}

== {DNIHLSGI}H:n{DNIHlSGI}n&u
== {DNIHLSGI}M‘H{DNIHLSGI}ULU
--= {ONIYLSAI}nin

-- +{LIDIA}éiu-u ®| 3) (+{.LIDIG}) n’ ll*{lIDIG}éall-ll
| (+{1lIDIA})u w*x{1IDIA}éin-u

-= +{lIDIG} I +{lIDIG}u‘u

(1'T'V uot3oas

99s) sse[> 1930RIRYD pauysp-19sn e ayediput { - } ur swayr spiym ‘sSutdnoid sre (-
) ut sway] -wayl [euondo ue sjuasaidar ; oy], ‘woll payads ayj jo 10w 10 ()
sjuasaldal , ‘wayl paydads 9y) Jo aroul 1o auo sajedIpul + ‘suolido sjussaidal | ‘1330
-Teyd [el1a}] ® st s9j0onb ul I930vIRYD Yy "suoissaidxs 1e[nFal Jo suoijelou pIepue)s oYy
$9sn J] "SPURISIAPUN X3 Je3} S[IR)BP [9AJ[-MO[AI2A 9]} JO SWIOS SAUI[INO UOIIAS SIY [,

SI9Yljuap] pue siaquinN %'I°V

(NIVHD ON) MM IHOPIM YIHLIO -- (=
(NIVHDTON) MM LJITHIHLO -- *)

(DITSANIW) A3 dO HIYW -- =-

(b37SN1d) O3 dO HLVH -- =+
NOT007Q -- &

(17) ¥Ho37do~dxd -- >

(19) N037do7dx3F -- <
(b3D) Ho3 40 dX3 -- =<
(b31) A°3I°d07dXT -- =>
(bAN) H037d07bhE -- <

(bd) Ho3a~"do b3 -- =

start
imp_exp
imp_name_list

exp-name._list

objbase
classes

class
superclasses

super_name.list
attributes

attrib

autoinitable_type

initable_type

noninitable_type

enumerated_type
file_type

et_name_list

init_val

STRATEGY_KW ID imp_exp objbase rule_section over_section
IMPORTS_KW impname.list ; EXPORTS_KW exp_name_list ;
nothing

ID

imp_name list , ID

nothing

ID

exp-name_list , ID

nothing

OBJECTBASE_KW classes ENDOBJBASE_KW
class

classes class

ID D_COLON superclasses attributes END_KW
SUPERCLASS_KW ;

SUPERCLASS_KW super.name.list ;

ID

super_name_list , ID

attrib

attributes attrib

ID : noninitable_type ;

ID : autoinitable_type ;

ID : initable_type ;

ID : initable_type EQ_.OP_TOK init_val ;
USER_KW

TIME_KW

CLIENTID_KW

STRING_KW

INTEGER_KW

REAL_KW

BOOLEAN_KW

file_type

enumerated_type

ID

SETOF_KW ID

LINK_KW ID

SETOF_KW LINK_KW ID

(et_name.list)

TEXT_KW

BINARY KW

ID

et_name_list , ID

ID

FILE_NAME

PATH

QUOTE_STR_KW

60

QUOTEAD_KW
BOOL_VAL_TOK
IVAL
RVAL
rule_section nothing
RULES_KW rules
over_section nothing
OVERLOAD_KW rules
rules rule
rules rule
rule ID [parameters | : bindings : precond activity mult_posts
HIDE_KW ID [parameters] : bindings : precond activity mult_posts
parameters nothing
PARAM
parameters , PARAM
bindings nothing
binding
(BOOL_OP_TOK binding.list binding)
binding (QUANTIFIER_TOK ID VARIABLE SUCHTHAT_KW binding_cond)
binding_expr.list binding-cond
binding_expr_list binding_cond
binding.cond (set_expr)
(expression)
(multiple_bind_cond)
multiple bind_cond BOOL_OP_TOK binding_expr.list binding_cond
NOT.TOK binding_cond

binding_list binding
bindinglist binding
activity {}
{ action }
action ID ID act_var_list
outputs nothing
RETURN_KW OUT_VAR_LIST
out_var_item VARIABLE
out_var_list nothing
OUT_VAR_LIST OUTBWAR ITEM act_var_item
QUOTE.ID
QUOTE_STR_ID
VARIABLE
act_var_list nothing

act_var_list act_var_item
mult_posts ;

mult_post_list
mult_post_list post ;

mult_post_list post ;

61

post allowed_post_cond

(BOOL_OP_TOK post_list allowed_post_cond)
post _list allowed_post_cond

post_list allowed_post_cond
allowed_post_cond consistency_cond

automation_cond

both_cond

other_cond_post
precond nothing

which_cond
which_cond allowed_pre_cond

(multiple_cond)
allowed_pre_cond both_cond

automation_cond

other_cond_pre

consistency_cond
allowed_list which_cond

allowed_list which_cond
expr_cond BVAR MATH_OP_TOK operand
operand BVAR

QUOTE_ID

QUOTE_STR

RVAL

IVAL
consistency_cond [solo_cond]

CONSISTENCY_KW (solo_cond)
automation_cond (solo.cond)

AUTOMATION KW (solo_cond)
other_cond_pre OTHER_LEFT_KW solo_.cond OTHER_RIGHT_KW,

NO_BACKWARD_KW (solo_cond)
other_cond_post =~ OTHER_LEFT_KW solo_post OTHER_RIGHT_KW

NO_FORWARD_KW (solo_post)

NO_BACKWARD_KW (solo_post)

NO_BACKWARD_KW [solo_post]

NO_CHAIN_KW (solo_post)

solo_cond expression
expr-cond
solo_post POST_EXPR

POST_LINK_EXPR
POST_UNLINK_EXPR

multiple_cond BOOL_OP_TOK allowed_list which_cond
NOT_KW which_cond
expression BVAR exp.op expression_tail

BVAR EQ_OP_TOK BOOL_VAL_TOK
BVAR exp_op IVAL

BVAR exp-op RVAL

post_expr BVAR EQ.OP_TOK BOOL_VAL_TOK
BVAR EQ.OP_TOK EXPRESSION_TAIL
expression_tail BVAR
ID
QUOTE.ID
QUOTE_STR
set_expr MEMBER_KW [BVAR VARIABLE |

ANCESTOR_KW [VARIABLE VARIABLE |
LINK_TO_KW [BVAR VARIABLE |
LINK_TO_KW [BVAR NIL_TOK]

exp-op EQ_OP_TOK
EXP_OP_TOK

63

B C/MARVEL : An example environment

This appendix provides the source code for CMarvel, the environment that is used
to maintain and run MARVEL itself. Although it has MARVEL specific support, it
can be customized to any project based on its specific needs. Note that there is a
simpler example environment in the user’s guide. While the latter is more for learning
purposes, this environment is much more elaborate, and can be viewed as a “real”
example of a process and data models.

Section B.1 provides listings of MSL data-model definition. section B.2 provides
listings of all MSL rules in the system that define the process and consistency models,
and section B.3 provides listings of all SEL envelopes called from the various rules.

B.1 C/MARVEL Data Model

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

#% % ®* B % ®

strategy data_model

This strategy contains all the class definitions needed for a typical
C environment. The class definitions are imported by all other

strategies that define various aspects of the process model for

C/Marvel.

The composition hierarchy looks like this : (links are not shown)
#

GROUP

I

#* tommmrm e o= +

| I

PROJECT TEAM

I I

000000 mmmmmme——omme——me---ee |

/ /A \ PROGRAMMER
/ /1 0\ \ I

64

BIN DOC INC LIB SRC I
/\ I [I |
SHELLFILE EXE | HFILE AFILE MOD MINIPROJECT
I / \

| (MOD) CFILE

DFILE

|

I

POSTSCRIPT

#

#

#

Interface with other strategies. Since this is a basic data model that
all other strategies import, we don’t specify anything.

imports none;
exports all;

Class definitions

objectbase

BUILT :: superclass ENTITY;
build_status : (Built,NotBuilt,INC_NotBuilt) = NotBuilt;

end

HISTORY :: superclass ENTITY;
history : text;
end

ARCHIVABLE :: superclass ENTITY;
archive_status : (Archived, NotArchived, INC_NotArchived) = NotArchived;

end

REFERENCED :: superclass ENTITY;
reference : set_of link HFILE;
end

TIMESTAMPED :: superclass ENTITY;
time_stamp : time;
end

PRINTABLE :: superclass ENTITY;
print_request : boolean = false;
end

VERSIONABLE :: superclass ENTITY;
version_num : integer = 0;
state : integer = 0;
locker : user;
reservation_status : (CheckedOut,Available,None) = None;

version : text = "y
end

GROUP is the top-level class. An instance of GROUP contains several
projects. The fact that it is top level is set in the user’s

environment as part of the startup of Marvel. So a Marvel objectbase
can contain several group objects.

GROUP :: superclass ENTITY;
projects : set_of PROJECT;
team : set_of TEAM;

end

PROJECT is an entity that defines much of the structure of a typical
software project. PROJECTs can contain libraries, programs, documents
and includes in this example.

PROJECT :: superclass BUILT, ENTITY;

status : integer = 0;
bin : set_of BIN;
doc : set_of DOC;
include : set_of INC;
1lib : set_of LIB;
src : set_of SRC;

link_inc : set_of link INC;
link_1ib : set_of link LIB;
end

EMPLOYEE :: superclass ENTITY;
first_name : string;

66

last_name : string;

end

PROGRAMMER ::
mail_id :

: set_of MINIPROJECT;

: link EXEFILE;

: link EXEFILE;

: link EXEFILE;

local

server

client

loader
end

superclass EMPLOYEE;
string;

TEAM :: superclass ENTITY;
programmer : set_of PROGRAMMER;

manager
rolel
role2
role3
end

local area for the programmer to do work.

: link EMPLOYEE;
: link EMPLOYEE;
: link EMPLOYEE;
: link EMPLOYEE;

cfiles.

