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Abstract

We study the complexity of Fredholm probleris— Ty)u = f of the
second kind on thé? = [0, 1], whereT} is an integral operator with ker-
nel k. Previous work on the complexity of this problem has assumed either
that we had complete information abdutor thatk and f had the same
smoothness. In addition, most of this work has assumed that the informa-
tion aboutk and f was exact. In this paper, we assume thaind f have
different smoothness; more precisely, we assume fhat W7 (I%) with
r > d/p and thatk € W*°°(1%) with s > 0. In addition, we assume that
our information abouk and f is contaminated by noise. We find that the
nth minimal error is®@(n~* + §), whereuw = min{r/d, s/(2d)} ands is a
bound on the noise. We prove that a noisy modified finite element method
has nearly minimal error. This algorithm can be efficiently implemented us-
ing multigrid techniques. We thus find tight bounds on¢hmmplexity for
this problem. These bounds depend on the e@stof calculating as-noisy
information value. As an example, if the cost of-moisy evaluation is pro-
portional tod —*, then thes-complexity is roughly(1/e)' 1/~

*This research was supported in part by the National Science Foundation under Grant CCR-99-
87858, as well as by a Fordham Univeristy Faculty Fellowship.



1 Introduction

We are interested in the worst case complexity of solving Fredholm problems of
the second kind

(I =Tou=f 1)
on the unit cubd? = [0, 1]¢, where

fio= [ Keonmdy Ve L)
[{1

for a continuous kernel functioh: 7¢ x 1Y — R. Here,p € [1, o], and error is
measured in thé ,(I¢)-norm.

Previous work on this problem has either assumed that we have had complete
information abouk, or thatk and f have had the same smoothness, see, e.g., [5],
[6], [8], [10], [14], [15, Sec. 6.3], and the references contained therein.

What happens when we weaken these assumptions? There are two issues to
deal with. First, we want to know where smoothness counts the most for Fredholm
problems, as we did in [16] for two-point boundary value problems. That is, we
would like to know which is more important—the smoothness of the kernel or of
the right-hand side—in determining the complexity. In addition, note that (with
the exception of [8]) the references listed above have all assumed that the available
information is exact. But in practice, information evaluations are often contami-
nated by noise [11]. Hence we wish to know how noisy information affects the
complexity, as well as which algorithms are optimal when the information is noisy.

In this paper, we study the worst case complexity of Fredholm problems under
the following assumptions:

1. The right-hand sid¢ belongs to the unit ball o7 (1%), withr > d/p.

2. The kernelk belongs to a ball o> (1%), andI — T is an invertible
operator orL ,(14).

3. Only noisy standard information is available. That is, for any € 19, we
can only calculatef (x) or k(x, y) with error at mos$, wheres € [0, 1] isa
known noise level.

We are able to determing(§), thenth minimal radius of-noisy information,
i.e., the minimal error when we ugeevaluations with a noise level éf We find
that

r,(8) =n*+48

Lin this paper, we usg, =, andx to denoteO-, -, and®-relations.



with a proportionality factor independent @fandé, where

d’ Zd} ' 2)
Moreover, we describe an algorithm usingevaluations with noise level that

is a nearly-minimal error algorithm. This algorithm is a modified finite element
method ¢FEM) using noisy information. The modification consists of replacing
the kernelk and the right-hand sid¢ that would appear in the “pure” finite el-
ement method by their piecewise-polynomial interpolants. Hence this algorithm
uses noisy standard information, rather than continuous linear information. We
shall refer to this algorithm as the “noisyFEM.” This is, of course, a bit of a mis-
nomer, since the algorithm isn’t noisy (only the information is noisy); but “noisy
MFEM” is more succinct thanMFEM using noisy information.”

We also analyze the cost of the noiggeM. Letc(8) denote the cost of evalu-
ating a function with a noise levél Then the information cost of this algorithm is
c(d) n.

Let us now discuss the combinatory cost of the naisfeM. This algorithm
requires the solution of am x n linear system(A — B)u = f. Here,A is the Gram
matrix of the finite element spacB,depends on the kernklandf depends on the
right-hand sidef. If we were considering only a single fixed kerriglthen we
could precompute the LU-decomposition of the nonsingular matrix B, since
this is independent of any particulgt. We could then ignore the cost of this
precomputation, considering it as a fixed overhead, since it need only be done once.
Even so, the combinatory cost of our algorithm woulddx?), since the factors
of the LU-decomposition oA — B are dense x n triangular matrices. Of course,
things are much worse for our problem, since both the right-hand gidesl the
kernelsk are varying. Clearly, the factorization &f— B is no longer independent
of the problem element being considered, and so we would not be able to ignore
the O (n®)-cost of this factorization. Hence, we see that the combinatory cost of
the noisyMmFEM would overwhelm the information cost agyrows large.

We can overcome this difficulty by using a two-grid implementation of the
noisy MFEM. This algorithm has the same order of error as the original noisy
MFEM, and its combinatory cost i©(n). Hence, we can calculate the two-grid
approximation using (n) arithmetic operations, which is optimal.

Using these results, we can determine tight bounds on-ttemplexity of the
Fredholm problem. There exist positive constafifs C,, and C3, independent
of &, such that the problem complexity is bounded from below by

. 1\
COI’n[.X&‘) = 0<!Srlf(,‘18 {C(S) |7(C18 — 5) —‘ }
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and from above by

1 v
compe) < C> 0<LrlfCS€ {c(a) |7<C38 — 8) —H .

These upper bounds are attained by two-grid implementations of the noisy modi-
fied FEM, with § chosen to minimize the right-hand sides of the upper bound.
As a specific example, suppose thét) = 5~ for somer > 0. We find that

1 t+1/p
compe) < <—> .
&

Thus we have found sharp bounds on éheomplexity.

How much do we lose when we go from exact information to noisy informa-
tion? Suppose once again th&t) = 6~ for somer > 0. Since exact information
is merely noisy information with = 0, we see that the complexity for exact infor-
mation is proportional te(1/s)*, wherec is the cost of one function evaluation.
For the sake of comparison, let us write the complexity for noisy information as
(1/)Y*  where

1
1+ tn
Note that since the information is noisy, we have 0, and squ’ < u. Hence we
see that the complexity of our problem using noisy information of smoothiness
is the same as the complexity using exact information of lesser smoottrhess
wherer’ =r/(1+tu) ands’ = s/(1+tu).

We now outline the rest of this paper. In Section 2, we precisely describe the
problem to be solved. In Section 3, we prove a lower bound on the minimal er-
ror using noisy information. It is easy to find a matching upper bound using the
general approach of interpolatory algorithms. However, this approach does not ad-
dress the issue of combinatory cost. Since the problem is nonlinear, it is unclear
whether there exists an interpolatory algorithm with (roughly) linear combinatory
cost. The remainder of this paper deals with showing that such an algorithm ex-
ists, and is given as a two-grid implementation of a noisy modified finite element
method (noisyMFEM). In Section 4, we define some useful finite element spaces,
which are used in Section 5 to define the naisseM. In Section 6, we establish
an error bound for the noisyFEM. In Section 7, we show that the noiBfFEM is a
minimal error algorithm. In Section 8, we describe the two-grid implementation of
the noisyMFEM, showing that its error is essentially the same as the norsM
itself, and that its combinatory cost is essentially optimal. Finally, in Section 9, we
determine the-complexity of the noisy Fredholm problem.

/

W=n




2 Problem description

In this section, we precisely describe the class of Fredholm problems whose solu-
tions we wish to approximate.

For an ordered ringZ, we shall letZ* and%** respectively denote the non-
negative and positive elements. @ Hence (for exampleYZ* denotes the set of
natural numbers (non-negative integers), whet&as denotes the set of strictly
positive integers. For a normed linear spage we let#.2" denote the unit ball
of 2°. We assume that the reader is familiar with the standard concepts and nota-
tions involving Sobolev norms and spaces, as found in, e.g., [3].

