MpD:
A Multiprocessor C Debugger

Krish Ponamgi -
Columbia University
Department of Computer Science

September 16, 1991
\S Thesis

©1991. Krish Ponamgi
CUCS-024-91
All Rights Reserved

Thesis Committee: Gail E. Kaiser and Colin G. Harrison

Abstract

MpD is a multiprocessor C debugger designed for multithreaded
applications running under the Mach operating system. MpD is built
on top of gdb, an existing sequential debugger. The MpD layer utilizes
the modeling language Date Path Ezrpressions developed by Hseush
and Kaiser. to provide a rich set of commands to trace sequential
and parallel execution of a program. Associated with each DPE are
actions that allow access to useful trace variables and 1/0 facilities.
DPEs are useful for describing sequential and concurrent patterns
of events, to be verified during execution. The patterns include
conditions such as synchronization. race conditions. and wrongly
classified sequential/concurrent behavior. \We show in this thesis
Data Path Expressions are a viable language for multiprocessor de-
buggers.

“Ponamgi was supported in part by IBM.

Contents

1 Introduction 3
2 Related Work 5
3 Background 10
4 Overview of Implementation 18
1.1 Gdb Integration o oo 21
1.2 DPE Language Seto 25
1.3 Predecessor Automata Construction« o 32
4.4 Recognizer Construction« .o« 36
5 Using MpD to Debug Two Concurrent Applications 39
5.1 Application 1: Parallel Logic Simulator 39
5.2 Application 2:- Grobuner Basis ..« oo oo e 42
6 Evaluation 44
7 Conclusion 47
8 Acknowledgements 48

1 Introduction

Developing software for multiprocessor architectures is an arca of active
research. In part. this elfort is fueled by the speculation that as uniproces-
sors push the limits of semi-conductor techuology to the sub-micron range,
device-physics will place a barrier on maximum gate switching speeds. This
ultimately will result in single processors reaching a peak performance rate.
Experts currently estimate this to be in the range of 100-200 MIPS (millions
of instructions per second){13]. Multiprocessors, however, have a much
weaker restriction; theoretically. the number of processors inter-connected
to solve a problem is constrained only by physical connection limits[24]. So
once uniprocessors reach their maximum speeds, thev can be connected to
form larger more powerful machines with at least an order of magnitude
better performance. Several examples of such networked multiprocessors
are the Connection Machine, the BBN Butterfly, and the Encore Multi-
Max.

Although parallel computation via multiprocessors has been success-
fully applied to a diverse number of problems such as meteorology. high
energy physics, turbulence modeling, and CAD/CAM, software technol-
ogy on the whole has been lagging behind hardware in fully exploiting
the new architectures{9]. The software can be divided into two calegories:
application-oriented and system-support oriented. For applications to be
developed quickly and efficiently, svstem support is necessarv. Currently.
however, parallel system support facilities are quite poor. Operating sys-
tems are still largely prototype; parallel languages and their compilers are
still experimental; and debugging facilities are almost non-existent for par-
allel environments.

This thesis addresses the issue of multiprocessor debugging and puts
forth a solution. A multiprocessor debugger, MpD, along with its imple-
mentation details, will be described. We believe it is a useful software tool
to deal with issues of programming in a parallel environment. To begin
the discussion, some of the general issues of debugging are presented.

Debugging on sequential machines is relatively well understood and
there exist several excellent debuggers for this purpose (sdb, dbx, etc.).
The key concept in sequential debugging is that, at any given time. only
one execution flow exists. As a result, during execution. one can completely
order the sequence of program events (assertions that designated points in
the source code have been reached) and each segment of code has a well-
defined execution time relative to any other segment. Even code segments

involving loops and recursion have a single execution stream and are unai-
fected by each other’s execution times. Similarly branching and transfers
of control flow fit predictably into the single execution streain. So to collect
all relevant execution data. including ordering of events. the scquential de-
bugger simply latches onto the single thread of execution{13]. The amassed

data can be presented serially to the user. providing an accurate. perhaps
voluminous. description of the program behavior.

A complete trace of a sequential debugging session would reveal an
ordered list of statements executed - i.e. program events. This tracc,
however. could be thousands of lines long, making it difficult to read let
alone understand. Even establishing an ordering on “interesting™ portions
of it could be tedious since on most debuggers this is accomplished by the
user single-stepping through the region to determine the execution flow.

122 for (x= 0: x < MAXCOUNT; ++x)

123 {
124 do_action(x);
125 }

For example. in the program [ragiment involving a loop statement above.
rather than iterating through cach step of the program, it would be conve-
nient to specify line 124 is executed NIANXCOUNT times or an arbitrarily
number of times sequentially using an abstract syntax. Suppose we denote
the latter as 124°. Being able to succintly describe each type or group of
program events can help the user quickly get a feel for program behavior.
The user can use the abstract syntax to describe potential execution be-
havior which the debugger attempts to verify. Since the descriptions are
easily constructed, modified, and compiled, the debugging process is accel-
erated. Bruegge has shown the usefulness of this approach in his thesis[3]
on path expressions. He has a number of operators which model behavior
such as selection, repetition, and sequencing.

Bruegge’s work applied path expressions to model sequential execution
of a program. So, for example, there was no operator to model line 124 in
the above example executing concurrently. In general, concurrent execu-
tion implies multiple threads of control flow. Events occurring in different
control threads are not constrained to a particular execution ordering; they
can, in fact, occur asynchronously with respect to each other. The actual
execution sequence of such events is unpredictable and may change with
each execution of the program with the same inputs. So a parallel debugger
has to cope with a variable execution stream and present this as a coherent

picture the user can understand. The command language of the parallel
debugger also has to have the expressive power to model common “hugs”
of parallel programming.

Concurrency-related bugs often involve synchronization problems
among multiple threads sharing information[17]. These typically manifest
themselves in programs as race conditions, deadlocks. livelocks and star-
vation. A debugger for a parallel environment does not necessarily have to
run in parallel itself to recognize these errors. Instead. it necds to be able
to gathher events from the different processors and analyze their behavior
to catch such errors. To model inter-dependencies properly, the debugger
needs to examine the usage of semaphores, shared memory. message pass-
ing, locks, and conditional wait mechanisms. A multiprocessor debugger
needs to peer into the run-time details as well as know what statements
are executed.

The multiprocessor debugger, MpD, we describe deals with these issues.
[t implements the event modeling language Data Path Exppresions. devel-
oped by Hseush and Kaiser[15}, on top of an existing sequential debugger,
gdb. The work was done on an experimental multiprocessor the IBM SCE.

2 Related Work

A number of approaches have Leen suggested to deal with these issues. One
method taken by Peter Bates and Jack Wileden[3] relied on event-based
behavioral abstraction of a parallel program. Their idea was to describe
expected program events in a high-level language that would be compared
against events generated during actual program execution. Their approach
was similar to Bruegge's except for their “shuffle automata™ which they
implemented for recognizing patterns in the event stream.

Shuffle automata are a finite state machine-like formalism for describ-
ing event sequences for recognition purposes. The input alphabet to the
shuffle automaton is the set ol program events to be recognized in a de-
scribed ordering. The shuffle automaton is composed of a set of states and
a transition control mechanism that controls the state movement from an
initial state to a (possibly) final state based on the input events. Tran-
sitions between states are made if the input symbols match exactly the
transition symbols. The fundamental difference between shuffle automata
and finite state automata (FSA) is that sets of input events, rather than in-
dividual symbols, form the input alphabet. By examining sets as opposed

U

to individual svmbols, Bates uses o simple mochanism o model cononrs

rency. Shuifle automata, in addition. are capabic of describing the usnal

sequential behaviors: scquence, iteration, and zelection.

The shuflle automata of sequential, repetition. selection. and concurrent
patterns are given in Figure 2.1.1. They are the basic blocks from which
more complicated. nested automata can be created.

®{e1} O{en} O >---{%}>®

Sequential

ey eo..iep

{eq}

Repetition with nul

{e4
Aepetition without null

Selection

{e4}

{e)}

{en)

e{+eo+..+ €

Concurrent

@ (e e27en) @

e1& er &.&ep

Figure 2.1.1: Shuffle Automata

The weakness in this approach is that events that are deseribed as
concurrent may actually be interleaved due o implicit svuchronization.
Furthermore, there is no way 1o test for the difference between interteaving
and concurrent c¢xecution. By interleaving. we mean that events ¢; and ¢-
occur in the context of different threads T, and 7, respectively. but due
to implicit or explicit synchronization, perhaps via semaphores. they may
actually occur in a sequential manner. A typical example of this situation
is 1/O serialization on a multiprocessor. Independent threads attempt to
do an I/O operation. but since there is single I/O channel each must wait
in turn - a problem we encountered on the SCE.

The end result of this is that users can describe interleaved expressions
as concurrent and the shuffle automata cannot catch the error. Clearly
this is not a satisfactory solution. In our implementation of MpD, we deal
with this situation—in fact, this exact scenario was the initial motivation
for our research. Our solution utilizes an additional piece of information
in describing event relationships. Each event has associated with it a pre-
decessor event. An event's predecessor is simply the last event occurring
prior to this current event. Lor instance, in the expression e;:€3;¢3 the
event predecessor to e; is €, and for e3 it is €;. The event ¢;. however. is
an original event since there are no events specified prior to it. The more
complicated cases of this predecessor relationship, especially those involv-
ing concurrency. will be discussed in section 4.3. Basically. in our solution,
by determining an event's relationship with its predecessor, we can decide
whether the current event fits the execution pattern described by the user.

Another parallel debugger project addressing some of these same issues
is the Amoeba debugger developed by I.J.P. Elshoff[11]. It operates under
a distributed operating system similar to our own (Mach). In the Amoeba
environment, a program is a collection of clusters that interact with their
environment through messages. A cluster is composed of an address space
and a collection of threads called tasks. The address space is a collection
of contiguous blocks of memory, called segments, which have assigned to
them specific access rights with respect to threads.

The Amoeba debugger is composed of three layers. The bottom level
monitors the behavior of the program being debugged and generates events
for the debugger when appropriate. An event is a 4-tuple identifying event
type. the identity of the task generating the event, the capability of the
cluster containing the task, and the arguments (possibly none) of the event.
The arguments depend on the event type: for events related to message
passing, the argument is the header and body of the message; for semaphore

events it is the name of the semaphore; for segment management events.
it is the capability of the scgment in question and so on[11}.

Sitting above the monitor is a layer of tasks, one for each cluster in the
target. Each task is called a correspondent: it receives streamns of events
from the corresponding cluster in the target program and functions in part
as a pattern matcher.

At the top-most level is the user interface. The user can examine aud
control individual clusters and tasks, as well as deal with the target pro-

gram as a whole (e.g.. make checkpoints or initiate 1/0).

The portion of the Amoeba debugger that is of main interest to us is
the filter/recognizer. The filter and recognizer work together to recognize
patterns in the event stream generated by the monitor. A pattern consists
of zero or more events fashioned together by logical operations (i.e., con-
junction. disjunction, negation, etc.) from primitive patterns. The filter
removes “noise” or irrelevant events as specified by the user. and the rec-
ognizer attempts to analyze the incoming data stream. The recognizer has
the basic FSA operators and a permutation operator. For example, “{a b
c¢]” means the primitive events a, b, and ¢ can appear in any order, and is
equivalent to “(abc + acb + bac + bca + cab + cba).””

Using permutations to deal with concurrent events is again insufficient,
Like the Bates-\Vileden method, there is no mechanism to differentiate
interleaving from true concurrency. Synchironization done implicitly or
explicitly can cause parallel threads to execute in lock-step fashion. The
Amoeba debugger cannot detect this situation. It only allows users to
verify that all events in the concurrent threads have been executed identical
to the shuffle automata method.

Moreover, although the Amoeba debugger reads the arguments to an
event, it does not make full use of their information. In our system when
we read the arguments of certain system calls, we check to see if these
calls are used improperly. This technique, for example, helps us detect
deadlocks and identify in the source code the origins of the locking cycle.

