
Surface Approximation is Sometimes Easier Than
Surface Integration

Arthur G. Werschulz∗

Department of Computer and Information Sciences
Fordham University, New York, NY 10023

Department of Computer Science
Columbia University, New York, NY 10027

Henryk Woźniakowski†

Department of Computer Science
Columbia University, New York, NY 10027

Institute of Applied Mathematics
University of Warsaw, Poland

Technical Report CUCS-018-01

March 5, 2002
(Revised version: August 12, 2002)

Abstract

The approximation and integration problems consist of finding an ap-
proximation to a function f or its integral over some fixed domain 6. For
the classical version of these problems, we have partial information about
the functions f and complete information about the domain 6; for example,
6 might be a cube or ball in R

d . When this holds, it is generally the case
that integration is not harder than approximation; moreover, integration can
be much easier than approximation. What happens if we have partial infor-
mation about 6? This paper studies the surface approximation and surface
integration problems, in which 6 = 6g for functions g. More specifically,
the functions f are r times continuously differentiable scalar functions of

∗This research was supported in part by the National Science Foundation, as well as a Fordham
University Faculty Fellowship.

†This research was supported in part by the National Science Foundation.

1

l variables, and the functions g are s times continuously differentiable in-
jective functions of d variables with l components. The class of surfaces
considered is generated as images of cubes or balls, or as oriented cellulated
regions. Error for the surface approximation problem is measured in the Lq-
sense. These problems are well-defined, provided that d ≤ l, r ≥ 0, and
s ≥ 1. Information consists of function evaluations of f and g. We show
that the ε-complexity of surface approximation is proportional to (1/ε)1/µ

with µ = min{r, s}/d. We also show that if s ≥ 2, then the ε-complexity of
surface integration is proportional to (1/ε)1/ν with

ν = min

{

r

d
,
s − δs,1(1 − δd,l)

min{d, l − 1}

}

.

(This bound holds as well for several subcases of s = 1; we conjecture that
it holds for all r ≥ 0, s ≥ 1, and d ≤ l.) Using these results, we determine
when surface approximation is easier than, as easy as, or harder than, surface
integration; all three possibilities can occur. In particular, we find that if
r = s = 1 and d < l, then µ = 1/d and ν = 0, so that surface integration is
unsolvable and surface approximation is solvable; this is an extreme case for
which surface approximation is easier than surface integration.

1 Introduction

Integration and approximation are two of the most well-studied problems of infor-
mation-based complexity (IBC). These problems consist of finding an approxima-
tion to a function f or its integral over some domain 6, typically using function
values at a finite set of points from 6. Usually,1 one chooses 6 to be either the
unit cube I d = [0, 1]d or the Euclidean unit ball Bd in R

d . For the usual sets F

of problem elements f , these problems are linear. This means that we can use the
full power of IBC theory for linear problems (see, e.g., [8, Sect. 4.5]), which allows
us to determine e(n) and comp(ε), the nth minimal error and the ε-complexity of
approximation and integration, as well as to address issues such as whether linear
algorithms are optimal and whether adaption is more powerful than non-adaption.

Usually, classical integration is no harder than approximation. Indeed, we can
easily see this if we measure approximation error in a norm that dominates the
L1(6)-norm and if the Lebesgue measure of 6 is finite. Given any algorithm A

for the approximation problem, consider the algorithm U defined by

U(f) =

∫

6

A(f)(x) dx.

1There is also a stream of work studying weighted approximation and integration over 6 = R
d .

2

Then the error of U for the integration problem is dominated by the error of A

for the approximation problem. It then follows that the nth minimal error of the
integration problem is dominated by that of the approximation problem. In many
cases, it is enough to only consider linear algorithms, so that the ε-complexity of
integration is also dominated by that of approximation. Thus, integration is no
harder than approximation.

In fact, integration may be easier than approximation. As an example, suppose
that 6 = I d , our functions to be approximated or integrated are a ball in the
space Cr(I d) of r times continuously differentiable functions, and that we measure
approximation error in the C r̃(I d)-norm, where r̃ < r . Let the nth minimal error
for a problem be defined as the minimal worst case error among all algorithms that
use n function values to compute an approximation to that problem. Then the nth
minimal errors for approximation and integration are 2(n−(r−r̃)/d) and 2(n−r/d),
respectively. Hence, integration is easier than approximation if r̃ > 0.

Note that for these classical versions of the approximation and integration prob-
lems, we have complete information about the domain 6. What happens if we only
have partial information about 6?

We consider nondegenerate domains 6g defined by functions g of d variables,
nondegeneracy holding if g is a continuously differentiable injection. This nec-
essarily implies that d ≤ l, where l is the dimension of the codomain of our
functions g. Let G be a class of such functions g. The simplest situation is to
let 6g = g(I d), where G is a class of functions from I d to I l , as was studied
in [11] and [12]. Note that such a domain 6g is the diffeomorphic image of a
cube, and hence 6g must have corners. If we want to allow smooth domains, we
can follow one of two approaches. The first is to consider domains 6g that are
oriented cellulated regions, see, e.g., [5, pp. 369–370]. This essentially means
that 6g is a finite union of images of cubes under maps g [1], . . . , g[k] ∈ G, with
g[1](I d), . . . , g[k](I d) having disjoint interiors. Examples of oriented cellulated re-
gions include balls and spheres, as well as other smooth regions. It is easy to see
that results that hold for domains that are images of cubes also hold for domains
that are oriented cellulated regions. The difficulty is in actually constructing the
necessary maps, even for regions as simple as balls. So, we propose a second
approach, namely, letting 6g = g(Bd) where G is a class of functions from a d-
dimensional ball Bd to an l-dimensional ball Bl. Then the smoothness of g(Bd)

matches that of g.
Note that if d < l, then 6g is usually called a surface in R

l, whereas if d = l,
then 6g is a region in R

d . For brevity’s sake, we shall refer to 6g as a “surface” in
all cases.

In this new setting, the surface approximation problem SURF-APP consists of
approximating f over 6g in the Lq-sense, and the surface integration problem

3

SURF-INT consists of approximating the surface integral (as studied in [11]) of f

over 6g . In both cases, we have only partial information about 6g since we can
sample the function g only at finitely many points. We measure error and cost in
the worst case setting, the worst case being over all [f, g] ∈ F × G, so that F is a
class of integrands and G is a class of functions g defining surfaces 6g .

In this paper, we shall choose F as a ball in the space of functions that are
r times continuously differentiable. We shall choose G as a ball in a space of func-
tions that are s times continuously differentiable injections, subject to a “uniform
nondegeneracy” condition, explained in Section 2. We will require r ≥ 0 and
s ≥ 1, so that our surface approximation and integration problems will be well-
defined. We stress that both the surface approximation and surface integration
problems are nonlinear.

Permissible information about [f, g] ∈ F×G will be standard information. For
the purpose of simplifying the exposition, we restrict our attention to information
consisting of function evaluations of f or g. There is no loss of generality in doing
this, since the results of this paper also hold if we allow derivative evaluations. We
let c denote the cost of one function evaluation.

Before explaining our results in a more technical way, we stress that surface
approximation may be easier than, as easy as, or harder than surface integration,
depending on the values of the global parameters. In particular, if the surface has
minimal smoothness (s = 1) and d < l, then we have an extreme case. Namely,
surface integration is unsolvable (i.e., its ε-complexity is infinite for small ε), but
surface approximation is solvable (i.e., its ε-complexity is finite for all ε > 0).
The intuitive reason for this is that a surface integral can be regarded as a weighted
classical integral, whose weight depends on the derivative of the function g deter-
mining the surface 6g . When s = 1, this weight is only continuous. This is not
enough smoothness to allow us to approximate the weight function with arbitrarily
small error using a finite number of evaluations of g. Surprisingly enough, this
holds only when d < l. However, when d = l, we can overcome this difficulty by
using an integration by parts to reduce the dimension of the problem and to redefine
the weight function so that it no longer contains derivatives of g. This new weight
function is continuously differentiable, and hence it can be approximated with ar-
bitrarily small error using finitely many function values of g. On the other hand,
the same weight plays a completely different role for surface approximation. This
weight only affects the error of an algorithm through a multiplicative factor. These
factors are uniformly bounded for our class of surface approximation problems.
From this, it follows that surface approximation always has finite ε-complexity,
even when s = 1 and d < l.

Let us now state the main results of this paper more precisely. These results
hold, no matter how our class of surfaces is generated:

4

• as images of cubes,

• as oriented cellulated regions, or

• as images of balls.

Note that we concentrate specifically on establishing estimates of the nth min-
imal error and ε-complexity having sharp exponents of 1/n and 1/ε, ignoring any
dependence of 2-factors on r , s, d , and l. We believe that these factors depend
exponentially on d and l, and so these estimates are of practical importance only
for problems of small dimension.

First, we state the results for surface approximation. Let

µ =
min{r, s}

d
.

Then the nth minimal error satisfies2

e(n; SURF-APP) � n−µ

and the ε-complexity satisfies3

comp(ε; SURF-APP) � c ε−1/µ.

In particular, note that for classical approximation over balls and spheres, g is the
identity function, and so we formally have s = ∞, so that µ = r/d .

Next, we turn to surface integration. Let

ν = min

{

r

d
,
s − δs,1(1 − δd,l)

min{d, l − 1}

}

,

with δi,j is the usual Kronecker notation. Suppose that any of the following hold:

• r = 0,

• d < l,

• d = l = 1,

• d = l ≥ 2 and s ≥ 2,

• d = l = 2 and s = 1, or

2We use 4, <, and � in this paper to respectively denote O-, �-, and 2-relations.
3Here, we adopt the convention that ε−1/0 = ∞, so that comp(ε) � c ε−1/0 means that the

problem is unsolvable for sufficiently small ε.

5

• d = l = 3 and r = s = 1.

Then
e(n; SURF-INT) � n−ν (1)

and
comp(ε; SURF-INT) � c ε−1/ν. (2)

We do not have tight bounds for surface integration in the cases

• d = l = 3 and r > s = 1 and

• d = l ≥ 4 and r ≥ s = 1,

but we do know that the problem is solvable, i.e., it always has finite ε-complexity
for any ε > 0, see [11]. We conjecture that the bounds (1)–(2) hold for all values
of d , l, r , and s, subject to our conditions r ≥ 0, s ≥ 1, and d ≤ l.