MINIPROJECT :: superclass BUILT, ENTITY;
hfiles : set_of HFILE;
cfiles : set_of CFILE;
yfiles : set_of YFILE;
1files : set_of LFILE;
exec : EXEFILE;
link_afile : link AFILE;

end

INC represents a set of include (.h) files.

INC :: superclass ARCHIVABLE, ENTITY;

hfiles :

end

BIN :: superclass BUILT, TIMESTAMPED, ENTITY;
created_by

set_of HFILE;

: user;

67

This contains

hfiles and

configuration : text = ".config";

binexecs : set_of EXEFILE;
shexecs : set_of SHELLFILE;
end

LIB is a shared archive type library. It consists of modules, which in
turn contain c files. The ultimate representation of a library is a
.a file, that is, an archive format file.

LIB :: superclass TIMESTAMPED, ARCHIVABLE, ENTITY;
afiles : set_of AFILE;
end

AFILE :: superclass TIMESTAMPED, ARCHIVABLE, HISTORY, ENTITY;
afile : binary = ".a";
tags : text = ".TAGS";

end

SRC :: superclass ARCHIVABLE, ENTITY;
modules : set_of MODULE;
end

Module is the organizing force in the data model. It groups together

lex files, yacc files, and C files. NOTE: This definition is recursive,
that is, modules can contain other modules.

MODULE :: superclass ARCHIVABLE, ENTITY;

1files : set_of LFILE;
cfiles : set_of CFILE;
yfiles : set_of YFILE;

doc : set_of DOC;
modules : set_of MODULE;
afiles : set_of link AFILE;

end

FILE is the generic class for anything that is represented as a unix
file. There are specializations (subtypes) for CFILE, HFILE and DOCFILE
in this system.

FILE :: superclass TIMESTAMPED, VERSIONABLE, HISTORY, ENTITY;
owner : user;
contents : text;

end

68

Needed for compilable type files. For example CFILE needs an object
file. The time stamp represents when this object was inserted into
its respective library.

COMPILABLE:: superclass ENTITY;
object_code : binary = ".o";
object_time_stamp : time;

end

Extra information is needed to record the state of compilation and
analysis (lint, in our case) for CFILEs.

CFILE :: superclass COMPILABLE, REFERENCED, FILE;
status : (New, NotAnalyzed, ErrorAnalyze, Analyzed,
NotCompiled, ErrorCompile, Compiled,
NotArchived, ErrorArchived, Archived) = New;
contents : text = ".c";
end

Separate info for YACC files, so they get Yacc’ed
#

YFILE :: superclass COMPILABLE, REFERENCED, FILE;

status : (New, NotCompiled, ErrorCompile, Compiled,
NotArchived, ErrorArchived, Archived) = New;
contents : text = ".y";
ytabh : text = "y.tab.h";
end

Separate info for Lex files, so they get Lex’ed
#

LFILE :: superclass COMPILABLE, REFERENCED, FILE;

status : (New, NotCompiled, ErrorCompile, Compiled,
NotArchived, ErrorArchived, Archived) = New;
contents : text = ".1";
ytabh : link YFILE;
end

69

For HFILEs, we only want to know if they have been modified recently,
which will cause a global recompilation.

HFILE :: superclass COMPILABLE, REFERENCED, FILE;
recompile_mod : boolean = false;
contents : text = ".h";

end

LOADFILE :: superclass FILE;
status : (Active, Inactive) = Inactive;
contents : text = '".load";

end

EXEFILE :: superclass BUILT, FILE;
exec : binary;
afiles : set_of link AFILE;
end

SHELLFILE :: superclass FILE;
shtype : (csh, ksh, sh) = sh;
shell : text;

end

DOC is a class that represents an entire set of documents, typically for
a PROJECT or PROGRAM. A DOC can contain individual documents, and files
of its own.

DOC :: superclass ENTITY;

docfiles : set_of DOCFILE;
main : link DOCFILE;
end

For DOCFILEs, we only want to know if they have been reformatted recently,
so we can reformat the document.

DOCFILE :: superclass FILE;
reformat : boolean = false;
postscript : set_of POSTSCRIPT;

contents : text = ".tex";
output : binary = ".dvi";

end

POSTSCRIPT :: superclass FILE;
reformat : boolean = false;
contents : text;

end

end_objectbase

B.2 C/MARVEL Rules

__
#

Marvel Software Development Environment

#

Copyright 1991

% The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

#

This strategy contains the definition of the archiver tool that
archives a module.

strategy archive

All we need for this part of the process model is the data model.

imports data_model;
exports all;

objectbase

ARCHIVER :: superclass TOOL;

stuff : string = stuff;
list_archive : string = list_archive;
randomize : string = randomize;
update : string = update;

end

71

end_objectbase
rules

This rule archives a set of hfiles. Why is this necessary? Well, since
lint calls cpp, which bombs when its input is too long, we have to create
soft links to the hfiles to a special place so that this works

appropriately. Please forgive this HACK, but it is necessary.

arch[?I:INC]:
(forall HFILE ?h suchthat (member [?I.hfiles ?h]))

(?h.recompile_mod = false)

eventually ARCHIVER create_link 7I ?h
{1}

(?I.archive_status = Archived);

arch([?s:SRC]: A
(forall MODULE ?m suchthat (member [?s.modules ?m])):
(?m.archive_status = Archived)

{3

(?s.archive_status = Archived);
This rule archives a module if all its CFILEs have been archived.

arch([?m:MODULE] : -
(and (forall CFILE ?f suchthat (member [?m.cfiles ?7f]))
(forall YFILE 7y suchthat (member [?m.yfiles 7y]))
(forall LFILE ?x suchthat (member [?m.lfiles 7x]))
(forall MODULE ?child suchthat (member [?m.modules ?child])))

&and

(?f.status = Archived) # back chain to arch CFILE

(?y.status = Archived) # back chain to arch YFILE

(?x.status = Archived) # back chain to arch XFILE

(?7child.archive_status = Archived)) # back chain to arch MODULE
{3

(?m.archive_status = Archived);

arch[?1:LIB]:
(forall AFILE ?a suchthat (member [?1l.afiles 7al])):

=1
8]

(7a.archive_status = Archived)
{1}
(?1.archive_status = Archived);

This archives a library (in a more virtual way) when all the modules that
it owns have themselves been "Archived". Note, this will gather together
all the .o files which it owns and create the ".a" file.

arch[?a:AFILE]:

(and (exists LIB ?1 suchthat (member [?l.afiles ?a]))
(exists PROJECT ?p suchthat (member [?p.lib 71]))
(forall SRC ?s suchthat (member [?p.src ?s]))

(forall MODULE ?m suchthat (and (ancestor [?s ?m])
(linkto [?m.afiles 7?al)))):

(?m.archive_status = Archived) # backward chain to arch MODULE
{ ARCHIVER randomize 7a.afile ?a.history}
(and (7a.archive_status = Archived)
(?a.time_stamp = CurrentTime));
Archive a particular FILE (CFILE, YFILE, LFILE) into the libraries which
any of its ancestor modules points to.
arch[?f:CFILE]:

(and (exists MODULE 7m suchthat (ancestor [?m ?f]))
(forall AFILE <7a suchthat (linkto [?m.afiles ?a])))

(7f.status = Compiled) # back chain to compile

{ ARCHIVER update ?a.afile 7a.history ?f.object_code }

(?f.status = Archived);

arch{?f:YFILE]:
(and (exists MODULE 7m suchthat (ancestor [?m 7f]))
(forall AFILE <?a suchthat (linkto [?m.afiles 7al)))

(7f.status = Compiled) # back chain to compile
{ ARCHIVER update ?a.afile ?a.history ?f.object_code }

(7f.status = Archived);

73

arch(?f:LFILE]:
(and (exists MODULE 7m suchthat (ancestor [?m 7f]))
(forall AFILE ~?a suchthat (linkto [?m.afiles ?a])))

(?f.status = Compiled) # back chain to compile

{ ARCHIVER update ?a.afile 7a.history ?f.object_code }

(7f.status = Archived);

list_arch: this rule just lists the contents of an archive.
list_arch([7a:AFILE]:

{ ARCHIVER list_archive 7a.afile }

3

ranlib[?a:AFILE]:

{ ARCHIVER randomize ?a.afile }

b

hide stuff [?a:AFILE]:
(and (forall MODULE ?m suchthat (linkto [?m.afiles ?a]))
(forall CFILE ?c suchthat (ancestor [?m ?c]))
(forall YFILE ?y suchthat (ancestor [?m ?y]))
(forall LFILE ?1 suchthat (ancestor [?m ?71]))):
{ ARCHIVER stuff 7a.afile ?c.object_code ?y.object_code ?1.object_code}

__
#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

74

strategy build

This strategy defines the tool to build a PROGRAM, and it provides a rule
to build a PROJECT as well.

imports data_model;
exports all;

objectbase
BUILD :: superclass TOOL;

build_program : string
build_local : string

build;
build_local;

end

end_objectbase

rules

Build the entire GROUP -- This is essentially a makep

build [?g:GROUP]:
(forall PROJECT ?p suchthat (member [7g.projects 7pl))

(?p.build_status = Built)
{}

3

Build the project only if all the programs are built and all the
libraries and include files have been archived.

build [?proj:PROJECT]: . .

(forall BIN ?b suchthat (and (member [?proj.bin ?p])

(?b.arch = CurrentArch)))
(forall BIN ?b suchthat (member [?proj.bin ?bl))

(?b.build_status = Built) # back chain to build BIN
{}
(?proj.build_status = Built);

NOTE:

it is assumed that the executable of the miniproject has links to
the associated libraries.