We are giverd € Z™ and p € [1, o], as well as real numbers and s
satisfyingr > d/p ands > 0. Hence, the Sobolev spad&-? (1¢) is embedded in
the spaceC (1¢) of continuous functions, an#**(1%) is embedded irC (1%%),
by the Sobolev embedding theorem.

Fork e wo>(1%4), defineT;: L,(I1%) — L,(I¢) as

(Tkv)(x)zf k(x, y)v(y)dy Vx el
[{1

The operatofl} is compact, see, e.g., [4, pg. 518], and heheeT} is an invertible
operator onL,,(Id) iff 1 is not an eigenvalue dfy.

We are now ready to describe our class of problem elements. We first describe
the class of kernels. Letc; > 0 andc, > 1 be given. Then we le#?” = 7, .,
denote the class of all functiotse W*>°(1%) such that

Ik llws.oo 20y < €1

and
I = T liingz 14y < €2-

Here, || - IlLinf 277 is the usual operator norm. The class of right-hand sides will be
BWP (1Y), Finally, we let

F =2WP(I% x X .

be our class of problem elements.
We are now ready to define our solution operatorF — L ,(I1%) as

S(fk)=U~-T) f  V[f k]l eF.

Henceu = S([ f, k]) is the solution of (1) for f, k] € F.
We wish to calculate approximate solutions to this problem, using noisy stan-
dard information. To be specific, we will be using uniformly sup-norm-bounded
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noise. Our notation and terminology is essentially that of [11], although we some-
times use modifications found in [12].
Lets € [0, 1] be anoise level For [f, k] € F, we calculaté-noisy information

z2=[z1, -+, Zne)]
about [f, k]. Here, for each index € {1, ..., n(z)}, either
|zi — f(x)| < 8 forx; € 14,
or
|zi — k(xi, y)| < 8 for (x;, yi) € 1%

The choice of whether to evaluateor f at theith sample point, as well as the
choice of theith sample point itself, may be determined either nonadaptively or
adaptively. Moreover, the information is allowed to be of varying cardinality.

For [f, k] € F, we letNs([ f, k]) denote the set of all suchnoisy informa-
tion z about [f, k], and we let

z=|J No(f. kD

[f.kleF

denote the set of all possible noisy information values. Thealgorithm using
the noisy informatiorN; is a mappingp: Z — L,(I¢).

Remark. Note that the permissible information consists of function valueg of
andk. One could allow the evaluation of derivatives as well. We restrict ourselves
to function values alone, since this simplifies the exposition. There is no loss of
generality in doing this, since the results of this paper also hold if derivative evalu-
ations are allowed. O

We want to solve the Fredholm problem in the worst case setting. This means
that thecardinality of informationN; is given as

cardN; = supn(z)

zeZ

and theerror of an algorithmg usingN; is given as

e(¢.Ns) = sup  sup [IS(Lf, kD) — & (llz,qe)-
[£KIEF zeNs(£.K]D

As usual, we will need to know the minimal error achievable by algorithms
using specific information, as well as by algorithms using information of specified



cardinality. Letn € Z* ands € [0, 1]. If N is §-noisy information of cardinality
at mostn, then
r(Ny) = inf_ e(¢, Ny).

¢ usingNj

is theradius of information i.e., the minimal error among all algorithms using
given informationN;s. An algorithm¢* using N; is said to be aroptimal error
algorithn? if

e(9*, Ns) < r(Ny),

the proportionality constant being independent @inds. Thenth minimal radius
r,(8) = inf{r(Ny) : cardNs < n},

is the minimal error among all algorithms usifignoisy information of cardinality
at mostr. Noisy informationN,, ; of cardinalityn such that

r(Npus) < r,(8),

the proportionality factor being independent of battand §, is said to benth
optimal information An optimal error algorithm usingth optimal information is
said to be amth minimal error algorithm

Next, we describe our model of computation. We will use the model found
in [11, Section 2.9]. (However, note that in the present paper, the accéiiacy
the same for all noisy observations, wheréamay differ from one observation to
another in [11].) Here are the most important features of this model:

1. Foranyr € I¢ and anyf € W"?(I%), the cost of calculating &noisy value
of f(x)is c(8).

2. Forany(x, y) € I* and anyk € %/, the cost of calculating &noisy value
of k(x, y) is c(8).

3. Real arithmetic operations and comparisons are done exactly, with unit cost.

Here, the cost function: R* — R** is nonincreasing.

For any noisy informatiorNs; and any algorithmy using Ns, we shall let
cost(¢, Ns) denote the worst case cost of computing) (x) for z € Z andx e 1.
We can decompose this as follows. Let

cost"™(N;) = sup{cost of computing}
z€Z

2Inthis paper, we ignore constant multiplicative factors in our definitions of optimality. The more
fastidious may use the term “quasi-optimal” if they desire.



denote the worst cageformation cost Note that ifN; is information of cardinal-
ity n, then .
cost™(Ny) > ¢(8) n.

Here, equality holds for nonadaptive information, but strict inequality can hold for
adaptive information, since we must be concerned with the cost of choosing each
new adaptive sample point. We also let

cosf®™(¢, Ny) = supsup{cost of computings(z)(x), givenz € Z}
72€Z xeld

denote the worst casmmbinatory costThen
cos{(¢, N;) < cost™(N;) + cosfom(¢, Ny).

Now that we have defined the error and cost of an algorithm, we can finally
define the complexity of our problem. We shall say that

comple) = inf{ cos{(¢, N;) : N5y and¢ such thak(¢, N;) < ¢}

is thee-complexityof our problem. An algorithng using noisy informatioiN; for
which
e(p,Ng) < e and costy, Nj) =< comple),

the proportionality factor being independent of bét#mnde, is said to be anptimal
algorithm

3 Lower bounds

In this section, we prove a lower bound on tih minimal error usings-noisy
information.

Theorem 3.1. Recall from(2) that

M:min{g,%}.

There is a constanty, independent of and§, such that
rp(8) = Mo(n™" +6)

forall n € Z* and$ € [0, 1].



Proof. We first claim that
ra(8) = n"" 48, ©)

Indeed, sincdy = 0, we find thatS([ £, 0]) = f for all f € W"?(I¢). ThusAPP,
the problem of approximating functions fro@Ww"? (1) in the L ,(1¢)-norm, is a
special instance of our problem, and so

ra(8) = ry(8; APP),
the latter denoting theth minimal radius oB-noisy information forapp. Clearly
72(8; APP) > 1, (0; APP). (4)

Moreover,
7, (0: APP) = n~"/4,

see, e.g., [9, pg. 34]. Hence
(85 APP) = n /4, (5)
Thus, to establish (3), we only need to prove that
ra(8; APP) = §. (6)

LetN;s be noisy information of cardinality at most By the results in [11, Chapter
2.7], there exists nonadpative informatibfi°" of cardinality!” such that

r(Ns; APP) > 2r(NJ°"; APP).

By [11, Lemma 2.8.2],
r(N§°" APP) = 4.

Hence
r(Ns; APP) = 6.

SinceN; is arbitrary information of cardinality at most, we find that (6) holds.
Using (4)—(6), we find that (3) holds, as claimed.
We now claim that
r,(0) = nis/Zd (7)

holds. Our approach follows that outlined in [5, pp. 260—261].
Let

1
01€(c;5, 1) and  ko=min {9161, 1-— 9—} ,
1C2



and define

Now
”k*stoo(]Zd) = ko < (1. (8)

It is easy to see that
||Tk||Lin[L,,(1d)] < lkll¢(rza Vked. 9

In particular, we have
I T lLing 2,10y < ko < 1,

so that

1
I = Te) Mltingr < T = 12 < c2. (10)

ko

From (8) and (10), we see thiat € 7. Since itis clear thaf* € ZW"? (1), we
find that [f*, k*] € F.
Let N be noiseless information of cardinality at mastThen we may write

N([f*7 k*]) = [Z].? ey Zl]

for somel < n, where eacly; is an evaluation of eithef* or k*. Suppose that
there ard’ evaluations ok*. Without loss of generality, we may assume that that
these evaluations have the form

zi = k" (x;, yi) 1l<iz<l).
From [2] (see also [9, pg. 34]), we can find a functiore ZW* > (1%) such that

O0<w(x,y) <ko Vx,ye]d,
w(x;, ) =0 1<i<l),

||w||wsv°°(12d) =1

/ w(x, y)dxdy >
]2

2
(l/)s/Zd ’

wheref, is a positive constant that is independent of the pdiatsy;) and ofl’.
Let
63 = min{(1 — O1)c1, 1 — c; ' — ko).