Our result for surface integration is succinct, but cryptic. Let us decipher it.
First, note that if r = 0, then ν = 0, i.e., the problem is unsolvable. Hence, we
restrict our attention to the case r ≥ 1.

1. Let l = 1, so that d = 1 necessarily. Then ν = r .

2. Let l ≥ 2 and d < l.

(a) If s = 1, then ν = 0.

(b) If s ≥ 2, then ν = min{r, s}/d .

3. Let d = l ≥ 2.

(a) Let s ≥ 2. Then ν = min{r/d, s/(d − 1)}.

(b) Let s = 1.

i. If d = 2, then ν = 1.

ii. If d = 3 and r = 1, then ν = 1
3 .

Of course, in the remaining cases, we do not know the exact order of the ε-
complexity.

Using these results, we can compare the ε-complexities of surface approxima-
tion and surface integration. We will use the usual precedence notation, so that,
e.g., SURF-APP ≺ SURF-INT will mean that surface approximation is strictly eas-
ier (in terms of ε-complexity) than surface integration. First, suppose that r = 0.
Then µ = ν = 0, and so SURF-APP � SURF-INT, with neither problem being
solvable. Hence, we restrict our attention to the case r ≥ 1. We find the following:

6

1. Let l = 1, so that d = 1. Then µ = min{r, s} and ν = r , so that SURF-INT 4

SURF-APP. In particular, if r > s, then SURF-INT ≺ SURF-APP, whereas if
r ≤ s, then SURF-INT � SURF-APP.

2. Let l ≥ 2 and d < l.

(a) If s = 1, then µ = 1/d > 0 and ν = 0. That is, surface approximation
is solvable, but surface integration is unsolvable. Hence SURF-APP ≺

SURF-INT. This case justifies the title of our paper.

(b) If s ≥ 2, then µ = ν = min{r, s}/d , and so SURF-APP � SURF-INT.

3. Let d = l ≥ 2.

(a) If s ≥ 2, then µ = min{r, s}/d and ν = min{r/d, s/(d − 1)}.

i. If r ≤ s, then µ = ν = r/d , and so SURF-APP � SURF-INT.

ii. If r > s, then µ = s/d . There are two possibilities:

A. If r ≤ sd/(d − 1), then ν = r/d > s/d = µ.

B. If r > sd(d − 1), then ν = s/(d − 1) > s/d = µ.

Hence SURF-INT ≺ SURF-APP in either case.

(b) If s = 1, and suppose that (1)–(2) holds. In particular, this includes the
following cases:

• d = l = 2, and

• d = l = 3 and r = 1.

Then µ = 1/d and ν = min{r/d, 1/(d − 1)}.

i. If r/d ≥ 1/(d − 1), then ν = 1/(d − 1) > 1/d = µ, and so
SURF-INT ≺ SURF-APP.

ii. Let r/d < 1/(d − 1). Then r < d/(d − 2) ≤ 2, so that r = 1.
Hence ν = 1/d = µ, and so SURF-APP � SURF-INT .

Thus we find that surface approximation is sometimes easier than, sometimes
as easy as, and sometimes harder than, surface integration. It all depends on the
relationship between r , s, d , and l.

We now outline the structure of this paper. In Section 2, we give a precise de-
scription of the problems to be solved. In Sections 3 and 4, we prove our results
for the surface approximation and integration problems over images of cubes. Fi-
nally, in Section 5, we extend our results from images of cubes to smooth surfaces
defined as oriented cellulated regions or as images of balls.

7

2 Problem description

Let d and l be given positive integers, with d ≤ l. Let I = [0, 1] denote the unit
interval. If g : I d → R

l is a C1 injection, then g(I d) is a d-dimensional surface
in R

l.

Remark. Strictly speaking, the set g(I d) is a surface only when d < l; when d = l,
the set g(I d) is a region of R

d . However, for the sake of brevity, we shall let the
word “surface” include all the cases d ≤ l.

In this paper, we deal with nondegenerate surfaces. The nondegeneracy of the
surface means that the surface area element associated with the surface never van-
ishes. We now explain this more precisely; see [5, p. 334 ff.] for further discussion.

For any C1 injection g : I d → R
l , the gradient ∇g : I d → R

l×d is defined by

[(∇g)(x)]i,j =
∂gi

∂xj

(x) for i ∈ {1, . . . , l}, j ∈ {1, . . . , d}, and x ∈ I d,

where gi is the ith component of g.
Define

σg(x) =
√

det A(x) ∀ x ∈ I d,

where
A(x) = [(∇g)(x)]T [(∇g)(x)] ∀ x ∈ I d,

i.e., A(x) = [ai,j (x)]di,j=1 is the d × d matrix having components

ai,j (x) =

l
∑

k=1

∂gk

∂xi

(x)
∂gk

∂xj

(x)

for i, j ∈ {1, . . . , d} and x ∈ I d . We call σg(x) the surface area element of g(I d)

at x.
We say that the surface g(I d) is nondegenerate if σg(x) 6= 0 for all x ∈ I d .

Remark. Note that when d = l, we have the simplification

σg(x) = |det[(∇g)(x)]| ∀ x ∈ I d .

Strictly speaking, we should call σg(x) the “volume element” rather than the “sur-
face area element” in this case. Again, for brevity’s sake, we shall let “surface area
element” cover all the cases d ≤ l.

Next, we define two classes F and G of functions, as in [11]. The class F will
define functions to be either approximated or integrated over surfaces defined by

8

the class G. We use the standard notations for multi-indices, Sobolev spaces, etc.,
found in, e.g., [2, p. 11].

For a positive C1 and for r ≥ 0, we first define F = Fl,r,C1 as the ball of
radius C1 of the space Cr(I l), i.e.,

‖f ‖Cr (I l) ≤ C1 ∀f ∈ F.

Here,
‖f ‖Cr (I l) = max

|α|≤r
‖Dαf ‖,

with ‖ · ‖ denoting the max norm.
For positive C2 and c2 and for s ≥ 1, we now define G = Gd,l,s,C2,c2 as the

class of s times continuously differentiable functions g ∈ C s(I d; I l) that satisfy

‖g‖Cs (I d ;I l) ≤ C2 and min
x∈I d

σg(x) ≥ c2. (3)

Here,
‖g‖Cs(I d ;I l) = max

1≤i≤l
‖gi‖Cs(I d),

where, as before, g1, . . . , gl denote the components of g. For simplicity, we assume
that c2 < 1 ≤ C2. Letting id : I d → I l be the standard embedding

id(x1, . . . , xd) = (x1, . . . , xd , 0, . . . , 0) ∀ x = (x1, . . . , xd) ∈ I d, (4)

we see that id ∈ G. Note that the condition (3) imposes a “uniform nondegeneracy
condition” on the admissible surfaces g(I d).

Observe that the functions from F have the common domain I l and that g(I d) ⊆

I l for all g ∈ G. This is why the compositions

(f B g)(x) = f
(

g(x)
)

∀ x ∈ I d

are well-defined for [f, g] ∈ F × G.
We are now ready to formally define our two problems.
The first problem is SURF-APP, the surface approximation problem. For a given

[f, g] ∈ F × G and x ∈ I d , we wish to compute A(t) for t = g(x) such that A(t)

approximates f (t). Let q ∈ [1,∞]. The Lq-error of this approximation is given as

‖f − A‖Lq(g(I d)).

Here, for q < ∞, we have

‖f − A‖Lq(g(I d)) =

[∫

g(I d)

|f (t) − A(t)|q dσ(t)

]1/q

,

9

where the integral is the surface integral defined as
∫

g(I d)

h dσ =

∫

I d

(h B g) σg ≡

∫

I d

h
(

g(x)
)

σg(x) dx ∀ [h, g] ∈ F × G.

Hence we have

‖f − A‖Lq (g(I d)) =

[∫

I d

∣

∣f
(

g(x)
)

− A
(

g(x)
)∣

∣

q
σg(x) dx

]1/q

when g < ∞. For q = ∞, we have

‖f − A‖L∞(g(I d)) = sup
t∈g(I d)

|f (t) − A(t)| = sup
x∈I d

∣

∣f
(

g(x)
)

− A
(

g(x)
)∣

∣

(the latter since c2 ≤ σg(x) ≤ d! Cd
2 for x ∈ I d and g ∈ G). Thus for any value of

q ∈ [1,∞], we find that

‖f − A‖Lq(g(I d)) = ‖σ 1/q
g (f B g − A B g)‖Lq(I d).

Let us now write U(f, g)(x) = A
(

g(x)
)

. Since g is injective, there is a one-to-one
correspondence between U and A.

Our surface approximation problem consists of finding, for [f, g] ∈ F × G, a
function U(f, g) ∈ Lq(I

d) such that

e(U ; SURF-APP) := sup
[f,g]∈F×G

‖σ 1/q
g [f B g − U(f, g)]‖Lq(I d)

is small. Equivalently, we want to approximate f B g over I d in the σ
1/q
g -weighted

Lq-norm.
Our second problem is SURF-INT, the surface integration problem. For [f, g] ∈

F × G, we seek U(f, g) ∈ R such that

e(U ; SURF-INT) := sup
[f,g]∈F×G

∣

∣

∣

∣

∫

g(I d)

f dσ − U(f, g)

∣

∣

∣

∣

is small.
Since F ⊂ C(I l) and G ⊂ C1(I d; I l), it follows that for any [f, g] ∈ F × G,

we have σ
1/q
g (f B g) ∈ C(I d) ⊂ Lq(I

d) and (f B g)σg is integrable. Hence our
surface approximation and integration problems are well-defined.

Note that we define the error of U for both problems in the worst case setting.

Remark. If d = l and we choose g = id, these problems reduce to the classi-
cal approximation and integration problems. Indeed, surface approximation with
g = id is merely the Lq(I

d)-approximation problem for Cr(I d), and surface inte-
gration with g = id is the integration problem for C r(I d). Hence these problems
generalize the usual classical problems of approximation and integration.

