INCREMENTAL EVALUATION OF RULES'AND ITS RELATIONSHIP TO PARALLELISM

Quri Wolfson
Hasanat Dewan
Salvatore Stolfo
Yechiam Yemini

Columbia University
Department of Computer Science
Technical Report CUCS-058-90

Incremental Evaluation of Rules and its Relationship to
Parallelism

PRELIMINARY VERSION

Ouri Wolfson
Hasanat Dewan
Salvatore Stolfo
Yechiam Yemini

Distributed Computing and Communications Laboratory
450 Computer Science Building
Columbia University
New York. NY 10027

December 4. 1990

Abstract

Rule interpreters usually start with an initial database and perform the inference pro-
cedure in cycles. ending with a final database. In a real time environment it is possible
to receive updates to the initial database after the inference procedure has started or even
after it has ended. \We present an algorithm for incremental maintenance of the deductive
database in the presence of such updates. Interestingly, the same algorithm is useful for
parallel and distributed rule processing in the following sense. When the processors evaluat-
ing a program operate asynchronously, then they may have different views of the database.
The incremental maintenance procedure we present can be used to synchronize these views.

1 Introduction

Traditional rule based systems are composed of a knowledge base which consists of a set of
facts. the database, and a set of rules that operate on them. Ordinarily. the database changes
only as a result of inference activity being carried out by a rule interpreter, that evaluates
rules. Such systems assume a static environment. in the sense that changes to the database
take place only as a result of the rule-program evaluation. These systems are not capable of
efficiently incorporating modifications to the database of facts resulting from sources other than

the actions of the rules themselves.

In real time applications, such as communication network management, the database may

change independently of the inference process. since usually one cannot afford the luxury of

collecting all the relevant facts before starting the inference procedure. Relevant information
may arrive after inferencing has already begun. Consider, for example. an expert analvzer to
automatically detect a fault in a communication network that is in operation, and is contin-
uously producing information relevant to the detection process (the fault may be very subtle.
such as the software bug that recently disabled the long distance telephone network for several
hours). In this environment, messages may arrive from time to time that nullify previous as-
sumptions. In our example, suppose the expert analyzer has assumed that some link LINK A_B
is up when the diagnosis of some problem was started, and at some later point, say at iteration
n of the standard match-select-act cycle, a message arrives indicating that LINK A_Bis down.
The naive approach for incorporating this late arriving information would be to restart the
expert analysis from the beginning. However, considering that network management data is
being produced continuously, this strategy may result in an infinite regression and the inference
process may never terminate. It is essential in these situations to have an inference mechanism
that performs only the actions that are necessary to incrementally bring the database to a

consistent state.

Our approach for incrementally updating a database can be summarized as follows. In the
context of the previous example, we would undo only the consequences of the initial asumption
that LIVK A_B was up. and redo the consequences of the newly received fact that LINK A_.B
is down. In other words. we revise only the consequences associated with the newly arrived

information.

(C'losely tied to the question of incremental updates to a database is the semantics of the
underlying rule language. For Datalog [1] programs. where negation is not allowed in either the
head or body of a rule. incremental processing is simple. Consider for example the semi-naive
evaluation [2] of the linear Datalog program that computes the transitive closure of a graph.
Incorporation of a newly arrived arc of the graph is easy. The arc is simply added to the
differential, and the evaluation proceeds as usual, until a fixpoint is reached. This can be done
regardless of whether the new arc arrived before or after the transitive closure evaluation has
completed. Since Datalog is strictly monotonic, incremental update involves only redoing, or

recomputing the consequences of the newly arrived arc.

On the other hand. retraction of an arc from the graph, even in the simple transitive closure

example, is a more subtle non-monotonic process. Consider languages that allow negation in

the body and head of rules (negation in the head means deletion). Suppose that the fact f
is retracted from a database after some inferences that depend on f have occurred. The high
level view of subsequent processing that mmust take place is the following: the facts that were
derived from f (and recursively. their derivatives) must be backed out or undone, and then
the facts that can be derived from —f (and their derivatives) must be redone. For Datalog
programs (that do not have negative atoms in the rules), no actions are derived from negative
facts. Therefore, for a retracted fact we only need an undo phase. and for an asserted fact we
onlv need a redo phase. However. for more powerful rule languages, we need both an undo and

a redo phase to incrementally update the database.

