
Extending SDARTS: Extracting Metadata from Web
Databases and Interfacing with the Open Archives Initiative

Implementation paper

Panagiotis G. Ipeirotis
pirot@cs.columbia.edu

Tom Barry
tjbarry@earthlink.net

Computer Science Dept.
Columbia University

Luis Gravano
gravano@cs.columbia.edu

ABSTRACT
SDARTS is a protocol and toolkit designed to facilitate
metasearching. SDARTS combines two complementary ex-
isting protocols, SDLIP and STARTS, to define a uniform
interface that collections should support for searching and
exporting metasearch-related metadata. SDARTS also in-
cludes a toolkit with wrappers that are easily customized to
make both local and remote document collections SDARTS-
compliant. This paper describes two significant ways in
which we have extended the SDARTS toolkit. First, we have
added a tool that automatically builds rich content sum-
maries for remote web collections by probing the collections
with appropriate queries. These content summaries can then
be used by a metasearcher to select over which collections
to evaluate a given query. Second, we have enhanced the
SDARTS toolkit so that all SDARTS-compliant collections
export their metadata under the emerging Open Archives
Initiative (OAI) protocol. Conversely, the SDARTS toolkit
now also allows all OAI-compliant collections to be made
SDARTS-compliant with minimal effort. As a result, we
implemented a bridge between SDARTS and OAI, which
will facilitate easy interoperability among a potentially large
number of collections. The SDARTS toolkit, with all re-
lated documentation and source code, is publicly available
at http://sdarts.cs.columbia.edu.

1. INTRODUCTION
A significant amount of valuable information on the web
is stored in databases, some of which is “hidden” behind
search interfaces and not crawlable by traditional search en-
gines. An attractive way to allow easy interaction with these
databases is through metasearchers (e.g., [19, 7]), which pro-
vide users with a single interface to query multiple databa-
ses simultaneously. A metasearcher performs three main
tasks: After receiving a query, it determines the best da-

tabases to evaluate the query (database selection), it trans-
lates the query in a suitable form for each database (query
translation), and finally it retrieves and merges the results
from the different databases (result merging) and returns
them to the user using a uniform interface. These tasks
are challenging, which makes it difficult to build a sophisti-
cated metasearcher. Matters are complicated even further
by the lack of a common way to interact with the different
databases.

To facilitate metasearching, we defined a protocol and an
associated toolkit, named SDARTS [10], which provides the
necessary infrastructure for incorporating new collections to
our NSF Digital Library Initiative–Phase 2 project PERSI-
VAL [13]1 with minimal effort. SDARTS is a hybrid between
two existing protocols, SDLIP [18] and STARTS [8], and in-
herits from the latter the specification of the metadata that
collections should export to make metasearching easier. Col-
lections have to indicate, for example, what attributes are
available for searching (e.g., “author”). This information is
helpful for the query translation metasearch task. Addition-
ally, collections should export a content summary to assist
in database selection. This content summary of a collection
includes the vocabulary of the collection plus simple statis-
tics like the frequency of occurrence of each word in the
collection. The content summaries encompass the core of
the information content needed by most database selection
techniques that have been proposed in the literature [20, 9,
14, 22].

SDARTS, as reported in [10], supported three types of wrap-
pers: for local text collections, for local XML collections,
and for remote web collections. The SDARTS toolkit could
construct content summaries for the first two types of collec-
tions, to which the SDARTS wrappers have complete access.
(These collections are locally available.) Unfortunately, the
SDARTS toolkit did not provide any support to build con-
tent summaries for the third type of collection, in which
documents might not be available other than via a web-
accessible search interface. In this paper we describe how
we extended the SDARTS toolkit with a method for auto-
matic extraction of content summaries from autonomous,
remote databases that do not export any metadata about
their contents. By adding this functionality to SDARTS we

1http://persival.cs.columbia.edu



can have uniform metadata for all SDARTS-compliant col-
lections, no matter if we have complete access to their full
contents or not.

To allow interoperability, the SDARTS metadata is exported
using the metadata interface of SDLIP, an open Digital Li-
braries interoperability protocol, developed mainly by digi-
tal libraries projects in California. Of course, there are other
protocols for exporting metadata like the Open Archives Ini-
tiative (OAI) [17], a notable example that is getting mo-
mentum among Digital Libraries projects and information
providers. Since interoperability is a key goal behind the
development of SDARTS, in this paper we also report how
we export the SDARTS metadata under the OAI protocol.
As a result, all SDARTS-compliant collections become im-
mediately part of OAI. Conversely, we added to SDARTS
the capability to harvest and index OAI collections, enrich-
ing them with additional search functionality and metadata
to make the OAI collections fully SDARTS compliant. As a
result, all OAI collections can become SDARTS-compliant
with minimal effort. The SDARTS-generated content sum-
maries for OAI collections can then be exploited by metase-
archers for efficient distributed search over OAI collections.
By examining the content summaries of different OAI col-
lections, it is possible to find the most promising collections
and harvest metadata only from them.