10

To solve either problem, we need to know some information about f ∈ F

and g ∈ G. We will consider standard information consisting of evaluations of f

and g, which has the form

y = [y1, . . . , yn] = N(f, g),

where, for 1 ≤ i ≤ n, we have either

yi = f (x(i)) for some x(i) ∈ I l

or
yi = gji

(x(i)) for some x(i) ∈ I d and ji ∈ {1, . . . , l}.

The information may be adaptive (i.e., the choice of each x (i) may depend on the
previously computed information y1, . . . , yi−1) or it may be nonadpative. Adaptive
information is allowed to have varying cardinality, i.e., n = n(f, g) is allowed to
depend on f and g, or fixed cardinality. The cardinality of our information N is
defined as

card N = sup
[f,g]∈F×G

n(f, g).

Note that since F ⊂ C(I l) and G ⊂ C1(I d; I l), standard information is well-
defined over F × G. For details and further discussion, see, e.g., [8, Chapter 2].

Remark. Note that the permissible information consists of function values of f

and g. One could allow the evaluation of derivatives, as well. We restrict ourselves
to function values alone, since this makes the exposition much simpler. However,
it is easy to see that the results of this paper also hold if derivative evaluations are
allowed.

Hence, our approximate solution has the form

U(f, g) = φ
(

N(f, g)
)

. (5)

Here, we have φ : N(F,G) → Lq(I
d) for the surface approximation problem, and

φ : N(F,G) → R for the surface integration problem.
The cost of computing U(f, g) is defined as cost(U, f, g), which is the weight-

ed sum of the total number of information evaluations of f and g, as well as the
number of arithmetic operations and comparisons needed to compute either

• U(f, g) for surface integration, or

• U(f, g)(x) at any x ∈ I d for surface approximation.

11

More precisely, we assume that the evaluation of a function at any point in its do-
main costs c. The cost of each arithmetic operation is taken as 1. Then cost(U, f, g)

for U of the form (5) is c n + ñ, where ñ is defined as either

• the total number of arithmetic operations and comparisons needed to com-
pute U(f, g) for surface integration, or

• the supremum (over all x ∈ I d) of the total number of arithmetic operations
and comparisons needed to compute U(f, g)(x) for surface approximation.

Here c ≥ 1, and usually it is realistic to assume that c � 1; see once more [8,
Chapter 2] or [9, Chapter 2] for details. Then

cost(U) = sup
[f,g]∈F×G

cost(U, f, g)

is the worst case cost of U .
We may judge the quality of an approximation U using information of given

cardinality by comparing its error to the minimal error possible among all approx-
imations using information of the same cardinality. For fixed n, the nth minimal
error

e(n) = inf{ e(U) : U of the form (5) with card N ≤ n }

is the minimal worst case error among all approximations using any information of
cardinality at most n. An approximation Un for which

Un = φn B Nn with card Nn ≤ n and e(Un) � e(n)

is said to be an nth (asymptotically) minimal error algorithm.
Clearly, {e(n)} is a nonincreasing sequence. Moreover, e(n) makes sense even

when n = 0; indeed, e(0) is minimal error among all “constant” approximations,
i.e., those using no evaluations of f and g.

Along with minimal-error approximations using a given number n of infor-
mation evaluations, we also wish to compute ε-approximations at minimal cost for
any ε ≥ 0. The ε-complexity is the minimal cost of computing an ε-approximation,
i.e.,

comp(ε) = inf{ cost U : U such that e(U) ≤ ε }.

An approximation Uε for which

e(Uε) ≤ ε and cost Uε � comp(ε) as ε → 0,

is said to be (asymptotically) optimal.

12

Remark. Of course, the error e(U), the nth minimal error e(n), and the ε-complexity
also depend on which problem is being solved. We shall often denote this de-
pendence explicitly, writing, e.g., e(n; SURF-APP) or comp(ε; SURF-INT). On the
other hand, even though these quantities also depend on the classes F and G, we
shall not indicate these dependencies explicitly.

3 The surface approximation problem

In this section, we determine the nth minimal error and the ε-complexity of the sur-
face approximation problem. Note that since the weight σ

1/q
g is uniformly bounded

from above and below for g ∈ G, this weight does not affect the order of the error
of an approximation U . Hence the surface approximation problem will have the
same complexity as the approximation problem for composite functions.

We first establish an upper bound for our problem, by exhibiting an algorithm
using information of cardinality n whose error is proportional to n−µ, where

µ =
min{r, s}

d
.

Let us determine the smoothness of functions f B g for [f, g] ∈ F × G.

Lemma 3.1. If [f, g] ∈ F × G, then f B g ∈ Cmin{r,s}(I d). Moreover, there exists
a constant CB, independent of [f, g] ∈ F × G, such that

‖f B g‖Cmin{r,s}(I d) ≤ CB.

Proof. Let [f, g] ∈ F × G, and let α be a nonzero multi-index for which |α| ≤

min{r, s}. The multivariate Faa di Bruno formula [3, Theorem 2.1] states that

Dα(f B g)(x) =
∑

1≤|β|≤|α|

(Dβf)
(

g(x)
)

|α|
∑

i=1

∑

pi(α,β)

α!
i

∏

j=1

[D`j g(x)]kj

kj !(`j !)|kj |
,

where pi(α, β) is the set of nonzero multi-indices k1, . . . , ki ∈ Z
l and `1, . . . , `i ∈

Z
d (with the `j being strictly increasing with respect to lexicographic ordering)

such that
i

∑

j=1

kj = β ∈ Z
l and

i
∑

j=1

|kj |`j = α ∈ Z
d .

Hence we find that there exists a constant Cd,l,|α|, independent of f , g, and n, such

13

that

‖Dα(f B g)‖C(I d) ≤ Cd,l,|α|

∑

1≤|β|≤|α|

‖f ‖C|β|(I d)‖g‖
|β|

C|α|(I d)

≤ Cd,l,|α|

∑

1≤|β|≤|α|

C1C
|β|
2 4 1,

where C1 and C2 appear in the definition of the classes F and G. The desired result
follows immediately.

We now recall some standard results on approximation in the Lq(I
d)-norm.

From [2, Chap. 3.1], there is an interpolation operator 5n, having the form

5nw =

n
∑

j=1

w(x(i))si ∀w ∈ Cmin{r,s}(I d),

with the following properties:

1. For any x ∈ I d and i ∈ {1, . . . , n}, the value si(x) can be computed in O(1)

arithmetic operations.

2. There exists a number CAPP, depending only on the global parameters d , q,
r , and s, such that

‖w − 5nw‖Lq(I d) ≤ CAPP n−µ ‖w‖Cmin{r,s}(I d) (6)

for any w ∈ Cmin{r,s}(I d) and any n ≥ 1.

We now define an approximation Un for our problem SURF-APP by taking

Un(f, g) = 5bn/(l+1)c(f B g) ∀ [f, g] ∈ F × G. (7)

Clearly Un uses the information

Nn(f, g) = [(f B g)(x(1)), . . . , (f B g)(xbn/(l+1)c)]

of cardinality at most n.

Lemma 3.2. For any n ≥ 0, we have

cost(Un) 4 c n

and
e(Un; SURF-APP) 4 n−µ.

14

Proof. The bound on the cost of Un follows immediately from the definition of Un,
the linearity of 5bn/(l+1)c, and the form of the basis functions s1, . . . , sn. Now let
[f, g] ∈ F × G. Since σg(x) ≤ d!Cd

2 , we may use (6) and Lemma 3.1 to see that

‖σ 1/q
g [f B g−5bn/(l+1)c(f B g)]‖Lq (I d)

≤ (d!Cd
2)1/q CAPP

⌊

l + 1

n

⌋−µ

‖f B g‖Cmin{r,s}(I d)

≤ (d!Cd
2)1/q CAPP CB

⌊

l + 1

n

⌋−µ

.

Hence e(Un) 4 n−µ, as required.

We now establish lower bounds for our problem. The first is fairly simple:

Lemma 3.3.
e(n; SURF-APP) < n−r/d.

Proof. For any v ∈ Fd,r,C1 , we define fv : I l → R as

fv(x1, . . . , xd , xd+1, . . . , xl) = v(x1, . . . , xd) ∀ x = (x1, . . . , xl) ∈ I l.

Let g = id ∈ G be given by (4). Then fv B g = fv B id = v and

‖fv‖Cr (I l) = ‖v‖Cr (I d).

Hence fv ∈ F = Fl,r,C1 . For an approximation U of the surface approximation
problem using information of cardinality at most n, we define an approximation Ũ

to the classical approximation problem APP of approximating Fd,r,C1 in the Lq(I
d)

norm, by taking
Ũ (v) = U(fv, id) ∀ v ∈ Fd,r,C1.

Clearly Ũ(v) uses information of cardinality at most n about v, and so we have

e(U, SURF-APP) ≥ sup
f ∈F

‖f B id −U(f, id)‖Lq(I d)

≥ sup
v∈Fd,r,C1

‖fv B id −U(fv, id)‖Lq (I d)

= sup
v∈Fd,r,C1

‖v − Ũ (v)‖Lq(I d)

= e(Ũ, APP) ≥ e(n; APP).

It is well-known, see, e.g., [6], we have

e(n; APP) < n−r/d.

The desired result follows from the previous two inequalities.

15

Our second lower bound is somewhat more complicated to establish, since
it is based on the class G, which is defined not only by the smoothness of the
functions g, but also by restriction to g satisfying g(I d) ⊆ I l and (3).

Lemma 3.4.
e(n; SURF-APP) < n−s/d.

Proof. Without loss of generality, let us assume that C1 ≥ 1. We first define the
function f ∗ : I l → R as

f ∗(x) = x1 ∀ x ∈ I l.

Clearly f ∗ ∈ F .
Let

ξ =
2d − 1 + 2c2

1 + 2d
and η =

1 − c2

1 + 2d
.

Since d ≥ 1 and 0 ≤ c2 < 1, we have ξ > 0, η > 0, and ξ + 2η = 1. Using
this and Taylor’s theorem with remainder for the function η 7→ (1 − 2η)d−1 with
d ≥ 2, we have

(ξ − η)ξ d−1 = (1 − 3η)(1 − 2η)d−1 ≥ (1 − 3η)
(

1 − 2(d − 1)η
)

≥ 1 −
(

3 + 2(d − 1)
)

η = c2.
(8)

Let e = (1, . . . , 1)T ∈ R
l. We define

g∗ = ξ id +ηe.