These two phases are not always straightforward. Rule languages such as OPS5 and
Datalog™ [3] usually operate in match-select-act cycles, and at each cycle (or iteration), some
conflict resolution strategy is applied. Consider for example redoing the consequences of f.
This involves matching all the rules (or some subset of them in a language such as stratified
datalog) and considering the instantiations that have f in the body. Suppose that the head of
such an instantiation is add_e. Can we simply add ¢ to the database during the redo phase? The
answer is no for the following reason. The incremental algorithm must produce the same result
as if f were in the initial database. Suppose that f were in the initial database. [t is possible
that the add_e operation would have been eliminated by the conflict resolution strategy. In the
language Datalog™, add_e would have been cancelled out by a delete_e operation in the same
cvele: moreover, the delete_e operatioﬁ may not be a consequence of f. Similarly, in OPS5
add_e would not have been executed, had there been a more recent instantiation in the cycle.
Therefore. the incremental algorithm must have enough information to determine for each redo
instantiation whether or not it would have been eliminated by the conflict resolution strategy.
Furthermore, this information obviously depends on the conflict resolution strategy. which in

turn depends on the rule language.

In this paper we devise the incremental update algorithm for the language Datalog™. The
reason for choosing this language is that it has several attractive characteristics. First, it
is set-oriented. a typical feature of database rule languages. Second, it is sufficiently rich,
allowing negation in the body and in the head of rules. Third, it is abstract enough to enable
identifving principal concepts that relate to incremental evaluation of rules. independently of

the idiosyncrasies of commercial languages. \We will show that the incremental update algorithm

can also be applied to stratified datalog [14].

Now consider the data reduction paradigm for distributed and parallel rule processing [1. 6,
13, 13]. It stipulates that each processor evaluates the original rule program. but with less data.
The operations of each processor that result from the evaluation (e.g. add.a_fact or delete_a_fact)
are transmitted to other processors that may use these to derive other operations. Now. if the
processors are synchronized at each cycle, meaning that they all complete their evaluation and
transmission in a certain cycle before any processor proceeds to the next one, then incremental
evaluation is not necessary. However. this implies that the evaluation proceeds at the speed of
the slowest processor at each iteration. which is not acceptable in a distributed setting. Suppose
therefore that the evaluation proceeds asynchronously. Then it is possible that a processor p,
that is evaluating at cycle 5 receives an add_e from a processor p; that is evaluating at cycle 3.
This means that p; has toincorporate ¢ into the database of cycle 3. Then the problem it faces
is exactly the problem of incremental rule processing: it has to undo the consequences of —e at
cycle 3. and redo the consequences of € at cycle 3, but without backing its whole rule evaluation
to cycle 3. In other words. individual processors need to have the ability to incorporate changes -
in arbitrary previous iterations. In contrast, for real time rule processing the update is always
to the input database. namely to cycle 0. However. our algorithm for incremental update is
recursive and works for an arbitrary cycle update. and therefore, as presented, it can be applied

to asynchronous parallel-and-distributed rule processing by data reduction.

Our work is related to previous work in truth maintenance systems [7, 8, 9] in the Al
literature. These systems are also designed for incremental evaluation: however truth main-
tenance systems build a dependency graph with nodes that correspond to base and derived
facts. and also to instantiations of inference rules. In data intensive applications. maintaining
such a graph can become prohibitively expensive. Arcs join antecedents and consequents to
nodes representing inference rules. In our algorithm for incremental update, rule instantiations
do not appear in the maintenance data structures. We explicitly recompute. via lightweight
computations, only those instances needed to redo or undo a prior inference chain, rather than
storing all prior instances ever computed. \We enable the incremental processing by attaching
to each database fact a chain that represents the status (in or out) of the fact at each iteration.
On the other hand, truth maintenance systems are more flexible, enabling incremental changes

to the rules as well as the facts.

Our work is also related to the materialized-view-maintenance research and snapshot refresh
algorithms in databases [11, 12, 16]. However. those works are concerned with incremental
processing of relational expressions. They do not address the problem of inferencing in cycles.
with a conflict resolution step at each cycle. In contrast, these are the issues on which we
concentrate in this paper. In fact. the aforementioned research can be incorporated in the

incremental update algorithm, as we shall point out in Section 4.