The rest of the paper is organized as follows: In Section 2
we briefly review the SDARTS protocol and its associated
toolkit. Then, in Section 3 we describe how we built into
SDARTS the capability of automatically extracting content
summaries from web databases. In Section 4 we discuss how
we extended the SDARTS toolkit so that we can easily make
OAI collections SDARTS-compliant and vice versa. Finally,
in Section 5 we conclude and summarize our contributions.

2. OVERVIEW OF SDARTS
Metasearching is an important component of our PERSI-
VAL Digital Library project. We have to access different
types of collections for users with different needs. The only
way to interact with many “remote” collections is through
querying, but broadcasting queries to all available collec-
tions is neither efficient nor effective. Metasearching can be
greatly facilitated if all the databases export a uniform in-
terface for searching, returning results, and exporting meta-
data about their contents. To specify such an interface, we
developed SDARTS [10], a protocol and toolkit designed
to help metasearching. To allow interoperability, SDARTS
is based on existing protocols, namely on SDLIP [18] and
STARTS [8], and combines them to create a powerful pro-
tocol, which helps make distributed search easier and more
effective. We briefly discuss STARTS and SDLIP in Sec-
tion 2.1 and in Section 2.2 we review the SDARTS protocol
and its associated toolkit, which were introduced in [10].

2.1 STARTS and SDLIP
STARTS [8] is a protocol proposal that defines the informa-
tion that a collection should export to facilitate metasearch-
ing. A key piece of information that a collection should ex-
port under STARTS is its content summary. The content
summary of a collection is aggregated information about the
contents of the entire collection and contains simple statis-
tics like the frequency of the words that appear in the collec-

<starts:scontent-summary
xmlns:starts=http://sdarts.cs.columbia.edu/STARTS/
version="Starts 1.0"
stemming="false" stopwords="false"
case-sensitive="true" fields="false"
numdocs="19997">
...
<starts:term>
<starts:value>algorithm</starts:value>
</starts:term>
<starts:term-freq>75</starts:term-freq>
<starts:doc-freq>34</starts:doc-freq>
...

Figure 1: A small fraction of the STARTS content
summary for the “20 Newsgroups” collection.

tion. Figure 1 shows part of the content summary of the “20
Newsgroups” collection [2], a collection that is frequently
used in the machine learning community. This collection
consists of 19,997 articles posted to 20 newsgroups. 34 of
these articles contain the word “algorithm” in their body, as
the content summary in the figure indicates. Also, this word
appears 75 times over these 34 articles. A metasearcher can
use these content summaries to select the collections to send
a given query (i.e., for database selection). Most database
selection algorithms (e.g., [20, 9, 14, 22]) depend on this
kind of content summaries. More specifically, the database
selection component of a metasearcher can use this infor-
mation to estimate the number of relevant documents that
a given query will retrieve from each collection. As a sim-
ple example, given a query on “algorithm” a metasearcher
might conclude that it does not need to query a collection
with few or no documents containing that word, as reported
in the collection’s content summary.

SDLIP [18] is a layered protocol that defines simple inter-
faces for interoperability between heterogeneous databases.
Its designers define it as “search middleware,” lighter and
easier to use for web-related applications than standard mid-
dleware protocols like Z39.50 [1]. The main purpose of
SDLIP is to provide uniform interfaces to collections for
querying and retrieving results, and taking care of the trans-
port of the data across the network. SDLIP defines the in-
terfaces that a database or a wrapper of a database should
implement so that it can be accessed by an SDLIP-enabled
client. An implementation of the SDLIP interfaces functions
as a lower-level wrapper around one or more underlying col-
lections. These collections can either be hosted locally, or
be remote databases that are accessed over the network.
Figure 2, borrowed from [18], depicts the role of SDLIP
in a digital library architecture. Essentially, SDLIP masks
the heterogeneities of the different search interfaces and ex-
ports a uniform interface for all of its underlying collections.
SDLIP is designed for clients that know which collection
they wish to access. In contrast, STARTS specifies, among
other things, the metadata that databases should export to
make it easier for a metasearcher to decide which databases
it is worth contacting. Hence, by combining the two proto-
cols we created a protocol that allows easy interaction with
different collections, and also exports the necessary meta-
data information to make metasearching more efficient and
effective. The protocol that resulted from combining SDLIP



SDLIP Client

Library Service
Proxy (LSP)

Remote
Collection 1

Remote
Collection 2

External
Protocols

Network
Boundaries

SDLIP

“Local”
Subcollections

Figure 2: The role of SDLIP in a digital library ar-
chitecture with autonomous databases and wrappers
(taken from [18]).

and STARTS is named SDARTS [10] and we review it next.