#

75

build [?mp:MINIPROJECT]: :
(and (forall CFILE ?c suchthat (member [?mp.cfiles ?c]))
(forall LFILE ?x suchthat (member [?mp.lfiles 7x]))
(forall YFILE ?y suchthat (member [?mp.yfiles 7y]))
(exists EXEFILE 7e suchthat (member [?mp.exec 7e]))
(forall AFILE ?a suchthat (linkto [?e.afiles 7a])))

(and (?c.status

= Compiled)
(?x.status = Compiled)
(?y.status = Compiled))

{ BUILD build_local ?c.object_code ?x.object_code ?y.object_code
7a.afile 7e.exec ?7e.history }

.
’

Used to backward chain to build on each executable.

build [?b:BIN]:
(forall EXEFILE 7exe suchthat (member [?b.binexecs 7exe]))

(7exe.build_status = Built) # back chain to build EXEFILE
{}
(?b.build_status = Built):

activation. if all libraries that this executable is linked to are
marked as archived, build this executable using the libraries

build [?exe:EXEFILE]
(forall AFILE ?a suchthat (linkto [?exe.afiles 7a])):

(?a.archive_status = Archived) # back chain to archive AFILE
{ BUILD build_program 7exe.exec ?a.afile }

Built);
NotBuilt);

(?exe.build_status
(?exe.build_status

S SR R R
#

Marvel Software Development Environment

#

Copyright 1991

76

The Trustees of Columbia University
in the City of New York
All Rights Reserved

#*HH R

This file contains MSL commands to build an environment for developing
C programs using a maximal amount of chaining amongst the rules. In
addition, all the rules available in cmarvel are contained here. If

a user only needed a subset of these rules, an master file similar to
this one could be created that contains just the appropriate subset.

#H #H BT H R

strategy cmarvel_chaining

Import all the addition data and process models needed to build up the
environment. Order is important here.

imports data_model,

touch,

archive,

build,

compile,
local,

print,

edit,

doc,

rcs,

mail,

marvel;

exports all;

- e m =
#

Marvel Software Development Environment

#

Copyright 1990

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

This file contains MSL commands to build an environment for developing
C programs using a maximal amount of chaining amongst the rules. In
addition, all the rules available in cmarvel are contained here. If

77

a user only needed a subset of these rules, an master file similar to
this one could be created that contains just the appropriate subset.

strategy cmarvel_chaining

Import all the addition data and process models needed to build up the
environment. Order is important here.

imports data_model;
exports all;

rules

reserve[?f:FILE]:
{1}
no_forward (?f.reservation_status = CheckedOut);

use forall, so these rules can be called from the local area.
edit[?c:CFILE]:

(and (forall MODULE m suchthat (member [7m.cfiles 7c]))
(forall MINIPROJECT ?mp suchthat (member [?mp.cfiles 7¢]))
(forall AFILE ?a suchthat (linkto [?mp.link_afile 7a]))):

if the file has been reserved, you can go ahead and edit it

(?c.reservation_status = CheckedOut)

{1}

)

arch[?1:LIB]:
(forall AFILE ?a suchthat (member [?1.afiles ?7al)):
(?a.archive_status = Archived)

{1}

(?1.archive_status = Archived);

arch[?m:MODULE] :
(and (forall CFILE ?f suchthat (member [?m.cfiles 7£]))
(forall YFILE ?y suchthat (member [7m.yfiles ?7y]))

78

(forall LFILE ?x suchthat (member [7?m.1files ?7x]))
(forall MODULE ?child suchthat (member [?m.modules ?child])))

(and

(?f.status = Archived)

(?y.status = Archived)

(?child.archive_status
{3

back chain to arch CFILE
back chain to arch YFILE
Archived)) # back chain to arch MODULE

(?m.archive_status = Archived);

#H O R HE B HERR

strategy compile

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

This strategy contains rules to compile and analyze CFILE type objects.

Compilation is done with cc, and analyzis with lint.

In our example,

a file must successfully be analyzed before it is compiled.

imports data_model;
exports all;

objectbase

COMPILER :: superclass TOOL;
compile : string = compile;
lex_compile :
yacc_compile :

end

ANALYZER :: superclass TOOL;
analyze : string = analyze;

end

string = lex_compile;
string = yacc_compile;

79

end_objectbase

rules
this runs YACC on a file

compile [?y:YFILE]:
(and (exists PROJECT ?p suchthat (ancestor [?p ?y]))
(forall INC ?i suchthat (member [?p.include ?7i]))
(forall HFILE 7?h suchthat (member [?i.hfiles 7h])))

no_forward (?i.archive_status = Archived)

{ COMPILER yacc_compile ?y.contents ?y.object_code ?y.history ?y.ytabh
?h.contents "-g" }

(and (?y.status = Compiled)
(?y.object_time_stamp = CurrentTime));
(?y.status = ErrorCompile);

This runs Lex on the file
compile [?x:LFILE]:

(and (exists PROJECT ?p suchthat (ancestor [?p ?7x]))
(forall INC ?i suchthat (member [?p.include ?7i]))
(forall HFILE ?h suchthat (member [?i.hfiles ?h]))

(exists YFILE ?y suchthat (linkto [?x.ytabh ?y])))

if the C file has been analyzed successfuly but not yet compiled,
you can compile it. The compilation changes the status of the C
file to either compiled or error.

(and no_forward (?i.archive_status = Archived)
(?y.status = Compiled))

{ COMPILER lex_compile ?x.contents ?x.object_code 7h.contents ?y.ytabh
?x.history "-g"}

(and (?x.status = Compiled)
(?x.object_time_stamp = CurrentTime));

80

(?x.status = ErrorCompile);

compile [?f:CFILE]:

(and (exists PROJECT ?p suchthat (ancestor [?p ?7f]))
(forall INC ?i suchthat (member [?p.include 7i]))
(forall HFILE ?h suchthat (member [?i.hfiles 7h])))
if the C file has been analyzed successfuly but not yet compiled,
you can compile it. The compilation changes the status of the C
file to either compiled or error.

(and no_forward (?i.archive_status = Archived)
(7f.status = Analyzed))

{ COMPILER compile ?f.contents ?f.object_code ?h.contents
?f .history "-g" }

(and (7f.status = Compiled)
(?f.object_time_stamp = CurrentTime));
(?f.status = ErrorCompile);
analyze[?f:CFILE]:
(and (exists PROJECT ?p suchthat (ancestor [?p ?f]))
(forall INC ?i suchthat (member [7p.include ?7i]))

(forall HFILE 7?h suchthat (member [(?i.hfiles 7?h]))):

(and no_forward (?i.archive_status = Archived)

(or no_backward (?f.status = New)
no_backward (7f.status = NotAnalyzed)
no_backward (7f.status = ErrorAnalyze)))

{ ANALYZER analyze ?f.contents ?h.contents 7?f.history }

(?f.status = Analyzed);

(7f.status = ErrorAnalyze);
Prmm e e e e —— ——————
#
¥ Marvel Software Development Environment

81

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

doc startegy: Contains rules for formatting document files

R N

strategy doc

imports data_model;
exports all;

objectbase
DOC_TOOLS :: superclass TOOL;
Idraw : string = Idraw;
display_dvi : string = display;
format_latex : string = format_latex;
end
end_objectbase
rules
display[?Doc:DOCFILE]:

(?Doc.reformat = false)

{ DOC_TOOLS display_dvi ?Doc}

format [?Doc:DOCFILE] :
(forall POSTSCRIPT ?p suchthat (member [?Doc.postscript ?pl)):
(?Doc.reformat = true)
{ DOC_TOOLS format_latex ?Doc.contents ?Doc.output ?p.contents }
(?Doc.reformat = false);

hide clean_post[?p:POSTSCRIPT] :
(exists DOCFILE ?7d suchthat (member (?d.postscript 7pl)):

82

(?d.reformat = false)

{1

(7p.reformat

false);
edit [?p:POSTSCRIPT):
{ DOC_TOOLS Idraw ?p.contents }

(7p.reformat = true);
(?p.reformat = false);

e m e e —emmmemm e mm——mmmmm e —mm——-
#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

strategy edit

This strategy defines the editor tool and a viewer tool which displays

the errors associated with a particular C file. The rules for editing are
overloaded, they set appropriate attributes depending upon the type of

object being edited.

imports data_model, rcs;
exports all;

objectbase

EDITOR :: superclass TOOL;

edit : string = editor;

editnt : string = editor_no_tags;
end

VIEWER :: superclass TOOL;
viewHist : string = viewHist;

view : string = view;

83

end

end_objectbase

rules

this edit rule is for editing c¢ files. Note that all these rules have the
same activities, but different postconditions. If there were special

editors, they could be invoked by calling edit rules with different

activities.

use forall, so these rules can be called from the local area.
edit[?c:CFILE]:

(and (forall MODULE 7m suchthat (member [?m.cfiles 7c]))
(forall MINIPROJECT ?mp suchthat (member [7mp.cfiles ?c]))
(forall AFILE 7a suchthat (linkto [?mp.link_afile 7a]))):

if the file has been reserved, you can go ahead and edit it

(and (?c.reservation_status = CheckedOut)
(?c.locker = CurrentUser))

{ EDITOR edit 7c.status ?c.contents 7c.history 7a.tags }
(and (?c.status = NotAnalyzed)
(?c.time_stamp = CurrentTime));

(?7c.reservation_status = CheckedOut); # Dummy Postcondition

edit[?x:LFILE]:

(and (exists MODULE 7m suchthat (member [7m.lfiles ?x]))
(forall MINIPROJECT ?mp suchthat (member [?mp.lfiles 7x]1))
(forall AFILE 7a suchthat (linkto [?mp.link_afile ?a]))):

if the file has been reserved, you can go ahead and edit it

(and (?x.reservation_status = CheckedOut)
(?x.locker = CurrentUser))

{ EDITOR edit 7?x.status ?x.contents ?x.history 7a.tags }

(and (?x.status = NotCompiled)
(?x.time_stamp = CurrentTime));

84

edit[?y:YFILE]:

(and (exists MODULE m suchthat (member [?m.yfiles ?y]))
(forall MINIPROJECT ?mp suchthat (member [7mp.yfiles 7y1))
(forall AFILE 7a suchthat (linkto [7mp.link_afile 7a]))):

if the file has been reserved, you can go ahead and edit it

(and (?y.reservation_status = CheckedDut)
(?y.locker = CurrentUser))

{ EDITOR edit ?y.status ?y.contents ?y.history 7a.tags }
(and (?y.status = NotCompiled)
(?y.time_stamp = CurrentTime));

this edit rule is for editing include files.

edit[?h:HFILE]:
if the file has been reserved, you can go ahead and edit it
E?h.reservation_status = CheckedOut)
{ EDITOR editnt 7h.contents ?h.history }

(and (?h.recompile_mod = true)
(?h.time_stamp = CurrentTime));

This edit rule is for editing LaTeX documents
edit[?d:DOCFILE]:
if the file has been reserved, you can go ahead and edit it
&?d.reservation_status = CheckedOut)
{ EDITOR editnt ?d.contents ?d.history }
(and (7?d.reformat = true)

(?d.time_stamp = CurrentTime));

The following rule views output from the compiler and analyzer for a
particular file.