The rest of this paper is organized as follows. In Section 2, we discuss the language Datalog ~*
and in Section 3 we present the INCR_.UPD ATE algorithm. In Section 4. we discuss the data
structures that enable INCR_UPDATE to reconstruct the inference database at each cycle. In
Section 5. we point out how INCR_.UPDATE can be applied to stratified Datalog. In Section
6, we discuss the synchronized data reduction paradigm for Datalog™, and in Section 7 we
show how the INCR.UPDATE procedure can be used to remove the need for svnchronization

among the processors. In Section 8, we conclude.

2 The language Datalog™

In this section we introduce our basic terminology. Intuitively, rules in Datalog ™ have the
general form:

Fh(on) = by (e)ees Ol £ Do)

A positive head implies the corresponding fact should be added to the database on rule firing.
whereas a negative head implies the corresponding fact should be removed from the database.
if it exists.

Formally, Datalog™ programs are built from atoms, which are predicate symbols followed
by a list of arguments. The arguments may be either variables or constants. For simplicity.
constants are natural numbers. A literal is either an atom, also called a positive literal, or a
negated atom, also called a negative literal. If all arguments are constants. we call the literal
a fact. A rule consists of a literal. the head of the rule, and possibly a conjunction of positive
and negative literals which form the body of the rule. We use the usual notation for writing
programs. Variables are denoted by capital letters, and predicate names are strings built from

lower case letters. An example of a rule is

alX.Y): = o(X. Z).p(Z2.Y),~q(Z,2)

where the head of the rule is always to the left of :-. and the body to the right. If Q is a set of

facts. then —Q denotes the set having the same literals as @, but with their sign reversed.

A program is a set of rules. A program is called safe if each rule fulfills the following
conditions: (1) Each variable in the head of the rule also occurs in the body of the rule, and
(2) Each variable in a negative literal in the body also occurs in a positive literal of the body.

We require that programs be safe.

The instantiation of a rule r is defined with respect to a database, i.e. a finite set of positive
facts: it is an assignment of constants to the variables in r such that all the positive facts in

the body are in the database, and the negative ones are not.

The operational semantics of the evaluation are as follows. The input to a program is a
database. The output of a program P for an input I, denoted O(P.[),is the database obtained

at the end of the following iterative procedure.

procedure DATALOG™_SEMANTICS
1. Start with the database consisting of the input. Initialize the evaluation iteration count
1C — 0.
2. (Match) Determine §, the set of operations each of which is the head of an instantiation
with respect to the current database. If this set is empty, stop.
3. (Select) Let S’ be the subset of S consisting of all the operations whose negation
is not in § (i.e. if f and -~ f are both in S then neither operation is in S').

4. (Act) Execute the operations in S’. Increment /C by 1. Return to 2.

end {procedure DATALOG™_SEMANTICS }

Notice that the Select step indicates that if a fact f is added and deleted at the same it-
eration, regardless of the number of occurrences of these operations, the status of f (/n or Out

of the database) remains as it was in the previous iteration.

3 Outline of the INCR.UPDATE Algorithm

Basically, the inference consists of two phases: DO and INCR.UPDATE. The DO phase
consists of the procedure DATALOG™"_SEMANTICS of the previous section. After the Act

step. there is a check to determine whether an interrupt message has been received. If so. the
INCRUPDATE procedure is invoked. The incremental update stage consists of an .V DO
phase and a REDO phase. The interrupt message consists of a set Q of positive and negative
literals, denoting additions and deletions respectively. to be applied to the input database.
Consider the DO phase. With each fact f that was in the database at some iteration. we
associate a fact chain that enables us to determine the status (in or out of the database) of f

at each iteration. The structure of fact chains will be discussed in Section 4.

Suppose that the positive fact f isin Q. and f was not in the input database. Then we first
execute the match step of the inference procedure. considering only instantiations with respect
to the input database in which —f appears in the body of the instantiated rule. This is the
UNDO phase. Let U be the set of operations in the heads of these instantiations. Each operation
in / will have to be undone. Second. we execute the match step of the inference procedure,
considering only instantiations with respect to the input database, in which f appears in the
body of the instantiated rule. This is the REDO phase. Let R be the set of operations in the

heads of these instantiations. Each operation in R will have to be redone.

Now suppose that +e (or simply. e) is in R. indicating that the fact e would have been
added to the database in the first cvcle, had f been in the input database. Does it necessarily
mean that the incremental procedure should repeat the redo phase with e? The answer is no.
[t is possible that in the first cvcle e was added to the database not only as a result of the
instantiation that has f in the bodyv. but also as a result of another instantiation. Then e is not
new in the second iteration. and it should be eliminated from the incremental evaluation of the
subsequent cycles. In other words. based on the {" and R sets we should determine which facts

are new. Only they should be carried forward, to the next cycle in the incremental evaluation.