The Durra debugger developed by Dennis Doubleday took a slightly
different approach to parallel debugging{10). Debugging is seen as an ap-
plication monitoring activity in addition to providing bhasic breakpointing
facilities. The Durra approach stems from the stress placed on message
passing in the programming environment. The debugger’s monitoring fa-
cility provides useful services such as monitoring ports to identify the origin
of messages. We incorporated this idea into MpD. The Durra debugger had

many of its services intimately linked with its environment. 'I'he lancuace
for application development in the Durra environment provided the heces-
sary facilities to do monitoring type debugging. The Durra language had
built into it debugging facilities to directly provide a debugging monitor
messages about its executing state. This was achieved by passing messages
to a debugging message port.

Since in our system we could not alter the C language, hence the C-
compiler, we chose to provide the monitoring activities by creating an in-
terface to some of the standard system and library calls. In our svstem the
usage of these routines via the interface was analyzed for correctness. MpD
also provides means to specify interesting relationships among breakpoint
events, an aspect the Durra debugger ignored.

The Parasight debugger[22], in some respects, is also a language spe-
cific/constrained debugger. Its approach is to insert “parasites” into the
application source code to directly monitor execution state. The parasites
execute as independent threads on spare processors to check assertions.
The assertions can range from indicating points in the execution have heen
reached to time stamps of actual events. The modification of code gives
more detailed information about the program, but carries the penalty of
extra overhead. The basic idea of this approach is to give accurate descrip-
tions of the program at each parasitic incursion. The relationships between
these snapshots is not considered. This is a fundamental weakness we ad-
dressed.

Generally most multiprocessor based debuggers take the Parasight or
Durra approach. Their scope of use is for low-level mechanisms such as
halting threads in a consistent state, restarting a specific thread, and cap-
turing a single snapshot of a multithreaded program. These facilities are
essentially the equivalent to those found in a sequential debugger. Our
interest is at a higher level, since we are interested in establishing rela-
tionships among these low-level events. Furthermore. we are interested in
~automated debugging” where the user has only a vague notion of where
the program is incorrect but the debugger, by examining the programs
system usage and parameters to functions, detects the exact error. The
information from these conditions indicates the true state of a program’s
concurrent environment.

The multiprocessor C debugger outlined here, MpD, attempts to address
these issues. The MpD system is built on top of an existing sequential C
debugger, gdb, and it too takes an event-based approach but it does not
consider event patterns. The debugged program is viewed as a generator

of interesting events. Au event in our system is a 3-tuple: the event type
(usually line number reached). the thread it belongs to, and its (optional)

arguments.

Our debugger technology consists of two main components, a debugger
command language called Data Path Expressions (DPEs) and a mechanism
called Predecessor Automata (PAs) for recognizing the runtime behavior
described by DPEs. The programmer specifies a set of DPEs representing
patterns of concurrent events (desirable or undesirable) that might happen
during program execution, and the debugger generates the corresponding
PAs to recognize these patterns. During the execution, the actual event
stream is compared against each PA.

DPEs were inspired by the Generalized Path Expressions developed
by Bruegge and Hibbard for debugging sequential programs written in
Ada or Pascal[5]. DPEs are essentially regular expressions over program
events, but with a concurrency operator, indicating causal independence,
added to the regular expression notation. The DPLs also have a concurrent
repetition operator which was not implemented and cannot be recognized

by Pr\S.

The PAs are analogous to FSAs, which recognize regular expressions,
but in PAs each transition is labeled with both a program event and its
relationship with its immediate predecessor. Thus while FSAs can recog-
nize only totally ordered streams of events, PAs can recognize partially
ordered streams and, most importantly, distinguish between causally de-
pendent versus causally independent events (those that are interleaved in
their arrival at the recognizer but not while in progress).

The remaining sections of this thesis details our solution. We begin
with the background of our system: the Mach operating system, gdb, and
the 8CE multiprocessor. Then an overview of the solution is sketched. A
detailed look of the implementation is then described. Then follows the
system evaluation and conclusions.

3 Background

The Mach operating system was the environment in which MpD was devel-
oped. Mach was developed at Carnegie Mellon University for multipro-
cessing and distributed systems, and is compatible with the 4.3BSD Unix!

!Unix is a trademark of AT&T Bell Laboratories.

107

operating system. The Mach environment provides four fundamental com-
puting abstractions|2]:

¢ A TASK is the execution environment and is the basic unit of resource
allocation. It includes a paged virtual address space and protected
access to system resources such as processors and ports.

¢ A THREAD is the basic unit of execution. It consists of an execu-
tion stack, a processor state including program counter and hardware
registers, and a himited amount of static storage. A thread shares
memory and resources with all other threads executing in the same
task. A thread can only execute in one stack.

¢ A PORT is a channel of communication between tasks or threads. a
logical queue of messages protected by the kernel. Send and receive
are primitive operations of a port.

e A MESSAGE is a typed collection of data objects used in communi-
cation between tasks or threads on ports.

Mach splits the traditional notion of a process into the task and thread
abstractions. All threads within a task share the address space and com-
munication rights of that task{2], that is access to the ports available to the
task. A familiar Unix process would consist of a task with a single thread
of execution. So a task, in effect, provides the environment in which the
threads execute the program.

To facilitate easier use of the task/thread abstractions for C program-
ming, Mach provides a cthreads interface. A cthread is a C function forked
similar to a Unix fork() call. The following program shows several cthreads
being created from the function rtn() using the routine cthread fork().
A Mach programmer can use the cthreads library to create, execute, and
manipulate threads rather than deal with low-level system calls. The con-
structs serve a similar purpose as to those found in Mesa or Modula2 -
namely, forking and joining threads, protection of critical regions with mu-
tex variables, and synchronization by means of condition variables(8].

11

/% Program calculates 275 + 375 + 475 + 575 on four separate threads */

#include <cthreads.h> + Cthreads include file ¢/
mutex_t pr_lock;
int final_value, val: .12, val3, val4, values([3];

static void

rin(ret_val) /+ - -.tion being cthread_fork’ed s/
int sret_val;

{

int ctr;

mutex_lock(pr_lock);
printf("Thread: %d.\n\n", ret_val[2]-1);
mutex_unlock(pr_lock);
for(ctr= 0; ctr < ret_vall1l}: ctr++)
{
ret_val[0] *= ret_val[2]):
cthread_yield(); /* hint to scheduler we can yield =/

}

main()

{

cthread_t t1, t2, t3, t4;

setbuf(stdout, NULL);
cthread_init();
pr_lock = mutex_alloc();
/* create 4 cthreads by forking function s/

values[0]) = 1; values[1] = 5; values[2] = 2;
t1 = cthread_fork{ rtn, values);

vall = values{0]}; values{2] = 3;

t2 = cthread_fork(rtn, values);

val2 = values[0]; values{2} = 4;

t3 = cthread_fork{ rtn, values);

val3 = values[0]; values[2] = §5;

t4 = cthread_fork(rtn, values);

val4q = §;

cthread_join(ti); /* join the cthreads after execution »/
cthread_join(t2);

cthread_join(t3);

cthread_join(t4);

final_value = vall + val2 + val3 + val4;

printf(*2°5 + 3°5 + 4°5 + 5°5 = Yd.\n", final_value);

Program 1: Basic Cthreads Example

Task communication in Mach is implemented by the port and message
abstractions. Each task has assigned to it a receiving port, and messages
sent to it can be viewed by authorized threads executing within that task.
Threads can send messages to a port whenever the task they belong to has
sending rights registered for that port. This communication facility is the

12

basic building block by application and system level message communica-
tion takes place; in fact. it is also the underlying mechanism for the Mach
exception handling facility.

Exceptions are synchronous interruptions to the normal flow of program
control caused by the program. Exceptions include illegal accesses (hus
errors, segmentation. and protection violations), arithmetic errors (over-
flow, underflow, and divide by zero), and hardware instructious intended
to support emulation. debugging. or error detection [4]. Hardware excep-
tions cause traps into the operating system; the system handles certain
exceptions transparently (e.g., recoverable page faults). but the remaining
exceptions are exported to the user by the operating system’s exception
handling facility[4).

Low-level debugging in Mach is implemented via exception handling,
using an extended version of the Unix ptrace() system call. The Unix plrace
is primarily used for implementing breakpoint debugging. A debugger. such
as gdb, forks a child process (task + threads) to be traced and controls
its execution with ptrace. setting and clearing breakpoints by modifying
object code (explained fully in section 4.1), and reading and writing data
in its core image. Tracing amounts to synchronizing with the debugged
application and controlling its execution, which includes examining and
setting its virtual address space. Essentially the operating system allows
the parent process complete access to its child’s address space.

if ((pid = fork()) == 0)

{
/* child -- being traced */
ptrace(0, 0, 0, 0);
exec("name of traced process here");
}
/* debugger -- controls child */
for(;;)
{
wait((int *) 0);
read(input for tracing instructions);
‘ ptrace(cmd, pid,...);
if (quitting trace)
break;
}

Figure 3.1: Debugger Pseudo-Code

13

‘I'he psendo-code in figure 3.1 shows the typical structure ol a debuguer
program. The debugger forks a child, which invokes the plrace system
call requesting special treatment from the kernel. The kernel sets a trace
bit (STRC) in the child process table, indicating the child is being traced.
The child then erecs the program being traced, basically tells the operating
system to begin execution overlaying the child’s address space at the ezec
point. The kernel executes the erec call in the usual manner, except at
the end when it sends the child a “trap” signal due to the trace bit being
turned on. After returning from ezec, the kernel checks for signals. The
trap signal it sent itself and any other signals—generated by either the user
or program exceptions—are processed by signal handlers. The trap signal
merely becomes a special case of the general signal handling facility.

The child process. after returning from exec. sees its trace bit is on
and proceeds to awaken its parcnt via the wail system call. L thien enters
a special trace state similar to the sleep state and does a context switch.
The parent (debugger), once awakened by its child (the traced application),
reads user input commands and translates them into the appropriate plrace
calls to control the child. The syntax of the ptracesystem call is ptrace(cmd,
pid. addr, data). The parameter cmd specifies various commands such as
reading data, writing data, resuming execution and so on: pid is the process
ID of the traced process; addr is the virtual address (including register) to
be read or written in the child process; and data is an integer value to be
written.

When executing ptrace, the kernel verifies that the debugger has a child
whose ID is pid and that the child is in the traced state. It sets up a global
trace data structure to transfer data between the two processes. The trace
data structure is locked while cmd, addr, and data are copied to prevent
other tracing processes, such as another copy of the debugger, from over-
writing it. The kernel then revives the child, puts it into the ready-to-run
queue, and sleeps until the child responds. When the child resumes execu-
tion (in kernel mode), it does the appropriate trace command, writes its
reply into the trace data structure, then awakens the debugger. Depending
on the command type, the child mayv reenter the trace state and wait for
a new command or return from handling signals and resume execution.
When the debugger resumes execution, the kernel saves the return value
supplied by the traced process, unlocks the trace data structure, and re-

turns to the user. So essentially ptrace based debugging provides the ability
to

o Access the application’s registers and memory.

14

o Read kernel information such as exceution status about the applica-
tion.

o Continue or single step the application via object code modification
(section 4.1).

o Scnd signals (such as KILL) to the application.

The MpD system was written on top of a version of gdb developed by
Deborah Caswell and David Black to run specifically under Mach (7). The
Caswell-Black version of gdb implements the ptrace/debugger extensions
needed to deal with multithreaded programs.

Vanilla gdb!23] running in a normal Unix single execution-thread cn-
vironment lacked several key feetures. Basically, the debugger laclied the
internal data structures and process control logic for tracking and con-
trolling the states of multiple threads. Furthermore, the standard Unix
utility to trace and control a child process. ptrace, was inadequate becausc
it implicitly assumed only one application thread.

