
Adaptive Remote Pagingfor Mobile ComputersBill N. Schilit and Dan DuchampDepartment of Computer ScienceColumbia University500 West 120th St. Room 450New York, N.Y. 10027TR CUCS-004-91February 1991AbstractThere is a strong trend toward the production of small \notebook" computers. The small size ofportable computers places inherent limits on their storage capacity, making remote paging desirable ornecessary. Further, mobile computers can \walk away from" their servers, increasing load on networkrouting resources and/or breaking network connections altogether. Therefore, it is desirable to allowclient-server matchups to be made dynamically and to vary over time, so that a client might always beconnected to nearby servers. Accordingly, we have built a self-organizing paging service that adapts tochanges in locale and that stores pages in remote memory if possible. We show empirically that there isno performance penalty for using our paging facility instead of a local disk. This suggests that portablecomputers need neither a hard disk nor an excessive amount of RAM, provided that they will operate inenvironments in which remote storage is plentiful. These are important facts because both a hard diskand large amounts of RAM are undesirable characteristics for very small portable computers.1 IntroductionOne of the strongest trends in the computer industry is the production of small \notebook" computers. Suchcomputers are characterized by, among other things, powerful microprocessors, easy portability and limitedstorage capacity. The computing environment we envision is one where portable personal machines movewith their owners but obtain computing services from an infrastructure of servers that are for the most partstationary. We make three suppositions:1. That the reduced size of portable computers places inherent limits on their storage capacity, thusmaking remote paging desirable or necessary.2. That mobile computers will regularly \walk away from" their servers, thus increasing load on networkrouting resources and/or breaking network connections altogether. Therefore, it is desirable to allowclient-server matchups to be made dynamically and to vary over time, so that a client might alwaysbe connected to nearby servers.3. That remote memory is faster than local disk, and that increases in network and processor speeds willcontinue to outstrip improvements in disk transfer rates. In an environment having an abundance ofportable computers, the total amount of free remote memory could be quite substantial, and o�ers aninviting resource for remote paging. 1

Accordingly, as an experiment in mobile operation, we have designed and built a remote paging servicewhich exhibits two novel features:1. The service is \self-organizing." That is, it adapts to changes in its computing environment.2. Pages are stored in memory if at all possible; the hypothesis is that remote memory can be faster thanlocal disk.Self-organization means that clients and servers dynamically �nd each other and match up without anypredeclaration and that client-server bindings may vary over time due to changes in network load, serverload, or server availability.Incorporating adaptiveness into a remote paging facility requires a number of new and re�ned algorithms.The high level decisions leading to our design are presented in the next section. Section 3 describes thedetails of our Mach-based implementation. Sections 4 and 5 analyze the e�ectiveness of our code and ofMach, respectively.2 Major Design DecisionsKey issues in the design of a self-organizing remote paging system are:1. Role playing: which machines are clients and which are servers.2. Adaptation:(a) which objects migrate from clients to servers,(b) how load is balanced among servers as operating conditions change.3. Resource location: how a client locates servers.Roughly speaking, we split our software into three pieces (depicted in Figure 1) mapping one-to-one withthe issues mentioned above:1. Each service machine runs a paging server (simply called a server). The server reads and writes pagesof memory objects, as instructed by the kernel.2. Each network runs a broker. The broker is a centralized resource allocator that knows about availablespace on servers. Fault tolerance is maintained by regenerating, or electing, a new broker when theexisting one crashes.3. Each client machine runs a service organizer. The service organizer is \glue" that locates remotepaging storage. The organizer sets up a direct path between the client's kernel and one or more pagingservers. Thanks to this, the kernel can use Mach's external memory object interface unchanged and apaging server need implement only a single interface for local and remote paging.2.1 Division into Clients and ServersEvery machine runs both the service organizer and a paging server, and so every machine can be eitherclient or server. Such hermaphroditic organization increases the self-organizing nature of the system and, forexample, permits a number of portable computers to power-on simultaneously and then organize automati-cally into clients and servers based on supply and demand. Clients are not predisposed to use a particularserver, but rather have the service organizer refer them to the \best" server at the time of their need. Bothclient and server can adapt to changes in locale or network con�guration: a client may use several serversat once, and servers can migrate paging storage from one server to another.2