Generally speaking. given UNDO and REDO sets. the incremental procedure. called
INCR.UPDATE, determines which facts must be viewed as having changed their status as a
result of the incremental procedure at the specified iteration. The set of facts that are deter-
mined to have changed their status is called the NVEIV set. This set is the focus of interest of
procedure INCR.UPDATE. The procedure recursively redoes all the inferences that descend
from the NEWW set. and it also recursively undoes the inferences that stem from -NEW. In
other words. VDO and REDQO sets are generated for successive iterations, given the initial

ones. Formally. procedure INCR.I'PDATE is as follows.

recursive procedure INCR.UPDATE(U. R.i)

Comment: This procedure is invoked by the inference system, as an exception handler on
receiving incremental modifications to past assumptions made on the database. The procedure
modifies the database, given two sets of operations. U and R, that have to be incorporated
at some past evaluation iteration i. Each set contains positive and negative facts. The set U
represents a collection of facts whose addition or deletion (depending on the sign) has to be
undone at iteration i. It is called the undo set. The set R represents a collection of facts whose

addition or deletion has to be incorporated at iteration i. It is called the redo set.
1. n — Current Evaluation Iteration Number in the DO Phase.
2. If (i = n) RETURN to the DO Phase.

3. Foreach f, € U cal UNDO_MAINTAIN CHAIN(f,. 1)
Comment: undoing an operation amounts to the

manipulation of the corresponding fact chain

4. Foreach f, € Rcall REDO_MAINTAIN . CHAIN(f;.1)
Comment: redoiﬁg an operation amounts to the

manipulation of the corresponding fact chain

NEW — COMPUTE_NEW(i)

[¥1]

Comment: the NEW set is computed by eramining

the fact chains

6. If (VEW =0) RETURN to the DO Phase.

7. Find all rule instantiations with respect to the database at iteration i, such that a fact
f, € NEW is in the body. Denote by F, the set of facts in the heads of these instantiations.

This will serve as the redo set for the recursive call.

n

8. Find all rule instantiations with respect to the database at iteration i. such that a fact
fu € ~NEW is in the body. Denote by F,, the set of facts in the heads of these instantiations.

This will serve as the undo set {or the recursive call.

9. Cal INCRUUPDATE(F,. F..i+1).

end {procedure INCR_.UPDATE}

The initial invocation is INCR.UPDATE(0,Q.0). where Q is the set of facts in the inter-
rupt message. We point out that the work on incremental evaluation [11] can be useful for
speeding up the execution of steps (7) and (8) of procedure INCR.UPDATE.

The computations in steps (7) and (3) of the above recursive procedure is clearly less

expensive. in general. than computing all instantiations of rules at iteration i.

4 Fact Chains

As mentioned earlier. for each fact f there is a chain C(f) that enables the system to determine
the status of f at each iteration. For each iteration in which f was added or deleted (either in
the DO or the REDO phases) we keep a count of the number of times it was added. and the
number of times it was deleted. In other words. for each iteration we keep a state record in

C(f). which has the following structure:

| State Record |
Field Type

Added | Integer
Deleted | Integer
Iter Integer
Status | Binary

The Iter field indicates which iteration a particular state record corresponds to. and the
Status field holds the status of the fact (/nor Out of the database) at that iteration. The Added

and Deleted fields are necessary to count the number of occurrences of additions and deletions

9

(even though the operational semantics do not require so). since one does not know how many

of these operations will be undone in the future.

4.1 Initialization and Maintenance

Each fact present in the input database is called an initial fact. We set up fact chains for the
initial facts at startup time. All such facts have fact chains initialized with a single state record
s, with s.Iter set to 0, and s.Status set to In. Additional chains are established for those facts
which are added or deleted during inference. and for which no chain was established initially.
Chains established during inference consist of a state record at iteration 0 with a status of Qut.
and a state record for iteration ¢t. where ¢ is the iteration when f was added or deleted during

the inference.