2.2 SDARTS
SDARTS was designed with two goals in mind: interoper-
ability and ease of use.

Interoperability is especially important in a digital library
environment, where there is a crucial need to access a large
number of diverse resources. By using SDLIP, an existing
protocol, we ensured that we can interoperate with other
Digital Libraries projects that had developed and used this
protocol for interoperability. We standardized on STARTS
as the XML “dialect” for SDLIP to exchange the extra infor-
mation specified by STARTS and not included in the original
version of SDLIP. SDARTS follows all of SDLIP’s original
DTDs, which include placeholders that can be exploited to
include the necessary STARTS XML objects. By standard-
izing on one XML format for SDLIP, we have created an
architecture that allows easy implementation of wrappers
for different types of collections (for details, see [10]).

Although the SDARTS architecture makes it easy to im-
plement new wrappers from the developer’s point of view,
we wanted to create a tool that would allow end-users to
wrap the most common types of existing text-based collec-
tions with minimal effort. For this reason, the SDARTS
toolkit includes three reference wrappers that can be used
to cover the vast majority of textual collections. Specifically,
we have created one wrapper for simple “local” text docu-
ment collections, one wrapper for “local” XML-formatted
document collections, and one wrapper for “remote” web-
accessible collections. All these reference wrappers can be
configured easily. We briefly describe the three reference

wrappers below:

Text wrappers: This wrapper is designed to make a local
collection of text documents fully searchable and available
under SDARTS. The SDARTS administrator just needs to
write a small configuration file that specifies the local path
to the set of documents. Optionally, it is possible to specify
a set of stop words, and write regular expressions to lo-
cate different fields (e.g., title and author) that exist in the
text files. After writing the configuration file, the SDARTS
wrapper indexes the files and provides a SDARTS query
and metadata interface for the collection. At the same time
the content summary of the collection is created and made
accessible through the metadata interface. We stress here
that the collection metadata is extracted automatically dur-
ing indexing and made available after the configuration of
the wrapper.

XML wrappers: This wrapper is designed to make a lo-
cal collection of XML-formatted documents fully searchable
and available under SDARTS. This wrapper is quite similar
to its plain-text counterpart; the key difference is that, to
index collections of XML documents, a slightly more com-
plicated configuration file is needed. Except for the infor-
mation about where the documents are stored, an XSLT
stylesheet is needed to define how to find the fields in the
documents during indexing. Again, after the initial config-
uration, indexing and searching are completely automatic.
Since the full contents of the collection are always available
for inspection, detailed metadata is created automatically
and exported using the SDLIP-specified interfaces.

Web wrappers: This wrapper is designed to make a col-
lection hosted in a remote web server fully searchable and
available under SDARTS. This is the most complex of the
three wrappers. It is intended for autonomous, remote col-
lections fronted by HTML forms and CGI scripts, such as
the PubMed collection of medical bibliography 2 and many
others. We decided that the best way to make this wrap-
per configurable without additional Java coding was through
XSLT stylesheets. The XSLT stylesheet in this case has
an element to describe CGI invocations. This consists of
a URL, the query method (GET or POST), and a set of
name/value pairs that are the script’s parameters. To pro-
cess a query, the wrapper sends it to the remote engine and
gets back the results in HTML format. Then, the wrapper
converts the HTML into well-formed XML and this XML
is then transformed using an XSLT stylesheet to find the
fields of interest in the results page. Thus the SDARTS
search interface can be supported by the wrapper. In con-
trast, exporting content summaries presents complications if
the whole contents of a remote collection are not available to
the SDARTS wrapper, as is often the case. Hence, it might
not be possible to generate metadata about the individual
records of the collection in the way we do for the text and
XML wrappers.

In summary, the wrappers provided in the SDARTS toolkit
allow us to index, search, and extract metadata from every
plain-text or XML-formatted collection that is available lo-
cally. However, for remote collections over which we have no

2http://www.ncbi.nlm.nih.gov/PubMed/



control, content summary extraction is challenging. Next,
in Section 3, we describe how to automate content-summary
generation for such “uncooperative” web databases.

3. EXTRACTING CONTENT SUMMARIES
FROM WEB DATABASES

The SDARTS text and XML wrappers extract complete
metadata from locally available text and XML collections.
In contrast, a web wrapper cannot generate content sum-
maries for remote collections. In this section, we describe
how we extended the SDARTS toolkit to address this lim-
itation of web wrappers. In particular, in Section 3.1 we
present a brief overview of our content-summary extraction
algorithm of choice, while in Section 3.2 we discuss how we
implemented this algorithm into SDARTS.