service
organizer

server use
permits

4k1m
1m

8m

broker

5m
permit create
authorities

paging
servers

remote
hosts

kernel

Figure 1: Adaptive Paging Overall Structure2.2 Granularity of Paging ObjectsRemote paging service is de�ned in terms of paging objects. A key issue is how to map client-side memoryobjects (e.g., pages) to server-supplied paging objects. An important question is what size paging objectsshould be. Coarse grain allocation has the advantage of limiting the overhead of creation and deletion ofpaging objects. Fine grain allocation makes it easier for objects to transparently migrate from one server toanother.Mach already has a protocol for paging memory objects, shown in Figure 2. We decided to use thisinterface across the network for several reasons. First, no local storage is wasted on tables for remappingMach memory objects into remote paging objects. Further, it is not necessary to interpose extra codebetween the kernel and the paging server to remap memory object addresses to paging object addresses.Finally, creation and deletion costs can be amortized by migrating large long lived objects to the remoteserver and keeping short lived small objects locally.2.3 Placement and Migration of Paging ObjectsWhenever possible, a paging object is created within the paging server at the site whose kernel created theobject. The reason is that a majority of paging objects are short-lived (c.f. Section 4.1), and it is desirableto have them live and die in the same location.A paging server can be used alone or as part of a brokered collection. Initially, the organizer arranges thata paging server works alone to provide service only to local processes. If free space exceeds some threshold,requests are accepted from other sites. Once free space is mostly used up, the server picks objects to bemigrated and asks the service organizer to arrange the destination; the service organizer does so, possiblywith the help of the broker. At this point the organizer also revokes its commitment to serve other sites.The objects that should be moved to remote storage are those whose migration costs the least in terms ofmovement and anticipated future references. The object selection algorithm, called LRU+SIZE (describedin Section 3.3.2), prefers large idle objects.Presently, the only reason a server decides to migrate some objects is if it begins to run out of space. Weplan also to monitor link performance and initiate migration of objects away from servers that deliver poorperformance. This feature will be a key to adapting to changes induced by movement.Unlike processes, paging objects are easy to move: they have few dependencies on their computing en-vironment, and the ones they do have, such as byte order and page size, are transparent to the client. The3

memory object create(old memory object, new memory object, new object size,new control port, new name, new page size)Supply server with responsibility for a kernel created memory object.memory object terminate(memory object, memory control, memory object name)Indicate to server that no further calls will be made on the memory object.memory object data request(memory object, memory control, offset, length, desired access)Request data from the server managed memory object.memory object data write(memory object, memory control, offset, data, data count)Write data to the server managed memory object.memory object data provided(memory control, offset, data, data count, lock value)Supplies the kernel with data from a memory object.memory object data error(memory control, offset, size, error value)Inform the kernel of data retrieval failure.Figure 2: External Memory Manager Protocols (subset)problem of preserving the correctness of operations applied to paging objects while they undergo migrationcan be handled by deferring the operations until the object has been moved and then forwarding the opera-tions to the new server. This approach should cause only minor delays because the objects that are movedare precisely those that receive little use.3 Implementation3.1 Mach OverviewWe decided to build on Mach because of its external memorymanagement interface, its support for migratingservices, and its availability on portable machines. By now Mach is well known [10, 1]. Nevertheless, inorder to provide a self-contained paper, the rest of this section brie
y describes the kernel facilities that areimportant to our work.In Mach, resources are contained within a task which may have several computational threads. Thetask-thread division makes it easy to share data structures among potentially blocking threads of execution.The port is a communication channel over which messages are sent and received. Each task has a kernel-administered port name space: many tasks may access a port, each using its own name. Associated with aport name are access rights. Send rights permits a task to write messages to the port; receive rights allowsa task to read messages from the port. Any number of tasks may hold send rights to a port, but only onetask may hold receive rights. Port rights may be transferred in messages between tasks using Mach's typedinter-process communication (IPC) mechanism. Since at most one task may hold receive rights at any time,transferring receive rights �rst removes the rights from the sender before transmitting them to the receiver.A program may elect to receive noti�cation messages for events such as the deletion of a port for whichit holds receive rights. Noti�cations facilitate garbage collection. The backup port mechanism allows a taskto recover a port being deleted by another task. Backup ports help implement resilient services by allowinga manager to obtain the service port and restart servers when they crash.A port is often used to represent an object within a server; i.e., as a capability. One protocol employingcapabilities is the external memory management interface (EMMI) [13]. In this case an unprivileged task4