Maintenance operations on chains occur in all three phases of incremental evaluation. DO
and REDOQO phases increment the count in the Added or Deleted fields of the state record, de-
pending on whether the fact in question is added or deleted as a result of rule firing. In contrast.
UNDOQ decrements the appropriate field. The procedure that manipulates the chains during
DO and REDO phases is REDO_MAINTAIN.CHAIN. Procedure UNDO_MAINTAIN.CHAIN
manipulates chains during the UNDO phase. REDO_MAINTAIN_.CHAIN receives a set of {acts
and an iteration number. and increments the counts of the appropriate fields of the state record
indicated by the iteration number. whereas UNDO_MAINTAIN.CHALN decrements the counts.

As an example, consider the effect of the procedure call
UNDOMAINTAIN. CHAIN({fi.~f2}.1).

Suppose C(f;) has a state record u with u.lter=i. u.Added = I and u.Deleted = 1. and C(f7) has
a state record v with v.Jter=i, v.Added = 0 and v.Deleted = 1. After the procedure executes,
we will have u.Added = 0,u.Deleted = 1. v..Added = 0,v.Deleted = 0. Subsequent to this, if we
make the call

REDO_MAINTAIN.CHAIN({-/i. [a}.1)

we will end up with u..ddded = 0.u.Deleted = 2. v.Added = I1,v.Deleted = 0.

10

4.2 Computing the NEW Set

The status of a fact f for any iteration is determined by examining the Added and Deleted fields
in the state record for that iteration. This applies to the DO phase and to the incremental
update phase as well. In procedure INCR.IUPDATE, the final value of the status of a fact f

and the set of new facts at an iteration is computed with the COA PUTE_N EW function.

COMPUTE_NEW takes an evaluation iteration number i as argument, and scans the
chains for the facts that were changed during the UNDO or REDO phases. If both the
Added and Deleted fields are zero in the state record for 7, or if both are non-zero, then we
revert to the status at iteration i — 1. Otherwise, if the Deleted field is 0. we interpret that
as indicating that the fact was only added. and the status is set to I'n, whereas if the Added
field is 0, the status is set to Qut. A fact is flagged new if its newly computed status is the
inverse of its former status. We present the outline of procedures INITIALIZE CHAINS,
UNDOMAINTAIN.CHAIN, REDOMAINTAIN.CHAIN,and COMPUTE_NEW in
appendix A.

4.3 Correctness

In order to demonstrate that procedure INCR.U/PDATFE works correctly, we need to show
that if an incremental update message to incorporate a positive or negative fact f in the input
database is received while the processor is at iteration t > 0. then the final database produced
would be the same as in the case where f is in the input database. The proof is by induction

on t: we omit the details from this preliminary version.

5 Applicability of INCR_UPDATE to Stratified Datalog

For stratified Datalog [2], the rule program interpreter evaluates the rules one stratum at a time.
Iteration numbers are then replaced by the pair (Stratum_Number. Iter N umber), which may
be regarded as our new iteration counter. The implication of this adaptation is the following.
We have to adopt a modified numbering scheme for chain maintenance operations. and for
matching rules in steps (7) and (8) of procedure INCR.UPDATE. First. instead of ordering
the fact chains by iteration number, we now use the order imposed by lexicographic ordering

of the (Stratum_N umber. [ter _Vumber) pairs. Therefore, in the incremental update phase.

11

instead of referring to iteration i — 1, we refer to the previous iteration in the lexicographic order.
Second, in steps (7) and (8) of procedure /NCR.U'PDATE. we restrict the matches to rules in
the particular stratum being considered. With these simple modifications. INCR.UPDATE

is applicable to stratified Datalog.

6 Distributed Synchronous Evaluation of Datalog™ Programs

The data reduction paradigm has been introduced in [6] for Datalog (without negation). Intu-
itively, instantiations of the rules in a given program are partitioned among a set of processors.
The original program is evaluated on each processor, but with less data. The partition of
the instantiations is achieved by restricted versions of the original program, such that each
restricted version is evaluated at one processor. In general. it is necessary for the processors to
communicate intermediate results to each other by message passing. In this section, we extend
the paradigm to Datalog™. In particular. we discuss a synchronous variation of this extension,

whereas in the next section, we discuss an asynchronous one.

Formally, let P = {ry,....T»} be a program with m rules and {po.....pk-1} be a set of
k > 1 processors. For each rule r;, we designate & restricting predicates, h,(Xy,...,.X¢,), for
0 € j £ k—1. The arguments\,, are the same for all the & predicates. and by definition.
all the arguments are variables of r;. \We require that for each instantiation of the variables
Xi.....X,,, the predicate h;; is true for exactly one j. Denote by r;; the restricted version of
the rule r; having the restricting predicate h;;(.\y......X,;) appended to its bodv. Denote by P;
the restricted version of P consisting of the set of rules {r,;|1 < i < m}. The set {Fo. ..., Px_1}
is called a data-reduction parallelization strategy for P.