85

view [?f:FILE]:
{ VIEWER view ?f.contents }
viewHist [?h:HISTORY]:

{ VIEWER viewHist ?h.history }

__
#

Marvel Software Development Environment

#

Copyright 1991 i

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

strategy local

This strategy contains rules to compile and analyze CFILE type objects.
Compilation is done with cc, and analyzis with lint. In our example,

a file must successfully be analyzed before it is compiled.

imports data_model;

exports all;

objectbase

LOCAL :: superclass TOOL;

compile : string = compile;
lex_compile : string = lex_compile;
yacc_compile : string = yacc_compile;
analyze : string = analyze;

end

end_objectbase

86

rules

lcompile [?y:YFILE]:

(and (exists MINIPROJECT 7mp suchthat (member [?mp.yfiles 7y]))
(forall AFILE ?a suchthat (linkto [?mp.link_afile ?7a]))
(forall PROJECT ?p suchthat (ancestor [?p 7al))
(forall INC ?i suchthat (or (member [?p.include 7i])
(linkto [?p.link_inc ?7i])))
(forall HFILE ?h suchthat (or (member [?mp.hfiles ?h])

(member [?i.hfiles °?h])))):
no_forward (?i.archive_status = Archived)
{ LOCAL yacc_compile ?y.contents ?y.object_code ?h.contents ?y.history "-g"
(and (7y.status = Compiled)

(?y.object_time_stamp = CurrentTime));
(?y.status = ErrorCompile);

This runs Lex on the file

lcompile [?x:LFILE]:

(and (exists MINIPROJECT 7mp suchthat (member [7mp.lfiles 7x1))
(forall AFILE ?a suchthat (linkto [?mp.link_afile ?al))
(forall PROJECT ?p suchthat (ancestor [?p 7al))
(forall INC 7?1 suchthat (or (member [?p.include ?i])
(linkto [?p.link_inc ?i])))
(forall HFILE ?h suchthat (or (member [?mp.hfiles ?h])
(member [?i.hfiles ?h])))
(exists YFILE 7y suchthat (linkto [?x.ytabh ?y]))):

(and no_forward (?i.archive_status = Archived)
(?y.status = Compiled))

{ LOCAL lex_compile ?x.contents ?x.object_code ?h.contents
?y.ytabh ?x.history "-g"}

(and (7x.status = Compiled)

(?x.object_time_stamp = CurrentTime));
(?x.status = ErrorCompile);

87

lcompile [?f:CFILE]:

(and (exists MINIPROJECT ?mp suchthat (member [?mp.cfiles ?7£]1))
(forall AFILE ?a suchthat (linkto [?mp.link_afile 7al))
(forall PROJECT ?p suchthat (ancestor [?p 7al))
(forall INC ?i suchthat (or (member [?p.include ?1j)
(linkto [?p.link_inc ?i])))
(forall HFILE ?h suchthat (or (member [?mp.hfiles ?h])

(member [?i.hfiles 7h])))):
(and no_forward (?i.archive_status = Archived)
(?f.status = Analyzed))

{ LOCAL compile ?f.contents ?f.object_code 7h.contents ?f.history"-g" }
(and (?f.status = Compiled)

(?f.object_time_stamp = CurrentTime));
(?f.status = ErrorCompile);

lanalyze([?f:CFILE]:

(and (exists MINIPROJECT ?mp suchthat (member [?mp.cfiles 7£1))
(forall AFILE 7a suchthat (linkto [?mp.link_afile ?a]))
(forall PROJECT ?p suchthat (ancestor [7p 7al))
(forall INC 7?1 suchthat (or (member [?p.include 7?i])
(linkto [?p.link_inc ?7i])))
(forall HFILE ?h suchthat (or (member [?mp.hfiles ?h])

(member [?i.hfiles 7?hl)))):
(and no_forward (?i.archive_status = Archived) l
(or no_backward (?f.status = New)
no_backward (?f.status = NotAnalyzed)
no_backward (?f.status = ErrorAnalyze)))

{ LOCAL analyze ?f.contents ?h.contents ?f.history }

(?f.status = Analyzed);
(?f.status = ErrorAnalyze);

88

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

#H H R RSB

strategy mail
This strategy contains rules to send mail to the Marvel Developers
#
imports data_model;
exports all;
objectbase
MAIL :: superclass TOOL;
mail : string = mail_marvel;
end
end_objectbase
rules

mail [?P:PROGRAMMER] :

{ MAIL mail ?P.mail_id }

B e ittt

#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

This strategy contains rules for starting and halting the Marvel Programs

*

89

strategy marvel

imports data_model;
exports all;

objectbase
MARVEL :: superclass TOOL;
marvel_go : string = marvel_go;
marvel_local_go : string = marvel_local_go;
end

end_objectbase

rules

exec_local[?p:PROGRAMMER] :
(and (exists EXEFILE ?s suchthat (linkto [?p.server ?s]))
(exists EXEFILE ?c suchthat (linkto [?p.client ?c 1))
(exists EXEFILE 71 suchthat (linkto [?p.loader 7?1 1)))

{ MARVEL marvel_local_go 7s.exec ?c.exec ?l.exec }

H

exec_marvel [?s:EXEFILE, ?c:EXEFILE, ?1:EXEFILE]:

{ MARVEL marvel_go ?s.exec ?c.exec ?l.exec }

__
#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

strategy print

This strategy contains rules to print out various files.
#

90

imports data_model;
exports all;

objectbase
PRINT :: superclass TOOL;
print : string = print;
print_dvi : string = print_dvi;
end
end_objectbase
rules

printer [?f:FILE]:

{ PRINT print ?f.contents }

2

printer [?d:DOCFILE]:
(forall POSTSCRIPT ?p suchthat (member [?d.postscript ?p]))

(?d.reformat = false)
{ PRINT print_dvi ?d.output ?p.contents }

b

printer [7p:POSTSCRIPT]:

{ PRINT print ?p.contents }

B m e e e e e e e e e e e e e e ———————
#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

This strategy contains rules for doing revision control on FILE type objects.

strategy rcs

91

imports data_model;
exports all;

objectbase

RCS :: superclass TOOL;
reserve : string = check_out;
deposit : string check_in;
replace : string = replace;
create : string = check_in_create;
locked : string = locked;

end

end_objectbase
rules
reserve: reserve a file type object. In the C/Marvel example, you can
use this rule on FILE, CFILE, HFILE and DOCFILE, because of
the inheritance mechanism.
reserve[?f:FILE]:
no_forward (?f.reservation_status = Available) # backward chain to creat
{ RCS reserve ?f.contents ?f.version ?f.history }
(and no_forward (?f.reservation_status = CheckedOut)
(?f.time_stamp = CurrentTime)

(?f.locker = CurrentUser));

deposit: deposit an object. This rule works on the same objects as the
reserve rule.

deposit[?0ld:FILE]:

(and [?0ld.locker = CurrentUser]
[70ld.reservation_status = CheckedOut])

{ RCS deposit ?old.contents 7old.version ?7old.history }

[?7old.reservation_status = Available];

deposit[?0ld:HFILE]:

(and [70ld.locker = CurrentUser]
[?01d.reservation_status = CheckedOut])

{ RCS deposit 7old.contents ?old.version ?o0ld.history }

(and [7o0ld.reservation_status = Available]
(?o0ld.recompile_mod = false));

create_rcs[?f:FILE]:
[?f.reservation_status = None]
{ RCS create ?f.contents ?f.version }

(?f.reservation_status = Available);

replace(?new:FILE, 70ld:FILE]:

(and [?0ld.locker = CurrentUser]
[?701d.reservation_status = CheckedOut])

{ RCS replace ?new.contents ?old.version ?new.history ?old.history }
[?0ld.reservation_status = Available];
locked[?s:SRC]:
(forall CFILE ?c suchthat (and (ancestor [?s ?c])

(?c.reservation_status = CheckedOut))):
{ RCS locked ?c.contents ?c.locker }

Marvel Software Development Environment

B

Copyright 1991

93

The Trustees of Columbia University
in the City of New York
All Rights Reserved

This strategy contains various "touch" rules used

in consistency (forward) chaining to propagate modifications to
other objects.

touchup set of rules propagate changes up the

hierarchy whenever a source file is modified.

touchdw set of rules propagate changes down the hierarchy due to
a modification in a header file.

NOTE: Once we have the capability to

make assertions on bound variables, we won’t need the touchdw
rules.