provides backing storage for memory objects in response to the kernel's paging requests. The EMMI is showin Figure 2. Memory objects not serviced by a user supplied manager are considered anonymous and sentto Mach's default pager. The default memory object protocol is a part of the EMMI allowing the kernel toe�ciently create and hando� memory objects (i.e., paging objects) to the default pager.Messages can be transparently forwarded between tasks; for example, RPC takes place this way. Aper-host netmsgserver task receives messages on a proxy port and sends them over the network to a peernetmsgserver which in turn transfers them to the remote task. This makes ports location-transparent.In order for two tasks to communicate, they must �rst obtain a common communication port. Thenetnameserver allows programs to register and lookup string-to-port associations.Central to our implementation is the ability to transfer port rights between tasks, both locally and acrossthe network. This allows us to migrate a paging object from one host to another by transferring receiverights for a port representing the object. As long as the recipient can provide the same protocol and servicesas the sender, the change in location is unnoticed.3.2 System StructureThe kernel, paging servers, organizer, and broker communicate using a number of message protocols, depictedin Figure 3 and described below:(a) kernel ! organizer. Mach's Default Memory Object Protocol is used by the kernel to create a pagingobject. The organizer intercepts the request and determines the target server. After the server objectis created, read and write messages pass directly between the kernel and the server.(b) kernel $ server. Using Mach'sMemory Object and Memory Control Protocols, the kernel interacts withthe server for reading, writing, and terminating paging objects.(c) organizer $ server. The Paging Object and Paging Control Protocols allow the organizer to create andmigrate server paging objects.(d) organizer $ broker. The Allocation Protocol is used by the organizer to obtain server storage throughthe broker. A capability to access the storage, called a permit is returned.(e) broker $ server. When receiving an organizer request for storage, the broker determines an appropriateserver and forwards the Allocation Protocol request over a private port. The broker is informed whenallocations or capacities at servers change through the Update Protocol.(f) broker $ broker. When brokers discover one another they send a takeover bid message. This is theBroker Election Protocol.Mach allows a privileged task to set the port for the default pager. In the future we will use a per-taskpager port. Currently our test software links in a special version of the virtual memory allocation systemcall vm allocate() to simulate the setting of the kernel default pager port. Our vm allocate() locatesthe service organizer port through the netnameserver, creates the paging object, and maps it into the useraddress space with vm map() using the arguments provided by the vm allocate() call. The main drawbackof this method, aside from the need to relink, is the inability to back kernel-created memory objects. Thebene�t is ease of debugging and the localization of the e�ect of software malfunctions during development.3.3 Service OrganizerThe two primary functions of the organizer are:1. To select a server and create paging objects at the kernel's request.2. To supply a new server and initiate migration of paging objects to a remote site in response to serverrequests. 5

(a)

(c) (d)

(b)
service

organizer

kernel

brokerpaging
server (e)

(f)

Figure 3: Adaptive Paging ProtocolsCreation and placement of paging objects is a \late binding" operation in the sense that the organizerdecides at execution time the server on which to place the paging object. The kernel invokes the organizerusing the default memory object protocol. The organizer in turn uses the allocation protocol to learn fromthe broker of potential servers.Intercepting object creation requests allows the organizer to track current storage allocations at each ofits servers. If a paging server later needs to move an object to another site, the organizer uses its allocationdata to locate a site with su�cient capacity.3.3.1 Paging Object CreationCreation of a new paging object causes the organizer to �rst search its data structures for any known serverswhose usage is su�ciently below allocation. If no existing server has the required storage, the organizercommunicates with the broker, �rst trying to enlarge the allocation of the known servers and then requestinga new server that can meet the request. Enlarging an allocation on a server already in use is desirable since itlimits the number of servers employed by a client and hence avoids exacerbating the fault tolerance problem.The organizer always requests slightly more storage than is needed.The organizer obtains allocations from the broker in the form of permits. A permit is a capability to usea �xed amount of storage at a particular server. In order to create a new paging object at a server, a permitmust be presented. Because the broker holds exclusive rights to create server permits, all allocation requestsmust go through a server's broker.3.3.2 Paging Object MigrationWhen local server space is low, objects are selected for migration. The server keeps paging objects ordered inan LRU queue. Instead of simply taking the object from the head of the queue, the algorithm (LRU+SIZE)chooses from among the �rst several entries. Given a goal amount of space to free up, the algorithm proceedsas follows: the queue is scanned from the head until objects whose sizes sum to S have been found. Thevalue for S is a function of the goal but must be at least as large. A small S results in a preference for strictLRU, whereas a large S results in more weight given to large objects. At this point the largest objects fromthose selected, whose combined size meets the goal, are migrated to the remote server.LRU+SIZE is implemented using a modi�ed heapsort, which acts like a priority queue removing entriesuntil the total size of the elements removed are greater than S. In our case we set S to be twice the goal6