The set of processors {pg,....pk-1} cooperate in evaluating P in parallel as follows. The
database is partitioned among the processors such that each tuple has a unique Data Handler
processor (DH) at which it resides. The DH processor for each tuple is computed by a hash
function associated with the relation. For example. the tuple a(.X.Y) such that A(X) =
resides at processor i.

In the course of the evaluation, a tuple may be added and deleted by multiple processors. In
databases, concurrency control is concerned with guaranteeing that the result of all transactions

is equivalent to some serial execution of those transactions. In our case, we can view the p;’s as

12

executing separate transactions, where a transaction consists of the actions executed by p, at a
given iteration. However, it is not enough to provide standard concurrency control on accesses
to the distributed database, as some serial executions may not be acceptable according to the
semantics. It becomes necessary to provide some means to act as an arbiter over database adds
and deletes. This is realized by the Date Handler for each tuple. One can think of a data
handler as a monitor program that runs on each processor that stores tuples and sequentially
services requests for tuples by other processors. The data handlers are reponsible for realizing
the correct semantics with respect to database updates, as will be demonstrated below. For

this variation, fact chains are not necessary.

Restricted versions of the rules are distributed to the processors, as described earlier. These
are called the Rule Handlers (RH) for program P. \When a rule handler requires a fact for
matching, it requests it from the appropriate data handler. Determining the appropriate data

handler involves a trivial evaluation of the associated hash {unction.

Each processor p; performs the instantiations of P, as in the normal evaluation procedure.
Any newly inferred facts are transmitted to the appropriate data handlers for storage. All
processors execute in step with respect to the evaluation iteration number. i.e. all processors
have the same iteration number, which is used for synchronization. The following procedure is
executed by Rule Handler ¢ at iteration j. in the synchronous variation of the data reduction

paradigm.

procedure SYNC_DATA_REDUCTION

At iteration j do:
1. Request facts from appropriate Data Handlers for the rule instantiations of p; with
respect to the database at iteration j.
2. Add or delete tuples, as indicated by these instantiations. This is done by
transmitting the operations (i.e additions or deletions of facts) to the appropriate
Data Handlers.
3. When all the rule and data handlers have completed iteration j (as determined by some

distributed termination algorithm, e.g. as in [17, 18]), p; moves to the next iteration.

13

Data Handlers do the following sequence of steps:
1. Receive all the messages from the rule handlers. indicating the operations at
iteration j.

2. Update local database as follows:

o If for a fact, f, an add and a delete operation is received (possibly from different rule
handlers) the status of f at iteration j+ 1 remains the same as the status of f at iteration

J- This is obviously also the case if no operation on f is received.

e Otherwise. if only adds (deletes) are received, f is added to (deleted from) the database.

end procedure {SYNC_DATA_REDUCTION}

Increased efficiency is implied by the fact that p; evaluates a restricted version, meaning it

does fewer instantiations compared to the case where the original program P is evaluated.

7 Distributed Asynchronous Evaluation of Datalog™ Pro-
grams

A major problem with the procedure described above is that no processor can proceed faster
than the slowest one at each iteration. Obviously, we desire asvnchronous operation of each p;.
but this gives rise to other problems which motivate the use of the INCR_UPDATE procedure.

Suppose some processor p; deletes a fact f at iteration t;. which was used earlier by processor
p;- Suppose also that p; is now at iteration t;, and ¢; > t;. Unless handled properly, this
situation may cause the operational semantics of Datalog ™ to be violated.

Recall that INCR_.UPDATE allows the incremental incorporation at iteration t 5, database
changes occurring at iteration t; < t;. The message indicating deletion of f by p, in the example
above can be viewed as an interrupt message. Thus, by using the procedure INCR.UPDATE,

pj can update its database to a consistent state.

We outline below the asvnchronous variation of the data reduction paradigm (henceforth

called ASYNC_DATA_REDUCTION) for parallel and distributed evaluation of Datalog =~

14

programs. As before, we have rule handlers that own restricted versions of the rules of the
original program. Furthermore, when the database is partitioned among the processors, each
data handler maintains a chain for each fact. The processors operate asynchronously and each

rule handler keeps its own iteration count.