We claim that g∗ ∈ G.

1. We need to show that g∗ : I d → I l. Let x ∈ I d . For i ∈ {1, . . . , d}, we
have g∗

i (x) = ξxi + η. Since ξ and η are positive and ξ + η ≤ 1, we have
0 ≤ g∗

i (x) ≤ 1. For i ∈ {d + 1, . . . , l}, we have g∗
i (x) = η ∈ [0, 1]. Hence

g∗(I d) ⊆ I l, as required.

2. We need to show that ‖g∗‖Cs(I d ;I l) ≤ C2. Since C2 ≥ 1, it is enough to prove
that ‖g‖Cs (I d ;I l) ≤ 1. Now we have ‖g∗‖C(I d ;I l) = ξ + η. If α is a multi-
index with |α| = 1, then ‖Dαg∗‖C(I d ;I l) ≤ ξ , whereas if α is a multi-index
with |α| ≥ 2, then Dαg∗ = 0. Hence ‖g∗‖Cs(I d ;I l) = ξ + η ≤ 1, as required.

3. We need to verify that minx∈I d σg(x) ≥ c2. Now

∇g∗ = ξIl×d = ξ

[

Id×d

0(l−d)×d

]

,

16

and so
Ag∗ = (∇g∗)T (∇g∗) = ξ 2Id×d .

From (8), we have

σg =
√

| det Ag| = ξ d ≥ (ξ − η)ξ d−1 ≥ c2,

as required.

Thus, we see that g∗ ∈ G, as claimed.
Now let N be information of cardinality at most n. Without loss of generality,

there exist non-negative integers n0, . . . , nl with
∑l

i=0 ni ≤ n, a set {x(0,j)}1≤j≤n0

of points in I l , and a set {x(i,j)}1≤j≤ni ,1≤i≤l of points in I d , such that

N(f ∗, g∗) = [N0(f
∗), N1(g

∗
1), . . . , Nd(g

∗
d)],

where
N0(f

∗) = [f ∗(x(0,1)), . . . , f ∗(x(0,n0))]

and
Ni(g

∗
i) = [g∗

i (x
(i,1)), . . . , g∗

i (x
(i,ni))] for 1 ≤ i ≤ l.

From [6], there exists a function z ∈ C s(I d) such that

‖z‖Cs(I d) = 1,

N1(z) = 0,

‖z‖Lq(I d) < n−s/d.

(9)

Let e1 ∈ R
l denote the first column of the l × l identity matrix Il×l. We will take

g∗∗ = g∗ + ηze1 = ξ id +ηe + ηze1.

We claim that g∗∗ ∈ G.

1. We need to show that g∗∗ : I d → I l . We have

g∗∗
1 (x) = ξx1 + η + ηz(x) ≥ η(1 − |z(x)|) ≥ 0

and
g∗∗

1 (x) ≤ ξ + η + η|z(x)| ≤ ξ + 2η = 1.

Since g∗∗
i = g∗

i : I d → I for i ≥ 2, we have g∗∗ : I d → I l, as desired.

17

2. We need to show that ‖g∗∗‖Cs(I d ;I l) ≤ C2. We have already showed that
‖g∗∗

1 ‖C(I d) ≤ 1. If α is a multi-index with |α| = 1, then ‖Dαg∗∗
1 ‖C(I d) ≤ ξ +

2η, whereas if α is a multi-index with |α| ∈ [2, s], then ‖Dαg∗∗
1 ‖C(I d) ≤ η.

On the other hand, if 2 ≤ i ≤ d , we have g∗∗
i = g∗

i , and hence

‖Dαg∗∗
i ‖C(I d) ≤











ξ + η if |α| = 0,

ξ if |α| = 1,

0 if |α| ≥ 2.

Thus
‖g∗∗‖Cs(I d ;I l) ≤ ξ + 2η = 1 ≤ C2,

as required.

3. We need minx∈I d σg∗∗(x) ≥ c2. Now

∇g∗∗ = ∇g∗ + η∇(ze1) = ∇g∗ + ηe1(∇z)T = ξIl×d + η

[

(∇z)T

0(l−1)×d

]

.

Hence

Ag∗∗ = (∇g∗∗)T (∇g∗∗)

=
(

ξId×l + η
[

∇z 0d×(l−1)

])

(

ξIl×d + η

[

(∇z)T

0(l−1)×d

])

= ξ 2Id×d + ξη

(

[

∇z 0d×(d−1)

]

+

[

(∇z)T

0(d−1)×d

])

+ η2(∇z)(∇z)T

= [ãi,j]1≤i,j≤d .

Here,

ã1,1 = (ξ + z,1η)2

ãi,i = ξ 2 + η2z2
,i for 2 ≤ i ≤ d

ãj,1 = ã1,j = ηz,j(ξ + z,1η) for 2 ≤ j ≤ d

ãj,i = ãi,j = η2z,iz,j for 2 ≤ i 6= j ≤ d,

with z,j being used to denote ∂z/∂xj . Since the first row and first column
of Ag∗∗ are multiples of ξ + z,1η, we have

det Ag∗∗ = (ξ + z,1η)2 det B,

18

where

B =















1 ηz,2 ηz,3 . . . ηz,d

ηz,2 ξ 2 + η2z2
,2 η2z,2z,3 . . . η2z,2z,d

ηz,3 η2z,2z,3 ξ 2 + η2z2
,3 . . . η2z,3z,d

...
...

...
. . .

...

ηz,d η2z,2z,d z2z,3z,d . . . ξ 2 + η2z2
,d















.

Now for 2 ≤ i ≤ d , subtract ηz,i times the first row of B from the ith row
of B. We get

det B =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 ηz,2 ηz,3 . . . ηz,d

0 ξ 2 0 . . . 0
0 0 ξ 2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ξ 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ξ 2(d−1).

Hence
det Ag∗∗ = (ξ + z,1η)2ξ 2(d−1).

Since ‖z‖Cs(I d) = 1, we have

σg∗∗(x) = |ξ + z,1(x)η|ξ d−1 ≥
(

ξ − η|z,1(x)|
)

ξ d−1 ≥ (ξ − η)ξ d−1 ≥ c2,

the latter by (8).

Thus, we see that g∗∗ ∈ G, as claimed.
Using (9), we have N1(z) = 0, which implies that

N(f ∗, g∗∗) = N(f ∗, g∗).

We also have
f ∗ B g∗ − f ∗ B g∗∗ = g∗∗

1 − g∗
1 = ηz.

Now let φ be an algorithm using N . Then w := φ
(

N(f ∗, g∗∗)
)

= φ
(

N(f ∗, g∗)
)

,
and thus

e(φ,N) ≥ max
{

‖σ
1/q

g∗ (f ∗ B g∗ − w)‖Lq(I d), ‖σ
1/q

g∗∗ (f ∗ B g∗∗ − w)‖Lq(I d)

}

≥ c
1/q

2 max
{

‖f ∗ B g∗ − w‖Lq(I d), ‖f
∗ B g∗∗ − w‖Lq(I d)

}

≥ 1
2c

1/q

2

(

‖f ∗ B g∗ − w‖Lq(I d) + ‖f ∗ B g∗∗ − w‖Lq(I d)

)

≥ 1
2c

1/q

2 ‖f ∗ B g∗ − f ∗ B g∗∗‖Lq(I d) = 1
2c

1/q

2 η‖z‖Lq(I d).

19

By (9), we conclude that
e(φ,N) < n−s/d.

Since φ is an arbitrary algorithm using arbitrary information N of cardinality at
most n, we see that

e(n; SURF-APP) < n−s/d,

as required.

Combining Lemmas 3.2–3.4, we have

Theorem 3.1. Consider the surface approximation problem with F = Fl,r,C1 and
G = Gd,l,s,C2,c2 . Let

µ =
min{r, s}

d
.

1. The nth minimal error satisfies

e(n; SURF-APP) � n−µ

and is attained by Un defined by (7).

2. The ε-complexity satisfies

comp(ε;F,G) � c ε−1/µ.

Moreover the approximation Un, with n � ε−1/µ, is optimal and computes
an ε-approximation at nearly-minimal cost.

4 The surface integration problem

In this section, we determine the nth minimal error and the ε-complexity of the
surface integration problem.

First, it is clear that for r = 0, the surface integration problem is unsolvable.
That is,

e(n; SURF-INT) � 1

and there exists ε0 > 0 such that

comp(ε, SURF-INT) = ∞ ∀ ε ≤ ε0.

Indeed, it is enough to take g = id, so that surface integration reduces to the
problem of approximating

∫

I d h(x) dx, where

h(x) = f (x, 0, . . . , 0) ∀ x ∈ I d .

20

This problem is the classical integration problem for continuous functions over I d ;
it is well-known (see, e.g., [1]) that this problem is unsolvable. Therefore, we will
restrict our attention to the case r ≥ 1 in Theorems 4.1 and 4.2.

Our main result is the following theorem, parts of which have been previously
proved in [11] and [12] (as indicated in the proof).

Theorem 4.1. The following results hold for the surface integration problem with
F = Fl,r,C1 and G = Gd,l,s,C2,c2 .

1. Let l = 1, so that d = 1 necessarily. Then

e(n; SURF-INT) � n−r

and
comp(ε; SURF-INT) � c ε−1/r .

2. Let l ≥ 2 and d < l. If s = 1, then there exists ε0 > 0 such that

e(n; SURF-INT) ≥ ε0 ∀ n ≥ 0,

and so
comp(ε; SURF-INT) = ∞ ∀ ε < ε0.

However, if s ≥ 2, then

e(n; SURF-INT) � n− min{r,s}/d,

and
comp(ε; SURF-INT) � c ε−d/ min{r,s}.

3. Suppose that d = l ≥ 2. If s ≥ 2, then

e(n; SURF-INT) � n− min{r/d,s/(d−1)},

and
comp(ε; SURF-INT) � c ε− max{d/r,(d−1)/s}.