Note that sinc@; < 1 andkg < 1— (h1c2) "1, we haveky < 1—cgl, and s@; > 0.
We define
k™ = kg + Gw.

10



We claim thatt** ¢ 7. Indeed, we have

||k**||wsv00(12d) = ||k0||wsv°°(12d) + 93||w||wsv00(12d) = ko + 03
<6ic1+ 03 <ci.

Moreover,

I T Nting 2, r0y) < W Tiollingz,zay) + O3l T llLing L, 10y < ko + 63 < 1, (11)

and thus

1
1= Te) Hiniz, a0 =TG50 =
II( k) llLing L rdy) = 1— (ko105 — 2

Hence k™ ¢ 7.
Letting /* =1, we let

u* = S(f* k) and  u™ =S f* k7.
Since
[f5 LI Te Fooowith N[ kD) = N(IfF 6D,

we have
r(N) = 3llu* = u™|,, a, (12)

see, e.g., [13, pp. 45, 49].
We claim that«** > 1 on7?. Indeed, since (11) holds, the Neumann series

(@]
j=0

converges in Lin[.,(7¢)]. Now

T =T forj =1,

where{k;f*};oz1 is defined inductively as

K*(x, y) if j =1,

. Vax,yel
/ K™ (x,1) kjfil(t, ydt ifj>2 Y
]d

kK (x,y) =

Hence

00
*k § Jorx
u -_ Tk**f .
Jj=0

11



By induction, we find that
Kr(x,y) =k Yx,yel’Vj>1,

and thus forc € 14, we have

=1+ [ Krendrz1e K= =1
=171 j=1

as claimed.
Hence

W () — 1 (x) = ko / [0t 0) — ] dy + 03 / w0 dy.
1 1
Sinceu®™ > 1 on/¢ andw > 0 on7%, we find that
(1— ko) / [ @) — (] dx = 0 / e, yu () dy d
1 1

> 03/ w(x, y)dydx
]2

0203 - 0203

>
= (s T ns/2d’

the latter sincé’ < n. By Minkowski’s inequality, we have

(1 — ko) / [ (x) —u™ ()] dx < (1 — ko) lu™ — u*|l,(a)-
1d

Using the last two inequalities and (12), we get

N) > 0203
r _——
= 21— ko'

SinceN is arbitrary information of cardinality at most the inequality (7) holds,
as claimed.
From (3), we see that
ra(8) = 4,

which, together with (7), implies that
a(8) = n =% 45,

The theorem now follows immediately from this inequality and (3). O
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4 Some finite element spaces

Now that we have a lower bound on thth minimal radius for our problem, the
next task will be to find a matching upper bond andiitnminimal error algorithm.
This algorithm will be a modified finite element method using noisy information.
Before describing the algorithm, we need to define some finite element spaces.
In what follows, our notation is based on the standard one found in, e.g., [3]
and [15, Chapter 5].
Letm € Z*. ForK C R?, let

On(K) = { > awx*ixe K}
O<ai,...,ag<m

denote the polynomials of degree at mestin each variable, with the domain
restricted toK. Here, we recall that* = x{*...x;¢ for any multi-indexa =
(01, ..., 0y). ClearlyQ,,(K) is a function space ovef, with

dim Q,,(K) = (m + 1)“.

In particular, we note that the spagk, (1¢) has a basi$sy, ..., §,} consisting of
tensor products. More precisely, let

pE = 1] 5 0<i<m)
Of_jfm&'_ J
JF#i

be the usual one-dimensional Lagrange basis polynomials, wher&0< - - - <
A . d . .. . .

&, < 1. Let{a(’)}f’jf” be an enumeration of the multi-indicese (Z*)¢ satisfy-
ing max< ;g a; < m;we writea® = (a)”, ..., ). We can set

d
§i€,... &) = l_[ﬁa(”(éj)
=1
and

~ 2o 2o
o a
X,‘=< y o8y )

Then{$y, ..., S,ui1} is a basis forQ,, (I¢) such that

§j(XAi):8i’j forlfi,j §(m+l)d

13



Associated with the spaag,, (%), we have an interpolation operalﬁr c(dy —»
0,,(I%) defined as

(m+1)
b= Y d@E)E  Viecd".
i=1

Now let K be a cube ifR? whose sides are parallel to the coordinate axes.
ThenK can be written as the image &f under an affine bijectioFx: 19 — K
having the form

Fx(X) = hgx +bx  Viel

whereh g is the length of any side & andby is the element itk closest to the ori-

gin, i.e., the smallest corner &f. We get a basi§sy k, ..., S} for 0, (K)
by taking
Sj K = §j o F;l’
that is,
—b
sik(x) =5;(&)  wheret = Fgl(x) = al p K.
K

for 1 < j < (m + 1)¢. Defining
Xj K = F[(()%j) forlgj < (m+]_)d,

we find that
sixk(xig) =38, forl<i,j<(m+21)Y

Associated with the polynomial spag, (K), we have an interpolation operator
Mg: C(K) — 0,,(K) defined as

(m+1)¢
MMgv = Z U(Xj,K)Sj,K Vv e C(K),

j=1
so that

(Mgv)(x) = (MI0)(%)  for o = vo Fx andx = Fg(x).

We are finally ready to define finite element spaces. Chaose0 such that
1/h is an integer. Let2, be a decomposition af! into congruent cubes whose
sides parallel the coordinate axes and have lehgthen

Yh:{ldiﬂR:v’KGQm(K)forKth}

14



is our finite element space. Note that singg,| = ¢, we have

. 1\¢
ny, 1= dim.7, = (%) . (13)
We now construct a basisy, ..., s,,} for 2. Letbg, ..., bk, 4 be an enumera-

tion of the points{bk } k2, by lexicographic ordering. This induces an enumera-
tion K4, ..., K;,-« of the cubeX € 2,. We then let

Sp=d(i—1)+j = Si,K; forlfj Shid,lfi < (m+l)d,

with eachs; x being extended fronk to 7¢ as being zero outsid&. Analogously,
we let

Xpd(-1)+) = XiK, forl<j<h?1<i<(m+1?-
We then find that
sj(xi):&»,j forlfi,jfnh.
Associated with the finite element spacé, we have an interpolation operator

I,: C(1%) — .%,, defined as

M= Y Tgv VvecCU,
Ke2,

where eacHI g v is extended fronk to ¢ as being zero outsidk . Alternatively,
we may write

ny

M =Y v(x)s;  YveCU.
j=1

We have a second interpolation operdibs;, : C(I%) — %), ® .7, defined as
(Mperv)(x, y) = My[x > (Y = vix, y))]
np
= > vlx, x))s;(3)si (x)
i,j=1

forx, y € I andv € C(1%).

Remark. In the sequel, we shall often writg, andx; , rather thans; andx;, to
indicate their dependence an

We now present some standard error estimates, which will be useful in the
sequel.
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Lemma 4.1. Lett > Oandg € [1,00]. There exists¥; > 0 such that the
following hold:

1. Letv € WH4(I%). Then

inm-+1
v = Tpvllz, ey < MaR™ g gy

2. Letw € W"1(1%). Then

_—
lw — Magnwlly, 2y < Mah™™ " [ [y g2s).

Proof. For K C R4, let
P, (K) = { Z agx* i x € K}
le|<m

denote the polynomials of total degree at mastSinceP,,(I¢) € Q,,(I%), we

see thaf1o = ¢ for all v € P,,(I¢). Hence the local estimates of [3, pp. 118-122]
hold. Since there are no inter-element continuity relations to deal with, the global
estimates of [3] hold as well. This suffices to establish the lemma. O

Let s > 0. Recall that the mapping,: L>(1¢) — L,(I%), defined as
(Poo,w) = (v,w)  Yve LI we.%, (14)
is theorthogonal projectorof L,(1¢) onto.¥),. Here,(-, -) is the standard duality
pairing
(v, w) = / vwx)dx  YveL,(IY),welLyUI%,
14

with
P = p
p—1
denoting the exponent conjugate go It is well-known thatP, is a self-adjoint
operator with range?,, and unit norm. The next lemma shows th&},},-o is

uniformly bounded in the othequ(ld)-norms.