More precisely, in ASYNC'_DATA_R.EDUC'TION each rule handler, RH ;. executes steps
(1) and (2) as in SYNC_DATA_REDUCTION, at each iteration j. At step (3), instead of
synchronizing, RH; checks whether or not it received an interrupt message from a data handler;
such a message contains a set of VEIV (positive and negative) facts at an iteration number. If
this is not the case, RH; simply proceeds to the next iteration. If the message pertains to an

iteration number higher than j, it is ignored and RH; proceeds to the next iteration.

Otherwise. RH; executes steps (7) and (8) of INCR.U PDATE for each interrupt message.
in increasing iteration number order (meaning that it will not process a .V E1{" set for iteration
500 if a NEW set for iteration 400 is in the queue). RH; sends the resulting UNDO and
REDQO sets to the data handlers (note that each set will be partitioned, with each partition
being sent to a different data handler). After processing all interrupt messages R/ ; proceeds

to iteration j + 1.

Each DH; continuously receives RE DO and UU.N DO sets, each associated with an iter-
ation number. DH; processes these in increasing iteration number order. For each undo
(redo) set associated with an iteratio‘n. say k, DH, performs UNDO _MAINTAIN.CHAIN
(REDOJI;—l[.\"T.AI.\’_CH.{I.V). and COMPUTE_NEW. The resulting N EW set and the
iteration number k are broadcast to the RH's. If both an undo and a redo set exist for k, then
UNDOMAINTAIN CHAIN and REDO_MAINTAIN CAHIN will both be performed
before COMPUTE_NEW.

It should be clear that many optimizations of the transmission sets are possible. as discussed

in [6]. However, we omit these discussions here.

8 Conclusion

The main contribution of this paper is the /.NCR.U'PDATE algorithm and the data structures
to support it. We have shown that the algorithm can be used for two seemingly unrelated

purposes: first, to maintain the inference database in an incremental fashion in a dynamic

15

environment where the input may be updated after inferencing is under way, and second. for
the asynchronous version of the data reduction paradigm.

We plan to implement the INCR_.U PDATE algorithm in NETMATE, a communication
network management system under development at Columbia University [10]. As explained in
the introduction, incremental update capabilities are necessary in this real time environment.

This work is also part of a research effort seeking to develop a new environment for par-
allel and distributed rule evaluation. In a companion paper. we describe a new rule language
(PARULEL = PArallel RULE Language) with semantics similar to Datalog ™. except that at
each iteration additional control is provided by what we call Meta Redaction Rules. Meta
redaction rules regard the set of instantiations at each cycle as working memory. and remove
from the set of instantiations those members that are considered to be conflicting instantiations
according to these rules. After redaction, all remaining instantiations in the conflict set can be
fired in parallel.

It is expected that incremental rule processing, combined with parallel and distributed

processing capabilities will realize real-time expert systems with large databases.

16

A Pseudocode for Maintenance of Fact Chains

procedure INITIALIZE CHAINS

DB — Global Database
For each ¥ € DB do
Create a new chain C(F) indexed by F.
Link a state record s to C(F). Set the fields of s as follows:
s.Added — 1
s.Deleted — 0
s.fter — 0
s.Status — In
end {procedureINITIALIZE CHAINS}

procedure REDO_MAINTAIN CHAIN(f.i)

F—1fl
DB — Global Database
If C(F) exists
If (3s € C(F)) such that s.fter = i. then
if f is positive, set s.Added — s.Added + 1
else if f is negative. set s.Deleted — s.Deleted + 1
Else
Insert a new state record p at the correct position in the chain.
plter — i
if f is positive, set p.Added — 1,p.Deleted — 0
else p.Deleted — 1.p.Added — 0

Else if there is no C(F) then
Create C(F) and link a state record s to it.

Set s.-ldded.s.Deleted. s. Iter fields to (), and s.Status to Qut.