PTRACE race
+ Continue
SUSPEND

Exception
Clear

Figure 3.2: Application Threads State Diagram

The Caswell-Black gdb. henceforth referred to simply as gdb, dealt
with these low-level thread control problems. It has enhanced thread con-
trol logic and an extended ptrace to handle individual threads in a task.
Gdb interacts with the operating system to recognize multiple threads in a
single task as does the enhanced ptrace. It also bases actions on exception
handling; each exception gencrates a message that identifies its originating
thread and task. Any exceptions not handled by the application-specific
exception handlers, are sent to gdb’s exception port. Then gdb, when
awakened bv the child (the debugged application), checks its exception
port to read the status of its child. Concurrent exceptions (e.g., multi-
ple threads hitting breakpoints simultaneously) are simply converted into
multiple messages, a distinct advantage over the standard Unix paradigm
where they become signals that are serialized. At this point. gdb merely de-
queues the messages at the exception port and can determine the complete
state of its traced application. In an interrupt based environment cach
signal would casuse the state to be saved, resulting in significant stack
overhead.

Figure 3.2 describes the process control logic emploved by gdb. It
should be noted that the Mach suspend and resume mechanisms are based
on reference counts (e.g., a twice suspended thread must be resumed twice).
Also, task and thread mechanisms are connected; a thread may run only
if both it and its task are not suspended.

A quick summary of the diagram (the detailed explanation of this dia-
gram is found in the Caswell-Black paper) is that initially all application
threads are in the run state. Exceptions move the application to the exc
state, whereas a Unix signal moves the application to the ptrace state.
Usually exceptions are caused by program errors (divide by zero. invalid
memory reference, and etc.) whereas signals are messages (timer clock
finished, thread received asynchronous input, and etc.). In the exc state
all threads are suspended, putting the application in the ezc + suspend
state. Once these exception messages are cleared, the debugger moves to
the suspend state waiting for user manipulation. Similarly, in ptrace, sus-
pension of threads places the application in the ptrace + suspend state,
and clearing the signal moves it to the suspend state. In the suspend
state, the user specifies which threads should be resumed and arranges for
the application to move back into the run state. A resumption can be a
complete continue or simply a single step of one thread.

Mach and gdb were ported by Charlie Perkins to the IBM S8CE
multiprocessor{12] which was the hardware platform for the MpD debug-

16

ger. A complete SCLE machine consists of eight processing clements, cach
with an RT ROMP 125 CPU and $MB local memory, and a 16MB global
shared memory. The eight processing elements share a fast inter- processor-
communication bus that can access the global as well as the local memories
of each processor. A local memory reference takes longer to resolve; if a
particular location is frequently referenced it is pinned to shared memory.,
An IBM RT 125 acts as a {rontend to the SCE, providing all /0 facilities

[12]. Mach maintains a single global execution queue in shared memory
and threads are dispatched to a free processor. The RT frontend also runs
Mach and uses a server process on a specialized AT bus to communicate
with the SCE. The diagram (Figure 3.3) below shows the hardware scheme.

ACE KCST

o g) 404

p——
_AT-EXT

ACESWS ATACVR

L AT + BUS]

n ™ Puulf:.uhcn . 1
Athite .

| IPC BUS (30 Mbyisefoac)]

Shusd | use bpd
Mimery Ads Dia

100 M byl /sae

Figure 3.3: 8CE Hardware Organization

Gdb running on the SCE under Mach uses the master/slave paradigm.
One gdb execution image runs on the master processor and it controls the
application via the operating system primitives explained earlier. The ap-
plication runs in normal fashion, except wherever a breakpoint is inserted,
the object code of the corresponding thread is modified. Since the code
is shared among threads, inserted breakpoints affect all threads executing
that portion. So as the threads of an application migrate to the various

17

processors. the breakpoint assertions encountered are reported to the de-
bugger via software traps. The dubugger gains control over the application
via these traps and suspends the execution of the relevant threads. Sim-
ilarly restarting a thread involves removing or disabling the active break-
point and designating the thread as executable. Part of the work done
by Caswell and Black was to add a mechanism to single out threads for
manipulation.

This describes the complete background for the development of MpD.
The Mach operating system abstractions and handling of distributed com-
putation was extremely convenient. It had in place the mechanisms to
develop parallel programs quickly and easily. The operating system pro-
vided a robust, friendly programming environment. The SCLE also was a
valuable machine, since it was a hands-on multiprocessor. It had several
serious bugs which we will explore, but overall was a useful machine.

4 Overview of Implementation

To a large extent, debugging on a multiprocessor means being able to track
multiple concurrent threads and present their actions in an understandable
user interface. This is essentially a problem of modeling the program’s ex-
ecution flow. In our environment. a program begins with a single thread
of execution, which can fork into a finite *bundle” of independent concur-
rent threads. Each child thread is capable of continuing the forking in a
recursive manner, possibly causing an exponential branching of the orig-
inal execution stream. We define a set of events {e;, ez, €3,...}, each in a
separate thread {T\,T3,73,...}. concurrent if and only if no ordering can
be placed on their execution sequence with respect to each other. That is,
whenever events are concurrent, we mean they are causally independent,
not necessarily actually unrelated. Thus, events in concurrent threads can
occur simultaneously on different processors or sequentially in any permu-
tation on a shared processor. A program event stream is recursively defined
to be finished when every one of its child threads ceases to be active.

For an example, we refer back to the earlier Program 1 on page 11-
12. The program creates four separate Cthreads to compute a final value.
Each cthread has a separate instantiation of the function rtn(). In each
of these run-time copies (the object code, remember, is shared) the main
computation, done within the for-loop, is completely independent of any
other thread and thus executes concurrently. However, the initial printf ()

18

contains a lock to serialize [/O (necessary on our machine since the RT
frontend handled all I/O). MpD detects this causal dependence and warns
the user with message indicating the threads executing have a dependency.
The user can choose to ignore the warning statements. or instruct the
debugger to disregard synchronizations involving a particular lock variable
by using the skipon command - pr_lock in this case.

Timely event generation is of fundamental importance to the debugger.
Users describe abstractly by the Data Path Expression (DPE) notation
how they believe the program executes; these DPEs are translated by gdb
into specific breakpoints by gdb (shown by the lines from DPE parser to
GDB) which indicate when an event has occurred. A breakpoint is simply
an interruption to the normal execution of a program whenever a specified
condition is matched[17]. The conditions allowed by MpD are the same as
those allowed by gdb. These include a trace variable reaching a prescribed
value, a specific program line being reached. an if-condition being satisfied.
and a monitored function being entered. For a single thread of execution,
breakpointing is straightforward since multiple conditions are never satis-
fied simultaneously. Concurrently executing threads. however, complicate
breakpointing by not only satisfying conditions simultaneously but also by
passing information between them. Thus, the interrupt mechanism control-
ling a task with concurrent threads needs to recognize explicit concurrent
breakpoints as well as those resulting from threads sharing information.
Moreover, the breakpointing mechanism should be thread-specific. It is
unnecessary to suspend all threads executing within a task, only those
affected by the breakpoint should be stopped.

So we can say the basic goal of the MpD debugger is to compare actual
concurrent execution of a program against the user’s imagined model. To
achieve this goal, MpD’s implementation was broken down into several parts.

The initial step was gdb integration. In its original state, gdb did
not work in the Mach environment on the RT and 8CE hardware. The
various malfunctions, it was discovered, were due to compiler symbol table
incompatibilities and kernel problems.

After getting basic gdb working, the second step was to specify a lan-
guage set for the DPE recognizer. The set chosen was a subset of the DPE
hierarchy powerful enough to model “safe concurrency”{15] and limited
enough to reflect the finite resources of the development system.

The language chosen dictated the development of the Predecessor Au-
tomata (PA) and modeling power of the Recognizer. It also dictated the

19

specifics of the DPE parser. For each DPE specified, the parser construcis
the corresponding predecessor automata. lu addition, it attaches actions to
the breakpoints wherever indicated. Several dyvnamic structures are created
during execution to do resource monitoring (lock usage, message passing.
and etc.) apart from DPE verification. Figure 4.1 shows the system.

DPEs+Actions report to users

A

construct Predecessor
DPE Parser | - Automata
Recognizer
insert breakpoints eport breakpoints
Y halt
¥ status
| D Program
GDB Executlion
control
execution

Figure 4.1: MpD System

The final phase involved building the Recognizer and linking it to the
rest of the system. The Recognizer’s function is to traverse the PA to see if
the input event stream cause the PA to enter a final state. It also analyzes
the program execution and gives a number of useful statistics about each
trial run. While creating each of these portions, the user interface was
developed. An on-line manual system was implemented for the system.

This was the logical breakcown of the problem. One of the early prob-
lems with this approach, however, was that the initial step took quite a bit
more time than expected. The gdb-related bugs took a significant amount
of time to track down. The fix in each case was not as difficult as identify-
ing the originating circumstances. The end result of this was that a bit of
each portion of the system got worked on rather than orderly completion
of one segment after the other.

20

4.1 Gdb Integration

There were three major problems with gdb on the SCE. Two of these were
related to the symbol table generated by the compiler and the third was a
hardware bug that was specific to the SCE.

Gdb in its original state was unable to read the compiler’s symbol table.
The symbol table format gdb expected was the standard Common Object
I'ile Format (COFF), but the hc2? compiler generated a variation from it.
As an aside, the hc2 compiler was used instead of the standard C-compiler
(cc), because on the RT-125 Mach system cc produced floating point errors.

Refen Koh did the initial work in rewriting the symbol table reading
utilities of gdb. Basically, in each data section of an object file. the virtual
address of the variables was incorrectly computed. T'he fix was to initialize
the offset pointer in some locations and to calculate an offset in other
locations; this was a bit tricky to implement because the code was scattercd
across several large files with little documentation explaining the address
arithmetic.

The second symbol table problem was also memory related. In this case
the wrong address was being computed for all local variables in functions.
This problem surfaced in two instances.

[t was noticed that any time a local variable was accessed in the debug-
ger, gdb would look at the address of the local variable plus an offset. The
offset in each case turned out to be the size all the local variables occupied.
So for example if a function had a single local integer variable, any time gdb
referenced that variable (suppose the user requested to print the contents
of the variable) gdb would look in the address of the variable plus four for
the variable. The offset is four because an integer occupies four bytes on
the SCE. This additional offset is of course wrong; gdb should simply look
at the address of the variable. This behavior was due to the hc2 compiler’s
peculiar symbol table format because the standard C-compiler. cc, had no
such problem.

The solution implemented for the problem involved reading the brack-
ets “{}" of a function. Any time an open bracket *{” was read, a [lag
indicated how much of the local memory was used within the block. With
the amount of space computed, the offset was used to correct the locations
gdb had for the local variables. This patch works for functions without
multiply embedded blocks declaring variables; a single block declares all

?The he¢2 compiler is a trademark of MetaWare from Palo Alto, CA.

21

local variables used in the function.

Local variables in functions under two circumstances stll cause prob-
lems. The first is when within a body of a function. a call to another
function is made (could be itself). If the argumenus associated with that
function occupy more memory than four integers, the local variables in
the caller function are erroncously computed by gdb. This is because on
the RT Romp processor (the processor used on an 3CL) 4 registers arc
available as parameters to a function call. Any arguments in excess of {our
are placed on the stack. The excess causes a mis-alignment in gdbh. An
example is given below:

foo()
{

int loc_int;

goo(l, 2, 3, 4, 5);

Figure 4.1.1: Mis-Alignment Sample Program

The address of loc.int in function foo() would be computed by gdb
to be actually 4 bytes less than it should be. Suppose gdb sees the local
address for loc_int to be 0xde88. the actual address should be OxdeSc. This
increase by 4 is due to the function call goo() whose call arguments take up
5 integers in memory. This problem persists because gdb has no obvious
method of determining when a function call is occurring while reading the
symbol table.