Lemma4.2. Letg € [1, oo]. There existsr, > 0 such that for any: > 0,
”PhU”Lq(Id) = 7Tq||U||Lq(1d) Vve Lq(ld)~

Proof. See, e.qg., [15, pp. 177-178], and the references cited therein. O
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5 The noisy modifiedFEM

We now define the noisy modified finite element method (n®isgEM). This is
an algorithm using information consisting of noisy function evaluations. As men-
tioned in the Introduction, it would be somewhat more accurate to describe this
method as the MFEM using noisy information,” but the conciseness of “noisy
MFEM” outweighs its mild inaccuracy.
The easiest way to describe the noisyeM is by following three steps. First,
we describe the pure finite element method, which uses inner product information.
Next, we describe the noise-freecEM, which uses noise-free standard informa-
tion. Finally, we describe the noisyrEM, which uses noisy standard information.
We first recall how the pure finite element method is defined. lfet][ e F
andis > 0. Then the purdinite element methofpure FEM) consists of finding
uy € ., such that

B(up, w; k) = (f, w) Yw e .Y,
where
B(v,w; k) = (I — T)v,w)  YveL,I),weLyUI9.

Alternatively, we have
(I — PyTi)u, = Py f.

If we write
np
uh(x):ZUjsj,h(x) Vx el
j=1
then we see that the vector= [vy, ..., v,,]? is the solution of the linear system
(A—Bu=f,
where
aij = (Sjn.sin)  and by ; = (Tisjp, Sin) forl<i,j<n,
and

f= [(f, S]_,],,> . (f, s;zh,h>]T'

Of course, the pureem requires the calculation @ff, s;) and(Tys;, s;). These
are weighted integrals of andk. Since we are only using (noisy) standard infor-
mation, such information aboyt andk is not available to us. Instead, we replace
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f andk by their interpolants. This gives us an approximation, the modifiegv,
that uses only standard information.
More precisely, let:, h > 0. For [f, k] € F, we define

B;(v, w; k) = B(v, w; Mjg;k) VveL,(I),weLyI%
and let
frw) = (M f,w)  VYweLyI9.
Note that forv € L, (I?) andw € L, (I¢), we have

np
(THE®Ekv’ w) = Z k(xi,}_z’ xjﬁ)(*gj,ﬁ’ v><si,ﬁa w>’
ij=1

so that

np

B (v, w; k) = (v, w) — Z k(X s X i) (S s VIS o> W)
ij=1
Moreover
np
i) =" fesinw)  Ywe Ly,
j=1
Themodified finite element meth@drem) consists of finding, ; € .#;, such that

B (uy, j, wi k) = fr(w) Yw e . Y.

If we write .y
u, j(x) = ZUij,h(x) Vxel
j=1
then we see that the vector= [vy, ..., v,,]? is the solution of the linear system
(A—-Bu=H.
Here
aij = (sjn,sin) and b ;= (T _.kSjn, Sin) forl<i,j <ny,

and
f=[faCsin) - fulsm,]"

Of course, themFEM uses noise-free information. If we allow noisy evaluations
in the MFEM, we get the noisyiFEM. More precisely, lek, h, 5 > 0. For [f, k] €
F, we calculate

fis € Rsuchthal f(x;;) — fis] <8  forl<i <n,
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and

ki j s € Rsuch thatk(x;, x;n) — ki js| <6 forl<i,j<n;.

Let
np
Teisv =Y Kijsls;pvds s Yve L,
i,j=1
and

np
s f = Z Ji68jn-
j=1
Fork € ¢, define a bilinear fornB;, (-, -; k) approximatingB; (-, -; k) as
By s(v,wik) = (v—Tisv,w)  YveL,(I),welLyI%
and a linear formf;, s approximatingf;, as
frow) = (Mysfiw)  Ywe Ly(UIY.

Thenoisy modified finite element meth@aisy MFEM) consists of finding, ;, ; €
& such that
By, s(uy 5o wi k) = frs(w) Yw e .%.

Writing

np

d

upjs(x) = Zvjsj,h(x) Vx el
j=1

we see that the vector= [vy, ..., v,,]7 is the solution of the linear system

(A —B)u =f. (15)
Here
aij = (sjn.sin)  and by ;= (T sSjns Sin) forl<i, j <ny,
and
f=[fus1n)--- frsGunl” -
Let B
N is(Lf kD = [Nus(f), Nj s(0)],
where

Nus(f) = [frs -y funs]
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and = =(1) ()
Nis(k) = [Ny ), ... N o),

with ) ) .
Ny (k) = [king . kins]  forl<i<n;.

If u, ; s is well-defined, then we can write

wpis = Puis(Nuis (L kD),

where

1\* 1\ -
Carth’;l’(;:n%—{—nh:(%) —{—(%) =h=2 4 n

6 Error analysis of the noisy modifiedFEM

In this section, we establish an error bound for the noisy modiiea We do this
as follows. First, we establish the uniform weak coercivity of the bilinear forms
B(., -; k) for k € . Once we know that the bilinear forms are uniformly weakly
coercive, we can obtain an error estimate by using Strang’s lemma (see below). The
remaining task is then to estimate the various terms appearing in Strang’s lemma.
So, the first task is to establish uniform weak coercivity. Before doing so, we
establish two auxiliary lemmas.
The first lemma shows that the inverses of certain operators are uniformly

bounded. Let _
1 1/ min{m+1,s}
ho=( — .
° ( 2c1coMy )

Recall that theadjoint of a linear transformatios : L,(I) — L,(I?) of normed
linear spaces is the linear operattt: L, (I?) — L, (I?) satisfying

(A*v,w) = (v, Aw)  YveL,I),welLyUI9.

In particular, for any € %', we have

(TFw)(y) =/ k(x, Dwx)dx  Ywe LyI%.
14

Lemma 6.1. Leth € (0, ho] andk € ¢ Thenl — Ty, isinvertible onL (19,
with
(1 — Tn*h®hk)7l||Lin[Lp/(14)] <2c.

20



Proof. Leth € (0, ho] andk € #. Note that sincgA*)~t = (A~1)* for any
invertible linear transformatiod, we find that/ — 7;* is invertible and

I = T lliingz, iy < c2-

Let us write
1 — Tn*h@)hk = - Tk*) + Tk*fl'[;,@;,k'

From (9) and Lemma 4.1, along with the definition of the clagswe find
1T etz oy < 1k = Tagnk g2y < MuR™™ " koo 20,

i 1
< Mihg"" e =
2

and so
-1 1
||Tk*_nh®hk|||_in[Lp,(1d)]||(1 - 1) ILingz oy = 26 = 3.

From this inequality and [7, Lemma 1.3.14] we see that Tj, , is invertible,
with

I = T lingL, 1)

1T ry gk int 2 i 1T = T ™ lingz ey

* -1
T = Ty, lltinge iy = 7
< 2c,
as required. -

Remark. Note thatTﬁkh@hk: S — . Hence ith € (0, hg], the mappingl —
T1,..« 1S an invertible linear operator off),.

Our second auxiliary lemma shows that certain inner products can be bounded
from below by products of norms.