3.1 Content Summary Extraction via Query
Probing

To create a complete SDARTS content summary for a web
database, we would have to somehow inspect the whole con-
tents of the database. This might not only be impracti-
cal but even infeasible, since many collections might be too
large to crawl or even uncrawlable altogether (e.g., when
their contents are not HTML documents). To circumvent
these problems and still be able to automatically build good
quality content summaries, we resort to document sampling.

A good-quality content summary of a collection can be de-
rived from a small, representative document sample from the
collection [3]. Earlier research has shown that we can extract
such a document sample with a relatively small number of
query probes [3, 4, 11]. An approximate content summary
can then be built from the documents that best match each
query probe at the collection in question. Interestingly, the
effectiveness of the best database selection algorithms does
not suffer significantly from using approximate content sum-
maries extracted in this way, rather than the “complete”
content summaries for which the algorithms were originally
designed [6, 4].

To make the generation of content summaries in SDARTS
completely automatic we adopted the method we described
in [11], which uses a small number of topically-focused query
probes to produce highly accurate approximate content sum-
maries. Our probing method relies on short query probes
generated from document classifiers and has two steps: a
training step and a sampling step. In the training step, we
start with a comprehensive, predefined topic hierarchy with
an associated training set of preclassified documents. Then,
we train a rule-based document classifier [5] to produce rules
like “IF lung AND cancer THEN Health”. According to
this rule, a document having the words “cancer” and “lung”
will be classified into category “Health”. In the sampling
step, we transform each of these rules into a query probe
(a query containing all the words in the antecedent of the
given rule), and issue the queries to the collections for which
we want to create the content summaries. We retrieve the
top-k documents returned by each query. (A good value for
k is four.) The first round of query probes is associated with
the top level of our classification hierarchy. Therefore, these
queries cover a wide variety of “general” topics. Our algo-
rithm inspects the number of documents that match each

PubMed

1238 matches

103 matches

109644 matches

cancer AND lung

team AND league

ibm AND computer

...

…

PubMed

41490 matches

46142 matches

37211 matches

angina

aids AND hiv

hepatitis AND liver

...

…

…

Doc k1 Doc k3Doc k2 …

Doc m1 Doc m3Doc m2 …

…

Doc n1 Doc n3Doc n2 …

Doc n’1 Doc n’3Doc n’2 …

Doc m’1 Doc m’3Doc m’2 …

Doc k’1 Doc k’3Doc k’2 …

1st round

2nd round

Figure 3: Performing topic-based document sam-
pling on the web-accessible database PubMed.

query in the collection and decides on which topics to fo-
cus. The algorithm then issues a second round of query
probes corresponding to the subcategories of the most rep-
resentative top-level categories for the collection, ignoring
other off-topic categories. After all levels in the categoriza-
tion scheme have been processed in this way, the algorithm
returns the top-k documents retrieved for each query probe
as the document sample for the collection.

Figure 3 illustrates how the probing process works. The
PubMed database is initially probed with “general” queries,
associated with the top-level categories of a classification
scheme (e.g., “Health,” “Sports”). As a result, we extract a
small document sample, which is saved. By examining the
generated number of matches for each probe, the algorithm
detects that a significant percentage of the documents in
the database are about “Health.” Hence, it starts a new
round of sampling by sending query probes associated with
the subcategories of “Health” and ignoring, for example, the
“Sports” subtree. The process continues, and the result is
a document sample that is representative of the collection
contents.



Word Document Frequency
cancer 1,122,844
bone 385,128
hepatitis 80,375
... ...
java 2,393
hunting 912
basketball 880

Table 1: A small fraction of the automatically ex-
tracted content summary for the PubMed collection.

After probing a collection as above, we have a document
sample that is representative of the collection contents. By
inspecting this sample, we can order all words according
to the number of sample documents in which they occur.
Furthermore, we know the real document frequency in the
entire collection for those words that appeared as single-
word query probes. The number of matches reported for
such queries are (a close approximation to) the actual doc-
ument frequency of the corresponding words. Hence we can
use curve-fitting techniques to predict the real document
frequency of those words in the document sample that did
not appear in query probes by themselves. The result of
this process, which is presented in detail in [11], is a content
summary that accurately reflects the contents and size of
the web collection.

Table 1 reports a fraction of the content summary that we
automatically generated for the PubMed collection. We can
see that high-frequency words like “cancer” are representa-
tive of the topic coverage of PubMed, unlike low-frequency
words like “basketball.” We created the PubMed content
summary by sending less than 200 queries to PubMed and
retrieving four documents per query. Also the queries sent
to the PubMed search interface are quite short. More than
half of the queries consist of only one word, with a three-
word maximum. This example illustrates how we can create
accurate content summaries of web databases by running a
relative inexpensive sampling algorithm.