paging object create(server permit, new paging object, new object size,new memory control, new memory name, new memory page size, new paging control)Accept responsibility for an organizer created memory object.paging object forward(paging object, paging control, new server permit)Request from organizer to forward object to new server.paging object forward complete(paging control, paging object, new server permit)Indicates to organizer the completion of a forward call.paging object abdicate request(paging control, paging object)Request to organizer to o�oad a server paging object.Figure 4: Paging Object & Paging Control Protocolsamount we wish to o�oad. The value is somewhat arbitrary and we have not made tests to tune it. Thisalgorithm is similar to the swapping algorithm used in Berkeley UNIX [6].Once the objects to o�oad have been selected, the paging server requests migration by sending thepaging object abdicate request message to the organizer. The organizer can ignore this message. Ifthe request is accepted, the organizer �rst selects a destination capable of holding the paging object. Theserver is informed of the new location and is asked to forward the memory object. Upon completion of theforwarding, the new site noti�es the organizer. These steps are shown in Figure 5.3.4 Paging ServerThe server stores paging objects in either a disk partition or paging �le, the size of which is speci�ed atruntime.The protocols used by the paging server include the EMMI, used to read and write pages; the serviceorganizer protocol to control paging object creation and migration; and the allocation and update protocolsfor providing and controlling storage access.A paging object providing reading and writing of server storage through the EMMI must be createdwith a permit. The broker decides which servers should be used and provides permits for their use. Whenreceiving an allocation request, the broker channels the message to the selected server over a private portand obtains a permit satisfying the request. The server's private port is called the permit create authorityand is passed to the broker during the election process.The forwarding of paging objects between servers involves three steps. First a new paging object iscreated at the remote host. Second, pages are written to the remote paging object. And third, the portsrepresenting the object are handed o� to the remote server. Kernel request that might have occurred duringthe �rst two steps are queued by Mach and transferred with the paging object ports to the remote system bythe netmsgserver. Location independence of Mach ports means this new paging object can be used withoutany changes to the data structures at the client.3.4.1 Keeping Paging Objects in MemoryOur paging server aims insofar as possible to use idle physical memory to store remote pages. Applicationcontrol over resident memory is not available under Mach 2.5. However, we take advantage of the fact thatan external memory manager can track which of its pages are currently cached in physical memory: thosethat have been written but for which the kernel has not yet sent a memory object data write message. Inthis way a server maintains a cache that grows and shrinks according to local memory demands, similar toSprite's variable sized cache [12]. 7

Paging
Server

Paging
Server

Service
Organizer

A

B

C

D

Host 2Host 1

Figure 5: Forwarding a Paging ObjectThe server creates a memory object the size of physical memory and registers with the kernel as theexternal memory manager for that object. When a (remote) paging object is sent to the server, the pageis written both to disk and to the cache. Paging object read requests that miss in the cache have the sidee�ect of promoting the relevant pages into the cache. Because it is the external memory manager for theobject, the paging server is informed if the kernel chooses to page out part of the object. In this case, thepaging server simply removes the kernel mapping for the requested page, and removes the page from thecache. The page is not written to disk since it is already available on secondary storage.3.5 BrokerA single broker maintains a record of the capacity and allocations of each paging server on its network. Everyserver periodically updates the broker's record of its capacity. When a service organizer requests storage,the broker creates a permit at some server and returns a capability for the permit to the requester.The broker accepts two types of storage requests: allocations and reallocations. For an allocation theselection policy is to use the server with the maximumavailable space. This method is used because free spaceoften re
ects a corresponding ability to provide service whereas minimum space used may mean nothing.A policy of strict balancing across servers might cause a client to use a large number of servers, creating afault-tolerance problem. To avoid this situation, a request to the broker can also modify a permit, enlargingor reducing the allocation. Similarly, a request for a new permit can contain a server hint so that clientscan indicate preference for local servers. In the case of reallocation the requester supplies an existing permitalong with a delta amount and the broker tries to rewrite the permit.Permits are not permanent. Reasons for destroying a permit include: the client deleted it, the clientrebooted, or the server wants to revoke the allocation it represents. When a permit is destroyed by theclient, the server eventually receives Mach's noti�cation message. Because the broker has no way to knowthat the storage is now available, the server sends an update message with the allocation amount of thepermit. 8

3.5.1 Election and RegenerationThe broker election process is not unlike the real world: brokers meet, bid, and the winner takes over theloser's customers. In this case the customers are those servers for which the broker holds permit createauthority. An unusual feature of our election method is that there is no phase during which all candidatescommunicate and cast their votes. Instead there is a series of two-candidate tournaments eventually resultingin a single broker. Entry of a new server into the global allocation causes only a single round of thetournament. An example sequence of election rounds is shown in Figure 6. The advantages of a tournamentstyle election method are its simplicity and the fact that brokers can provide allocations during the election.

broker for server

(a)

server

(b)

(c) (d)