The second situation resulting in gdb misbehavior also relates to in-
correct address calculation. Local variables that are declared within the
context of a local block in a function can have an incorrect address if more
than one local block exists. An example is given below:

o
(O

foo()

{
int loc_int:
{
int loc_loc_intl;
)3
{
int loc_loc_int2:
}
}

Figure -4.1.2: Block Alignment Program

For the variable locloc.intl gdb would have an incorrect address.
The address would be offset down by the amount of space occupied by
loc_loc_int2 (in our system, 1 bytes). This problem exists for blocks within
blocks as well. [t is always the variables in the outer blocks that are in-
correctly offset while the variables in the innermost block have the correct
addresses. Programmers rarely use multiple blocks in a single function.
so we chose to ignore it. The problem was also tangential to our main
interest.

The third gdb problem was related to controlling the debugged ap-
plication on the 8CE. Originally, after the first breakpoint was reached.
attempting to continue or single step was impossible. The debugged ap-
plication would resume, finish execution. and then hang. This was due to
a hardware bug for which the kernel never implemented a software patch.

The INSTEP_BIT was the cause of failure. When this bit is turned on,
the kernel is supposed to single instruction step the application. However,
in our gdb this failed to occur—this manifested itself as a message being
timed out.

The single instruction step is crucial for breakpoints since it is the
basis on which they are implemented. Basically, each time a breakpoint
is inserted, the actual machine code is modified and a special instruction

23

replaces it. This instruction. when encountered during execution. generates
a software trap at which point the debugger gains control.

To continue after this point, the original contents of the machine code
is put back and a single instruction step is done to proceed past this point.
After this single instruction is finished, the breakpoint instruction is rein-
serted and execution continues normally. The motive for the double-stop
is that the breakpoint encountered after the first breakpoint may be this
very same breakpoint (the breakpoint could have been placed in a loop.
recursive call, goto, etc.). This necessitates that a breakpoint be replaced
immediately after its removal.

On the 8CE the failure of the single instruction step caused the debug-
ger to lose control after the very first breakpoint. The software trap that
was never generated manifested itself as a message timing out. Normally
a message comes back to gdb indicating the child has halted in some state
and is ready to be manipulated. Investigating this problem led us to the
following comment in a kernel include file:

/* simulated, may be unreliable in hardware */

A patch was implemented for this fatal error. Qur idea was to generate
for every breakpoint. two adjacent breakpoints. When the first is encoun-
tered, it is removed and the second is inserted. After the second is reached,
it is removed and the original is replaced. This “jitter-step” simulates the
instruction step.

In our implementation, the jitter-step is implemented as a toggle. Basi-
cally, when a breakpoint is encountered, its shadow breakpoint replaces it.
When the shadow breakpoint is reached, its shadow (the real breakpoint)
replaces it. The diagram below shows this.

The solution proved to be effective for overcoming the hardware bug.
It however had a slight defect that was again due to a hardware bug. If
the user placed a breakpoint at a line of code calling a library function, the
shadow breakpoint computation would not work. Instead of placing the
shadow breakpoint 2 bytes ahead, we were forced to place it on the next
executable line of code. The user had to specify this next line of code with
an additional parameter to normal breakpoint command.

The last minor problem we had with gdb was that certain sequences of
actions attached to breakpoints caused core dumps. Gdb would lose track
of how many actions there actually were and reference an illegal address.

24

This was due to a subtle iemory bug which was fixed. In addition. a
new interface was added for attaching actious to breakpoints. Whereas
originally the breakpoints had to be inserted. and then the actions had to
be attached separately, this could all be done in one continuous stream.
Multiple breakpoints (and their associated actions) can be entered with the
“actions” command. Below we show breakpoints 1 and 2 being inserted in
the file.c having print actions attached to them.

break file.c:34 {
p foo

}
break file.c:555 {

P goo
}

end

4.2 DPE Language Set

The MpD layer of gdb is based on the Data Path Expression[l5] language.
A DPE consists of up to three components: one or more program events,
zero or more relations among events, and zero or more actions. [Events
and tle relations among them specify the behavior of program execution,
while actions are performed by the debugger when the particular behavior
is recognized during execution. There may be multiple DPEs considered
for the same execution.

A simple event is an assertion that a particular point in the program
has been reached, for example, a particular subroutine has been called.
More complex events may include conditions, such as a particular variable
address is being accessed at that point. The types of conditions that can be
expressed depend on the implementation. A set of operators. sequencing
(;), exclusive selection (+), repetition (*), and concurrency (&) express the
basic relationships among events. Another operator, concurrent closure
(@), is included in the extended DPE language but is not implemented in
MpD. The meaning of these operators is summarized in the following table
(Figure 4.1.1).

Symbol | Meaning zpression | Deseriplion
; Sequential a;b Event a causally precedes event b.
+ xclusive Or a+b Event « or event b occurs. not botl. |
* Repetition a* et+a+a,a+aaa+ ...
& Concurrent a&eb Event a and b occur concurrently.

Figure 4.2.1: DPE operators

When the same event name appears multiple times in a DPE, it refers
to a different instance of the event. Thus “A*” means zero or more sequen-
tial occurrences of *A.” and “A & A” means two concurrent executions of
distinct events named “A.” In the DPE “(A; S; B) & (C; S: D) the event
*S™ occurs twice, as opposed to a synchronization. To describe implicit
svnchronization. we use a special symbol “$” as a prefix to an event to
indicate this event is a synchronization. The previous example with im-
plicit synchronization would be “(A; §S; B) & (C; §S; D).” An explicit
synchronization would be “(A & C); S: (B & C).”

The DPE language implemented is a subset of the DPE hierarchy. called
safe DPEs[15].

(A:B) & (C:D)
(A;B:(C & D):E;F) & (G:H:K)
AYB&C&D&E

In MpD, an event is defined as a breakpoint inserted into the program
execution image using gdb’s breakpoint facilities. So numerical breakpoint
labels rather than mnemonic event names are used. The DPEs are con-
structed as expressions on breakpoint numbers. To illustrate actual DPE
usage in MpD the program below calculates the gradient of the function
f(z,y.2) = %22 — yz32% + 5 using three Cthreads, one for each coordinate
axis.

/* Program calculates gradient of f(x,y,z) = x"4z°2 - yx"32°2 + 5§ =/

#include <cthreads.h> /* Cthreads include file */

G P W e

mutex_t pr_lock;

26

6 int

x_axis(), y_axis(), z_axis(): /* functions to be forked */
7 float x_grad, y_grad, z_grad;

8

9 main()

10 {

i1 cthread_t t1, t2, t3;

12

13 setbuf (stdout, NULL);

14 cthread_init();

15 pr_lock = mutex_alloc();

16 /* create 3 Cthreads by forking */

17

18 t1l = cthread_fork(x_axis, 33.2, 2.33, 20.4):

19 t2 = cthread_fork(y_axis, 33.2, 2.33, 20.4);

20 t3 = cthread_fork(z_axis, 33.2, 2.33, 20.4);

21

22 cthread_join(t1); /* join the Cthreads after execution */
23 cthread_join(t2);

24 cthread_join(t3);

25 printf("x_grad=/6.2f y_grad=/6.2f z_grad=/6.2f.\n",
26 x_grad, y_grad, z_grad);

27 %}

28

29

30 x_axis(xval, yval, zval) /* evaluate partial with respect to x =/
31 float =xval, yval, zval;

32 {

33 int ctr, ctr2;

34

35 mutex_lock(pr_lock);

36 printf("Thread x partial.\n");

37 mutex_unlock(pr_lock);

38 x_grad = 4 * xval * xval * xval ¥ zval * zval

39 }

40

41

42 y_axis(xval, yval, zval) /* evaluate partial with respect to y =/
43 float xval, yval, zval;

44 {

45 int ctr, ctr2;

(O]
~1

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

}

z_

{

mutex_lock(pr_lock);

printf("Thread y partial.\n");
mutex_unlock(pr_lock);

y_grad = -xval * xval % xval * zval * zval;

axis(xval, yval, zval) /* evaluate partial with respect to z */
float xval, yval, zval;

int ctr, ctr?;

mutex_lock(pr_lock);

printf("Thread z partial.\n");

mutex_unlock(pr_lock);

z_grad = 2 * xval * xval * xval * xval = zval -
2 * yval x xval * xval * xval * zval;

Program 2: Gradient Calculation Example

Now we insert a breakpoint at line numbers 15, 36, 38, 48, 50, 62, and

25 generating the breakpoint numbers 1, 2, 3, 4, 5, 6, and 7 respectively.
The following are valid DPEs for this program provided the corresponding
breakpoints are enabled:

e (2;3) & (4;5) — Confirms threads x_axis and y_axis are concurrent.

e 2 & 4 & 6 — Confirms threads x_axis, y_axis, and z.axis are

concurrent.

e 1; (2 & 4 & 6); T — Confirms three threads are forked from a single

thread and later re-join it.

Whenever gdb reaches a breakpoint, it calls MpD to inform it of its halt-

ing status. The status indicates the current breakpoint, thread, resources
owned by the thread, and arguments to the breakpoint (a function call,
for example, has parameters as arguments). MpD analyzes this information

28

and returns a value indicating whether gdb should execute the actions ax-
sociated with that breakpoint. The actions may involve artificial variables

(debugger as opposed to program variables), 1/0. and thread manipula-
tion.

The decision to execute the actions depends on whether or not MpD
successfullv matched the input breakpoint with a transition in the PA
(PAs. remember. are used recognize DPEs). This process. is similar to an
FSA making a state to state move based on the input transition token.
Actions can be assigned to more than just single breakpoints: they can be
specified to be carried out only after an entire DPE is recognized—i.e., the
associated PA is in the final state.

We will illustrate these concepts by attaching actions to the DPLs for
Program 2. For example, in the DPE (2;3) & (4;5) and breakpoint 3 we
can attach {print y_grad}. The value of y_grad will be printed when the
program encounters breakpoint 5 provided the breakpoint fits the execution
stream described by the DPE. That is, breakpoint 5 would have to occur
sequentially after breakpoint 4. If breakpoints 2 and 3 are not current to
4 and 5 or breakpoints 2 and 3 do not occur sequentially, the DPE would
not be matched and the user informed of this.

Let us now consider attaching the action {print (x_grad + y_grad +
z_grad)} to just the DPE “2 & 4 & 6.” In our implementation, to force
this action to be done only after the entire DPE we use the if _concurrent
command. We write the action as:

if_concurrent
print x_grad + y_grad + z_grad
end

This action is attached to breakpoints 2, 4, and 6 since all three are pos-
sibly the last event completing the concurrent DPE. This awkward inter-
face for attaching actions to DPEs containing the concurrent operator is
due to breakpoints + actions being entered separately from the DPE. We
attempted to reuse gdb code as much as possible and combining DPE no-
tation with breakpoint + actions would have this difficult. It would have
required completely re-writing the existing command parsing routines - a
very time consuming task.

A DPE such as 2°{print foo} containing the repetition operator (*)
causes an interesting dilemma. Actions attached to the breakpoint associ-
ated with the “*” are executed the very first time the breakpoint is seen

29

rather than the last time tI- ~ent is scen. This policy stems from being
unable to determine when a; at has occurred for the last time. Continu-
ing past a repetition breakpo .. after its first occurrence without executing
its attached actions could result in the actions never being executed. So
executing the actions on the first and only instance of the breakpoint is a
compromise (note that this 2° operator in this case really performs as 2+
operator in regular expression notation, so far as actions are concerned).

A user wanting to adhere to executing actions attached only to 27, for
example, can use artificial variables to force actions to occur only on the
last occurrence of event 2 if they are willing to execute the program twice.
On the first run an artificial variable counter can be set up to see how
many times the event 2 occurs; suppose this is n. Then the DPE can he
reformed as 2; 2; 2: ... (n-times) and to the last “2” we attach tlie actions.
This would have the effect of 24+ actions. Another method would be to
simply re-run the program until the counter reaches this prescribed value,
1, then execute the actions.

As an additional example we demonstrates how a user could test to sce
if a concurrent read and write was occurring in a program—an undesirable
race condition. Suppose we have two functions, Read(X) and Write(X),
that do our low-level reading and writing. We would like to write a DPE
that tests if Read(X) and Write(X) occur concurrently on the same variable

X.