First part of proof. The results for cases 1 and 2 were established in [11] and [12].
For case 3, the bounds

n−r/d 4 e(n; SURF-INT) 4 n− min{r,s}/d,

and
c ε−d/r 4 comp(ε; SURF-INT) 4 c ε−d/ min{r,s}

21

were proved in [11], whereas the bounds

n−s/(d−1) 4 e(n; SURF-INT)

and
c ε−(d−1)/s 4 comp(ε; SURF-INT)

were proved in [12].
Suppose first that r ≤ s in case 3. Then

r

d
≤

s

d
<

s

d − 1
,

and so
min{r, s}

d
=

r

d
= min

{

r

d
,

s

d − 1

}

.

Hence we find that

n− min{r/d,s/(d−1)} 4 e(n; SURF-INT) 4 n− min{r,s}/d � n− min{r/d,s/(d−1)}, (10)

and so the lower and upper bounds found in Theorem 4.1 match when r ≤ s.
Hence, it remains to consider case 3 for r > s ≥ 2. ♦

We will complete the proof of Theorem 4.1 for d = l ≥ 2 and r > s ≥ 2
by exhibiting an algorithm whose cost is proportional to c n and whose error is
proportional to n− min{r/d,s/(d−1)}. Before doing this, we reduce our problem of
computing

∫

g(I d)

f dσ =

∫

I d

f
(

g(x)
)

|(det ∇g)(x)| dx

to that of computing

S(f, g) =

∫

I d

f
(

g(x)
)

(det ∇g)(x) dx. (11)

We do this by noting that for any g ∈ G, we have either (det ∇g)(x) > 0 for
all x ∈ I d or (det ∇g)(x) < 0 for all x ∈ I d . Hence it follows that for any
[f, g] ∈ F × G, we have

∫

g(I d)

f dσ = ±S(f, g).

It only remains to determine the sign. If calculating derivatives of g were a permis-
sible information operation, then we would calculate (det ∇g)(x ∗) at some x∗ ∈ I d ,
from which we would know which sign to use. However, we are not allowing
derivative information. There are two approaches we can use:

22

1. If s ≥ 2, then we can approximate (det ∇g)(x∗) using difference quotients.
This can be done with cost independent of n.

2. If s = 1, we can approximate S(1, g) using the techniques in [11]. We then
use the sign of our approximation as our multiplier. This can be done with
cost proportional to that of the algorithm that we will present in the sequel.

Hence minimal error and optimal complexity for surface integration and for the
“signed” surface integration problem of (11) are essentially the same.

Recall that one of the main tools used to prove upper bounds in [12] was [12,
Lemma 4.1], which shows how we can express the volume of g(I d) as a sum
of (d − 1)-dimensional integrals. This Lemma was based on [4, Chap. 4, Theo-
rem 3.2], which shows that a Jacobian determinant can be expressed in divergence
form. We now extend [12, Lemma 4.1] to cover surface integrals.

Lemma 4.1. Let f ∈ C(I d) and g ∈ C1(I d; I d). Then

S(f, g) =

d
∑

j=1

(−1)j+1
∫

I d−1

[

(If)
(

g(x)
)∂(g2, . . . , gd)

∂x̂j

(x)

]xj =1

xj =0

dx̂j ,

where S is given by (11),

(If)(t) =

∫ t1

0
f (τ, t2, . . . , td) dτ, (12)

the Jacobian determinant of the mapping

(x1, . . . , xj−1, xj+1, . . . , xd) 7→
(

g2(x), . . . , gd(x)
)

is denoted by
∂(g2, . . . , gd)

∂x̂j

,

and
dx̂j = dx1 . . . dxj−1 dxj+1 . . . dxd .

Proof. Let

RHS(f, g) =

d
∑

j=1

(−1)j+1
∫

I d−1

[

(If)
(

g(x)
)∂(g2, . . . , gd)

∂x̂j

(x)

]xj =1

xj =0

dx̂j .

Note that S, RHS : C(I d) × C1(I d; I d) → R are continuous nonlinear functionals,
the space of polynomials is dense in C(I d), and C2(I d; I d) is dense in C1(I d; I d).

23

Hence, it suffices to show that S(f, g) = RHS(f, g) for any polynomial f and any
g ∈ C2(I d; I d). Moreover, since S(·, g) and RHS(·, g) are linear functionals for
any g ∈ C2(I d; I d), it suffices to show that

S(idα, g) = RHS(idα, g), (13)

where, for any multi-index α, we write

idα(x) = xα ∀ x ∈ I d .

So, choose a multi-index α. Note that by [4, Chap. 4, Theorem 3.2], we have

(det ∇g)(x) =

d
∑

j=1

(−1)j+1 ∂

∂xj

[

g1(x)
∂(g2, . . . , gd)

∂x̂j

(x)

]

. (14)

Hence
S(idα, g) = A − B, (15)

where

A =

d
∑

j=1

(−1)j+1
∫

I d

∂

∂xj

[

g(x)αg1(x)
∂(g2, . . . , gd)

∂x̂j

(x)

]

dx

and

B =

d
∑

j=1

(−1)j+1
∫

I d

∂

∂xj

[

g(x)α
]

g1(x)
∂(g2, . . . , gd)

∂x̂j

(x) dx.

From the fundamental theorem of calculus, we have

A =

d
∑

j=1

(−1)j+1
∫

I d−1

[

g1(x)α1+1g2(x)α2 . . . gd(x)αd
∂(g2, . . . , gd)

∂x̂j

(x)

]xj =1

xj =0

dx̂j .

Moreover,

B =

d
∑

j=1

(−1)j+1
∫

I d

(d
∑

i=1

αi

g(x)α

gi(x)

∂gi

∂xj

(x)

)

g1(x)
∂(g2, . . . , gd)

∂x̂j

(x) dx

=

∫

I d

d
∑

i=1

αiθi(x)
g(x)α

gi(x)
g1(x) dx,

24

where

θi =

d
∑

j=1

(−1)j+1 ∂gi

∂xj

∂(g2, . . . , gd)

∂x̂j

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂gi

∂x1

∂g2

∂x1
. . .

∂gd

∂x1

∂gi

∂x2

∂g2

∂x2
. . .

∂gd

∂x2

...
...

. . .
...

∂gi

∂xd

∂g2

∂xd

. . .
∂gd

∂xd

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= δi,1 det ∇g.

Hence

B =

∫

I d

d
∑

i=1

αiδi,1
g(x)α

gi(x)
g1(x)(det ∇g)(x) dx = α1

∫

I d

g(x)α(det ∇g)(x) dx

= α1S(idα, g).

Substituting this result into (15), we have

S(idα, g) = A − α1S(idα, g).

Solving for S(idα, g), we find that

S(idα, g) =
A

α1 + 1

=

d
∑

j=1

(−1)j+1
∫

I d−1

[

1

α1 + 1
g1(x)α1+1g2(x)α2 . . . gd(x)αd

×
∂(g2, . . . , gd)

∂x̂j

(x)

]xj=1

xj=0

dx̂j .

Now
1

α1 + 1
t
α1+1
1 t

α2
2 . . . t

αd

d =

∫ t1

0
τ α1 t

α2
2 . . . t

αd

d dτ = (I idα)(t),

and so
1

α1 + 1
g1(x)α1+1g2(x)α2 . . . gd(x)αd = (I idα)

(

g(x)
)

.

Hence
A

α1 + 1
= RHS(idα, g),

which establishes (13) and, hence, the lemma.

25

Next, we construct a multivariate spline space on I d , following the approach
in [11]. For a given positive integer n, let Qn be a uniform grid on I d with mesh-
size 2(n−1/d). Recalling that r ≥ 3 in this part of the proof, we let Sn be a
globally Cr−2 tensor spline space of degree r −1 over Qn. The quasi-interpolation
operator Qn for Sn has the form

Qnf =

m
∑

j=1

λj(f)Bj ∀f ∈ C(I d),

where m = dim Sn � n, the functions B1, . . . , Bm are d-fold tensor products of
univariate normalized B-splines, and λ1, . . . , λm ∈ [C(I d)]∗ satisfy

λj (Bi) = δi,j (1 ≤ i, j ≤ m).

We can calculate {λ1(f), . . . , λm(f)} for f ∈ C(I d) using 2(n) evaluations of f

at points in I d . Moreover, following the same method of proof as in [7, Theo-
rem 5.8], one can show that

‖f − Qnf ‖W k,∞(I d) 4 n−(r−k)/d‖f ‖W r,∞(I d) (16)

for f ∈ F and k ∈ {0, 1, 2}. Recalling the definition (11) of S(f, g) and using (16),
along with the fact that g(I d) ⊆ I d , we find that

|S(f, g) − S(Qnf, g)| ≤

∫

g(I d)

|f (t) − (Qnf)(t)| dt

= ‖f − Qnf ‖L1(I
d) 4 n−r/d‖f ‖W r,1(I d) 4 n−r/d.

(17)

It therefore remains to approximate S(Qnf, g).
Let j ∈ {1, . . . , d} and a ∈ {0, 1}. We define

Sj,a(v, g) =

∫

I d−1
j,a

v(x)
∂(g2, . . . , gd)

∂x̂j

(x) dx̂j ∀ v ∈ C(I d−1
j,a), g ∈ G, (18)

where
I d−1
j,a = { x ∈ I d : xj = a }.

By Lemma 4.1, we have

S(Qnf, g) =

d
∑

j=1

(−1)j+1[Sj,1(IQnf B, g) − Sj,0(IQnf B, g)],

where I is given by (12).

26

We need to approximate Sj,a for j ∈ {1, . . . , d} and a ∈ {0, 1}. Similarly
to what we have done above, let Qn,j,a be a uniform grid on I d−1

j,a with mesh-
size 2(n−1/(d−1)). Let Sn,j,a be a globally Cmax{s−2,1} tensor spline space of degree
max{s − 1, 2} over Qn,j,a . The quasi-interpolation operator Qn,j,a for Sn,j,a has
the form

Qn,j,aw =

m
∑

j=1

λj (w)Bj ∀w ∈ C(I d−1
j,a),

where m = dim Sn,j,a � n, the functions B1, . . . , Bm are (d − 1)-fold tensor
products of univariate normalized B-splines, and λ1, . . . , λm ∈ [C(I d−1

j,a)]∗ satisfy

λj (Bi) = δi,j (1 ≤ i, j ≤ m).