Lemma 6.2. Letv € L,(I?) be nonzero. For any € (0, lvilz, ), there is a
nonzero functiorg € L, (1) such that

(v,8) > (||U||L,,(1d) - T)||g||LI,,(1d)-
Proof. Suppose first that < oo. Letg = (sgnv)|v|?~L. Theng is nonzero, with

(v,8) = ”U”Lp(ld)”g”Lp/(ld)v
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which is a stronger result than that which we want to prove. Hence it only remains
to show that the lemma holds when= co. We use an idea found on [1, pg. 26].
FOF‘L’ S (0, ”U”Loo(]d)), Iet

E={xel": )| > vlL,ua—1)

From the definition of the essential supremum, neas 0. Letg = (sgnv) xg be
the characteristic function df. Theng is a nonzero function, with

el = / X () dx = meast.
1
Hence we have
{v.g) = / lv(x)|dx = (vl ey — T) MeasE = ([vllzoqdy — D& Ly9)-
E

Hence the lemma holds when= co. O

Let
p/= p
p—1

denote the exponent conjugate o We are now ready to prove uniform weak
coercivity of the bilinear forms(-, -; k) over allk € 7.

Lemma 6.3. There existz; > 0andy > 0 such that the following holds: for any
k e & ,anyh € (0, hp], and anyv € .¥}, there exists nonzermo € ., such that

B, w; k) > )/||U||L,,(1d)||w||Lp/(1d)- (16)

Proof. Letk € 2# andh € (0, ho]. Letv € .¥,. If v = 0, then this inequality
holds for any nonzeraw € .. So we may restrict our attention to the casg O.
By Lemma 6.2, there exists nonzegos L, (1¢) such that

1
(v, 8) = §”U||Lp(1d)”g”Lp/(Id)-

Recalling the definition of the orthogonal projectBy from (14) and using the
remark following Lemma 6.1, we see that

w=(—-T4, .0 " Pig
is a well-defined element o#,. Sincev € .%},, we clearly have

(v, (I =Tg, 0w = (v, 8) = 31l a0l aa)-
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Moreover, from Lemmas 4.2 and 6.1, we have
-1
lwily, oy < I = T, 0 iine, oy I Pl iy
= 2C2||Phg”Lp/(14) = 27Tp/02||g||Lp/(14)-

Hence

(- Tl‘[;,@hk)v, w) = ||U||L,,(14)||g||Lp/(1d) = 4 ”U”L,,(I")”w”Lp/(I")-

TL’p/Cz

Sinceg andv are nonzero, this inequality implies th&f — 7t ., «)v, w) is nonzero.
Since the latter is linear im, we see thatv # 0.
Using (9) and Lemma 4.1, we find

T4k Vs W) < 1 Ter1 gk Vlliing ., cra 1w ling ., 4y
< |lk— Hh®hk||Loo(12d)”v”Lin[L,,(I")]”w”Lin[Lp/(Id)]
i 1
= 1‘/11hmm{mJr ’S}”k”WSvDO(Izd)”v”Lin[L,,(I")]”w”Lin[Lp/(Id)]

infm-+1,
< coMph™nm S}”v”Lin[L,,(I‘I)] lwlliingz,, 4

Hence
B(Uv w; k) = <(1 - TH;,@;,]()U? w) - <Tk71_[h®hkvv w)

> |:47'[p/cz — clehmin{zn+1,s}] ||U||Lin[L,,(1d)]||w|||_in[Lp,(1(1)].
Letting
1 1/ min{m+1,s}
hi=min{ | ——— o
1 {(SHP/C%Ml) O]
and
1
v= 87TP/C2’
we see that the desired estimate (16) holds:fer (0, A1]. 0

Since the bilinear forms(., -; k) are uniformly weakly coercive fat € 7,
we haveStrang’s lemma

Lemma 6.4. Suppose there exig$ € (0, 1] andh; € (0O, h4] such that the follow-
ing holds: for anyé € [0, 8o], anyh, h € (O, ko], and anyk € ¢, we have

|B(v, w; k) = By s (v, w; k)| < 3 Il anllwlly ,ga Vv, w e,
wherey is as in Lemm#.3. Then there exist&f, > 0 such that the following hold

for anys € [0, 8g] and anyh, i € (0, hy):

23



1. The noisy modifiedem is well-defined. That s, there exists a uniaye, ; €
%, such that

Bj s(up 5o w) = frs(w) Yw € .9,

2. Letu = S f,k]). Then

u—uj Ly < My inf | ju — v, d
I h,h,5||Lp (1) A [ Iz, 4y

+ sup
wE,Sﬁh

B ) 5 k - B_ ) 5 k ) -

|B(v, w; k) — By s(v, w; k)| n (s w) — fas(w)] a7
||w||L,,/(1d) ”w”Lp/(Id)

We now estimate the quantities appearing on the right-hand side of (17).

Lemma 6.5. There exists/3 > 0 such that
|B(v, w; k) = By 5 (v, w; )| < Ma(h ™" - 8)[[vll,, oy lwll o)
for any positiver, i, ands, for anyk € %, and for anyv, w € .%.
Proof. Choose positivé:, 4, ands, along withk € .7 andv, w € .%,. Then
|B(v, w; k) — By 5(v, ws k)| < |A1] + |Az], (18)

where
Al = B(U, w; k) - B(U, w; Hﬁ@fzk) = (Tk—l_[;l®ﬁkva w)

and
A2 = B(v, w; ljg;k) — Bj s(v, w; k)| = ((Tnm,;k — Tijs)v, w).
We first estimatgA,|. Using (9) and Lemma 4.1, we find
|Aq] < ||Tk—l'l,;®5k||Lin[L,,(1d)]||U||L,,(1d)||w||Lp/(1d)

<k — Hﬁ@ﬁk“LDO(IZd)”v”Lp(I‘])”w”Lp/(Id) (19)

- 1
<ciMih min{m-+ ’S}||U||L,,(1d)||w||L,,/(1d)-

To estimatg A;|, let

np

e ) = 3 (kg 6 = Kigs ) 5,5 0081500

ij=1
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Then

|A2| < ‘/ / ¢(x, yv(y)w(x)dy dx
14 Jpd

< sup [¢(x, ) |v<y)|dy/ lw(x)| dx (20)
14 14

x,ye]z‘l
< ||§||Loo(12d)||U||L,,(1d)||w||Lp,(1d)-

Now for x € 14, define suppx as
i € supp, x iff i €{l,...,n;} andx is in the support of; ;. (22)

By construction of the basis functions fofj, there exists positive constants
ando,, independent af, j, andh, such that

| supp; x| < o1. (22)

and
||Sj,ﬁ lLordy < 02. (23)

Hence for any, y € 14, we have

@l s D [kCus a0 = oI5 a1 500
iesupp, x
Jjesupp, y

2 2
=od sup |ls;zll; ey < 0105 8.
1<j=n;

Sincex, y € 14 are arbitrary, we thus have

11 cr2ay < 010225- (24)
Using this inequality in (20), we obtain

|A2] < 0105 8 IVl ay llwl .y ray -
Combining this result with (20), recalling the decomposition (18), and letting
M3 = maX{ciMy, 0102},
we obtain the desired result. O
Lemma 6.6. There existd{, > 0 such that
[(f w) = fus )| < MaGh™™ 27 4 8)[wll o)

for any positiver ands, for any f € ZW"? (1), and for anyw € .%,.
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Proof. Choose positivé: ands, along withf € Z2W"7(I%) andw € .#,. Then

[(fw) = frs(w)] < |Asz| + |Aql, (25)

where
Az = (f — i f, w)
and
np
A4 = <th — Z fj,Ssj,hv w>.
j=1

We first estimatgAs|. Using Lemma 4.1, we have
|Asl < IIf = T fll,aollwlly,qa < MA™ 2wl e, (26)
We now estimateA,|. We find

Z[f(xj,h) — fislsjn

j=1

|Ag| < ”w”Lp/(Id)

L,(I%)

np

Z |5j.nl
=1

<

||w||L,,/(1d)-
L,(I9)

Now

np

np
> syl > syl
j=1 Jj=1

But for anyx € 14, we may use (21)—(23) to see that

=
Lp(I?)

Loo(I19)

np

Dlsia@l= D" lsja(0)] < 0109,
j=1

JEsupp, x

and thus
|As] < 01020.