1. Initialize two gdb artificial variables for later use.

o

Use gdb action commandfor defining events and corresponding ac-
tions.

3. Use the event command (alias for gdb's break) to define the event of
entering Read function.

4. Associate an action with the individual Read event to save the ad-
dress of the function argument.

()]

Use the if_concurrent command added to gdb to perform the ensuing
actions(s) only when the entire concurrent DPE this breakpoint is a
member of is finished.

6. Repeat the above three steps for the Write function.

7. End gdb actions shell, which causes gdb to print the numbered labels
assigned to the two breakpoints.

30

8. Use the dpe command to enter the dpe command shell.

9. Construct the "10 & 117 DPE. which implicitly constructs the cor-
responding PA.

10. Quit the dpe shell and run the program.

11. Use our state command to request information about DIPE analysis.

(gdb) set $read_var = 0
(gdb) set $write_var = 1
(gdb) actions
event Read {
set $read_var = X
if _concurrent
if ($read_var == $write_var) echo "concurrent access"
}
event Write {
set $write_var = X
if_concurrent
if ($read_var == $write_var) echo "concurrent access"
)
end
Breakpoint 10 0x123: file Demo.c, line 37
Breakpoint 11 0x456: file Demo.c, line 99
(gdb) dpe
DPE> dpe 10 & 11
DPE> quit
(gdb) run
(gdb) state

The addition of actions, in general, to the DPE syntax increases its
expressive power in the Chomsky language hierarchy{14]. For example, we
can recognize a™b", a classic example of a non-regular set. Here we can
assume that “a” and “b” correspond to two distinct events, say that of
entering two different functions. So in testing for a™b™ we are testing to see
if the functions were accessed an equal number of times during execution.
We proceed by having two artificial variables, one attached to the event “a”
and the other to the event “b.” The artificial variables are incremented

31

by one each time we see its respective event. At the end of execution
we can test to see if the two artilicial variables are equal. If equal, we
accept, otherwise reject. This testing can also be done while incrementing.
A message can be printed whether the two variables are equal each time
either variable is incremented; the last message indicates the final status.

Since gdb allows artificial variables. artificial arrays. calling of global
functions, and general arithmetic computation, the actions essentially make
the language a Turing machine equivalent. This is obvious if we consider
the Turing machine equivalent, a two counter. A two-counter is an off-
line Turing machine whose storage tapes are semi-infinite, and whose tape
alphabets contain only two symbols, Zand B (blank). The symbol Z, which
serves as a bottom of stack marker. appears initially - - the cell scanned

by the tape head and mayv never appear on any oth Al An integer ¢
can be stored by moving the tape head i cells to thi- _at of Z. A stored
number can be incremented or decremented by mov. . ihe tape head right

or left. We can test whether a number is zero by checking whether Z is
scanned by the head, but we cannot directly test whether two n::mbers are
equal. A two counter can be simulated by using two artificial arrayvs and two
artificial variables. The variables can be indices into the arrays, completing
the two-counter. Obviously, the semi-infinite tape requirement fails in the
real implementation, but theoretically the modeling power is apparent.
Gdb actions are capable of doing computation, I/0Q, and determining a
program’s state.

4.3 Predecessor Automata Construction

DPEs are recognized during execution by traversing the corresponding Pre-
decessor Automata (PA) they generate. If one or more DPE is active
during execution, MpD will inform the user which DPEs were matched, if
any, during the application’s execution. PAs are analogous to FSAs, but
PAs recognize concurrent partially ordered event streams expressible as
DPEs while FSAs recognize only sequential totally ordered event streams
expressible as regular expressions. Note that all regular expressions are
also DPEs, but those containing any concurrent operators are not regular
expressions.

An FSA makes a transition from state to state when the input event
matches the event labeling the transition. Certain states are designated
as final states, and if the input ends when the FSA is in a final state, or
a final state can be reached by null transitions, the corresponding regular

32

expression has been matched by the input event stream, otherwise not.

Similarly, a PA makes a transition from state to state when its input
event plus an encoding of the set of events causally preceding the cur-
rent event match the (event, predecessor set) pair label of the transition.
Note that only the immediately preceding event in each thread of control
is contained in the predecessor set, not the full history of events; there
are multiple predecessors when the event reflects a synchronization among
multiple threads. As with FSAs, there are final states, and the partially
ordered event stream has been matched if and only if the PA is in the
final state when the input ends, or a final state can be reached via null
transitions.

As an example consider the DPE “1:(2 & 4 & 6);7" described in section
4,2, Lvent 1 has no predecessors. Events 2, 4, and 6 all occur sequen-
tially after event 1 and thus event | is a predecessor for each of them.
Furthermore, events 2, 4. and 6 are concurrent to each other. Although
these events do not belong to the same thread as event 1. they occur se-
quentially after it because event 1's thread created their respective threads.
Now event 7 has as its predecessors events 2, 4, and 6, since it occurs after
these threads joined it. In general for a DPE, the PA it creates defines the
execution relationships and run-time checks in the Recognizer verify these
relationships.

PAs are constructed using the DPE parse tree. The DPE parser, writ-
ten using Lex and Yacc, creates a binary parse tree from the user’s DPE.
Afterwards, a postorder traversal of the tree constructs the PA. The rela-
tion operators (;, *, +, and &) used in the DPE form the internal nodes of
the tree, and the leaves are the breakpoint numbers used in the DPE. The
DPEs “a; b”, “a™", “a + b + ¢”, and “a & b” create the following trees
(Figure 4.3.1):

/’\ / / \ / \
a b a a + a b

/\

Figure 4.3.1: DPE Parse Tree

A basic idea of the postorder traversal is to create for each node a left
PA and a right PA. The two sub-PAs are then fused together according to

33

the operator at the internal node. Since this algorithm is done in postorder.
it begins at the bottom of the tree and carries up recursively resulting in
one final PA.

For the sequential operator (;) we simply concatenate the left and right
PA, making the final state of :he left PA the start state of the right PA.
For the selection operator (+) we make them share a common starting
state, leaving the transitions to their respective second states intact. The
resulting PA branches into the two sub-PAs and then converges again on a
common final state which is gotten to by null transitions. For the repetition
operator (*) a loop as well as a null transition are added. A null transition
from the start to final state is added as is another null transition {rom
the final to start state. For the concurrent operator (&), the PAs are no!
combined in an interlecaved fashion. Rather they are fused togetiier as a
group.

Program Events

[

ANA

(a.) (d.)

(ba (ed)

(a;b;c)&(d;e;f)

(cb (t e)

(@a;b;c) &(d;e;f)

Figure 4.3.3: Interleaved vs. Implemented version of Concurrent Operator

When the Recognizer encounters such a group, it knows to finish pro-
cessing it before proceeding. That is, each member of the group must be
in a final state before any transition beyond the group can be taken. For
example, in the DPE “((a ; b) & (c; d)) ; €” the Recognizer will not take
the transition “e” until the sub-PAs “(a ; b)” and “(c ; d))” are both in a
final state (and they occurred concurrently with respect to each other). If

34

"e” comes to carly the PA [ails to move and the user 1s informed the DPILS
did not match.

The motive for not interleaving is simple. Consider the example (a;h:c)
& (die;f). The total number of events in this-DPLE is six. In diagram
4+.3.3 we compare the interleaving states vs. our implemented approach.
Our implemented model saves memory at the cost of adding logic (and
thus overhead) at the initial concurrent set state. This state decides. when
given an input transition, which machine receives it. They both describe
a path length of six with (3 + 3)!/(3! = 3!) possible execution paths.

In general, for such situations, if we have 4 sequential events on the
left side of a concurrent operator (sub-expressions such a*. (a+b). etc. arc
treated as one event). B sequential events on the right side. all the possi-
ble orderings would be (4 + B)//(A! = B!). Tiis derivation describes the
composition of the automaton, A=a;: e a3:...a,, and B=by:b,: 050 ... by,
results in an ordering of length m+n that preserves the original order-
ing a;; a2 asi...;am and by; by by b, (Figure 4.3.4). The 3 automaton
case A=a,...am,B=b;...b,, and C=cy...c, of path lengths respectively A,
B, and C, we have (A + B + C)!/(A! + B! + C") and the composition
forms a rectangular solid with start and final states at the opposite ends
of the longest diagonal. The complete generalization where we have
A& A8 A5... & A, the composition becomes an n-dimensional solid with
(A + A+ Az + A (A= Al = Agl = o« ALl) possible paths.

Start —»

Am+m! = pos. paths

(m! nl)

Final

Figure 4.3.4: All Concurrent Execution Possible Paths

35

The memory space required to assemble such solids is a function of their
dimension. For the simple case A=al;a?2;...;an and B=01;02:63:...;0m. A
& B, n*m cells are needed. Memory for the general case occupies A » A, «
Az x ... * A, cells. The cell notation can be represented in programming
a corresponding n-dimensional array. Each state occupies one element in
each cell and requires n transitions.

For the concurrent operator we did not choose the interleaved method
because it was more memory intensive than the “stringing” together of
concurrent PAs approach. Also, the interleaving method was a bit more
complex to implement. Early on, we did an analysis of the two methods
and execution speed difference between the two was negligible.

4.4 Recognizer Construction

The Recognizer processes each breakpoint gdb gives it by attempting to
match a transition in the PA. Its basic function is to verify the relation-
ships defined by the PA and execute actions as transitions are matched.
Although the PA construction is independent of the particular concurrent
programming language used, the run-time support provided by the Recog-
nizer is dependent on the implementation. The ability of PAs to distinguish
between concurrency and interleaving is inherently tied to the synchroniza-
tion primitives used in the operating system. In our case, these were the
functions provided by the Cthreads library.

When events are described as concurrent in a DPE, the PA recognizer
must check two conditions. It must first check that events occur on different
threads, since of course there is causal dependency between events in the
same thread. This check does not suffice. There may be causal dependency
caused via message passing or locking mechanisms. So the second item is
to check for dependencies resulting in implicit or explicit synchronization.

On our system the dependencies were through the Cthreads functions
condition.wait, mutex_lock, mutex_unlock, and condition_signal.
Any time a thread accesses one of these functions, MpD updates some in-
ternal data structures to determine the point of synchronization. The user
can verify expected synchronizations and uncover others that may be un-
wanted. The dependency and synchronization checks are implemented as
an option the user can turn off to reduce debugger overhead.

In synchronization involving mutex_lock and mutex_unlock, a thread
locks a resource, forcing other threads to wait until it is finished. If the

36

locking mechanisms are not properly structured, then nultiple threads
executing in parallel can attempt to access the same resource, whicl often
results in undesirable race conditions. '

MpD detects this situation by identifying in each thread those
mutex._locks in different threads that are competing against each other. A
special run-time table is created internally in the debugger for each thread.
Each time a mutex_lock is attempted and a thread waits on a resource,
the thread that currently owns that resource is identified. A predecessor
table keeps track of which events belong to the lock owner’s stream and
which to the current thread’s stream. The predecessor table can be ac-
cessed easilv to identify quickly whether two events are concurrent or not.
An example of explicit synchronization such as this is two threads trying
to lock an I/O resource. One acquires access to the resource. forcing the
other to wait until the owner relinquishes it.

Causal dependency is detected in an analogous manner. \Whenever a
thread attempts to mutex.lock on a variable that another thread currently
owns, forcing it to wait, all mutex_lock waits of the owner thread are passed
along via a table update to the lock-seeking thread. An example of such a
dependency involving two resources and three threads is: Events in thread
T, and thread T; are described as concurrent. Thread T} locks resource /2.
a resource needed by thread T5. Meanwhile thread T3 is waiting for thread
Ts to unlock resource R,, which it cannot until it obtains Ry. Thus 13
indirectly waits on T; through T5. MpD detects this type of waiting. When
T, waits on T3, the resources T3 was waiting on are inherited by T5. Thus,
we see T; is being waited on, so we know that events in T; and T3 are not
concurrent.