Figure 6: Rounds of a Broker ElectionElection consists of two concurrent activities: accepting bids from remote candidates, and generatingbids for remote candidates. A bid is simply a remote procedure call containing a bid value and returningthe loser's broker state on a successful takeover. For a bid value we use the number of servers controlled bythe broker, so big brokers take over little ones. Some coordination is necessary between the process sendingbids and the process receiving bids. For example, it would be erroneous to make and win a bid just afterlosing to another broker. The way we achieve the coordination is to shut down the thread accepting bidsbefore allowing a takeover to complete.A single broker is quickly elected, and if it crashes it is a serious matter. Broker regeneration is achievedby restarting the election process on each server after noticing that the broker has crashed. Recreating a9

takeover bid(broker port, candidate port, bid a, bid b,status, server ports, server auths, server tokens, server allocs)Try to takeover another broker.broker update(broker port, server port, delta capacity, delta allocation)Update broker upon change in server capacity.permit allocate(authority port, server port, permit port, amount, result)Request for a new paging server permit.permit reallocate(authority port, server port, permit port, delta amount, result)Request for a change in existing paging server permit.Figure 7: Broker Election, Update & Allocation Protocolsbroker for the local server requires knowledge about the capcitity and current allocations. The fact thatpermits are created on servers means that the outstanding allocations can be easily calculated.4 EvaluationWe have developed a prototype of our design. The software consists of approximately 8,000 lines of C andabout 400 lines of MIG interface declarations. The largest pieces are the server and broker (2736 lines), andthe organizer (1241 lines).Our prototype runs on Mach 2.5 on Toshiba 5200 portable computers con�gured with 8 MB of memory,a 100 MB hard disk, and attached to a 10Mb Ethernet. The Toshibas have a 20MHz Intel 386 processorand an 8-bit AT bus connection to a WD 8003 Ethernet controller.We ran four experiments:1. Statistical analysis of paging object size and lifetime, as measured from a real load. We sought todemonstrate that our LRU+SIZE algorithm would �nd a \natural" set of objects to migrate.2. Breakdown of RPC costs.3. Time required to retrieve a page from several di�erent paging mechanisms. Page retrieval is the\common case" for a pager. We sought to show that there is no performance penalty for paging fromremote memory, even using the message-based Mach external memory management interface.4. Time required to migrate a 1-page object. Migration is, we hope, the \uncommon case."Each of these experiments is described and analyzed in a following section.4.1 Paging Object Size and LifetimeIn order to gain information on the kernel's use of paging objects we traced events within the default pager.We took care to analyze only paging activity, discarding events related to memory mapped �les. Statisticsfor two traces are shown in Figure 1. Trace 1 covers a period of approximately 27 hours that is characterizedby a moderate interactive load including editing and compilations. The second trace occurred over a shorterperiod (3.5 hours) during which simultaneous kernel builds provided heavy load. The results of these tracescan be seen in Table 1 and Figures 8{11 A few facts are apparent.First, as evidenced by Figures 8 and 10, there is a good-sized pool of large, long-lived objects: among theobjects of above-median size, 75% percent live longer than 10 minutes (11% in the heavy load case). Theseobjects provide a good pool for LRU+SIZE to select from.10

Trace1 2duration (minutes) 1605 207objects 88 439reads 1838 15549writes 463 16099average object size1 77 87average object usage1 20 28average object lifetime (mins) 869 251 sizes in pages of 4KBTable 1: Default Pager StatisticsSecond, the size of the \paging working set" | that is, the sum of the memory object sizes in steadystate | is likely not very large. For Trace 2 this �gure is less than 6MB, while for Trace 1 the number iswell under 4MB.1 These �gures are not authoritative, however. Our traces can tell us about object creationand use during the period of the trace but not before. We suppose that a large number of large, long-livedobjects are created shortly after boot time when the system initializes. The size of these objects must beadded to our computed numbers.The last fact we notice from our traces is that the object usage rate (percent of allocation used) is quitelow; only 25%-30% of the pages in a memory object actually get written.Under heavy load an anomaly occurs: over half the paging objects created are never written. This iscaused by the pageout daemon. The daemon fetches pages from the inactive page queue and writes them totheir external memory object. If an external memory object does not yet exist, one is created; but insteadof immediately writing out the page, it is instead put back onto the active list. Under the load inducedin our test, a large number of 1-page memory objects are created by short-lived processes that terminatebefore the page becomes a candidate for replacement. Fortunately, these anomalous \zero use objects" donot appreciably a�ect the results drawn from the trace, and so we �lter them out of Trace 2 statistics.4.2 RPC LatencyRemote paging is an asynchronous protocol, and so it should be expected to be somewhat slower thansynchronous RPC. The two reasons for this are that fewer packets are exchanged during an RPC, and thatboth processes are waiting for the other at the right moment. A remote paging operation of course alsoincludes processing time speci�c to the paging server. So RPC time is a lower bound on remote paginglatency.We measured an RPC that consists of a small request and a 4KB response. The average time for thisoperation is 33 ms. The latency breakdown is summarized in Table 2. We computed the fraction of thelatency due to the network and bus transfer of the 4KB response, and we measured values for the MachIPC and TCP costs. The computed values are based on rated 10Mb Ethernet throughput and a 1�s/byterating of the AT bus. The number and sizes of network packets were observed with a network \snooper"running on a fast machine capable of picking up all packets. The bus transfer cost is doubled because the4KB block is moved over the bus at both client and server. The Mach IPC costs were measured by running1Working set size is approximated by multiplying object creation rate (number of objects divided by length of the trace) byaverage object lifetime by average object usage. 11