Using this inequality, along with (26), in (25), and setting
My = max{My, o102},
the desired result follows immediately. O

The final preparatory step is to prove a “shift theorem,” which relates the
smoothness ofl — T;)~! to the smoothnesses gfand ofk.
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Lemma6.7. Let0 < ¢t < min{r, s}. Fork € 2# and f € W"?(I?), we have

(I = T Mliinpwrr gy < 1+ caca,

d+S 1/[’ f
=14 ) @ "P=% @7)

Il if p=o0.

where

Proof. Letk € 7. First, we show that

| Tk ”Lin[Lp(Id),WSv/’(Id)] = ¢3, (28)

with || - llLinfz ,79), ws» (12y) denoting the usual operator norm. We shall prove only
the case < oo, the casg = oo being analogous. Let be a multi-index of order
at mosts. Then for any € L,,(Id), we have

[(0*Tiv)(X)| =

/ ¢k (x, yyv(y) dy
]d

< suplayk(x, Mvlz,aa
ye]d

=< ||k||wsv00(12d)||U||L,,(1d),
so that
||3aTkU||L,,(1d) = ”k”W&OO(IZ")”U”L,,(Id)'

Sincew is an arbitrary multi-index of order at masin d variables, we obtain

1/p d+s 1/p
||Tkv||ws,p<,d>=[2||a"Tkv||L,,(,d>] s( ) ) ll ooz 101 1y

lor] <s

from which the desired result (28) follows.
Now let f € WP (I?), and seu = (I — Ty) "1 f. Sinceu = f + Tu, we get

lullwergay < I f lwepay + 1 Txutll wep ay.
Now
| Tewllwep ray < ||Tk||Lin[L,,(14),Wt»p(14)]||u||L,,(1d)
=< ”Tk”Lin[L,,(Id),WS’P(I")]”u”Lp(Id)
=< C3||”||L,,(I")
-1
< sl = T~ litingz,aan 1 f Iz, ey

< c2csll fllL,ay-
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Hence

NI — Tk)ilf”W’»P(ld) < W fllz, ey + czcsll fllL,aay = A+ c2ca)ll flL, 14y,
which establishes the desired result. O

We are now ready to show that the noisy modifife is well-defined, as well
as to establish an upper bound on its error.

Theorem 6.1. Let the degreen of the finite element spaces, and.”; be chosen
as
m = min{r, s} — 1.

Choose positivé, and g such that
Ms(h + 80) < 3. (29)

Then there exista/s > 0 such that the following hold fok € (0, h4], h e (0, hs],
ands < [0, &]:
1. The noisy modifiedeM is well-defined.

2. We have the error bound
e<¢h,ﬁ,5’ Nh,ﬁ,ﬁ) < Ms(hmin{r,s} + }_ls + (S)

Proof. Leth € (0, h4], h € (0, hy], ands € [0, §p]. Using Lemmas 6.4 and 6.5,
we see that the noisy modifie&M™ is well defined. It only remains to establish the
error bound.

For [f.k] € F, letu = S(Uf.kD) anduy, ;5 = @5 (Nyjs(Lf kD). Using
Lemmas 4.1 and 6.7, and setting

Cy = M2(1+ coc3),

we find i
mingr, .
e — Tplly,, ray < Mah™™ ) || yyrminirorp

< My(L+ coc) k™™ | £l yyminior o (30)
< C4hmin{r,s}.
Now letw € .%},. By the definition ofc,, we find
ITTull, ey < llu — Mpully, oy + llullz,qa)

< C4h?,1m{r’S} + call fllL,ady < Catca,
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and thus using Lemma 6.5, we find that

|B(v, w; k) — By (v, wi k)| < Ma(h* + &) ITpull gy llwll ., ra)

- (32)
< (Cs+ c2)M3(h”® + 5)||w||Lp/(Id)-
Moreover using Lemma 6.6, we have
I(fs w) = fusl = Ma(h" 4+ 8)wllp ,a)- (32)

Hence using (30)—(32) in Lemma 6.4, we get
it — w5l 0y < Mz (Cah™™) + (Ca+ c2)Ma(h® +8) + Ma(h™ +6)).

Taking
Ms = Mp(Ca+ (Ca+ c2)Ms + My),

we get the desired error bound. O

Remark.We have a wide amount of latitude in choosing paramétgendsy such
that (29) holds. One simple choice is to pick

1/s
% %
hy = [ -2— and 8= ——.
2 (4M3> 0

7 The noisy modifiedFEM is a minimal error algorithm
Letn € Z*. In this section, we show how to choose the meshsizasd/ such
that the noisy modifiedeMm is annth minimal error algorithm.

We define integer parametérand!, as follows:

1. Suppose that < 2r. In this case, we have < 2 min{r, s}. Take
| = |_ns/(2min[r’”)-| and [ = L«/n - lJ )

2. Suppose that = 2r. Take

3. Suppose that > 2r. Take

i:[nr/s] and l=n-—12



With these definitions for andl, define

_ min{r, s} - min{r, s}

Recalling that the degree of our finite element spaces is given by
m =min{r,s} — 1,

we see that

=
Il
=~

n,=1 and n
by (13). With these choices afand#, let

Nus =N jis and Gns = Pnjrs-
That s, for any [, k] € F, we have
Nos(Lfs k1) = [N1s(f), Nz (b1,

where _ -
Nis(f) =Nis(f) and  Np,(k) = Nj 5 ).

SinceN,, s([ f, k]) used? noisy evaluations of and! of f, we have
cardN, s = > +1 < n.
We now have

Theorem 7.1. Recall from(2) that

= min !
p=min{Z. 52}
1. There exista} € Z* such that thep, s is well-defined for alk > nf and all

NS [O, 50].
2. There exist3/g > 0 such that

e(ns, Nys) < Mg(n™" +9) forn > ngands € [0, ). (33)

3. Thenth minimal radius satisfies

r,(8) xn " +34.

4. The informatiorN,, ; is nth optimal information, an@;, s is annth minimal
error algorithm.
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Proof. The first item follows from Theorem 6.1. Once we establish (33), the re-
maining items will then follow immediately from (33) and Theorem 3.1. Hence, it
remains to prove (33).

We prove (33) on a case-by-case basis. Suppose first thaéts. We then have

ho< 7Y < p=s/@mintrsid) and h< 17V < p=le@Dd,
Sinces < 2r, we haveu = s/(2d). Hence
e(Bns, Nug) <A™ L RS 45 xn /@D 4§ < n7h s,
Next, suppose that= 2s. We have
ho< 1 Y4 < p=ld and o< 7Y < p=l/@d,
Sincer < 2r = s, we have mifr, s} = r. Thus
e(¢ns, Nys) < A I Ay Sy L
Finally, suppose that > 2s. We have
ho< 7Y < =l and ho< 7Y < /@,
Sincer < 2r < s, we have mifr, s} = r. Thus
e(nss Nuy) <A™ 18 48 < n~"4 48,
But sinces > 2r, we haveu = r/d. Thus
e(¢ns, Nys) S n™" +6.

Hence (33) holds in all three cases. O

8 Two-grid implementation of the noisy modifiedFEM

We have just seen thaf, s is annth minimal error algorithm. Its information cost

is c¢(8) n. Hence if we were only interested in informational complexity, then we

would have a source of optimal algorithms, see, e.g., [13, Section 4.4].
Unfortunately, the combinatory cost of this algorithm is generally much worse

than® (n). Indeed, for any f, k] € F and anyn > ng, this algorithm presents us

with a linear systentA — B)u = f. The matrixB is a full I x I matrix, where

; ns/(Zmin[r,s}) if s < 2},.’

n if s > 2r.
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Hence, if we were to use Gaussian elimination to solve this linear system, the
combinatory cost would be proportional i, where
3s
Kk = {4 2min{r, s}
3 if s > 2r.

if s < 2r,

Sincek € [%, 3], the combinatory cost is n@ (n).

Rather than using Gaussian elimination to directly solve the linear system
(A — B)u = f, we shall use a two-grid algorithm to obtain a sufficiently accurate
approximation of the solution. This will give us a nearly optimal approximation
at nearly optimal cost.