The Cthreads library synchronization primitives conditionwait and
condition_signal can also induce causal dependency. If two (or more)
threads have events specified in a DPE as concurrent, but one waits for
the other due to a conditionwait (directly or indirectly through another
unspecified thread), the concurrert relationship does not hold. MpD informs
the user with messages indicating the thread waiting and location in code.

In similar fashion. the PA recognizer enforces dynamic checks for se-
quential relationships. One of four conditions must be satisfied.

1. The events and its predecessor are in the same thread.

2. The event and its predecessor are in different threads, but serialized
via locking or waiting.

37

3. The event and its predecessor are in differcut threads and the prede-
cessor’s thread created the event’s thread.

4. The event and its predecessor are in different threads, but the pre-
decessor's thread has ezited or joined the event's thread.

Examples of conditions three and four are the DPEs “a; (b & ¢)” and
“(b & ¢): a." In the first example the thread to which event “a” belongs
creatéd the threads to which events “b” and “c” belong. In the second
example events “b” and “¢” belong to different threads that eventually
join the thread event “a” belongs. The DPE “a & b & ¢” is an example
of condition one. All events are described to be on different threads and
concurrent. If serialization occurs during execution then these threads,
although on different threads, would be sequentially executing - illustrating
condition two.

Along with DPE support for multiprocess programming. specific fa-
cilities were included in MpD to aid Cthreads programmers in the NMach
environment (we could have included specific support for other program-
ming libraries). In particular, several Cthreads functions were targeted to
check for common mistakes. '

The most useful Cthreads-specific support included in MpD is automatic
detection of deadlocks caused by an improper sequence of mutex_locks.
Each time a thread attempts to lock a resource using mutex_lock, the
debugger’s internal causal dependency table of what resources each thread
holds/wants is updated. As this table is updated, a graph of dependencies
is created. If the graph forms a cycle leading back to the current thread,
the user is warned of the impending deadlock with a line by line printout of
the culprits. Any general semaphore lock/unlock can use this mechanism.

MpD does numerous other checks for common Cthreads programming
errors. For example, the function cthread_init must be called prior to
using any of the other Cthreads routines. Failure to do so results in cor-
ruption of memory and core dumps. MpD checks whether this function is
called prior to any other Cthreads function. A cthread, once created, can
be joined (via cthread_join) or detached (via cthread.detach) only once
during execution. This is checked by monitoring all Cthreads to make sure
only one or the other is done. Furthermore, any cthread attempting to join
itself (via cthread_join) results in deadlock; this condition is detected and
the user is warned.

Appendix A at the end contains the listings of programs illustrating

38

these errors. These are actual programs in which the debugger detects
crrors. The examples illustrate detection of deadlocks. join/detach errors,
and improper use of mutex_lock. The programs use the Cthreads con-
structs available and the comments explain the program flaws.

The full set of commands available within MpD’s dpe command shell are
in Appendix B at the end. This shell is entered from within gdb by tyvping
the “dpe” command.

5 Using MpD to Debug Two Concurrent
Applications

In addition to using MpD on various in-house test programs, we used it
to debug two externally developed applications. These applications were
requested informally on the mach information newsgroup on Internet and
were in no way written with MpD in mind. Nevertheless. our debugger
proved to be useful in debugging the applications.

5.1 Application 1: Parallel Logic Simulator

This application was supplied by Robert Mueller-Thuns of the University
of Illinois at Urbana-Champaign. It is a Cthreads implementation of a
parallel logic simulator, and consists of about 1,900 lines of C code. The
application ran correctly on the 8CE’s RT front end using the co-routines
implementation of the Cthreads library (libco.threads.a). However, using
the real parallel implementation of the Cthreads package on the SCE co-
processor (libthreads.a), the application would run briefly then suspend
itself in some unknown state. This occurred every time the application was
tested; note that our approach to debugging here assumes reproducibility.

Debugging this behavior began with the construction of a DPE to deter-
mine how far along in the calling sequence the application reached before
hanging. The code fragment below (Sample Code from Application 1)
from the file main.c and figure 5.1.1 show the code and the breakpoints we
inserted into the code to represent interesting program events.

39

54 if (arge < 3) {

55 fprintf (stderr, "[pecs]: too few arguments\n") ;

56 fprintf (stderr, "(pecs <model file> <input file>)\n") ;
57 quit (" ") ;

58 }

59

60 timer_mark () ;

61 initMACH () ;

62 fprintf(stderr,"[boss]: MACH initialized in d ms\n",timer_dall());
63 ++ argv ;

64 if ((inFile = fopen (*argv, "r")) == NULL)
65 quit ("cannot open model file ") ;

66 /*

67 readModel (xargv) ;

68 */

69 fscanf (inFile , "¥d", &nProc) ;

70 fscanf (inFile , "/d", &cthread_debug) ;

71 fclose (inFile) ;

72 printf("[boss]: # processes %d (debug = d)\n" ,nProc,cthread_debug);
73 ++ argv

74 strcpy (fileName, *argv) ;

Sample Code from Application 1

event main.c:54{
cont

event timer.c:timer_mark{ # entering function timer_mark() line 60
cont

event main.c:38{ # inside the function initMACH() line 61
cont

event main.c:74{
cont

end

Figure 5.1.1: Inserted Breakpoints

40

The DPE used to describe the execution was *1:2:3:+1". That is. the
events were expected to occur sequentially in the order specified. This
DPE was canfirmed.

Since we were debugging unfamiliar code, our first step was to deter-
mine how many threads were being created by the application. So in the
Cthreads routine that was being forked. the following event was defined us-
ing normal gdb facilities. (sctupMach.c is one of the application program
files, not part of the Mach implementation.)

(gdb) set $i=0 #dummy counter to count number of threads

(gdb) actions

event setup { # setup is the name of forked routine (in setupMach.c)
$1 =81 + 1

cont

}

end

The number of threads being forked was determined by printing the
value of the artificial variable $i, which was 4. In the forked routine
setup(). the C library routines, fopen and printf were called.

if (!(dbgf = fopen (dbgName, "w"))){ /* line 298 of setupMach.c */
printf("[dbg] %s :", dbglame); quit("cannot open debug file");
}

We defined an event for reaching this code. to which gdb assigned the
breakpoint number 1.

event setupMACH.c:298 {
line calling fopen and prior to calling printf
cont

}

end

We then defined the DPE “1 & 1 & 1 & 17 representing four concur-
rent threads executing this same statement causally independently. The
program was executed, and this DPE was confirmed. Thus, fopen (as

11

well as printf) was being invoked by four threads concurrently, without
synchrounization.

\Ve suspected that these functions were executed concurrently (without
synchronization). The Mach Cthreads(8] manual recommends that func-
tions in libc.a should never be called without mutex lock/mutex_unlock
protecting them. The library simply does not support concurrent access
(the code is not reentrant). So we modified the program to protect all
calls to functions in libc.a with mutex_locks/mutex_unlocks. The pro-
gram was recompiled and re-run, and execution proceeded normally with
correct results.

5.2 Application 2: Grobner Basis

This application was written by Stephen Schwab of Carnegie Mellon Uni-
versity. It is a Cthreads implementation of a Grobner Basis. and consists
of about 5,600 lines of C code. This application in its original form did not
work at all when we compiled it for the SCE; it would core dump.

The core dump, it appeared, stemmed from de-referencing a nil pointer.
The first DPE was constructed to check whether or not the relevant events
leading up to the point where the core dump occurred were purely sequen-
tial. The breakpoints picked were random points in the code leading up
to the core dump location. The initial DPE was *1: 2; 3; 4”. using the
breakpoint numbers assigned by gdb for the program events shown below.

event Main.c:311{ # breakpoint 1
cont

}

event Gbasis.c:233{ # breakpoint 2
cont

}

event Pairs.c:51{ # breakpoint 3
cont

}

event Pairs.c:165{ # brezkpoint 4, print the stack hierarchy
where

}

end

Figure 5.2.1: Inserted Breakpoints

42

This DPE was confirmed and the core dump was due to a null pointer
being de-referenced. The statement below was responsible with the variable
pt being null.

while ((pt->old==1)||(pt==p))
pt = pt->next;

So the statement was changed to:

while ((pt && pt->old==1)||(pt==p))
pt = pt->next;

This testing of pt before de-referencing was not sufficient to solve the
original problem. The core dump simply passed from one location to an-
other. A second DPE plotted the path to the new core dump location,
using the events illustrated below. This was expressed as “l; 2; 3; 4: 5"
for the five new breakpoints defined using gdb (the same breakpoint nun-
bers were reused because we recompiled and restarted gdb). This DPE
was matched, so we could again rule out concurrency as the source of the
problem.

event Main.c:111{ # breakpoint 1
cont

¥
event Gbasis.c:233{ # breakpoint 2
cont

}
event Pairs.c:58{ # breakpoint 3
cont

¥
event Pairs.c:217{ # breakpoint 4

cont

¥

event MExpo.c:111{ # breakpoint 5, location of new core dump
where # where prints contents of stack

)

end

Figure 5.2.2: Inserted Breakpoints

13

Upon closer scrutinization of the code. a logic error was discovered in
the original location. The code was corrected so that instead of passing
along a nil pointer. a duplicate of the original pointer was passcd on instead.

wvhile ((pt && pt->o0ld==1) || (pt==p))
pt = pt->next;

if (pt == NULL)
Pt = p;

With this correction. the application worked correctly. Note that for
this case, the application did not execute at all even when run sequentially,
The error we corrected was before the program split into various threads,
and so no concurrency related bugs were found.

6 Ewvaluation

The gdb version we used as our basis was very useful. It had most of
the sequential thread code written, tested, and working. Features such as
breakpoint insertion and variable accessing were already in place. With
the enhancements of Caswell-Black, we were able to concentrate on the
higher-level debugging mechanisms. This made system development sig-
nificantly faster. In addition, the on-line manual svstem with the shell
interface, although not optimal, was handy. The user simply had to type
“help” followed by the command name to ask for manual pages about the
command. A list commands could be displayed by typing “help.”

Now the down-side was that some of the basic needs of our project
were not provided. To put them in place would have required major code
re-writing of the debugger and compiler. A major system limitation was
using breakpoints as the basis for event generation. The breakpoints had
to be in place for MpD to know when an event occurred - no non-invasive
monitoring facility to ascertain statements had been executed was avail-
able. Consequently, to properly analyze a program, the user was forced to
give some thought to breakpoint placement.

In addition the breakpoint mechanism could conceivably alter execu-
tion, so a debugging session did not necessarily reflect an actual execution
sequence. We minimized the impact of this by warning the user of all

44

possible locations where threads may interact. [lence. threads that S\Vn-
chronized but ploduced the correct results would still generate a warning
that in future runs the results may differ due to the svnchronization. Sim-
ilarly threads that are supposed to synchronize but do not are also pointed
out by the debugger.

Our system also places restrictions on the ability to deal with concur-
rent breakpoints. Gdb still contains code that does not support multiple
threads. No mechanism exists to save the state of everv thread, which
would be useful for handling multiple breakpoints with a single continue.
that is be able to start. stop, and re-start groups of threads. Saving state
would also support conditional breakpoints[7]. It would eliminate problems
such as hitting breakpoints already removed. This occurs when multiple
threads hit breakpoints, and one thread removes the other breakpoints.
But since the debugger does not save the state of every thread these “ve-
moved” breakpoints still appear. We felt these were low-level issues that
we would ignore in order to implement high-level debugging such as event
relationships.

Another aspect we chose to ignore was the MpD user interface. [t
lacks features such as mnemonic tags for breakpoints, automatic sav-
ing/reading of breakpoint files, editing facilities for actions, and a uni-
fied DPE/breakpoint shell. Currently users enter DPEs separately from
the breakpoints and actions. The if_concurrent command links the two
shells together. This command, as we explained earlier, is awkward to
use. Improving these constructs would make a simpler more user-friendly
debugging environment.