0

50

100

150

200

250

300

350

400

0 100 200 300 400 500 600

o
b
j
e
c
t

s
i
z
e
s

(
4
K

p
a
g
e
s
)

object lifetimes (minutes)Figure 8: Trace 1 { Allocated Object Sizes vs. Lifetime
12

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

p
e
r
c
e
n
t

u
s
e
d
/
a
l
l
o
c
a
t
e
d

create/terminate events #Figure 9: Trace 1 { Object Usage
13

0

50

100

150

200

250

300

350

400

450

500

0 20 40 60 80 100 120 140 160 180 200

o
b
j
e
c
t

s
i
z
e

(
4
K

p
a
g
e
s
)

object lifetimes (minutes)Figure 10: Trace 2 { Allocated Object Sizes vs. Lifetimethe test program locally. These costs are also doubled because message forwarding (via the netmsgserver)adds a local IPC on both sites.We also measured TCP packet processing time, since Mach's netmsgserver uses TCP for data transport.TCP costs were measured using another program that sent the equivalent of the observed tra�c in loopbackmode. Using only these computations and measurements we are able to account for about 90% of theobserved time. The remainder can be attributed to the netmsgserver, network interrupt processing, contextswitch and scheduling overhead.Although we expected the byte-wide AT bus to be responsible for a large portion of the time, it issurprising to see that TCP is the major cost. We can think of two causes. First, we observed that a �xedTCP window size of 4KB was causing servers to interrupt their transmission of data (which was slightlymore than 4KB) and wait for an ack. It seems desirable for the netmsgserver to better control the window,perhaps according to the protocol. Second, the netmsgserver uses its own message acknowledgements whichcause TCP acks to be transmitted for netmsgserver acks.4.3 Paging BenchmarkWe measured the time to fault in random pages using a number of di�erent con�gurations, including:� Mach's default pager using a local �le� Our pager using a local �le� Our pager run remotely using a �le 14

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900

p
e
r
c
e
n
t

u
s
e
d
/
a
l
l
o
c
a
t
e
d

create/terminate events #Figure 11: Trace 2 { Object Usage
15

RPC Size0K 2K 4K 8Kpackets 3 4 7 11bytes1 426 2528 4738 9050AT bus2 � 2 0.8 5.0 9.5 18.1Ethernet3 0.3 2.0 3.8 7.2TCP loopback 6 9 12 19Mach IPC � 2 2 4 4 4Total 9.1 20.0 29.3 48.3Measured 11 22 33 521including all network headers2based on 1 �s/byte AT bus3based on 10 Mb/sec (0.8 �s/byte) EthernetTable 2: Synchronous RPC (in ms)� Our pager run remotely using memoryFor comparison we measured the time to directly read 4K pages from a local �le and remote NFS �le usingrandom access. These disk read times should be the minimum a pager needs to access the same media,though the Mach pager, existing in the kernel address space, bene�ts from directly issuing VFS operationsinstead of system calls. Figure 12 summarizes the results.We obtained our measurements after creating a memory object larger than available memory, writing allits pages,
ushing them from memory, and then reading them in random order. This method ensures thatthe pages being read are located either remotely (in the case of our pager) or on disk.The measurement of our pager for remote memory tests ensured memory references by mapping all pagesof a large paging object into a single remote page. In all cases access was made through the kernel by usinga mapped object, the kernel requested pages of size 4K and random access references to the memory objectwere made.4.4 Migration TimeWe measured migration cost by having the organizer repeatedly forward a paging object between a localand remote server under the control of a test program. The time measured is the complete roundtrip fromthe forward request until the completion noti�cation, including disk reads and writes, averaged over a 1000repetitions. The 96 ms time to migrate a 1-page (4KB) object is only slightly longer than the 94 ms neededfor asynchronous remote disk reads (c.f. Figure 12). A summary of migration times for various sized objectsis shown in Figure 13.4.5 ConclusionsThere is no performance penalty for using an adaptive remote paging facility instead of a local disk. Thissuggests that portable computers need neither a hard disk nor an excessive amount of RAM, provided thatthey will operate in environments in which remote storage is plentiful. These are important facts because both16

local
adaptive

pager

local
file

NFS
file

Mach
pager

remote
adaptive

pager
(disk)