Our approach will closely follow that of [7]. For givemn, we shall defind,
I, h andh as at the beginning of Section 7. This will give us a linear system
(A — B)u = f whose solution we wish to approximate. Werdétbe a second inte-
ger, satisfying:* = © (n%/3). If we were to set up the linear system corresponding
to the noisyMFEM using information of cardinality*, we would get ai* x [* lin-
ear systen(A — B)O =T Here,l*, I*, h*, andh* are the parameters for the noisy
MFEM using information of cardinality*, as defined at the beginning of Section 7.

Before describing the two-grid method, we need to introduce some prolon-
gation and restriction operators, as described in Sections 5.2 and 5.3 of [7]. Let
X =L,(I, X; = R, ll,), andX; = R”, || - ||,,). We define theanonical
prolongationP,: X; — X as

1
PhV=Zijj,h VV=[U1...UZ]GRI.
j=1

Thecanonical restrictionR;,: X — X, is defined as
Ryw = A" (w, s15) ... (w,s;.)0]" Yw e X.

Note thatP, and R, are uniformly bounded mappings, i.e., there exist positive
constantp andCg such that

I Prllcingx, x1 < Cp @nd || RyllLinfx,x;) < CRr Vh>0. (34)

Moreover
R,P, =1 and PR, = I1,,. (35)

(See [7, pg. 161].)
We then define thatergrid prolongation operatop: X, — X, and theinter-
grid restriction operatorc: X; — X« as

p = Ry Py« and vt = Ry« P
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We will also need to use the adjoint operagdr X, — X+, defined as
PV-W=V-pw YV e X;,We X

We are now ready to define the two-grid iteration scheme. This is the vari-
ant TGM found on [7, pg. 179].

function TG(n : Z*; A, B : R f: Rl : R/,
begin
if n is sufficiently smalkthen
computeu € R’ such thatA — Byu = f

else
begin
u:=a0;
fori :=1to3do
begin
Solve the linear systeiAli = f + Bu; {Picard iteratioh
d:=p*(Al —f — B0); {compute defegt
solve the systentA — B)d = d;  {coarse-grid solution
Uu:=u-—pd {coarse-grid correctign
end
end,
TG =u
end,
Finally, let

Nn,(s = [NI_Z,87 NZZ’g, Nl,g]

betwo-grid informationof cardinality at mosk. Let

!
l:in’g = Ph[TG(I’l, A, B, f)] = Z Uij’h, (36)
j=1

Thenii, s depends onf, k] € F only through the mformatlorN,, s(Lf, k]), and
SO we may er'[eun s = qb,, E(Nn s(Lf kD), Whereqb,, s is an algorithm using the
mformatlonN,, s We call¢,, s thetwo-grid algorithm

Our first task is to analyze the cost of the two-grid algorithm. Before doing
this, we prove the following

Lemma 8.1. Letn € Z*. Forv € R/, we can calculateBv using at mostO (n)
operations.
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Proof. LetS € R have(J, j) entry
07, = (S77 Sjn) forl<j<li,1<j<I,

and letC = [k; j s];-; ;<;- We then havd = STCS. Forv € R/, we calculateBv
as follows:

1. Leta= Sve R Since each row dB has onlyO (1) nonzero elements, this
matrix/vector multiplication can be done in at m@s{/) operations.

2. Letb=Cace R’. This is the usual multiplication of ahx [ matrix by an
I-vector, which can be done in at mast/?) operations.

3. Letc = S"h € R’. Since each row o8’ has onlyO (1) nonzero elements,
this matrix/vector multiplication can be done in at maxt/) operations.

ThenBv = c. Moreover, the cost of calculatingis clearly O(? + 1) = O(n)
operations, as required. O

We then have

Lemma 8.2. The cost of the two-grid algorithm satisfies
cos(ns, N,5) < c(8) n.

Proof. By construction, the informatioﬁﬁl,“; has cardinality proportional ta.
Hence the information cost of the two-grid algorithm is at ma@) n. Hence,
it remains to determine the combinatory cost.

Let[f, k] € F. We need to find the cost of computing TGA, B, f).

1. Wefirst do the Picard iteration. From Lemma 8.1, evaluaiingostsoO (n),
and hence the cost of evaluating= f + Bu is alsoO (n). Furthermore, the
bandwidth ofA is bounded, independent of since there are no interelement
continuity requirements. Thus the cost of the Picard iteration stép(is
operations.

2. Next, we compute the defect. Since the number of elements in any rAw of
is bounded, the cost of evaluatiigi is O (/) operations. By Lemma 8.1, we
can calculatd®i in O (n) operations. Thus we can calculate= AtG—f—BU
in O(n) operations. It only remains to calculagi&w, which can clearly be
done inO(l) operations.

3. To calculate the coarse-grid solution, we need to solve*ar n* linear
system. Since* = © (n%/3), we can do this ir0 (n) operations.
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4. The coarse-grid correction can clearly be don@ (i) operations.

Thus we can compute T@, A, B, f) with a cost of at mosD(? + 1) = O(n)
operations, as required. O

Our next task is to analyze the error of the two-grid approximation. Before
doing this, we need to do a little groundwork. Write= Wmininshoe(rdy | et
Y = R, || - |ly,), where

IVlly, = infl lvlly.
veR (v

The norm]| - ||y, and spacé’- are defined analogously.
For future reference, we note that the linear sysigm- B)u = f may be
rewritten in the form(l — K)u = g, where

K=A'B and g=A""
We will also have cause to refer to the matkix= A~1B. We have the following

Lemma 8.3. There exist positive constans, Cx, Cg, C,, and C¢, which are
independent of, such that the following hold:

1. Stability: | (1 — K)™Y|Linx < Cs.

2. Discrete regularity:||K||injy,; < Ck.

3. Uniform boundedness of prolongationi|| inx,.,x] < Cg-
4. Interpolation error: ||l — ptl|Lingy;,.x] < C,(1*)~Mnrsy/d,

—) —s/d

5. Relative consistencytK — Kt||tiny;, x,,] < Cc (I* + 3.

Proof. We first prove stability. Lef = [o1...]7 € X, andu = (I — K)7f. Let
= P,uandf = P,f. Then

By, .5, w) = Fns(w) Yw e .%,.

Using Lemmas 6.3 and 6.5, there exists nonzere .#, such that
By, j s, w) > %V||12||L,,(1d)||w||Lp/(1d)-

Using Lemma 6.6, we easily find that

| frp,s(V)] < 3M4||f||L,,(I")”U”Lp/(ld),
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and thus M
. 4, x
lellz, ey < 7||f||Lp(1d)- (37)

From (35), we havel = R, . Using (34), we see that
lullx, < Crllztllx- (38)

Sincef = le:l «js;jx, We use the discrete Minkowski inequality to find
. ! pN\ V/p
— G d
1£1x (/1 ;ajsj,hoc) ) x

I 1/p , | \YPqp 1/p (39)
s{/ [(ZIa,-I”) ( |s,-,h<x)|”> ] dx}
1d i —

J
= 0|fllx,,

where
! ) p/r 1/p
9:|:/ (Z|Sj,h(x)|p> dx:| .
14 -
j=1
Now
1
. P < . P’
18OV = MaXisjnll o) | SUPR ]
j=1
where

J €suppx iff Jj €{1,...,1} andx is in the support of; ;.

As in the proof of Lemma 6.5, there exist positive constantgndo,, independent
of x, j, and{, such that

max s sl L4y < 01 and | supp x| < o>.
1<j=l
Hence )
6 < olozl/p.

Using (39), we find that
1f1lx < 0105 Ifllx,- (40)

Let Cs = 6M4Cro105'” /y. Using (37), (38), and (40), we obtain

(1 —K) My, = ullx, < Cslifillx,

36



Sincef € X, is arbitrary, we find that part 1 holds, as required.
We next check that discrete regularity holds. From [7, Remark 5.2.3], we find
that
K = Ry Typjs Pr- (41)

Using the definition of the norr - ||y,, we find that|| R [|Linfy,y; = 1, and so
1K ingx;. i1 < N Rlltingy.vi | Teen s Iingy. x7 11 PrllLingx;.x]
< Cp I T r sllLiny. x15

whereCp is defined by (34). Now

| T s tinpy, x1 < W Tkllinty.x) + 1 Tk — Ty i sllLingy. x1-
From (28), we have
| Telliny,x) < c3,

whereas from the proofs of Lemma 6.5 and Theorem 7.1, we find that
1Tk — Tipinsllingy.x) < 48 <n " 48

Combining the previous inequalities, we see that part 2 holds.