A serious weakness in our system is that references to arbitrary pointer
structures and addresses cannot be detected. The only data references MpD
can currently detect are breakpoint generated traps at static source code
locations. These include entering a function or reaching a specific line
number in the code. An arbitrary address reference cannot be detected
by the debugger because there is no mechanism to test when a physical
location in memory is being accessed. This limitation can be overcome,
however, if hardware support is provided. A bus monitor that recognizes
data addresses would be useful for tracing memory accesses. It would also
lay the groundwork to developing a system that provides playback built
on address references. Some of the preliminary design work for such a bus
monitor has been completed by an independent party[20}, but it is unclear
at what point this will be integrated with the rest of the system.

The lack of a bus monitor also contributed to MpD containing machine

45

dependent code. On several occasions we had to resort to reading registers
and stack locations. This was a result of not being able to access parameters
of function calls any other way. Parameters are pushed onto the stack or
into specific registers which MpD, on the RT Romp processor, knows how
to read.

One of the most useful aspects of our system, we believe, is the way the
cthreads library code is examined to check for impending deadlocks. The-
oretically any standard library code could have been examined to check for
improper usage. Not only could the debugger check to see if library code is
mis-used. but also it could point out the precise locations. It is important
to realize that what we propose is more than a static function interface
checking (e.g., lint). What we suggest is that the debugger bhe built with
the ability to check the logic constructs dynamically created by the pro-
gram execution. These are not limited to deadlocks; monitoring resource
queues, pinpointing message generators. and memory management are just
a few other examples. Ideally, the user could select library functions (or
functions) to monitor and describe the logical framework of the call. The
framework would describe how the functions are to interact with each other
or perhaps what state the data should be left after finishing the function.
The debugger could then monitor execution to see if the framework was
violated.

Consider for example monitoring the C memory allocation/deallocation
routines malloc() and free(). If the debugger has access to each invo-
cation of these system calls via an interface layer, it can keep an updated
free list for the application. The list can be useful in a number of ways.
If some memory access is out of range, the debugger can display the le-
gal valid range for that piece of memory since it has the list of memory
blocks and their sizes. Similarly a free() with .bad arguments could im-
mediately be identified since it does not map to a valid allocated piece of
memory. Furthermore, we can at any time get an accurate picture of cur-
rent memory usage for the application. This is particularly useful if we are
attempting to detect memory leakages. It would be an interesting feature
to display the memory usage as an application goes through various stages
of its execution.

The system interface layer should not be based on a breakpoint
paradigm. The compiler and debugger should work together to signal the
monitoring process when: key events occur. The signals could be written
to a special file from which the debugging monitor reads. The compiler
can have this an option, similar to the “-g” option most C compilers have

46

to prescrve symbol table line numbers for debuggers. The user could still
generate other events by simply using the standard breakpoint mechanisni,

Incorporating and extending the ideas of Agrawal(l] would also be usc-
ful. In his work, also developed on top of gdb, the Alok debugger can
generate a backward list of statements affecting the current breakpoint
halted on. For example, if the debugger stopped on an assignment state-
ment, static and dynanic analysis allows the debugger to pinpoint prior
statements affecting the assignment. His debugger, however. has no notion
of concurrency or relationships among breakpoints. It does a straightfor-
ward data-flow-analysis on the program utilizing a compiler-generated flow
graph. A similar type of analysis would be very useful in our system, par-
ticularly if it also incorporated our mechanisms to deal with concurrency.
The data-flow-analysis suggested by Agrawal. coupled with our event de-
tection plan. would make an extremely useful debugger.

The debugger is usable in its present form on ‘the SCE; prior to this
there was no symbolic debugger available on the SCE. The concurrent
mechanisms we believe are useful for things such as deadlock and race con-
dition detection. The concurrency mechanisms are also useful to check if
a parallel program’s threads are executing concurrently or restrictions are
causing excessive waiting. Using MpD, a better understanding of a pro-
gram’s concurrent behavior can gained since it identifies resource sharing
and waiting among multiple threads in a program.

7 Conclusion

The primary contribution of this research was to show that the Data
Path Expression debugger language and the corresponding Predecessor Au-
tomata recognizer mechanism could be supported in a real system. We have
shown that the MpD paradigm is useful for detecting errors in a concurrent
programming environment. We also described the difficulties we encoun-
tered implementing it. MpD so far has been used to debug two externally
developed applications.

There are several improvements that could be made to the current sys-
tem. The user interface and event detection scheme are two areas which, if
improved, would add the most functionality. Another improvement would
be to syntactically reduce DPE expressions to minimize backtracking. This
is essentially equivalent to writing a regular expression reducer. The end
result would be a more compact PA that does recognition more efficiently.

The Recognizer internally has several algorithms such as deadlock de-
tection and race condition checking that are not fullv optimized. Rewriting
this code with faster algorithms that occupy less memory is possible. Also
the final status of programs is not represented in the most readable man-
ner. Currently for each thread we list the events that occurred during
its execution. It would be nice, however, to have a graphical interface for
this. Each thread could have its event stream execution drawn as intercon-
nected events while interactions with other threads, such as synchroniza-
tions, could be highlighted. The graphs drawn in this manner, though, may
run into display difficulties when trying to draw large non-planar graphs.

Another useful feature might be to have the actions that were deemed
to be useful inserted into the program source code directly. Having actions
be mini-programs means potentially debugging them (the actions) as well
as the main program|[19]. This can be particularly aggravating in situations
where the action incorrectly alters the execution of the program, causing
the programmer to mistakenly conclude the program is wrong when in fact
it is the action.

Several important results were learned from this project. First is that
a debugger can be programmed to detect a significant portion of concur-
rent /sequential errors in parallel programs. Reading system call stubs and
keeping track of resource usage can identify problems such as deadlocks.
\We have also shown concurrency can be affected by the synchronization
primitives available to the programmer. When these are clearly identified,
the programmer can localize them to create more independent threads.
Lastly we have argued, in a fully integrated system, using the operating
system, compiler, and extended debugger monitor we can create a more
automated environment for detecting programming errors.

8 Acknowledgements

The implementation of MpD on the 8CE was undertaken as part of a joint
study with Dr. Colin G. Harrison of IBM T.J. Watson Research Center.
Part of this work was done while the author was a co-op student employed
by IBM in 1989-1990. The joint-study is covered under IBM agreement
numbers 14640056, 1461056 and 14642033. We would like to thank Wenwey
Hseush, Krish Kannan, Doug Kimmelman, P.R. Kumar, Chuck Marvin,
Travis Winfrey, and Charlie Perkins for their suggestions and technical
expertise.

Prof. Gail E. Kaiser’s Programming Systems Laboratory is supported
by National Science Foundation grants CCR-9000930. C'DA-3920030 and
CCR-8858029, by grants from AT&T, BNR, DEC, IBM. SRA and Necrox.
by the New York State Center for Advanced Technology on Computer
and Information Systems and by the NSF Engineering Research Center for
Telecommunications Research.

References

(1] H. Agrawal, R. DeMillo, and E. Spafford Efficient Debugging with
Slicing and Backtracking. IEEE Software, vol. 3 no. 8. pp. 21-28 (May
1991).

[2] R. Baron. D .Black, \. Bolosky, J. Chew, R. Draves. D. Golub.,
R. Rashid. A. Tevanian. and M. Young. Mach Kernel Interface Man-
ual. Carnegie Mellon University Mach Manual (1988).

[3] P. Bates and J. Wileden. Distributed Debugging Tools for Heic -oge-
neous Distributed Systems. ACM SIGPLAN/SIGOPS Workshop on
Parallel and Distributed Debugging, Madison \WI:. pp. 11-22 (May
1988).

[4] D. Black, D. Golub, K. Hauth, A. Tevanian, and R. Sanzi. The
Mach Erception Handling Facility. ACM SIGPLAN/SIGOPS Work-
shop on Parallel and Distributed Debugging, Madison WI. pp. 45-56
(May 1988).

[3] B. Bruegge. Adaptability and Portability of Symbolic Debuggers. Ph.D
Thesis, Carnegie Mellon University CMU-CS-850174 (1985).

[6] B. Bruegge and P. Hibbard. Generalized Path Ezpressions: A High-
Level Debugging Mechanism. Journal of Systems Software vol. 3. pp.
265-276 (April 1983).

[7] D. Caswell and D. Black. Implementing a Mach Debugger for Multi-
threaded Applications. USENIX Conference Proceddings, Washington
DC, pp.25-39 (January 1990).

[8] E. Cooper. Mach Cthreads. Carnegie Mellon University Mach Manual
(1988).

[9] S. Deodhar, S. Jain, and D. Basu. Global Debugging for Mulitiproces-
sor Systems. Tencon, Seoul, South Korea. pp. 796-800 (1987).

19

[10]

[11]

[12]

(13]
[14]

[15]

[16]

[17]

(13]

(19]

(20]
2

Dennis L. Doubleday. The Durra Application Debugger/Monitior
Technical Report CMU/WEL-89-TR-32 ESD-TR-39-43 (Septeimber
1989). '

1.J. Elshoff. A Distributed Debugger for Amocba. SIGPLAN Parallel
and Distributed Debugging.Madison.WI, pp. 1-10 (May 1983).

A. Garcia. D. Foster, and R. Freitas. The Advanced Compuling I'n-
vironment Multiprocessor Workstation. 1BM Technical Report RC
14491 (1989).

J. Hennesy and D. Patterson. Computer Architecture: A Quantitative
Approach. Morgan Kaufmann (1990).

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley (1979).

W. Hseush and G. Kaiser. Modeling Concurrency in Parallel Debuy-
ging. 2nd ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Seattle. \WVA, pp. 11-20 (March 1990).

P. Lauer and R. Campell. Formal Semantics of a Class of High-Level
Primitives for Coordinating Concurrent Processes. Acta Informatica,
vol. 5, pp. 297-332 (1975).

B. Lazzerini and L. Lopriore. Abstraction Mechanisms for Event Con-
trol in Program Debugging. IEEE Transactions on Software Engineer-
ing, vol. 13, no. 7, pp. 890-901 (July 1989).

B. Miller and J. Choi. Breakpoints and Halting in Distributed Pro-
grams. Sth International Conference on Distributed Computing Sys-
tems, San Jose, CA, pp. 316-323 (September 1988).

R. Olsson, R. Crawford, and W. Ho. Dalek: A GNU Improved Pro-
grammable -Debugger. USENIX Summer Conference, Anaheim, CA,
pp. 221-231 (June 1990).

C. Harrison. Private Communication, (May 1990).

K. Ponamgi,W. Hseush, and G. Kaiser. Debugging Multi-Threaded
Programs with MpD. IEEE Software, vol. 8, no. 3, pp. 37-43 (May
1991).

R. Rosen. Parasight: A Concurrent Debugger 1EEE Software Engi-
neering Technologies, pp. 145-162 (May 1988)

50

(23] R. Stallman. GDB Manual: The GNU Source-Level Debugger. V2.5
Free Software Foundations (1983).

[24] A. Tanenbaum. Computer Networks. Prentice Hall (1983).

RPPCLIUIR

deadlock.c
I’l
This program contains a deadlock. T. “eads are
are aitempting 1o share resources, bul one gels vhile

the other R2. They keep their respective resow. and
corsinue to wait for the other thread (o give up.

*/

#include <sudio.h>

#lnclude <cthreads.h>

#lnclude “gdb_interface.h”

#define OFF 0
#define ON 1
#deflne ACKNOWLEDGED 3

mutex_t pr_lock;
mutex_t mem_lock;

int shared_variable=OFF;
int threadl(), thread2();

main()
{
cthread t t1,02;

Cthread _initQ;
pr_lock = mutex_alloc();
mem_lock = mutex_allocQ);

printf("%d: Ready?", getpid();
getchar(;

tl = Cthread_fork(threadl, getpid(Q);
12 = Cthread_fork(thread2, getpid();

Cthread_join(tl);
Cthread_join();

prind("uoAll threads done.\n");

thread 1(parent_pid)
int parent_pid;
{

Cthread_begin(;

mutex_lock(pr_lock); /% resource 1 %/
cthread_yield();

mutex_lock(mem_lock);

prindf("\tSender’s parent’s pid: %d.\n", pareat_pid);
printf("\tSending Message (seiting shared variable).\n");
shared _variable = ON:

mutex_unlock(mem_Jlock);
mulex_unlock(pr_lock);

thread2(parent_pid)
Int pareni_pid;
{

Cthread_begin();

Aug 28 00:07 1991

deadlock.c

main

threadl

thread?