H H # # # ¥ # R R B R

strategy clean

imports data_model;
exports all;

rules

hide touchup[?Proj:PROJECT]:
(exists SRC ?s suchthat (member [?Proj.src 7s]))

[?s.archive_status = NotArchived] # from touch SRC

{3}
[(?Proj.build_status = NotBuilt];

hide touchup[?s:SRC]:
(exists MODULE ?m suchthat (member [?s.modules ?m]))

[?m.archive_status = NotArchived] # from touch MODULE

{}

[?s.archive_status

NotArchived];

hide touchup(?b:BIN]:
(exists PROJECT ?Proj suchthat (member [?Proj.bin ?b])):
[?Proj.build_status = NotBuilt] # from touch PROJECT
{}
(?b.build_status = NotBuilt];

94

hide touchup(?e:EXEFILE]:

H B B R

(exists BIN ?b suchthat (member [?b.binexecs 7e])):
[?b.build_status = NotBuilt] # from touch BIN
{}

[7e.build_status = NotBuilt];

This rule will "touch" a library if any of its modules have become
"NotArchived."

we call it touchuplL due to a bug in adding forward pointers

in compile_chain_network.

hide touchupL[?1:LIB]:

#H R B R

(exists PROJECT ?p suchthat (member [?p.lib ?1]))

[?p.build_status = NotBuilt] # from touch PROJECT
{}

[(?1.archive_status = NotArchived];

This rule will "touch" a module if any of its CFILEs has become
"NotCompiled" or compiled in "Error".

also, if the reservation status became available

as a result of deposit touch the module.

hide touchup[?M:MODULE]:

#
#
#

(and

(forall CFILE 7?c suchthat (member [?M.cfiles ?c]))
(forall YFILE 7?7y suchthat (member [?M.yfiles ?yl))
(forall LFILE 7x suchthat (member [?M.1files ?x]))
(forall MODULE ?m suchthat (member [?M.modules ?m])))

(or [?c.status = ErrorCompile] # from compile CFILE
[?c.reservation_status = Available] # from deposit FILE
[?y.status = ErrorCompile] # from compile YFILE
[?x.status = ErrorCompile] # from compile LFILE
[(?m.archive_status = NotArchived])

{}

[?m.archive_status = NotArchived];

below is the set of touch down rules, with the exception of touch on
inc file which actually initiates thenm.

hide touchup[?i:INC]:
(exists HFILE 7?h suchthat (member [?i.hfiles ?h]))

[?h.recompile_mod = true] # from edit hfile

{}

[?i.archive_status = INC_NotArchived];

hide touchdw[?p:PROJECT]:
(exists INC ?i suchthat (member [?p.include ?i]))

(?i.archive_status = INC_NotArchived]

{}
[?p.build_status = INC_NotBuilt];

hide touchdw[?s:SRC]:
(exists PROJECT ?p suchthat (member [?p.src ?s]))

[7p.build_status = INC_NotBuilt]
{3

(?s.archive_status = INC_NotArchived]:

hide touchdw[?m:MODULE] :
(exists SRC ?s suchthat (member [?s.modules 7m]))

[?s.archive_status = INC_NotArchived]

{>

[?m.archive_status = INC_NotArchived];

hide touchdw[?c:CFILE]:
(exists MODULE ?m suchthat (member [?m.cfiles ?c]))

[?m.archive_status = INC_NotArchived]

{}
[?c.status = NotCompiled];

B.3 C/MARVEL Envelopes

Marvel Softwvare Development Environment

96

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

Idraw envelope

usage: Idraw [POSTSCRIPT]

H #H O H - HE R

ENVELOPE Idraw;
SHELL sh;

INPUT

text : thefig;
OUTPUT

none ;

BEGIN
set -x
FILENAME= ‘basename $thefig‘

echo
echo Executing Idraw on figure in $FILENAME ...

Created="YES"
SaveReport=‘1ls -1 $thefig’
if [$? -eq 0]
then

Created="NO"
fi

if [-f $thefig]
then

touch $thefig
fi

idraw $thefig

Check to make sure that the file really existed.
#

if [$Created = "YES"]

then
echo "Figure $FILENAME Created."
RETURN_CODE=0

else
NewReport=‘1ls -1 $thefig’

if ["$SaveReport" = "$NewReport"]

then
echo "No Changes Made"
RETURN_CODE=1

else
echo "Changes Made and saved."
RETURN_CODE=0

fi

fi

RETURN "$RETURN_CODE";

END

__
#

Marvel Software Development Environment
#

Copyright 1991

The Trustees of Columbia University

in the City of New York

% All Rights Reserved

#

analyze envelope

#

usage: analyze [CFILE] [HFILE...] [CFILE.history]

#

ENVELOPE analyze;
SHELL ksh;

INPUT

text : thefile;
set_of INC : ifiles;
text : history;
OUTPUT

none ;

98

BEGIN

header=‘get_dirname $thefile’
shortname=‘basename $thefile’

log=$history

echo "$0 $shortname on ‘date‘"

echo "$0 $shortname on ‘date‘" >> $log
echo

echo >> $log

tmp_dir=/tmp/analyze$$
mkdir $tmp_dir

we need to make the -I list

#
idir=""
for i in $ifiles
do
ln -s $i $tmp_dir
done

idir="-I$tmp_dir"

echo "lint $CCFLAGS -c $idir $shortname -11 -lc -1m -1X11"
echo "lint $CCFLAGS -c $idir $shortname -11 -lc -1lm -1X11" >> $log

place the output in temporary place, since
we will clean the output up.

lint_output=/tmp/analyze.2.$$

lint $idir $thefile >> $lint_output 2>&1
lint_status=$?

Reduces the output by removing unnecessary header information
#

cat $lint_output | sed s?$header/?? >> $log
rm $lint_output

if ["x$tmp_dir" '= "x"]
then

rm -r $tmp_dir
fi

99

if [$lint_status -eq 0]

then
echo lint successful, results available with viewHist on $log
echo lint successful >> $log
RET_VAL=0

else
echo lint failed, results available with viewHist on $log
echo lint failed >> $log
RET_VAL=1

fi

RETURN "$RET_VAL" ;
END

#

Marvel Software Development Environment
.

Copyright 1991

The Trustees of Columbia University
in the City of New York

All Rights Reserved

#

build envelope

#

usage: build [EXECUTABLE] [LIB...]

ENVELOPE build;

SHELL sh;

INPUT

binary : executable;

set_of LIB : libraries;

OUTPUT

none ;

BEGIN

shortname=‘basename $executable’
echo "building $shortname on ‘date‘"

if ["x$libraries" = "x"]

100

then

echo "No libraries. Nothing to build"
RET_VAL=1

else

if [-f $executable]
then

fi

rm $executable

echo "cc {LIBRARIES} -L/usr/local/gnu/lib -11 -lc -1m -1X11 -lgdbm -o {EXECU
cc $libraries -L/usr/local/gnu/lib -11 -lc -1lm -1X11 -1lgdbm -o $executable

this checks for existence, and to be sure it is the proper kind of
executable.

if [' -f $executable]

then
echo "Build failed"
RET_VAL=1
else

MT=‘arch’

if ["x$MT" = "xsund"]

then
file $executable| grep sparc > /dev/null
ans=$7?

elif ["x$MT" = "xsun3"]

then
file $executable | grep mc680 > /dev/null
ans=$7

elif ["x$MT" = "xmips"]

then
file $executable | grep mipsel > /dev/null
ans=$7

elif ["x$MT" = "xibmrt"]

then
file $executable | grep executable > /dev/null
ans=$7

else
ans=1

fi

if [$ans -eq 0]
then
if (test -x $executable) # if the file is executable, then the

101

then # build was successful.
echo build successful
RET_VAL=0
else
echo build failed # Otherwise, notify the user that
RET_VAL=1 # that there must have been a load error
fi
else
echo build failed
RET_VAL=1
fi
fi
fi

RETURN "$RET_VAL";

END

__
#

Marvel Software Development Environment
#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

build_local envelope

#

usage: build_local [CFILE.object_code] [LFILE.object_code]
(YFILE.object_code] [AFILE.afile] [EXEFILE.exec]

ENVELOPE build_local;
SHELL sh;

INPUT

set_of binary : c_objects;
set_of binary : x_objects;
set_of binary : y_objects;
set_of binary : libraries;
binary : executable;
QUTPUT

none ;

BEGIN

set -x

shortname=‘basename $executable’

echo "locally building $shortname on ‘date‘"

local_files="$c_objects $x_objects $y_objects"

echo "cc {LOCAL_FILES} {LIBRARIES} -11 -lc -lm -1X11 -lgdbm -o $shortname"

cc $local_files $libraries -L/usr/local/gnu/lib -11 -lc -lm -1X11 -lgdbm -o $ex

this checks for existence, and to be sure it is the proper kind of
executable.

MT=‘arch’

if ["x$MT" = "xsun4d"]

then
file $executable| grep sparc > /dev/null
ans=$7

elif ["x$MT" = "xsun3"]

then
file $executable | grep mc680 > /dev/null
ans=$§7?

elif ["x$MT" = "xmips"]

then
file $executable | grep mipsel > /dev/null
ans=$7

elif ["x$MT" = "xibmrt"]

then
file $executable | grep executable > /dev/null
ans=$?

else
ans=1

fi

if [$ans -eq 0]

then
if (test -x $executable) # if the file is executable, then the
then # build was successful.
echo build successful
RET_VAL=0
else

103

echo loader failed # Otherwise, notify the user that
chmod o-x $executable # that there must have been a load error
RET_VAL=1 # since the executable bit was not set
fi
else
echo build failed
RET_VAL=1
fi

RETURN "$RET_VAL";

END

- B T ittt et T
#

Marvel Software Development Environment
#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

check_in envelope

#

ENVELOPE check_in;
SHELL ksh;

INPUT

text : object;
text : rcs_file;
text : history;
OUTPUT

none ;

BEGIN
name=‘basename $object’

echo "depositing $name on ‘date‘"
echo "depositing $name on ‘date‘" >> $history

This script is used to check in (deposit) code.
It is a simple end to the RCS ¢i command.