3.2 Incorporating Content Summary Extrac-
tion into SDARTS

We now explain low-level details of how we implemented
the content summary generation algorithm of Section 3.1
into SDARTS.

The tool that implements the content summary generation
is a J2EE-compliant servlet and can be easily installed in
any web server that supports servlets. The servlet has to
be initially configured with a classification scheme and its
associated classifiers. These classifiers are generated auto-
matically from a set of training documents, and they only
have to be produced once. We include a comprehensive clas-
sification scheme with the associated classifiers as part of the
toolkit. Of course, it is possible to create different classifica-
tion schemes that fit the needs of each specific application.
After this initial setup, this tool can be used with any web-
accessible collection to generate content summaries.

To generate the content summary for a web-accessible col-
lection, we have to first configure the SDARTS web wrapper

for the collection, as described in Section 2.2. After this, the
collection is SDARTS-compliant, so we can issue queries and
retrieve results within the SDARTS protocol. Then, to gen-
erate an approximate content summary for the collection, we
can use a simple web interface to start the probing process.
This process returns the content summary of the collection
in question after the construction of the approximate con-
tent summary has been completed.

As a result of this new content-summary extraction tool for
remote web-accessible collections, the SDARTS web wrap-
pers can now export high-quality fine-grained content sum-
maries as well, just as the wrappers for locally available col-
lections of plain-text and XML documents do. All SDARTS
wrappers, regardless of whether the underlying collections
are local or remote, are now able to provide metasearchers
with rich metadata for sophisticated database selection.

4. SUPPORTING OAI COLLECTIONS
An emerging protocol, the Open Archives Initiative (“OAI”
for short), defines an alternative interface and metadata that
each collection should support to facilitate interoperability
and metadata harvesting. Defining an interface between
SDARTS and OAI is an attractive way to leverage both ef-
forts for enhanced interoperability among a potentially large
number of collections. In this section, we first briefly re-
view the OAI protocol (Section 4.1). Then, we show how
every SDARTS-compliant collection can now be made OAI-
compliant automatically by exporting its metadata accord-
ing to OAI (Section 4.2). Finally, we describe how we can
wrap OAI collections to make them also SDARTS-compliant
with minimal effort. In doing so, we also add search capa-
bilities to OAI collections via SDARTS (Section 4.3).

4.1 Open Archives Initiative
The Open Archives Initiative (OAI) is a “low-barrier inter-
operability effort” [12], designed as an easy-to-implement
and easy-to-use solution for metadata harvesting. The OAI
differentiates mainly between two classes of participants:

• Data Providers, who use the OAI framework to export
metadata about their collections.

• Service Providers, who use the metadata exported by
the data providers to create value-added services on
top of this data.

The only requirement for a data provider is to publish meta-
data about the collection using the Dublin Core Metadata
Element Set [21]. All OAI implementers should support the
Dublin Core and export the metadata records as XML docu-
ments. The OAI framework also allows, optionally, different
metadata sets to be hosted under the same protocol. Each
metadata set has an associated XML schema to validate its
entries.

The OAI framework gives two main options for harvesting
metadata from data providers. One option is to restrict the
harvesting by date (e.g., “retrieve all the records that have
been updated in the last three days”). This allows service
providers to harvest metadata records incrementally and pe-
riodically update their repositories. The other option is to



use the use the concept of set, defined as a group of items
in a repository that are closely related. Hence, the set con-
cept can be used to organize the metadata in a hierarchical
scheme, and to separate the metadata of logically different
collections hosted in the same repository (e.g., medical re-
search vs. consumer health articles).

4.2 Exporting SDARTS Metadata using OAI
SDARTS includes tools to make locally-available text and
XML collections searchable and to export metadata about
them with minimal effort. Hence, a data provider can use
SDARTS to add a SDARTS search and metadata inter-
face to a collection with no programming whatsoever. To
improve interoperability we decided to have the SDARTS-
compliant collections export metadata using the OAI pro-
tocol as well. Hence, it is now possible for an information
provider to use SDARTS as an off-the-shelf tool for publish-
ing a text collection under SDARTS while exporting meta-
data using the OAI protocol at the same time.