We can calculate {λ1(w), . . . , λm(w)} for w ∈ C(I d−1
j,a) using 2(n) evaluations

of w at points in I d−1
j,a . Moreover, we have

‖w − Qn,j,aw‖W k,∞(I d−1
j,a) 4 n−(s−k)/(d−1)‖w‖W s,∞(I d−1

j,a)

for w ∈ W s,∞(I d−1
j,a) and k ∈ {0, 1, 2}. Defining Qn,j,a for R

l-valued functions
componentwise, i.e.,

Qn,j,ag = (Qn,j,ag1, . . . ,Qn,j,agd),

we see that

‖g − Qng‖W k,∞(I d−1
j,a ;I d) 4 n−(s−k)/(d−1)‖g‖W s,∞(I d−1

j,a ;I d) (19)

for g ∈ W s,∞(I d−1
j,a ; I d) and k ∈ {0, 1, 2}. Now let

Un,j,a(v, g) =

∫

I d−1
j,a

(Qn,j,av)(x)
∂(Qn,j,ag2, . . . ,Qn,j,agd)

∂x̂j

(x) dx̂j

∀ v ∈ C(I d−1
j,a), g ∈ G.

Lemma 4.2. Recall that s ≥ 2. For each j ∈ {1, . . . , d} and a ∈ {0, 1}, we have

|Sj,a(IQnf B g, g) − Un,j,a(IQnf B g, g)| 4 n−s/(d−1) ∀ [f, g] ∈ F × G.

Proof. Let [f, g] ∈ F × G. From [11], it immediately follows that for v ∈

W 2,∞(I d−1
j,a), we can approximate integrals

∫

I d−1
j,a

v
(

g(x)
)∂(g2, . . . , gd)

∂x̂j

(x) dx̂j

27

by
∫

I d−1
j,a

(

Qn,j,a(v B g)
)

(x)
∂(Qn,j,ag2, . . . ,Qn,j,agd)

∂x̂j

(x) dx̂j ,

with an error of at most κv,gn
− min{r,s}/(d−1) = κv,gn

−s/(d−1). Here, κv,g is uniformly
bounded in terms of ‖g‖W 2,∞(I d−1

j,a), ‖Qn,j,ag‖W 2,∞(I d−1
j,a), and ‖v‖W 2,∞(I d−1

j,a). It is

easy to see that the proof of this result also establishes that

|Sj,a(v, g) − Un,j,a(v, g)| ≤ κv,gn
−s/(d−1), (20)

where κv,g is once again uniformly bounded in terms of the same norms of g, Qng,
and v as before.

Now Qn and I are uniformly bounded operators on W 2,∞(I d−1
j,a). Since f ∈

Cr(I d) and g ∈ Cs(I d; I d), and since (16) holds for k ∈ {0, 1, 2}, we have IQnf B

g ∈ W 2,∞(I d−1
j,a) with uniformly bounded norm. Letting v = IQnf Bg in (20), we

get the desired result.

We finally define the algorithm Un approximating S as

Un(f, g) =

d
∑

j=1

(−1)j+1[Un,j,1(IQnf B Qn,j,1g, g) − Un,j,0(IQnf B Qn,j,0g, g)].

Note that for any j ∈ {1, . . . , d} and a ∈ {0, 1}, the functions Qnf and IQnf are
polynomial of fixed degree (depending only on d , r and s) on each K ∈ Qn,j,a .
Hence, the same is true for the function IQnf BQn,j,ag. Thus for any x ∈ I d−1

j,a , we
can calculate (IQnf B Qn,j,ag)(x) with cost 2(c). Now we can express Un(f, g)

as the sum of integrals over each K ∈ Qn,ja . Each such integral can be computed
exactly with cost 2(c), since its integrand is a polynomial of fixed degree. Since
we have 2(n) such integrals, the total cost of computing Un(f, g) satisfies

cost Un � c n.

We are now ready to complete the proof of Theorem 4.1.

Proof of Theorem 4.1 (conclusion). Recall that we have d = l ≥ 2 and r > s ≥ 2.
It suffices to prove that

|S(f, g) − Un(f, g)| 4 n− min{r/d,s/(d−1)}.

28

Let

Ũn(f, g) =

d
∑

j=1

(−1)j+1[Un,j,1(IQnf B g, g) − Un,j,0(IQnf B g, g)].

Using (17) and Lemma 4.2, we find that

|S(f, g) − Ũn(f, g)| ≤ |S(f, g) − S(Qnf, g)| + |S(Qnf, g) − Ũn(f, g)|

4 n−r/d + n−s/(d−1) 4 n− min{r/d,s/(d−1)}.
(21)

Suppose we can show that

|Un,j,a(IQnf B g, g) − Un,j,a(IQnf B Qn,j,ag, g)| 4 n−s/(d−1) (22)

for j ∈ {1, . . . , d} and a ∈ {0, 1}. From the definitions of Un and Ũn, it will then
follow that

|Un(f, g) − Un(f, g)| 4 n−s/(d−1),

which, together with (21), yields the desired result.
So, for j ∈ {1, . . . , d} and a ∈ {0, 1}, we wish to prove (22). It will simplify

the notation in what follows if we write f̄ = Qnf and ḡ = Qn,j,ag.
Let x ∈ I d−1

j,a . We have

(I f̄ B g)(x) − I (f̄ B ḡ)(x) = A1(x) − A2(x),

where

A1(x) =

∫ g1(x)

0

[

f̄
(

τ, g2(x), . . . , gd(x)
)

− f̄
(

τ, ḡ2(x), . . . , ḡd(x)
)]

dτ

and

A2(x) =

∫ ḡ1(x)

g1(x)

f̄
(

τ, ḡ2(x), . . . , ḡd(x)
)

dτ.

Hence
|Un,j,a(I f̄ B g, g) − Un,j,a(I f̄ B ḡ, g)| ≤ |B1| + |B2|, (23)

where

Bi =

∫

I d−1
j,a

(Qn,j,aAi)(x)
∂(ḡ2, . . . , ḡd)

∂x̂j

(x) dx̂j for i ∈ {1, 2}.

29

We first estimate |B1|, finding

|B1| ≤ ‖Qn,j,aA1‖L1(I
d−1
j,a)

∫

I d−1
j,a

∣

∣

∣

∣

∂(ḡ2, . . . , ḡd)

∂x̂j

(x)

∣

∣

∣

∣

dx̂j 4 ‖A1‖L1(I
d−1
j,a)

≤

∫

I d−1
j,a

∫ 1

0

∣

∣f̄
(

τ, g2(x), . . . , gd(x)
)

− f̄
(

τ, ḡ2(x), . . . , ḡd(x)
)∣

∣ dτ dx̂j .

Since r ≥ 2, the bound (16) yields that f̄ is a Lipschitz function whose Lipschitz
constant is uniformly bounded. Using (19), we thus have

|B1| 4 ‖g − ḡ‖L∞(I d−1
j,a ;I d) 4 n−s/(d−1). (24)

We next estimate |B2|. We have

|B2| 4 ‖Qn,j,aA2‖L∞(I d−1
j,a) 4

∥

∥

∥

∥

∫ ḡ1(·)

g1(·)

f̄
(

τ, ḡ2(·), . . . , ḡd(·)
)

dτ

∥

∥

∥

∥

L∞(I d−1
j,a)

.

Now for x ∈ I d−1
j,a , we have f

(

·, ḡ2(·), . . . , ḡd(·)
)

∈ C(I) with uniformly bounded
C(I)-norm, and so

∣

∣

∣

∣

∫ ḡ1(x)

g1(x)

f̄
(

τ, ḡ2(x), . . . , ḡd(x)
)

dτ

∣

∣

∣

∣

4 |g1(x) − ḡ1(x)|.

Hence
∥

∥

∥

∥

∫ ḡ1(·)

g1(·)

f̄
(

τ, ḡ2(·), . . . , ḡd(·)
)

dτ

∥

∥

∥

∥

L∞(I d−1
j,a)

4 ‖g1 − ḡ1‖L∞(I d−1
j,a),

and so
|B2| 4 n−s/(d−1). (25)

Using the bounds (24) and (25) in (23), we find that (22) holds, which estab-
lishes the desired bound, and completes the proof.

Hence we have found the nth minimal error and the ε-complexity for all in-
stances of the surface integration problem, with the exception of the case d = l ≥ 2
and s = 1. What happens in this “minimal smoothness” case?

We give a partial result, which shows that the results in case 3 of Theorem 4.1
hold when d = 2:

Theorem 4.2. Let d = l = 2, r ≥ 1, and s = 1. Then

e(n; SURF-INT) � n− min{r/d,s/(d−1)} � n− min{r/2,1},

and
comp(ε; SURF-INT) � c ε− max{d/r,(d−1)/s} � c ε− max{2/r,1}.

30

Proof. Since the desired lower bounds are found in [12], we need only prove the
upper bounds. From [11], we also know that

e(n; SURF-INT) 4 n− min{r,1}/2.

Hence, we need only consider the case r ≥ 2. Clearly min{ 1
2r, 1} = 1 in this case.

Hence, it suffices to exhibit an algorithm Un with

cost Un � c n and e(Un) ≤ n−1. (26)

By Lemma 4.1, we have

S(f, g) =

2
∑

j=1

1
∑

a=0

(−1)j+1−aSj,a(If B g, g)

where Sj,a is defined by (18), so that

Sj,a(If B g, g) =

∫ 1

0

[

(If)
(

g(x)
) ∂g2

∂x3−j

(x)

]

xj =a

dx3−j .

Each Sj,a(If B g, g) is a Stieltjes integral of the form
∫ 1

0 w(ξ) du(ξ), where w ∈

W 1,∞(I) and u ∈ C1(I). By a straightforward modification of the techniques
in [10], there exists an approximation Sn,j,a(If B, g) of Sj,a(If B g, g) such that

cost Sn,j,a � c n

and
|Sj,a(If B g, g) − Sn,j,a(If B g, g)| 4 n−1.

Letting

Un(f, g) =

2
∑

j=1

1
∑

a=0

(−1)j+1−aSn,j,a(If B g, g),

we see that (26) holds, as required.