44 ms

118 ms

50 ms
45 ms

94 ms

remote
adaptive

pager
(memory)

45 ms

Figure 12: Random 1-page (4KB) Readsa hard disk (power consumption, weight, reliability, cost) and large amounts of RAM (cost) are undesirablecharacteristics for very small portable computers.Regenerating a centralized allocation task using a tournament style election is not unreasonably compli-cated. This means that the bene�t of a centralized scheme, scalability and monitorability, can be had forlittle added cost. Centralized resource allocation is suitable in many cases where resources are moderatelystable and update messages are infrequent.Basing a remote paging system on EMMI has advantages and disadvantages. The design is simpler, codeand data are smaller at the client, but making good use of server allocations is di�cult. Since allocatedsize is usually a gross overestimate, allocating server storage based strictly on the potential size of objectsmeans a large portion of remote server storage will not be used. If strict allocations are to be maintained atthe server, then interceding between client and server to remap each memory object operation into a singleper server paging object seems desirable. This is especially true given the low cost of Mach IPC relative tonetwork operations. A major drawback is that remapping requires even more resident memory at the client.We have not addressed the question of ensuring that the processing of paging operations do not themselvescause page faults. This situation, which is a consequence of external memory management in general, iscomplicated by the many components involved in our paging mechanism. For example it would be potentiallyfatal to pageout part of the netmsgserver to a remote location since the netmsgserver is required to returnthe page to the local host. One approach we are looking at is to identify and lock into memory those programpages needed for local disk paging, and to ensure that any network components, if they are paged at all,are only sent to local disk. This approach would further justify changes to Mach to allow a per task default17

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

M
i
l
l
i
s
e
c
o
n
d
s

4K Pages

migrations

Figure 13: Forwarding Paging Objects
18

paging, which in the case of the netmsgserver would only allow local paging.5 Mach CritiqueThis section discusses our experiences implementing a distributed application using the Mach 2.5 operatingsystem. Overall, we found Mach to be a good development environment with light weight threads, portforwarding, the message interface generator, and the concealment of location and heterogeneity being majorbene�ts. We did however develop the following criticisms, some of which are currently being addressed bythe Mach implementers.EMMI implementation. The Mach kernel currently uses EMMI to send and request a single page at atime. Furthermore, the protocol itself requires any larger amount of data to be contiguous. Our traces showa substantial number of messages one after the other writing the same memory object.Name Service. The Mach name server interface is not well suited as a low level component of a moresophisticated service because it lacks multi-host responses to lookups. If a name is registered on two hoststhen a lookup will (arbitrarily) respond with only one of those names. Indeed, if a name is registered locally,then it is impossible to �nd other hosts with the same registered name unless those hosts are already known.Our solution | devised to support the broker election | was to change the interface of the name lookupcall to include a new form of wild card which will �nd a remote name even when a local name exists. IfMach clients are regularly reimplementing multi-valued name lookup then perhaps it should become part ofthe netnameserver.Transparency not always desirable. Our software would like to track average roundtrip message times forthe purpose of server placement and also message timeout values. However, we cannot monitor the roundtripcosts of messages without adding an extra IPC in the critical path whose sole purpose would be to forwardand time the remote call. Ideally, the netmsgserver should be able to answer queries about a port's expectedroundtrip cost, or even provide a call-back when average latency goes over a prede�ned level.Multicast IPC. Mach has no port-oriented multicast mechanism. Although it is possible to send datagramsto multicast addresses, port rights cannot be transferred this way. Instead one must employ a two-stepprocess of sending datagrams containing host names to multicast addresses and then querying the remotehosts' netnameservers to obtain a port for use by Mach RPC.Physical memory locking. Exporting control over physical memory has been designed, but was notavailable in version 2.5. A prime customer of such an interface would be an external pager task since it mustrespond to paging requests without deadlocking itself in a page fault condition. Since the interface itself wasunavailable our experience controlling page faults generated during operation is limited.Network backup ports. For the most part interaction with remote hosts is transparent by virtue of thenetmsgserver. However, the backup port facility is not supported over the network. When the server andmanager are on di�erent hosts, only the manager's site can save the port from destruction, with all otherhosts seeing the port destroyed.6 Related WorkOur work is unique in combining adaptive load balancing and remote paging, even though neither techniqueis by itself novel. However, we do add a new twist to each technique:� our paging load is balanced among a changing set of sites,� paging objects are stored in memory insofar as possible.Adaptive remote paging might be viewed as a subset of adaptive process placement and migration, asubject on which there is much earlier work [8, 9, 11]. However, process placement/migration systems havenot had major impact because | at least in Unix-based systems | so many processes are short-lived;furthermore, many long-lived processes are long-lived precisely because they manage (and so must residenear) some data set. So short-lived processes should not be moved because to do so would be ine�cient, andlong-lived processes should not be moved because they have no need to move. We address a more limitedbut more tractable problem. 19