To prove uniform boundedness of prolongations, we use Exercise 5.3.6(a) on
[7, pg. 171], finding that part 3 holds witi; = CrCp.

Next, we establish the interpolation error. Note that since (35) holds, we have

1 —pt = RhPh — RhPh*Rh*Ph = Rh(l — Hh*)Ph-
Hence using Lemma 4.1, we find

11 = prlitiny. xi) < I RalLingx.x1 1 — Mg lItingy.xq | PallLingy,. v)
< CRCPMl(h*)min{r,S} < (l*)—min{r,s}/d’
so that part 4 holds witll;, = CRCpM;.

We now establish relative consistency, using a perturbation of the proof of [7,
Lemma 5.3.11]. Using (41), we have

tKp = Ry Ty jos (Prp) = Ry Ty s P = K + Ry E Py,

where
E = Tk;h*,h_*,8 - Tk;h,ﬁ,5-

Hence
tK — Kv = tK (I — pt) + Ry« E Pyt
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Now
ItK (I — pv)llLinfy, x) < CeC Ci (") ™",

Moreover,
| Rp+ E Pp||Linty,. x) < CRCpCIIE |Linfy, x]-

Now
I Elliingy,x1 < I = Ty g sltinpy.xy + 11 = Typis lLinfy.x)

< (@) +6 < ()" +8
the latter following from the proofs of Lemma 6.5 and Theorem 7.1. Combining
these results, we see that part 5 holds, as claimed. O

Using some of the ideas found in the proofs of [7, Theorem 5.5.7 and Theo-
rem 5.6.4], we are now ready to estimate the distance between the exact solution
of the linear systenil — K)u = f and the solutioi = TG, A, B, f) produced
by the two-grid method.

Lemma 8.4. We have
I8 —ullx, < (" +8) IIfllx,-

Proof. Itis no loss of gereality to assume thais sufficiently large that we do not
solve the linear systerfA — B)u = f directly. Let

MTC =1 — (1 —K) el —K)K

and
c=(-K) (- KKI—K)H.

Using Lemma 8.3 and [7, Theorem 5.4.3], we have
*y—min{r,s =\ ~s/d
IMT®|lLinx] < Cre ((1 - minies)/d () +5>,

whereCrg = (C, + CgCsCc)Ck. Arguing as in the proof of Theorem 7.1, we find
that
IMTClLinx) << ()" + 6.

Sincen* = ©(n'/3), it follows that
IMTCllLinxg < 3+,
It is fairly easy to check (see also [7, Theorem 5.4.3)) that G®, where
0@ =0,

0 =MV ¢ (1<i<?3).
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Moreover, it is also easy to see thai= M T®u + ¢, so that

G TG S (-1
lu—Gx, < IMTClLinpxgllu — 0P,

Combining these results, we find
16— ullx, < IMTCIBpxgllully, < (n7 +8) [lulx,
< (7" 4 8) lIfllx,
the latter following from part 1 of Lemma 8.3. O
We are now ready to state and prove the main result of this section.

Theorem 8.1. There exist positive constant$; and Mg such that for any: € Z+
ands € [0, &o], the full multigrid algorithme, s satisfies

e(én,éa Iiln,é) =< MS(n_l/M + (3),

with 5
cosi(¢n,s, Ny, 5) < M7c(d) n.

Proof. For [f’ h] € F,let Ups = ¢n,5(Nn,5([fa k])) andﬁn,ﬁ = q\sn,S(Nn,S([fa k]))
By Theorem 7.1 and Lemma 8.2, it suffices to show that

v -1
lttn,s = dtnsllz, ey < 0 4+ O Fllz, (ra)- (42)

Now u, s = P,u, whereu is the exact solution of the linear systéi — B)u = f
given by (15), andi, s = P,0, wherel = TG(n, A, B, f). Using (34) along with
Lemma 8.4, we obtain

v ~ —p+s
ln,s — un,(S”L,,(Id) < Cpllu—Tlx, < @) fllx,.

Hence (42) holds if
Ifllx, < f Iz, oy (43)

Fori € {1,...,1}, define

& = {fssin) — fns(sin).

Let
e=[e,...,e]"

and
= [{f,s1n) -, (5 Sl,h)]T-
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Then
Ifllx, < llellx, + Il x,-

Since
1 !
lellx, = llelle, @y < Y7 llele. @)
and
— _ —1/p
leil < (n™" 4 5)||f||L,,(14)||Si,h||Lp,(1d) < (8P I fll, ey,
we see that

lellx, < (™" + O fllz, a9 (44)

On the other hand, we havw f* = I1,, f, so that* = R, P,f* = R,I1, f by (35).
From (35) and Lemma 4.1, we obtain

1 x, < CrllTly fllL,dy < CRA+ MO fllL, a4y

Using this inequality and (44), we obtain our desired result (43), which completes
the proof of the theorem. O

9 Complexity

In this section, we determine tlkecomplexity of the noisy Fredholm problem. We
recall from (2) that
_ . r s
= min {E, Z} .
Our main result is

Theorem 9.1. Lete > 0. There exist positive numbefy, C,, andCs, depending
only on the global parameters of the problem but independent siich that the
following hold:

1. The problem complexity is bounded from below by

_ 1 v
comple) > 0<!srlfclsc(8) <Cle — 8) .

2. The problem complexity is bounded from above by

. 1\~
comple) < C» 0<|6rlfC3€c(8) |7<C38 — 5) —‘ . (45)
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The upper bound is attained by using the naigsem (EM using informa-

tion N, 5, where
1 v
=) | (46)

with C3 = Mg* from TheorenB.1 and wheres is chosen to minimize the
appropriate right hand side appearing {@#5).

Proof. To prove the lower bound, suppose tigais an algorithm using noisy in-
formationN; such thate(¢, N5) < ¢. Then cardNs > n, wherern must be large
enough to make, (§) < ¢. Theorem 3.1 immediately tells us that we must choose
8 < My'e and that we must have

1 v
n > R R
My~e =34

The cost of any algorithm usinginformation evaluations must be at least(s),
and so
1 v
cost(¢, Ns) > ¢(6 R B
(¢, Ns) = c(d) (Mo‘le—é)

Since¢ andN; are an arbitrary algorithm and information such th@t, Ns) < ¢,
we find that

1 1/u
ComFIS) > C(S) (m)

Finally, sinces > 0 is arbitrary, we get the desired lower bound with= Mo‘l.
To prove the upper Qound, l8t> 0. If (46) holds, then we may use Theo-
rem 8.1 to see that(¢, s, N, ;) < . Moreover, we have

1 v
cost, 5, N, 5)(e) < M7c(8) | | ——— ,
(n.s5, Nis)(€) 7¢(8) <M818 —8)

SetC, = M7 andC3 = Mgl. Choosings minimizing the right-hand side in these
inequalities, the desired result follows. O

The lower and upper bounds in Theorem 9.1 are very tight. For an erroelevel
and a constant, define the functio, : R™* — R** as

v
) Vé > 0,

ge.c(8) = c(8) ( -
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and set
8ic= 0<i5n<fc5 8e,c(9).

By Theorem 9.1, we see that
g;,‘k,cl = Comﬂs) = C2 g:,CZ'

This inequality allows us to determine the complexity for various cost functions
In particular, if the cost function(-) is differentiable, then the optimalmust sat-
isfy g; (8) =0, i.e., we must have

_<c®
c'(d)

= u(Ce — §). (47)
As a specific example, consider the cost functtéd) = §~, wherer > 0. We
find that fore > 0, the optimals is

Cute
8= ——, 48
ut+1 (48)

. 1+Mt t+1/p 1 t 1 t+1/1
Sec = c ut € ’

Thus we see that the optimétl is proportional tce, and that

1 t+1/p
compe) < (—) .

&

so that
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