Remark. So far, we have found tight bounds on the minimal error and complexity
for all cases, except for the case d = l ≥ 3 with r ≥ s = 1. Note that we may use
the techniques of [12] to see that if d = l and r ≥ s = 1, then

n− min{r/d,1/(d−1)} 4 e(n; SURF-INT) 4 n− min{r/d,2/(d(d−1))}

and
c ε− max{d/r,d−1} ≤ comp(ε; SURF-INT) 4 c ε− max{d/r,d(d−1)/2}.

31

Of course, these bounds tell us that our problem certainly has finite complexity. If
r = s = 1 and d = 3, these bounds become tight and we have

e(n; SURF-INT) � n−1/3

and
comp(ε; SURF-INT) � c ε−3.

We may summarize the results of this section as

Theorem 4.3. Consider the surface integration problem with F = Fl,r,C1 and
G = Gd,l,s,C2,c2 . Let

ν = min

{

r

d
,
s − δs,1(1 − δd,l)

min{d, l − 1}

}

.

Suppose that any of the following hold:

• r = 0,

• d < l,

• d = l = 1,

• d = l ≥ 2 and s ≥ 2,

• d = l = 2 and s = 1, or

• d = l = 3 and r = s = 1.

Then
e(n; SURF-INT) � n−ν

and
comp(ε; SURF-INT) � c ε−1/ν.

We conjecture that the conclusion of Theorem 4.1 holds for all values of d , l,
r , and s.

5 Approximation and integration over smooth surfaces

In the previous sections, we have determined the complexity of approximation and
integration over images of the unit cube. Such images necessarily have corners.
What can we say about approximation and integration over smooth surfaces?

32

Figure 1: Cellulation of a smooth region

We first note that our results concerning surface approximation and integration
may easily be extended to oriented cellulated regions. Roughly speaking, these
regions are unions

6g =

k
⋃

i=1

g[i](I d), (27)

with g[1](I d), . . . , g[k](I d) having disjoint interiors; see [5, pp. 369–370] for a
precise definition. Examples of oriented cellulated regions include d-dimensional
balls (see Figure 1 for d = 2) and spheres, as well as more general smooth regions.

Let us say that an oriented cellulated region is an oriented k-cellulated region
if it is a cellulated region of the form (27). Suppose now that for a given k̄ ≥ 1, our
class of surfaces consists of oriented k-cellulated regions using maps g [1], . . . , g[k]

from G = Gd,l,s,C2,c2 , where k ∈ {1, . . . , k̄}. Let our class of functions to be ap-
proximated or integrated once again be given by F = Fl,r,C1 . Our surface approxi-
mation problem now consists of finding, for k ∈ {1, . . . , k̄} and [f, g[1], . . . , g[k]] ∈

F × Gk , a k-tuple U = (U1, . . . , Uk) of functions U1(f, g[1]), . . . , Uk(f, g[k]) ∈

Lq(I
d) such that

e(U ; SURF-APP) :=

max
1≤k≤k̄

sup
[f,g[1],...,g[k]]∈F×Gk

(k
∑

i=1

‖σ
1/q

g[i] [f B g[i] − U(f, g[i])]‖q

Lq (I d)

)1/q

(with the usual modification when q = ∞) is small.
Our surface integration problem now consists of finding, for k ∈ {1, . . . , k̄}

33

and [f, g[1], . . . , gk]] ∈ F × Gk , a number U(f, g[1], . . . , g[k]) ∈ R such that

e(U ; SURF-INT) :=

max
1≤i≤k

sup
[f,g1,...,gk]∈F×Gk

∣

∣

∣

∣

k
∑

i=1

∫

g[i](I d)

f dσ − U(f, g[1], . . . , gk])

∣

∣

∣

∣

is small.
Theorems 3.1, 4.1, and 4.2 hold for this variant of the surface approximation

and surface integration problems. Indeed, for upper bounds, it suffices to approxi-
mate f or integrate f over each g [i](I d). For lower bounds, it is enough to note that
the nth minimal error increases with k̄ and to use the lower bounds of Sections 3
and 4, which hold for the case k̄ = 1.

The main problem with this approach is that it requires us to specify the k

maps g[1], . . . , g[k] that define each of our surfaces. This may not be so easy to do
in practice, even for simple regions such as d-dimensional balls.

We may overcome the difficulty of defining such maps g [1], . . . , g[k] by adopt-
ing another approach, which we illustrate for the case of surfaces that are images of
the Euclidean unit ball Bd in R

l. Then for a function g : Bd → R
l, we can discuss

approximation and integration for functions f : g(Bd) → R. We shall show that
the results for the approximation and integration problems over images of balls are
essentially the same as those over images of cubes.

We first note that when d = 1, we have B1 = [−1, 1]. Hence we see that,
ignoring constant factors, the minimal error and complexity for approximation and
integration over images of balls are the same as for these problems over images of
cubes when d = 1.

Thus, we restrict our attention to the case d ≥ 2. The key here will be to note
that Bd is the image of I d under spherical coordinates. The spherical coordinate
map T has the form

[T (x)]i = x1

(i
∏

j=2

sin πxj

)

cos πxi+1 (1 ≤ i ≤ d − 2),

[T (x)]d−1 = x1

(d−1
∏

j=2

sin πxj

)

cos 2πxd ,

[T (x)]d = x1

(d−1
∏

j=2

sin πxj

)

sin 2πxd .

Note that T maps I d onto Bd , but the mapping is not an injection. It is easy to see

34

that

σT (x) = |(det ∇T)(x)| = 2(πx1)
d−1

d−1
∏

j=2

| sin πxj |
d−j . (28)

See, e.g., [5, p. 268] for further details on spherical coordinates.
We define surface integrals over injective images of Bd in the obvious way as

∫

g(Bd)

f dσ =

∫

Bd

(f B g) σg ≡

∫

Bd

f
(

g(y)
)

σg(y) dy,

where σg is defined as in Section 2. By [5, pp. 255-257], we can use the change of
variables formula

∫

Bd

h(y) dy =

∫

I d

h
(

T (x)
)

σT (x) dx

to find that
∫

g(Bd)

f dσ =

∫

I d

f
[

g
(

T (x)
)]

σg

(

T (x)
)

σT (x) dx,

where σT (x) is given by (28).
Next, we define our classes F and G of functions.
For a positive C1, and for r ≥ 0, we first define F = F B

l,r,C1
as the class of

r times continuously differentiable functions f ∈ C r(Bl) that satisfy

‖f ‖Cr (Bl) ≤ C1 ∀f ∈ F.

Here, Bl is the Euclidean unit ball in R
d .

For positive C2 and c2 and for s ≥ 1, we define G = GB
d,l,s,C2,c2

as the class of
s times continuously differentiable functions g ∈ C s(Bd;Bl) that satisfy

‖g‖Cs(Bd ;Bl) ≤ C2 and min
x∈Bd

σg(x) ≥ c2.

where σg is as defined in Section 2.
We can now define our two problems as in Section 2, but with the obvious

changes. The surface approximation problem SURF-APP over Bd consists of find-
ing, for [f, g] ∈ F × G, a function U(f, g) ∈ Lq(Bd) such that

e(U ; SURF-APP;Bd) := sup
[f,g]∈F×G

‖σ 1/q
g [f B g − U(f, g)]‖Lq(Bd)

is small. The surface integration problem SURF-INT over Bd consists of finding,
for [f, g] ∈ F × G, an approximation U(f, g) ∈ R such that

e(U ; SURF-INT;Bd) := sup
[f,g]∈F×G

∣

∣

∣

∣

∫

g(Bd)

f dσ − U(f, g)

∣

∣

∣

∣

35

is small.
With these definitions in hand, we now specify concepts such as informa-

tion, algorithm, minimal error, cost, complexity, and optimality for SURF-APP and
SURF-INT over Bd as was done in Section 2 for SURF-APP and SURF-INT over I d .
Note that since r ≥ 0 and s ≥ 1, the surface integration and approximation prob-
lems, as well as standard information, are well-defined.

Now that we have defined SURF-APP and SURF-INT over balls, we can show
that the results for these problems over balls are essentially the same as for cubes.

We first treat the surface approximation problem.

Theorem 5.1. Consider the surface approximation problem with F = F B
l,r,C1

and
G = GB

d,l,s,C2,c2
. Let

µ =
min{r, s}

d
.

Then
e(n; SURF-APP;Bd) � e(n; SURF-APP; I d) � n−µ

and
comp(ε; SURF-APP;Bd) � comp(ε; SURF-APP; I d) � c ε−1/µ.

Proof. We first prove the lower bounds

e(n; SURF-APP;Bd) < e(n; SURF-APP; I d) (29)

and
comp(ε; SURF-APP;Bd) < comp(ε; SURF-APP; I d).

Clearly, it suffices to prove (29). Let U be an algorithm for SURF-APP over Bd

using information of cardinality at most n. The inclusion d−1/2Id ⊆ Bd tells us
that

e(U ; SURF-APP;Bd) = sup
[f,g]∈F×G

‖σ 1/q
g [f B g − U(f, g)]‖Lq(Bd)

≥ sup
[f,g]∈F×G

‖σ 1/q
g [f B g − U(f, g)]‖Lq(d−1/2Id)

= e(U ; SURF-APP; d−1/2Id).

Since U is an arbitrary algorithm using information of cardinality at most n, we
see that

e(n; SURF-APP;Bd) ≥ e(n; SURF-APP; d−1/2Id).

Since
e(n; SURF-APP; d−1/2Id) � e(n; SURF-APP; I d),

36

the desired lower bound (29) follows immediately.
We only need to prove the upper bounds

e(n; SURF-APP;Bd) 4 e(n; SURF-APP; I d)

and
comp(ε; SURF-APP;Bd) 4 comp(ε; SURF-APP; I d).

Let [f, g] ∈ F × G. As in the proof of Lemma 3.1, we find that f B g B T ∈

Cmin{r,s}(I d) with uniformly bounded norm. As in the proof of Lemma 3.2, there
exists an algorithm Vn such that

‖f B g B T − Vn(f B g B T)‖Lq(I d) 4 n−µ and cost Vn � c n.

Let
Un(f, g) = Vn(f B g B T).