To make SDARTS collections OAI-compliant, we map the
SDARTS “Basic-1” attributes for documents [8]3 to Dublin
Core elements, so that our OAI implementation will con-
form with the current OAI standard. In Table 2 we list the
mapping of the different metadata elements. Since Dublin
Core elements cover all the important metadata fields of
SDARTS, we can publish the existing metadata using the
Dublin Core elements, which are the core of the OAI meta-
data set. One drawback of our current implementation is
the lack of support for all the Dublin Core elements in the
Basic-1 attribute set (e.g., for the Rights element). How-
ever, since SDARTS inherits attribute-set extensibility from
STARTS [8], in the future we could easily define mechanisms
to allow for attribute-mapping extensibility as well as part
of SDARTS.

Rather than just publish OAI metadata about the records
(i.e., documents) stored in a SDARTS-compliant collection
to make it OAI-compliant, we also generate and export the
SDARTS content summary of the collection under OAI. We
believe that this metadata can help the distributed search
task over OAI collections as well. To export the SDARTS-
specific metadata under OAI, we defined an XML schema
that describes the structure of the SDARTS metadata. By
doing this it is possible to export the SDARTS metadata
directly under the OAI “umbrella” without modification.
Since we have a different content summary for each subcol-
lection accessible through SDARTS, we decided to consider
each subcollection of SDARTS as an OAI set. Hence it is
possible to export a “pointer” (i.e., a URL) to the content
summary for each subcollection using the metadata “slots”
that OAI provides to characterize each set.

In terms of implementation, the OAI server included in the
SDARTS toolkit is based on the OCLC OAI Server [16]. In
order to publish the URLs for the content summaries and
remain completely OAI compliant, we had to make small
modifications in the code relating to the OAI “Identify”
verb. To assure platform independence, we used JDBC to

3SDARTS inherits all the metadata defined by STARTS.
Hence, what we refer to in this paper for simplicity as
SDARTS metadata and content summaries are essentially
STARTS metadata and content summaries.

Dublin Core SDARTS
Title Title
Creator Author
Subject Body-of-text
Description Body-of-text
Format Linkage-type
Identifier Linkage
Source No similar concept in SDARTS.
Type No similar concept in SDARTS.
Language Language
Publisher No similar concept in SDARTS.
Contributor No similar concept in SDARTS.
Date This date could be a century or multiple

years. No similar concept in SDARTS.
Relation If recommended best practices are fol-

lowed, this would map to Cross-reference-
linkage. Not mapped in this implementa-
tion.

Coverage Refers to a spatial or temporal period. No
similar concept in SDARTS.

Rights SDARTS does not have this concept on a
document level.

Table 2: Mapping SDARTS’s Basic-1 and OAI’s
Dublin Core attributes.

interact with the underlying database that keeps the “OAI”
data. This ensures that any relational database can be used
to support the OAI server. In our implementation we use the
MySQL [15] database management system, an open source
project that is freely available for use.

For ease of use, the OAI server that comes with SDARTS
is distributed as a simple Web Application aRchive (WAR)
file. The potential user has just to install this file on a Java
servlet enabled web server and specify the location of the
SDARTS database in the properties file. After this simple
step, the OAI server is fully functional. To ensure mini-
mum space utilization, the metadata is materialized in the
database only when requested by an OAI “harvest” request.

Through the web-accessible server, it is directly possible to
update the data available through the OAI server, and it
is also possible to specify which SDARTS collections should
export their metadata under the OAI server. These tasks
are easily performed using a simple web interface.

4.3 Wrapping OAI Collections
We now describe how we can enhance collection interoper-
ability by making each OAI collection SDARTS compliant.
As we will see, the SDARTS wrapper for OAI collections is
extremely simple to configure, since it exploits the uniform
interface defined by OAI.

The OAI operations do not directly allow searching on dif-
ferent attributes, since the focus of the protocol is to fa-
cilitate metadata harvesting and not searching over them.
This operation is left as “value-added” service provided by
service providers, in contrast to the data providers who pro-
vide the actual document collections. The only fields that
can be restricted during harvesting is the “date” field, to al-
low incremental harvesting of metadata, and the “set” field.



OAI Client

SDARTS Server

Remote Web
Database

Web
Wrapper

“Local”
Collections

Remote OAI
Collection

OAI
Interface

OAI
Wrapper

S
D

L
IP


In

te
rf

a
ce

s
SDLIP/SDARTS

Client

Figure 4: The SDARTS architecture: Interacting
with multiple collection types and exporting meta-
data about them using different protocols.

Hence, it is not possible to directly ask from an OAI collec-
tion to return the documents that have a specific keyword
in the “title” field, for example.

For the metasearching task, however, the ability to perform
search operations on different attributes is important. For
example, a metasearcher might need to send a query to re-
trieve documents with specific keywords in the title, or to
retrieve records that correspond to a given author. As we
described above, such operations are not directly supported
by the current version of OAI.