Add a state record p to the end of the chain.

plter — 1

If f is positive then p.Added — 1, p.Deleted — 0. DB — DB U {f}
else if f is negative then p.Added — 0.p.Deleted — 1

end {procedure REDO _MAINTAIN_CHAIN}

procedure UNDO MAINTAIN CHAIN(f. 1)

F—=I7]
Find the state record s in C(F) with s.fter =i

Comment: cancel adds or deletes from some previous iteration.
If f is positive then s.Added — s..Added — 1

else s.Deleted — s.Deleted — 1

end {procedureli N DO MAINTAIN CHAIN}

function COMPUTE_N EW(i)

NewSet — 0
For each fact chain that has been updated
Find the state record s at iteration i if it exists
if ((s.Added = 0) A (s.Deleted = 0)) then s.Status — Logical Status at (i — 1)
else if ((s.Added # 0) A (s.Deleted # 0)) then s.Status — Logical Status at (i — 1)
else if (s.Deleted = 0) then s.Status — In
else if (s.Added = 0) then s.Status — Out
If the new status represents an inversion. then
f — Fact under consideration. with sign.
NewSet — NewSet U {f}
RETURN(NewSet)

end {functionCOMPUTE_NEW}

References

(1) D. Maier and D. S. Warren; Computing with Logic: Introduction to Logic Programming;

Benjamin-Cummings Publishing Co., 1987.

(2] J.D. Ullman; Principles of Database and Rnowledge-Base Systems: Vol. 2, Computer Sci-
ence Press, 1989.

[3] S. Abiteboul and E. Simon: Fundamental properties of deterministic and nondeterministic

ezxtensions of Datalog”: Journal of Theoretical Computer Science, 1990.

[4] S.J. Stolfo, D.P. Miranker and R. Mills: A simple processing scheme to extract and load
balance implicit parallelism in the concurrent match of production rules: Proceedings of the

AFIPS symp. on fifth generation computing, AFIPS,1985.

5) T. Ishida. S.J. Stolfo; Towards the Parallel Execution of Rules in Production System Pro- .
)
grams; Proceedings of the 13th annual international Symposium on Computer Architecture,

pp. 28-37, IEEE/ACM, 1986.

[6] O. Wolfson and A. Ozeri: 4 New Paradigm for Parallel and Distributed Rule-Processing;
Proceedings of the ACM-SIGMOD 1990, International Conference on Management of
Data, Atlantic City, NJ. May 1990.

[7] Jon Dovle. A Truth Maintenance System; Readings in Artificial Intelligence: Morgan Kauf-

mann, 1981: pp. {96-516.
[8] A. Barr and E. Feigenbaum. eds.: The Handbook of Artificial Intelligence. Vol. 2.

[9] Raymond Reiter and Johan de Kleer: Foundations of Assumption-Based Truth Mainte-

nance Systems: Preliminary Report: Proceedings of AAAI-87 pp. 183-188

(10] A. Dupuy. S. Sengupta, O. Wolfson, Y. Yemini; NETMATE: A Network Management
Environment: to appear in the special issue on Network Operations and Management.

IEEE Network (The Magazine of Computer Communications), 1991.

19

[11] E.N. Hanson. M. Chaabouni, C.-H. Kim. and Y.-W. Wang: A predicate matching algorithm

[12]

(13]

(14]

(16]

[17)

(18]

for database and rule systems: Proceedings of the ACM-SIGMOD 1990, International Con-
ference on Management of Data, Atlantic City, NJ, May 1990; pp. 271-280

J.A. Blakeley, P.-A. Larson, F.Wm. Tompa; Efficiently Updating Materialized Views; Pro-
ceedings of the ACM-SIGMOD 1986, International Conference on Management of Dala,
Washington, D.C., May 1986; pp. 61-71

S. Ganguly, A. Silberschatz, S. Tsur; A Framework for the Parallel Processing of Queries;

Manuscript, Computer Science Dept., Univ. of Tezas at Austin, 1989.

K. R. Apt. H. Blair, A. Walker: Towards a Theory of Declarative Knowledge; unpublished

memorandum. [BM Yorktown Heights, N'}

S. Cohen and O. Wolfson: Why a Single Parallelization Strategy is not Enough in Knowl-
edge Bases; Proc. 8th ACM Symp. on PODS, pp. 200-216. 1989. Revised version to appear

in a special issue of the Journal of Computer and System Sciences. 1991.

B. Lindsay. L. Haas, C. Mohan, H. Pirahesh and P. Wilms: A Snapshot Differential Refresh
Algorithm; Proceedings of the ACM-SIGMOD 1986. International Conference on Manage-
ment of Data, Washington, D.C.. May 1986; pp. 53-60

k.M. Chandy and J. Misra; On Proofs of Distributed Algorithms with Application to the
problem of Termination Detection: Manuscript, Dept. of Computer Science, University of

Tezras, Austin.

N. Francez: Distributed Termination; A CM Transactions on Programming Languages and

Systems, 2(1).pp.42-55,1980.