104

echo "check in $object [y/n]?"

read ans
if ["x$ans" = uxyn]
then

Get Message from the User

echo "Please Enter a Message:"
read message

if ["x$message" = "x"]
then
ci -u $rcs_file $object
else
ci -m"$message" -u $rcs_file $object
fi

rm -f $object
co $rcs_file $object

echo $name deposited
echo $name deposited >> $history
RET_VAL=0

else
echo $name NOT deposited
echo $name NOT deposited >> $history
RET_VAL=1

fi

RETURN "$RET_VAL";

END
et e e e
#

Marvel Software Development Environment
#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

check_in_create envelope

#

ENVELOPE check_in_create;

SHELL sh;

INPUT

text : object;
text : rcs_file;
OUTPUT

none ;

BEGIN

This script is used to check in (deposit) code for the first time
It is a simple front end for the e RCS ci command.

name=‘basename $object’
echo Now entering $name into the Revision Control System.

Since this file hasn’t been deposited yet, we must do it the first
time. Note, that we retain the lock through the -1 option if the

file is there.

touch $object
touch $rcs_file

ci -1 $rcs_file $object

echo an RCS file for $name has been created.

RETURN "0";

END

B m e e =
#

Marvel Software Development Environment
#

% Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

check_out envelope

#

ENVELOPE check_out;

106

SHELL ksh;

INPUT

text : object;
text : rcs_file;
text : history;
OUTPUT

none ;

BEGIN

name=‘basename $object’

echo "reserving $name on ‘date’"
echo "reserving $name on ‘date‘" >> $history

if [' -f $rcs_file]
then

If this file hasn’t been deposited yet, we must do it the first
time. Note, that we retain the lock through the -1 option

if [! -f $object]
then
echo New File, nothing to reserve. Creating RCS file
echo New File, nothing to reserve. Creating RCS file >> $history
touch $object
touch $rcs_file
RET_VAL=0
else
ci -1 $rcs_file $object
echo $name reserved
echo $name reserved >> $history

fi
RET_VAL=0
else
echo "check out $name [y/n]? "
read ans
if ["x$ans" = "xy"]
then

co -1 $rcs_file $object
echo $name reserved
echo $name reserved >> $history
RET_VAL=0
else

107

echo Reservation cancelled at user’s request.
echo Reservation cancelled at user’s request. >> $history
echo $name not reserved
echo $name not reserved >> $history
RET_VAL=1
fi
fi

RETURN "$RET_VAL";

END

__
#

Marvel Software Development Environment
#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

compile envelope

#

usage: compile [CFILE]

#

ENVELOPE compile;

SHELL sh;

INPUT

text : thefile;
binary : obj_file;
set_of INC : ifiles;
text : history;
literal : CCFLAGS;
QUTPUT

none ;

BEGIN

shortname=‘basename $thefile’
shortobj=‘basename $obj_file’

log=$history

echo "$0 $shortname on ‘date‘"
echo "$0 $shortname on ‘date’" >> $log

108

echo
echo >> $log

tmp_dir=/tmp/compile$$
mkdir $tmp_dir

we need to make the -I list

#
idir=""
for i in $ifiles
do
ln -s $i $tmp_dir
done

idir="-I$tmp_dir"

echo "cc $CCFLAGS -c $idir $shortname -o $shortobj -11 -1lc -1m -1X11"

echo "cc $CCFLAGS -c $idir $shortname -o $shortobj -11 -lc -1m -1X11" >> $log
cc $CCFLAGS -c $idir $thefile -o $obj_file -11 -1lc -1m -1X11 >> $log 2>&1
cc_status=$7

if ["x$tmp_dir" !'= "x"]
then

rm -r $tmp_dir
fi

if [$cc_status -eq 0]

then
echo compile successful, results available with viewHist
echo compile successful >> $log
RET_VAL=0

else
echo compile failed, results available with viewHist
echo compile failed >> $log
RET_VAL=1

fi

RETURN "$RET_VAL";

END

- e, — e e =
#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

109

in the City of New York
All Rights Reserved

Display Envelope: This copies the dvi file to ~/Marvel/cmarvel/pix.dvi
where a previous process is currently reading it.

This assumes the following shell variable is defined.
MARVEL _PIC=$MARVEL_ROOT/pix.dvi

H R H”H R HERR

display_dvi envelope

usage: display [DOCFILE.formatted_file]

H R ®

ENVELOPE display_dvi;

SHELL ksh;
INPUT
binary : thedvi;
QUTPUT
none ;
BEGIN

xdvi $thedvi &

RETURN "0" ;

END

- T ettt et e e it ding
#

Marvel Software Development Environment
2 .

% Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

editor envelope

#

usage: edit [FILE.status] [FILE] [FILE.history] [TAGS...]

#

This edits the chosen file, and sends along the library which has
power over it so that emacs will read in the TAGS file associated
with it. This also incorporates a simple locking mechanism by

110

making the file writable when it edits it, and removing this capability
when it leaves.

ENVELOPE editor:

INPUT
enumerated : status;
text : thefile;
text : history;
set_of text : link_tags_file;

OUTPUT
none ;
BEGIN

shortname=‘basename $thefile’

echo Editing source file in $basename on ‘date’

echo Editing source file in $basename on ‘date’ >> $history
echo

echo >> $history

Determine if the file is there already

Created="YES"
SaveReport=‘1ls -1 $thefile’
if [$7 -eq 0]
then

Created="NO"
fi

Edit the file. Check to make sure on an X Terminal.

#

#

T=‘echo $EDITOR | cut -d’ * -f1'

if ["x$T" = "xemacs"]

then '
Create an emacs .el load file

EL_FILE=/tmp/editor$$.el
touch $EL_FILE

111

tags="$link_tags_file"
for i in $tags
do
echo "(visit-tags-table \"$i\")" >> $EL_FILE
done

echo "(switch-to-buffer \"$shortname\")" >> $EL_FI!![!PrinterError: !lower!

if [$status !'= "Analyzed"] && [$status != "Compiled"] && [$status !=
then '

echo \(find-file-read-only \"$history\"\) >> $EL_FILE

echo "(split-window)" >> $EL_FILE

echo "(switch-to-buffer \"$shortname\")" >> $EL_FILE
fi

$EDITOR $thefile -1 $EL_FILE
rm $EL_FILE

else
vi $thefile

fi

RET_VAL=0

Check to make sure that the file really existed.

#

if [$Created = "YES"]

then
echo "File $shortname Created."
echo "File $shortname Created." >> $history
RET_VAL=0

else

NewReport=‘1ls -1 $thefile’

if ["$SaveReport" = "$NewReport"]

then
echo "No Changes Made"
echo "No Changes Made" >> $history
RET_VAL=1

else
echo "Changes Made and saved."
echo '"Changes Made and saved." >> $history
RET_VAL=0

fi

112

fi

RETURN "$RET_VAL" ;

END

R it it
#

% Marvel Software Development Environment
#

¥ Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

editor_no_tags envelope

#

usage: edit [FILE]

#

ENVELOPE

INPUT

text : thefile;
text : history;
OUTPUT

none ;

BEGIN
shortname=‘basename $thefile’

echo Editing source file in $basename on ‘date’

echo Editing source file in $basename on ‘date’ >> $history
echo

echo >> $history

Determine if the file is there already

Created="YES"
SaveReport=‘1ls -1 $thefile’
if [$7 -eq 0]
then

Created="NO"

113

fi

Edit the file. Check to make sure on an X Terminal.

#
#
T=‘echo $EDITOR | cut -d’ ’ -f1°
if ["x$T" = "xemacs"]
then
$EDITOR $thefile
else
vi $thefile
fi
RET_VAL=0

Check to make sure that the file really existed.
#
if [$Created = "YES"]
then
echo "File $shortname Created."
echo "File $shortname Created." >> $history
RET_VAL=0
else
NewReport=‘1ls -1 $thefile’

if ["$SaveReport" = "$NewReport"]

then
echo "No Changes Made"
echo "No Changes Made" >> $history
RET_VAL=1

else
echo "Changes Made and saved."
echo "Changes Made and saved." >> $history
RET_VAL=0

fi

fi

RETURN "$RET_VAL" ;
END

Marvel Software Development Environment

114

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

runs latex on the given document.

H H B R B R R

ENVELOPE format_latex;
SHELL ksh:

INPUT

text : the_latex_file;
binary : the_dvi_file;

set_of text : figures;

OUTPUT

none ;

BEGIN

FILENAME= ‘basename $the_latex_file’
DIRNAME=‘get_dirname $the_latex_file®
current=$PWD

Let latex know where the included figures are going to be

tmp_dir=/tmp/format_latex$$
mkdir $tmp_dir

link to all the included figures, and set

the appropriate TEXINPUTS shell variable to

let dvips know where these encapsulated figures
are kept.

idir=""
for i in $figures
do

ln -s $i $tmp_dir
done

idir="-I$tmp_dir"
TEXINPUTS="$TEXINPUTS: $tmp_dir"

Silly necessity to check if there is already
an extension of .tex

if ["x‘getsuffix $the_latex_file‘" = "xtex")
latex $the_latex_file
FILENAME=‘getname $FILENAME®

else

latex $the_latex_file.tex
fi
if ["x$tmp_dir" != "x"]
then

rm -r $tmp_dir
fi

mv $current/$FILENAME.dvi $the_dvi_file

echo "Cleaning up temp files"
rm $FILENAME.aux
rm $FILENAME.log
rm $FILENAME.bbl
rm $FILENAME.blg

RETURN "0";

END

b R e T gy g g Mg g g
#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

lex_compile envelope

#

usage: lex_compile [LFILE.contents] [LFILE.object_code] [HFILE.contents ..
(YTABH.contents] [LFILE.history] {LITERAL}

ENVELOPE lex_compile;
SHELL sh;
INPUT
text : thefile;

binary : obj_file;