Page 1 of deadlock.c

deadlock.c deadlock.c

...thread?2
mutex_lock(pr_lock), {% resource 2 */
cthread_yield();
mutcx_lock(mem_lock);
printf("Receiver’s parent’s pid: %d.\n", parent_pid);
printf("Receiver got the message via shared variable.\n");
printf("Receiver sending an acknowledgement\n®);
shared_variable = ACKNOWLEDGED:
mutex_unlock(mem_lock);
mutex_unlock(pr_lock);

Page 2 of deadlock.c

Aug 28 00:07 1991

join_err.c join_err.c

/‘
A thread aitempls o joins itself. This results in
deadlock. MpD detects where this occurs and tells ihe user.
>/
#include <stdio.h>
#include <cthreads.h>
#include “gdb_interface.h”

mutex_t pr_lock;

Int na0(), nal(), no2(), rad();
cthread _t thread;
main() main
{
cthread _t 1, 2, 3, 14
string _t name33;

setbuf(stdout, NULL);

Cthread _initQ;
pr_lock = mutex_alloc();

printf("%d: Ready?”", getpidQ);
gewchar();

thread = tl = Cthread_fork(o0, "2);
{2 = Cthread_fork(rml, b°);
t3 = Cthread_fork(rm2, ‘c?);
14 = Cthread_fork(rtn3, "d");

Cthrcad_sct_nann(tl,"t}utadl“);

pame33 = cthread name(tl);

priotf("the address of cthread name33:0x%x\n",name33);
Cthread_set_name(22,"thread1”);
Cthread_set_name(:3,"threadl");
Cthread_set_name(id,"thread1”);

Cthread _join(tl);
Cthresd_join(R2);
Cthread_join(13);
Cthread_join(t4);

printf(*Done.\n™);
printf("Dooe.\n");

}
rtn0(idc) ren0
char idc;
{
int ctr;
Cthread_begin();
Cthread _join(thread); /% Thread joining itself */

for(ctr = 0; ctr < I} cor++)
mutex_lock(pr_lock);
printf{"this is thread 000\n");
cir = ctr;
mul:x_nnlock(pr_lock);

Apr 3021:00 1991 Page 1 of join_err.c

join_err.c

rninl(idc)

{

rn2(idc)

{

ntn3(idc)

{

cthread _yield();
}
Cthread_exiy);

char idc;
int ctr;

Cthread_begin();
for(ctr = 0; ctr < 10; co++)

mutex_lock(pr_lock);
printf("this is thread 111\n");

clr = cm;
mutex_uslock(pr_lock);
cthread _yield();
}

Cthread_exiu);

char idc;

int ctr;

Cthread_begin();

for(ctr = 0; ctr < 1; ctr++)

mutex_lock(pr_lock);
printf(“this is thread 222\n");

clr = ctr;
mutex_unlock(pr_lock);
cthread yield();
}

Cthread_exit();

char idc;

{nt ctr;

Cthread_begin();

for{ctr = 0; ctr < 1; ctr++)
{

mutex_lock(pr_lock);
printf("this is thread 333\n");
ctr = ctr;
mutex_unlock(pr_lock);
cthread _yield();
}

Cthread_exit(;

Apr 30 21:00 1991

join_err.c

.rnQ

renl

ren2

ren3

Page 2 of join_err.c

doub mutex.c doub_mutex.c

Vis—matched mutex_locks cause a deadlock. MpD detects
the line where this occurs and prinis it oul. This error
occurs in rind{).
*

#include <stdio.h>
#include <cthreads.h>
#include “gdb_interface.h”

mutex_t pr_lock;

int nn0(), ntal(), nn2(), nad();
mainQ) main
{

cthread t tl, 2, 8, 4

sing_t name33;

setbuf(stdour, NULL);

Cthread_initQ;
pr_lock = mutex_alloc();

printf("%d: Ready?’, getpid(});
getchar();

tl = Cthread fork(rtn0, "a%);
t2 = Cthread_fork(rml, d");
13 = Cthread _fork(rm2, ‘c’);
14 = Cthread_fork(rtn3, "d");

Cthread_set_name(tl,"thread1™);

pame33 = cthread name(tl);

printf("the address of cthread name33:0x%x\n",name33);
Cthread_set_name(2,"thread1™);
Cthread_set_name(3,"thread1");

Cthread set_name(id,"thread1”);

Cthread_join(tl);
Cthread_join(R2);
Cihread _join(13);
Cthread_join(t4);

printf("Done.\n”);
printf("Doge.\n”™);

rn(¥idc) rtnQ
char idc;

int ctr;
Cthread _begin();
for(ctr = 0; ctr < 1; ctr++)

mutex_lock(pr_lock);
printf("this is thread 000\n");
cr = ctr;
mutex_unlock(pr_lock);
cthread_yield(;
}

Cthread _exit(); .

Apr 3021:01 1991 Page 1 of doub_mutex.c

doub_mutex.c

rtnl{idc)

{

nn2(idc)

{

rtn3(idc)

{

char 1idc;
int ctr;
Cthread _begin();

for{ctr = 0; ctr < 10; ctr++)
{
mutex_lock(pr_lock);
mutex_lock(pr_lock);
printf("this is thread 111\n");
ctr = ctr;
.mutex_unlock(pr_lock);
mutex_unlock(pr_lock);
cthread_yieldQ;

}
Cthread _exiy);

char idc;
Int ctr;
Cthread _begin();

for(ctr = 0; ctr < 1; cr++)

mutex_lock(pr_lock);
printf("this is thread 222\n");

cir = ctr;
mutex_unlock(pr_lock);
cthread_yield();
}

Cthread _exit();

char idc;

int (41 of

Cthread_begin();

for(ctr = 0; or < 1; ctr++)

{
mutex_lock(pr_lock);
printf("this is thread 333\0");
cr = ctI;
mutex_unlock(pr lock);
cthread yieldQ;
}

Cthread_exit();

Apr 30 21:01 1991

/* ERROR,

embedded

doub_mutex.c

.rtn0

rtnl

locks */

rtn2

ren3

Page 2 of doub_mutex.c

join_det.c

/.
A Cthread attempls ‘o join a detached thread. This
is the main routine. MpD detects this error and poiris
out the line where this occurs.

#include <stdio.h>

#include <cthreads.h>
#include “gdb_interface.h”

rutex_t pr_lock;

int nn0(), nol(), no2(), ra3();
main)
{
cthread _t tl, 2, 83, 4]
string_t pame33;

setbuf(stdout, NULL),

Cthread_initQ;
pr_lock = mutex_alloc();

prind("%d: Ready?”, getpidQ);
getchar();

Cthread _fork(rn0, ‘a%);
Cthread_fork(rinl, 'd7Y);
Cthread _fork(rtn2, ‘c?);
t4 = Cthread fork(rmn3, d");

L=
T

Cthread_detach(tl); /* Daaching threadl */

Cthread_set_name(t1,"thread1");

name33 = cthread_name(tl);

printf("the address of cthread name33:0x%x\n",name33);
Cthread_set_pame(12,"thread1");
Cuzread_scl_namc(a,"mrehdl");
C&uead_sel_namc(td."duudl“);

Cthread _join(tl); /% ERROR joining threadl */
Cthread_join(R2);

Cthread _join(13);

Cthread _join(i4);

prindf("Done.\n");
prind("Done.\n");

rtalidc)
{

char idc;

int o

Cthread_begin();

for(ctr = 0; ctr < 1; cire+)
mutex_lock(pr_lock);
printf("this is thread 000\n");

ctr = ctr;
mutex_unlock(pr_lock);

Apr 3021:03 1991

join_det.c

main

rtn0

Page 1 of join_det.c

nnl(idc)

{

rta2(ide)

{

rm3(idc)

{

join_det.c

cthread _vield();

}
Cthread _exiy);

char idc;

lat cr;
Cthread_begin();

for{ctr = 0; cir < 10; cr++)

mutex_lock(pr_lock);
printf("this is thread 111\n");
cr = ctry
mutex_unlock(pr_lock);
cthread_yield();
}

Cihread _exil();

char idc;
int ctr;
Cthread _begin();

for(cr = 0; ctr < 1; ctr++)

mutex_lock(pr_lock);
printf("this is thread 222\n");
ctr = cr;
mutex_ualock(pr_lock);
cthread_yield(;
}

Cthread_exil();

char idc;
int ctr;
Cthread_begin();

for(ctr = 0; ctr < I; ctr++)

{
mutex_lock(pr_lock);
printf("this is thread 333w");
ctr = ctr;
mutex_unlock(pr_lock);
cthread_yield();
}

Cthread _exit();

Apr 30 21:03 1991

join_det.c

...rtnQ

renl

ren2

ren3

Page 2 of join_det.c

Appendix B

Usage:
help

help <commands>
Effect:

The word "help" by itself displays this file. Typing help followed
by a specific command gives help on usage and effect of the command.
Available commands are:

dpe Enters dpe into dpe table and creates PA (predecessor automata) for
it.

display Displays the dpe table or specific dpe statistics.

quit Exits dpe mode and re-enters gdb mode.

deléte Deletes specified dpe(s) from dpe table.

active Makes specified dpe from dpe table active for execution modeling.

renum Renumbers entries in dpe table from 1 upwards.

skipon Don’t stop at mute).c lock/unlock specified.

skipoff Stop at mutex lock/unlock if encountered.

receive Receive rﬁ&sag& from a specified port.

ignore Ignore messages from a specified port.

help Displays this file.

Usage:
active <aumber>

Effect:

Current active DPE for execution modeling becomes entry specified by
number in the DPE table. 01d active DPE switches places with new
active DPE in the DPE table. The DPE in entry 1 in the DPE table is
ALWAYS the currently active one. To see the DPE table use command
"display."

Usage:
delete <number(s)>
Effect:

Deletes DPE(s) corresponding to the number(s) in the DPE table.

Example:
delete 4 5 7

This will delete DPEs 4, 5 and 7.

/

Usage:
display

display <number>

display locks
display ports

Effact:

Displays the dpe table. If given a specific entry in dpe table,
detailed statistics about the dpe are printed. With the key word
"locks" 1t displays current list of mutex lock/unlock variables
being ignored. The key word "ports" lists currently monitored
ports to appear.

Usage:
dpe <dpe expression>

Effect:

Creates predecessor automata (pa) out of specified dpe. A dava path
expression (dpe) tries to model the execution flow of the breakpoints
set in gdb. To specify tke execution flow the operators used are:

; Sequential.
4+ Exclusive or.
* Repetition.

& Concurrent.
Examples of dpes modeling execution flow would be:

dpe 1;2 means breakpoint 1 is seen then breakpoint 2.
dpe 1&2 means breakpoint 1 is concurrently with breakpoint 2.

dpe (1;2)*;(344);5 means breakpoint 1 followed by breakpoint 2 can
occur 0 to any number of times, then either breakpoint 3 or 4 occurs,
followed by breakpoint 5.

The operators may be grouped by parentheses to any depth. In
addition, several dpes may co-exist with several active (i.e. gdb
events are compared to them) at any given time. The DPEs are placed

into a "DPE table" which can be manipulated by various commands while
in the DPE parser (see help for list of available commands) .

When the program executes in gdb the actual order of the breakpoints
occurring is compared with the specified DPEs. At the end of
execution the command "state" provides information comparing the DPE
models against actual execution.

Usage:
ignore <port>

Effect:

All messages sent to specified port via the msg_send() function will
be ignored when we receive_msg(). This is usually used to turn off a
port the receive command specified earlier.

Example:

ignore portl (Where portl is a Mach port declared in the program.)

#

Usage:
quit

Effect:

User exits dpe manipulation mode and re-enters gdb mode.