To overcome this restriction, we harvest the metadata from
the remote OAI archives and then index and search them
locally. The SDARTS XML wrapper (Section 2.2) provides
the ability to index and search any local XML collection.
The metadata records harvested from OAI collections are es-
sentially XML documents with a uniform structure. Hence,
we can fetch the OAI metadata records and store them
locally as a collection of XML documents. After this, a
SDARTS XML wrapper can be easily configured to make
this XML collection fully SDARTS-compliant. This config-
uration just requires specifying an XSL file with the location
in the XML files of the attributes of interest. Since all the
OAI records have the same XML format, this configuration
file had to be written only once and is now part of the OAI
wrapper in SDARTS.

The only parameter that the OAI wrapper needs is the ad-
dress of the remote OAI collection and which set (if there is
a desire to specify one) it should retrieve. After giving these
parameters through a simple web-accessible interface (Fig-
ure 5), the SDARTS administrator has to define how many
records should be harvested and when. Then the process
starts in the background, fetches XML OAI records from
the remote OAI collection, stores them locally and then in-
dexes them as an ordinary XML document collection. After
retrieving the first documents and creating a local index of

Figure 5: The user interface for “wrapping” an OAI
collection and make it SDARTS compliant.

the OAI collection, the SDARTS administrator can update
periodically the archive by sending the “update” command
to the SDARTS server. This command retrieves the records
that have been updated since the last harvesting, and the
local index is updated accordingly.

One advantage of having a local copy of the metadata records
is the ability to index and search virtually any attribute in
the metadata records. This enables us to locate records that
satisfy more complex queries, like “author contains Smith
AND title contains bridge.” Hence, any OAI collection can
become transparently part of our distributed search testbed.
Since we offer the ability to search the collections in our
testbed, one can use SDARTS to query in more advanced
ways existing OAI collections. Also, it is directly possible
for an interested party to download the SDARTS toolkit and
interact easily with the OAI collections of interest, without
any additional effort.

Finally, one significant advantage of having OAI metadata as
a local SDARTS-compliant collection is the ability to con-
struct detailed content summaries of the OAI collections.
Although these content summaries are constructed based
only on the metadata and not based on the actual con-
tents of the documents, these summaries can be of use for
database selection. For example, in Table 3 we show a frac-
tion of the content summary for the OAI-compliant “Vir-
ginia Tech Electronic Thesis and Dissertation” collection.
We can see that the words “thesis” and “study” have much
higher frequencies than other words, like “cancer,” that do
not correlate well with the contents of this collection. By
comparing this content summary with the one that we ex-
tracted from PubMed (Table 1), we can see that the word
distribution can be used to distinguish between the two col-
lections, which host documents of completely different type.
For example, the word “cancer” in PubMed has high fre-
quency, while the frequency of the same word in the thesis
repository is really low since these theses do not focus on
medical issues. Hence, a metasearcher that has to pick one



Word Document Frequency
thesis 2,945
study 1,823
surface 275
operation 174
... ...
basketball 2
cancer 1
bone 1

Table 3: A small fraction of the content summary for
the OAI-compliant “Virginia Tech Electronic Thesis
and Dissertation” collection.

of these two collections for a query on “cancer” can exam-
ine these content summaries and direct the query to the
PubMed database. Thus, the additional metadata and in
particular the SDARTS content summaries of the existing
OAI collections can be beneficial for distributed search.

5. CONCLUSION
We have described in this paper how we extended SDARTS,
a protocol and toolkit designed to facilitate metasearching.
Until now, the SDARTS toolkit had the capability to index,
search, and export metadata for any text or XML collection
of documents that was available locally. Also, it was possible
to wrap “external” web collections and search them using a
uniform interface. However, no content summaries for web
collections were available, since these collections rarely ex-
port any metadata whatsoever. Hence, in this paper we
introduced a new tool into the SDARTS toolkit that auto-
mates the task of extracting content summaries from web
collections. By extracting these content summaries we be-
lieve that we now make metasearching over web collections
an easier task.

Additionally, we decided to make any SDARTS-compliant
collection also OAI-compliant by exporting metadata under
the OAI protocol. Using OAI, we export not only the re-
quired Dublin Core metadata (with some exceptions), but
also the SDARTS content summaries for the collections.
This makes it possible for potential users to use these content
summaries directly just by consulting the SDARTS meta-
data interface (using either SDLIP or OAI).

We also described in the paper how we created a univer-
sal OAI wrapper to make OAI-compliant collections also
SDARTS-compliant, adding search capabilities on top of
them. Additionally, as an interesting by-product of our ap-
proach, SDARTS generates rich content summaries for the
SDARTS-wrapped OAI collections. These summaries then
allow metasearchers to do sophisticated database selection
over OAI collections as well, just as over any other SDARTS-
compliant collections.

The SDARTS toolkit, related documentation and code are
publicly available from http://sdarts.cs.columbia.edu.