Adaptive remote paging might also be viewed as distributed virtual memory [7, 5] without the sharing.Certainly the ability to share common pages among several processes is a major advantage, but alongwith sharing comes the problem of maintaining consistency. Addressing this problem has proven to requireoverhead ine�ciencies and a good deal of complex code for a relatively uncommon situation. Also, distributedVM systems usually require a static partitioning of the shared address space.One previous work [2] suggests the use of remote memory as a \new model of computation." The systemdescribed therein exploits a predeclared set of dedicated \remote memory servers," and concentrates on thenetwork protocols necessary for interoperability. We get a certain (lesser) degree of interoperability fromMach and instead concentrate on resource location and load balancing issues. Comer's work is similar toours in that the paging protocol has been separated from the �le system.Dynamic binding of servers to clients has been discussed in [4], which is mostly a proposal. Kazar'sidea arose, like ours, from the contemplation of operating in a large, highly variable distributed computingenvironment.A major work that addresses the issue of mobility is the Emerald object-based system [3]. This workprovides language primitives allowing the programmer to hand-control migration of objects that can be dataor processes. The Emerald runtime system then implements process and data migration.7 SummaryWe have demonstrated the design of a paging mechanism that allows portable computers possessing littlestorage to operate by using the storage of nearby computers as they move.2 When remote memory is available,there is no performance penalty for using such a system versus using a more conventional local paging disk,and, counting expected upgrades in the capabilities of small computers, paging to remote memory shouldsoon far surpass the performance of local disk paging.As immediate future work, we plan to install pagers on a per-task basis, to add code that will migrateobjects whenever paging performance is noticed to degrade, and to address the page fault circularity questionraised by external memory managers in general.Longer term future work will include investigating whether this sort of adaptability mechanism cansubsume other services (e.g. the �le system), and the possibility of sharing objects at servers.8 AcknowledgmentsThis work was supported by IBM and the New York State Science and Technology Foundation Center forAdvanced Technology in Computer and Information Systems.References[1] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach: A newkernel foundation for UNIX development. In USENIX Association Summer Conference proceedings,Atlanta 1986. USENIX Association, 1986.[2] Douglas Comer and James Gri�oen. A new design for distributed systems: the remote memory model.In Proceedings, Usenix Summer Conference, pages 127{135, Anaheim, California, June 1990.[3] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the emerald system. ACMTrans. Computers, 6(1):109{133, February 1988.[4] M. L. Kazar. Workstation operating systems: Invoking remote services. In Proceedings: Workshop onWorkstation Operating Systems. IEEE Computer Society Technical Committee on Operating Systems,November 1987.2Sources are available by anonymous ftp from internet site not.revealed in directory pub/adaptive-paging.20

[5] P. Leach, P. H. Levine, B. P. Douros, J. A. Hamilton, D. L. Nelson, and B. L. Stumpf. The architectureof an integrated local network. IEEE Trans. Selected Areas of Communication, SAC-1(5):842{857,November 1983.[6] Samuel J. Le�er, Marchall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Designand implementation of the 4.3BSD UNIX operating system. Addison-Wesley, Reading, Mass., 1989.[7] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM Trans. Computers,7(4):321{359, November 1989.[8] Barton P. Miller Michael L. Powell. Process migration in demos/mp. In Proceedings of the NinthSymposium on Operating System Principles, pages 110{119. ACM, 1983.[9] D. Nichols. Multiprocessing in a Network of Workstations. PhD thesis, Carnegie-Mellon, February 1990.Available as CMU Technical Report CMU-CS-90-107.[10] Richard F. Rashid. Threads of a new system. Unix Review, 4(8):37{49, August 1986.[11] Marvin M. Theimer and Keith A. Lantz. Finding idle machines in a workstation-based distributedsystem. IEEE Transactions on Software Engineering, 15(11):1444{1458, November 1989.[12] Brent B. Welch. Naming, state management and user-level extensions in the sprite distributed �lesystem. Phd thesis, University of California, Berkeley, April 1990.[13] Michael Wayne Young. Exporting a user interface to memory management from a communication-oriented operating system. Thesis CMU-CS-89-202, School of Computer Science, Carnegie MellonUniversity, Pittsburgh, Pennsylvania, November 1989.

21