116

-]

set_of INC : ifiles;

text : ytabh;
text : history;
literal : CCFLAGS;
QUTPUT
none ;
BEGIN

shortname=‘basename $thefile’
short_obj=‘basename $obj_file’
log=$%$history

echo "running lex on $shortname on ‘date’"

echo "running lex on $shortname on ‘date‘" >> $log
echo

echo >> $log

tmp_dir=/tmp/compile$$
mkdir $tmp_dir

we need to make the -I list

idir=""
if ["x$ifiles" != "x"]
then
ln -s $ifiles $tmp_dir
idir="-I$tmp_dir"
fi

insert the y.tab.h header file also

1n -s $ytabh $tmp_dir/y.tab.h

echo "lex -t $shortname > lexer.c"

echo "lex -t $shortname > lexer.c" >> $log

lex -t $thefile > lexer.c

echo "cc $CCFLAGS -c¢ $idir $shortname -o $short_obj -11 -lc -lm -1X11"

echo "cc $CCFLAGS -c $idir $shortname -o $short_obj -11 -lc -1m -1X11" >> $log
cc $CCFLAGS -c $idir lexer.c -o $obj_file -11 -lc -1lm -1X11 >> $log 2>&1

cc_status=$§7

echo "rm -f lexer.c" >> $log

117

rm -f lexer.c

if ["x$tmp_dir" '= "x"]
then

rm -r $tmp_dir
fi

if [$cc_status -eq 0]

then
echo compile successful, results available with viewHist
echo compile successful >> $log
RET_VAL=0

else
echo compile failed, results available with viewHist
echo compile failed >> $log
RET_VAL=1

fi

RETURN "$RET_VAL";

END

Pom e e e e
#

Marvel Software Development Environment
#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

list_archive envelope

#

usage: list_archive [AFILE]

ENVELOPE list_archive;

INPUT
binary : afile;
OUTPUT
none ;
BEGIN

echo "‘basename $afile’ contains the following modules:"
ar t $afile | sort

118

RETURN "0";

END

b B e T h Sy iy gy gy Uy L USSR Sy Sy Sy
#

Marvel Software Development Environment
%

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

locked envelope

#

usage: locked [SRC]

#

ENVELOPE locked;
SHELL ksh;

INPUT)
set_of text : thefiles;

set_of string : the_lockers;

OUTPUT

none ;

BEGIN

set -x
echo "The following files are currently locked:"

let num=0

LOCKED_LIST=

for f in $thefiles

do
set -A LOCKED_LIST num $f
let num=$num+1

done

let total=$num

let num=$num+1
for i in $the_lockers;
do
set -A LOCKED_LIST num $i

119

done

RET_VAL=0

let ct=0

for i in $library

do
LINE="‘basename ${LOCKED_LIST[$ct]}‘ locked by"
let nt=$ct+$total
LINE="$LINE ${LOCKED_LIST([$nt]}"

echo $LINE
done
RETURN "Q";
END
- it it et it b
#
Marvel Software Development Environment
#
Copyright 1991
The Trustees of Columbia University
in the City of New York
8 All Rights Reserved
#
mail envelope
#
usage: mail [PROGRAMMER.mail_id]
#

ENVELOPE mail;
SHELL ksh;

INPUT
string : id;
OUTPUT
none ;
BEGIN

echo "Enter in your letter, press <ctrl>-d to send."
mail $id@cs.columbia.edu

if [$7? -eq 0]
then

echo '"Mail sent..."

else
echo '"Mail cancelled."
fi
RETURN "0";
END
__
#
Marvel Software Development Environment
#
t Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved
#
marvel_go envelope
¥
usage: marvel_go [GROUP...]
#
function: This will start the Server and Client and remove them when
the user is finished.
#
ENVELOPE
SHELL sh;
INPUT

binary : Server;
binary : Client;
binary : Loader;
QUTPUT
none ;

BEGIN

echo "What directory are you using: "
read direct

cd $direct
if [$? -ne 0] || ["$directx" = "x"]

then
echo "BAD DIRECTORY!"

121

fi

sh constructs

#

export MARVEL_ROOT
export MARVEL_HELP_DIR
export MARVEL_LOADER

MARVEL_ROOT='de'
MARVEL_HELP_DIR=‘pwd‘
MARVEL_LOADER=‘echo $Loader’

if [-f .server_port]
then
where=‘tail -1 .server_port’

echo "There already is a server running."
echo "Connecting to $where"
thispid=
where="-h $where"

else
Start the server, and remember process ID
so it can be killed later

xterm -rv -T SERVER -n server -e $Server &
thispid=$!

where=

echo "Please wait for the server program to run before continuing."
echo "hit <ENTER> when server is running"
read ans

fi

xterm -rv -T CLIENT -n client -e $Client -w $where

Kill the server

if ["x$thepid" -ne "x"]
then
kill $thispid
fi

RETURN "0";

END

b R R et ey Ly g S g gy S gy g Mg g g S
#

Marvel Software Development Environment

#

Copyright 1991

The Trustees of Columbia University

in the City of New York

% All Rights Reserved

#

marvel_local_go envelope

#

usage: marvel_local_go [PROGRAMMER]

#

function: This will start the Server and Client and remove them when
the user is finished.

#

ENVELOPE

SHELL sh;

INPUT

set_of binary : Server;
set_of binary : Client;
set_of binary : Loader;
OQUTPUT

none ;

BEGIN

echo "What directory are you using:
read direct

cd $direct
if [$? -ne 0] || ["$directx" = "x"]
then
echo "BAD DIRECTORY!"
else
__
sh constructs
#

export MARVEL_ROOT

123

export MARVEL_HELP_DIR
export MARVEL_LOADER

MARVEL_ROOT='pwdr
MARVEL_HELP_DIR='pwd‘
MARVEL _LOADER=‘echo $Loader’

if [-f .server_port]
then
where=‘tail -1 .server_port®

echo "There already is a server running."
echo "Connecting to $where"
thispid=
where="-h $where"

else
Start the server, and remember process ID
so it can be killed later

xterm -rv -T SERVER -n server -e $Server &
thispid=$!

where=

echo "Please wait for the server program to run before continuing."
echo "hit <ENTER> when server is running"
read ans

fi

xterm -rv -T CLIENT -n client -e $Client -w $where
Kill the server
if ["x$thepid" -ne "x"]
then
kill $thispid
fi
fi

RETURN "0";
END

124

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

Print Envelope: This prints the specified file to the default printer.

#* H R BB R

ENVELOPE print;
SHELL ksh;

INPUT
text : thefile;
OQUTPUT

none ;
BEGIN

FILE=‘basename $thefile®

echo "Now Printing $FILE..."
echo "Print to which Printer (or Press Return to Cancel)"

read ans?
if ["x$ans" = "x"]
then
echo "Printing cancelled at user’s request"
else

echo "lpr -P$ans $FILE"
lpr -P$ans $thefile
if [$7 -ne 0]
then
echo "Errors encountered while printing $FILE"
fi
fi

RETURN "0";
END

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

Print_dvi Envelope: This prints the specified file to the default printer.

#¥ O O R R R R

ENVELOPE print_dvi;
SHELL ksh;

INPUT
text : thefile;
set_of text : figures;
QUTPUT
none ;
BEGIN

FILE=‘basename $thefile®

echo "Now Printing $FILE..."
echo "Print to which Printer (or Press Return to Cancel)"

read ans?
if ["x$ans" = "x"]
then
echo "Printing cancelled at user’s request"
else

echo "lpr -P$ans $FILE"
PRINTER=$ans

tmp_dir=/tmp/print_dvi$$
mkdir $tmp_dir

link to all the included figures, and set

the appropriate TEXINPUTS shell variable to

let dvips know where these encapsulated figures
are kept.

idir=""
for i in $figures
do
1n -s $i $tmp_dir

done
idir="-I$tmp_dir"
TEXINPUTS="$TEXINPUTS: $tmp_dir"

dvips $thefile
if [$? -ne 0]

then
echo "Errors encountered while printing $FILE"

fi

if ["x$tmp_dir" !'= "x"]

then

rm -r $tmp_dir

fi
fi
RETURN "0";
END
__
#
Marvel Software Development Environment
#
Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved
#
randomize envelope
#
usage: randomize [AFILE]
#
function: Randomizes the library contained in AFILE.
#

ENVELOPE randomize;

INPUT

binary : afile;
text : history;
OUTPUT

none ;

BEGIN

shortname=‘basename $afile

log=$history
MT=‘arch‘;

echo "randomizing $shortname on ‘date‘"

echo "randomizing $shortname on ‘date‘" >> $log
echo

echo >> $log

echo "ranlib $afile"

echo "ranlib $afile" >> $log
ranlib $afile >> $log
RET_VAL=$7

RETURN "$RET_VAL";

END

. T e i e e i
#

Marvel Software Development Environment
#

% Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

#

replace envelope

#

ENVELGPE replace;

SHELL ksh;
INPUT
text : object; # new object
text : res_file; # old versionable object
text : new_history; # history of new object
text : old_history; # history of old object
QUTPUT
none ;
BEGIN

name=‘basename $object’

echo "depositing $name on ‘date’"

128

echo "depositing $name on ‘date‘" >> $new_history

echo "replacing ‘basename $rcs_file‘ with $name on ‘date‘"
echo "replacing ‘basename $rcs_file‘ with $name on ‘date‘" >> $o0ld_history

This script is used to check in (deposit) code.
It is a simple end to the RCS ci command.

echo '"check in $object [y/n]?"

read ans
lf ["x$a.ns" = uxyn]
then

Get Message from the User

echo "Please Enter a Message:"
read message

if ["x$message" = "x"]
then
ci -u $rcs_file $object
else
ci -m"$message" -u $rcs_file $object
fi

rm -f $object
co $rcs_file $object

echo $name deposited
echo $name deposited >> $new_history
echo $name deposited >> $old_history
RET_VAL=0

else
echo $name NOT deposited
echo $name NOT deposited >> $history
echo $name NOT deposited >> $0ld_history
RET_VAL=1

fi

RETURN "$RET_VAL";
END

129

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

stuff envelope
usage: stuff [AFILE.afile...] [AFILE.history...] [FILE.object_code]

function: This takes all the object codes which belong to a certain
afile and replaces the old library with these objectcodes.