6. REFERENCES
[1] International Standard Maintenance Agency. Z39.50

Maintenance Agency Page. ISMA, 2000. Available at
http://lcweb.loc.gov/z3950/agency/.

[2] C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998. Available at
http://www.ics.uci.edu/∼mlearn/-
MLRepository.html.

[3] James P. Callan, Margaret Connell, and Aiqun Du.
Automatic discovery of language models for text
databases. In Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’99), pages 479–490, 1999.

[4] Jamie Callan and Margaret Connell. Query-based
sampling of text databases. ACM Transactions on
Information Systems, 19(2):97–130, 2001.

[5] William W. Cohen. Learning trees and rules with
set-valued features. In Proceedings of the 13th National
Conference on Artificial Intelligence (AAAI-96)
Eighth Conference on Innovative Applications of
Artificial Intelligence (IAAI-96), pages 709–716, 1996.

[6] Nick Craswell, Peter Bailey, and David Hawking.
Server selection on the World Wide Web. In
Proceedings of the Fifth ACM Conference on Digital
Libraries (DL 2000), pages 37–46, 2000.

[7] Daniel Dreilinger and Adele E. Howe. Experiences
with selecting search engines using metasearch. ACM
Transactions on Information Systems, 15(3):195–222,
1997.

[8] Luis Gravano, Chen-Chuan K. Chang, Héctor
Garćıa-Molina, and Andreas Paepcke. STARTS:
Stanford proposal for Internet meta-searching. In
Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data (SIGMOD’97),
pages 207–218, 1997.

[9] Luis Gravano, Héctor Garćıa-Molina, and Anthony
Tomasic. GlOSS: Text-source discovery over the
Internet. ACM Transactions on Database Systems,
24(2):229–264, June 1999.

[10] Noah Green, Panagiotis G. Ipeirotis, and Luis
Gravano. SDLIP + STARTS = SDARTS: A protocol
and toolkit for metasearching. In Proceedings of the
the First ACM+IEEE Joint Conference on Digital
Libraries (JCDL 2001), pages 207–214, 2001.

[11] Panagiotis G. Ipeirotis and Luis Gravano.
Summarizing and searching hidden-web databases
hierarchically using focused probes. Technical Report
CUCS-015-01, Columbia University, Computer Science
Department, 2001.

[12] Carl Lagoze and Herbert Van de Sompel. The Open
Archives Initiative: Building a low-barrier
interoperability framework. In Proceedings of the the
First ACM+IEEE Joint Conference on Digital
Libraries (JCDL 2001), pages 54–62, 2001.

[13] Kathleen McKeown, Shih-Fu Chang, James J. Cimino,
Steven Feiner, Carol Friedman, Luis Gravano,
Vasileios Hatzivassiloglou, Steven Johnson,
Desmond A. Jordan, Judith Klavans, André
Kushniruk, Vimla L. Patel, and Simone Teufel.
PERSIVAL, a system for personalized search and



summarization over multimedia healthcare
information. In Proceedings of the the First
ACM+IEEE Joint Conference on Digital Libraries
(JCDL 2001), pages 331–340, 2001.

[14] Weiyi Meng, King-Lup Liu, Clement T. Yu, Xiaodong
Wang, Yuhsi Chang, and Naphtali Rishe. Determining
text databases to search in the Internet. In
Proceedings of the 24th International Conference on
Very Large Databases (VLDB’98), pages 14–25, 1998.

[15] http://www.mysql.com/, 2001.

[16] ALCME: OAICat project,
http://alcme.oclc.org/oaicat/index.html, 2000.

[17] The Open Archives Initiative,
http://www.openarchives.org/, 2000.

[18] Andreas Paepcke, Robert Brandriff, Greg Janee, et al.
Search middleware and the Simple Digital Library
Interoperability Protocol. D-Lib Magazine, 6(3), 2000.

[19] Erik Selberg and Oren Etzioni. Multi-Service search
and comparison using the MetaCrawler. In
Proceedings of the Fourth International World Wide
Web Conference (WWW4), 1995.

[20] Atsushi Sugiura and Oren Etzioni. Query routing for
web search engines: Architecture and experiments. In
Proceedings of the Ninth International World Wide
Web Conference (WWW9), 2000.

[21] Stuart Weibel, Jean Godby, Eric Miller, and
Ron Daniel Jr. OCLC/NCSA metadata workshop
report, March 1995. Accessible at http://-

www.oclc.org:5047/oclc/research/publications/-

weibel/metadata/dublin core report.html.

[22] Jinxi Xu and James P. Callan. Effective retrieval with
distributed collections. In Proceedings of the 21st
Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR’98, pages 112–120, 1998.