Clearly cost Un � c n. It only remains to show that e(Un) 4 n−µ. Suppose that
q < ∞. Then

e(Un, SURF-APP;Bd)

= sup
[f,g]∈F×G

[∫

I d

σg

(

T (x)
)

|(f B g B T)(x) − Vn(f, g)(x)|q σT (x) dx

]1/q

4 sup
[f,g]∈F×G

‖f B g B T − Vn(f, g)‖Lq(I d) 4 n−µ.

The case q = ∞ is handled in the usual way, completing the proof.

We now turn to surface integration over Bd .

Theorem 5.2. Consider the surface integration problem with F = F B
l,r,C1

and
G = GB

d,l,s,C2,c2
. Let

ν = min

{

r

d
,
s − δs,1(1 − δd,l)

min{d, l − 1}

}

.

Suppose that any of the following hold:

• r = 0,

• d = l = 1,

• d < l,

• d = l ≥ 2 and s ≥ 2,

37

• d = l = 2 and s = 1, or

• d = l = 3 and r = s = 1.

Then
e(n; SURF-INT;Bd) � e(n; SURF-INT; I d) � n−ν

and
comp(ε; SURF-INT;Bd) � comp(ε; SURF-INT; I d) � c ε−1/ν.

Proof. We first prove the lower bounds

e(n; SURF-INT;Bd) < e(n; SURF-INT; I d) (30)

and
comp(ε; SURF-INT;Bd) < comp(ε; SURF-INT; I d).

It suffices to prove (30). We recall that integrals of the form
∫

I d

f (x) dx with f ≥ 0

or the form
∫

I d

[σg̃(x) − σg(x)] dx with σg̃ − σg ≥ 0.

were used in [11] and [12] to establish lower bounds on e(n; SURF-INT; I d). Using
the same techniques, we can establish lower bounds on e(n; SURF-INT; d−1/2I d)

as integrals of the form
∫

d−1/2I d

f (y) dy with f ≥ 0

or the form
∫

d−1/2I d

[σg̃(y) − σg(y)] dy with σg̃ − σg ≥ 0.

Since d−1/2I d ⊆ Bd , we have
∫

Bd

f (y) dy ≥

∫

d−1/2Id

f (y) dy if f ≥ 0

and
∫

Bd

[σg̃(y) − σg(y)] dy ≥

∫

d−1/2Id

[σg̃(y) − σg(y)] dy if σg̃ − σg ≥ 0.

38

Using these last two relations, along with

e(n; SURF-INT; d−1/2Id) � e(n; SURF-INT; I d),

we get the desired result (30).
For the upper bounds, we will show that a simple modification of the known

optimal algorithms for SURF-INT over I d yields optimal algorithms for SURF-INT

over Bd . The cases d < l and d = l need to be handled separately. For the sake of
expository simplicity, we shall only give the details for the case d < l, the changes
for the case d = l being analogous.

Since the nth minimal error is infinite for s = 1, we need only consider the
case s ≥ 2. If r ≤ s − 1, then we can follow the approach at the top of page 458
of [11] to see that we can compute an approximation Un(f, g) of

∫

g(I d)
f dσ for

which
∣

∣

∣

∣

∫

g(I d)

f dσ − Un(f, g)

∣

∣

∣

∣

4 n− min{r,s}/d and cost(Un) � c n.

Indeed, let v = (f B g B T)(σg B T)σT , so that
∫

g(Bd)

f dσ =

∫

Id

v.

Clearly, v ∈ Cr(I d), with uniformly bounded norm. From [6, p. 36]), we can
calculate an approximation In(v) at cost O(c n), for which

∣

∣

∣

∣

∫

Bd

v(x) dx − In(v)

∣

∣

∣

∣

4 ‖v‖Cr (Bd) n
−r/d � ‖v‖Cr (Bd) n

− min{r,s}/d .

Taking
Un(f, g) = In(v),

we see that

e(Un) � n− min{r,s}/d and cost(Un) � c n,

as required.
So it suffices to consider only the case r ≥ s. Let Qn be a uniform grid on I d

with meshsize 2(n−1/d). Let Sn be a globally Cmax{s−2,1} tensor spline space of
degree max{s − 1, 2} over Qn, whose (R- or R

d-valued, depending on context)
quasi-interpolation operator is denoted by Qn.

Following the approach in [11], for positive ξ and η, we have the expansion
√

ξ = Rs(ξ, η) + 2
(

(ξ − η)s
)

,

39

where

Rs(ξ, η) =
√

η +

s−1
∑

t=1

βt(η)(ξ − η)t

with

βt =
1

t!

(

d

dξ

)t

ξ 1/2

∣

∣

∣

∣

ξ=η

=
1

η(2t−1)/2

(

t − 3
2

t

)

(1 ≤ t ≤ s − 1).

We will use this formula to approximate

σQng

(

T (x)
)

=

√

det AQng

(

T (x)
)

.

We now define our algorithm for the case r ≥ s as

Un(f, g) =
∑

K∈Qn

Un,K(f, g),

where

Un,K(f, g) =
∫

K

(

Qn(f B g)
)(

T (x)
)

· Rs

(

det AQng

(

T (x)
)

, det AQng(y
(K))

)

· σT (x) dx

for each subcube K ∈ Qn. Here, y(K) = T (x(K)), where x(K) is any evaluation
point in K; for example, it might be chosen as the center of K .

We claim that cost Un is 2(c n). Indeed, det AQng(y) is a polynomial in y.
Hence, det AQng

(

T (x)
)

is a sum of terms that are products of powers of x1 and
powers of sines and cosines of x2, . . . , xd . Moreover Qn(f B g) is polynomial on
each K ∈ Qn, and so Qn(f B g)

(

T (x)
)

is a sum of terms that are products of
powers of x1 and sines and cosines of x2, . . . , xd on each K ∈ Qn. Since σT (x) is
also a product of powers of x1 and sines and cosines of x2, . . . , xd , the integrand
appearing in the definition of Un,K(f, g) has a closed form antiderivative. Hence
Un,K(f, g) can be computed at constant cost, once we have computed the necessary
function values. Thus

cost Un � c n + |Qn| · max
K∈Qn

cost Un,K(f, g) � c n,

as claimed.
Since r ≥ s, we need only show that e(Un) 4 n−s/d . Let

Vn(f, g) =

∫

Bd

(

Qn(f B g)
)

(y) σQng(y) dy

=

∫

I d

(

Qn(f B g)
)(

T (x)
)

σQng

(

T (x)
)

σT (x) dx.

40

By the triangle inequality, it suffices to show that
∣

∣

∣

∣

∫

g(Bd)

f dσ − Vn(f, g)

∣

∣

∣

∣

4 n−s/d (31)

and
|Un(f, g) − Vn(f, g)| 4 n−s/d. (32)

The proof of (31) is essentially the same as that of [11, Theorem 4.3]. The
major distinction is that we integrate over Bd instead of over I d . This means that
the integrations by parts that led to [11, equation (19)] need to be in the form

∫

Bd

∂iω =

∫

∂Bd

ω ni

(where ni is the ith component of the outward unit normal to ∂Bd) appropriate for
integration over balls, rather than cubes.

It remains to prove (32). For simplicity, let h = f B g and use overbars to
denote interpolants, so that ḡ = Qng and h̄ = Qnh = Qn(f B g). Now

|Vn(f, g) − Un(f, g)| 4

∑

K∈Qn

∫

K

∣

∣h̄
(

T (x)
)∣

∣

∣

∣det Aḡ

(

T (x)
)

− det Aḡ

(

y(K)
)∣

∣

s
σT (x) dx.

Since det Aḡ has a uniformly bounded first derivative and T is Lipschitz, we have
∣

∣det Aḡ

(

T (x)
)

− det Aḡ

(

y(K)
)∣

∣ 4 ‖T (x) − y(K)‖`∞(Rd)

= ‖T (x) − T (x(K))‖`∞(Rd)

4 ‖x − x(K)‖`∞(Rd) � n−1/d.

From the previous two inequalities, we obtain

|Vn(f, g) − Un(f, g)| 4 n−s/d
∑

K∈Qn

∫

K

∣

∣h̄
(

T (x)
)∣

∣ σT (x) dx

= n−s/d

∫

Bd

|h̄(y)| dy

≤ n−s/d‖h̄‖L1(Bd) 4 n−s/d.

This establishes (32), completing the proof of the theorem.

We conjecture that the conclusion of Theorem 5.2 holds for all values of d , l,
r , and s.

41

Acknowledgements. We (belatedly) thank Stephen Montgomery-Smith (University
of Missouri), for pointing out Dacorogna’s formula (14), which was used in [11],
as well as in this paper. We also thank Marek Kwas and Joseph F. Traub (Columbia
University) for their constructive comments.

References

[1] N. S. Bakhvalov. On approximate calculation of integrals (in russian). Vestnik
MGV, Ser. Mat. Mekh. Astron. Fiz. Khim., 4:3–18, 1959.

[2] P. G. Ciarlet. The Finite Element Method For Elliptic Problems. North-
Holand, New York, 1978.

[3] G. M. Constantine and T. H. Savits. A multivariate Faa di Bruno formula
with applications. Trans. Amer. Math. Soc., 348:503–520, 1996.

[4] B. Dacorogna. Direct Methods in the Calculus of Variations. Springer-Verlag,
New York, 1989.

[5] C. H. Edwards, Jr. Advanced Calculus of Several Variables. Academic Press,
New York, 1973.

[6] E. Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis,
volume 1349 of Lecture Notes in Mathematics. Springer-Verlag, New York,
1988.

[7] M. H. Schultz. L∞ multivariate approximation theory. SIAM J. Numer. Anal.,
6(2):161–183, 1969.

[8] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based
Complexity. Academic Press, New York, 1988.

[9] J. F. Traub and A. G. Werschulz. Complexity and Information. Cambridge
University Press, Cambridge, 1998.

[10] A. G. Werschulz. What is the complexity of Stieltjes integration? Journal of
Complexity, pages 337–389, 2000.

[11] A. G. Werschulz and H. Woźniakowski. What is the complexity of surface
integration? Journal of Complexity, pages 442–466, 2001.

[12] A. G. Werschulz and H. Woźniakowski. What is the complexity of volume
calculation? Journal of Complexity, pages 660–678, 2002.

42