#H H B B R MR R

ENVELOPE update;
SHELL sh;

INPUT

binary : library;
set_of binary : cfiles;
set_of binary : yfiles;
set_of binary : 1lfiles;

OUTPUT

none ;

BEGIN
set -x

object_code="$cfiles $yfiles $1lfiles"
ar rv $library $object_code

RETURN "0";

END
Pttt ————
#

¥ Marvel Software Development Environment
#

Copyright 1991

The Trustees of Columbia University

in the City of New York

All Rights Reserved

&

130

update envelope

#

usage: update [AFILE.afile...] [AFILE.history...] [FILE.object_code]
#

function: This takes all the object codes which have been updated

and replaces their entries in the library.

#

ENVELOPE update;
SHELL sh;
INPUT
set_of binary : library;
set_of text : history;
binary : object_code;
OUTPUT
none ;
BEGIN

set -x

short_obj=‘basename $object_code’
header_obj=‘get_dirname $object_code’

RET_VAL=0
ct="x"
for the_lib in $library
do
his="x"
for the_hist in $history
do
if [$ct -ne $his]
then
his="$his"x
else

shortname=‘basename $the_lib°*
header=‘get_dirname $the_lib‘
MT=‘arch’

log=$the_hist

if [! -f $log]
then

131

touch $log
fi

echo "updating $shortname on ‘date’"

echo "updating $shortname on ‘date‘" >> $log
echo

echo >> $log

echo "ar rv $shortname $short_obj"
echo "ar rv $shortname $short_obj" >> $log

TEMP_FILE=/tmp/update$$
TEMP_FILE_2=/tmp/update_2$$

ar rv $the_lib $object_code >> $TEMP_FILE
update_status=$?

cat $TEMP_FILE | sed s?$header/?? >> $TEMP_FILE_2
cat $TEMP_FILE_2 | sed s7?$header_obj/?? >> $log

if [-f $TEMP_FILE]
then
rm $TEMP_FILE

fi
if [-f $TEMP_FILE_2]
then

rm $TEMP_FILE_2
fi

if [$update_status -eq 0]
then
echo "$short_obj is now archived in $library"
echo "$short_obj is now archived in $library" >> $log
echo
echo >> $log
else
echo archive failed
echo archive failed >> $log

echo
echo >> $log
RET_VAL=1
fi
fi
done
ct="§ct"x

done

RETURN "$RET_VAL";

END

b B et g g
#

Marvel Software Development Environment
#

% Copyright 1991

& The Trustees of Columbia University
in the City of New York

All Rights Reserved

#

view envelope

#

usage: view [FILE]

ENVELOPE view;
SHELL ksh;

INPUT
text : thefile;
QUTPUT
none ;
BEGIN

FILENAME= ‘basename $thefile’

echo
echo Viewing source file in $FILENAME ...

if ["x$EDITOR" = "x"]
then
less $thefile
else
xterm -e less $thefile &
fi
RETURN "0";
END
__

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

viewHist envelope: Views the History for an object.

®H # # # # # & & # R®

ENVELOPE viewHist;
SHELL ksh;

INPUT

text : history;

OUTPUT '
none ;

BEGIN

$PAGER $history

RETURN "O";
END

Marvel Software Development Environment

Copyright 1991
The Trustees of Columbia University
in the City of New York
All Rights Reserved

yacc_compile envelope

usage: compile [YFILE.contents] [YFILE.object_code] [HFILE.contents .
(YFILE.history] {LITERAL}

#H R B T HE R H HEHE R AR

ENVELOPE yacc_compile;

134

SHELL sh;

INPUT
text : thefile;
binary : obj_file;
text : history;
text : ytabh;
set_of INC : 1files;
literal : CCFLAGS;
QUTPUT
none ;
BEGIN

shortname=‘basename $thefile’
dirname=‘get_dirname $thefile’
log=$history

echo "running yacc on $shortname on ‘date’"

echo "running yacc on $shortname on ‘date‘" >> $log
echo

echo >> $log

tmp_dir=/tmp/compile$$
mkdir $tmp_dir

we need to make the -I list
idir=""
if ["x$ifiles" !'= "x"]
then
ln -s $ifiles $tmp_dir
idir="-I$tmp_dir"
fi

echo "yacc -d $shortname"

echo "yacc -d $shortname” >> $log
yacc -d $thefile

yacc_status=$?

echo "cc -c¢ $CCFLAGS y.tab.c $idir -o $shortname"

echo "cc -c $CCFLAGS y.tab.c $idir -o $shortname" >> $log
cc -c¢ $CCFLAGS y.tab.c $idir -o $obj_file

cc_status=$7

echo "rm -f y.tab.c"
echo "rm -f y.tab.c" >> $log
rm -f y.tab.c

Save the y.tab.h file for later use

echo "mv y.tab.h ‘basename $ytabh‘"
echo "mv y.tab.h $ytabh" >> $log
mv y.tab.h $ytabh

if ["x$tmp_dir" '= “x"]
then

rm -r $tmp_dir
fi
RET_VAL=1
if [$yacc_status -eq 0]
then

if [$cc_status -eq 0]

then

echo yacc successful, results available with viewHist
echo yacc successful >> $log
RET_VAL=0
fi
else
echo yacc failed, results available with viewHist
echo yacc failed >> $log
RET_VAL=1
fi

RETURN "$RET_VAL";
END

136

C Porting an Objectbase across different archi-
tectures |

MARVEL can run on different architectures, and there is no restriction on mixing and
matching server with clients. However, once an objectbase is started with a specific
architecture, it cannot be used by other servers with different architecture. (e.g., a Sun
machine cannot run as a server on an objectbase that was initiated by a Dec station),
due to binary incompatibility. In order to resolve this problem, MARVEL provides
two complementary external utilities: bin2ascii and ascii2bin. bin2ascii trans-
forms the objectbase from binary to ASCII representation, and ascii2bin does the
opposite.

The procedure for changing the objectbase from one (the source) architecture to
another (the target) architecture, is as follows:

1. run bin2ascii on the source machine. This will produce an ASCII file with a
representation of the objectbase.
Invocation:
bin2ascii [-i infile] [-o outfilel
where:

e -i infile specify input filename (default is data/objectbase)

¢ -0 outfile specify output filename (default is data/objectbase.ascii)

[S™)

. run ascii2bin on the target machine. This will produce the binary format of
the objectbase that is acceptable by MARVEL .
Invocation:
ascii2bin [-i infile] [-o outfile]
where:

e -i infile specify input filename (default is data/objectbase.ascii)

e -0 outfile specify output filename (default is data/objectbase)

Note, that if the strategy file (which contains the data-model) is changed, then both
utilities will not work properly, as they interpret the data based on the data-model
(the schema).

137

References

1]

2]

~[3]

[4]

[7]

18]

[9]

[10]

[11]

Naser S. Barghouti. Concurrency Control in Rule-Based Software Development
Environments. PhD thesis, Columbia University, 1991.

Naser S. Barghouti and Gail E. Kaiser. Implementation of a knowledge-based
programming environment. In 2Ist Annual Hawaii International Conference
on System Sciences, volume II, pages 54-63, Kona HI, January 1988. [EEE
Computer Society.

Naser S. Barghouti and Gail E. Kaiser. Modeling concurrency in rule-based
development environments. [EEE Erpert, 5(6):15-27, December 1990.

Naser S. Barghouti and Gail E. Kaiser. Multi-agent rule-based software de-
velopment environments. In 5th Annual Knowledge-Based Software Assistant
Conference, pages 375-387, Syracuse NY, September 1990.

Israel Z. Ben-Shaul. An object management system for multi-user programming
environments. Master’s thesis, Columbia University, April 1991.

Naser S. Barghouti Gail E. Kaiser and Michael H. Sokolsky. Experience with
process modeling in the marvel software development environment kernel. In
Bruce Shriver, editor, 23rd Annual Hawaii International Conference on System
Sciences, volume 11, pages 131-140, Kona HI, January 1990.

Peter H. Feiler Gail E. Kaiser and Steven S. Popovich. Intelligent assistance for
software development and maintenance. [EEE Software, 5(3):40-49, May 1988.

Peter H. Feiler Gail E. Kaiser, Naser S. Barghouti and Robert W. Schwanke.
Database support for knowledge-based engineering environments. IEEE Ezpert,
3(2):18-32, Summer 1988.

Naser S. Barghouti George T. Heineman, Gail E. Kaiser and Israel Z. Ben-Shaul.
Rule chaining in MARVEL: Dynamic binding of parameters. In 6th Knowledge-
Based Software Engineering Conference, pages 276-287, Syracuse NY, September
1991. Rome Laboratory.

Mark A. Gisi and Gail E. Kaiser. Extending a tool integration language. In
Ist International Conference on the Software Process, Los Angeles CA, Octo-

ber 1991. In press. Available as Columbia University Department of Computer
Science CUCS-014-91, April 1991.

Gail E. Kaiser Israel Z. Ben-Shaul and Naser S. Barghouti. An object-oriented
framework for rule-based development environments. In ECOOP/OOPSLA
‘90 Workshop on Object-Oriented Program Development Environments, Ottawa,
Canada, October 1990. Position paper.

138

[12] Gail E. Kaiser and Peter H. Feiler. An architecture for intelligent assistance in
software development. In 9th [nternational Conference on Software Engineering,
pages 180-188, Monterey CA, March 1987. IEEE Computer Society.

[13] Michael H. Sokolsky and Gail E. Kaiser. A framework for immigrating exist-
ing software into new software development environments. Software FEngineering
Journal, 1991. In press. Available as Columbia University Department of Com-
puter Science CUCS-027-90, May 1990.

139

