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Abstract

We study the complexity of Fredholm problems(I − Tk)u = f of the
second kind on theId = [0, 1]d , whereTk is an integral operator with ker-
nel k. Previous work on the complexity of this problem has assumed either
that we had complete information aboutk or that k and f had the same
smoothness. In addition, most of this work has assumed that the informa-
tion aboutk andf was exact. In this paper, we assume thatk andf have
different smoothness; more precisely, we assume thatf ∈ Wr,p(Id) with
r > d/p and thatk ∈ Ws,∞(I2d) with s > 0. In addition, we assume that
our information aboutk andf is contaminated by noise. We find that the
nth minimal error is2(n−µ + δ), whereµ = min{r/d, s/(2d)} andδ is a
bound on the noise. We prove that a noisy modified finite element method
has nearly minimal error. This algorithm can be efficiently implemented us-
ing multigrid techniques. We thus find tight bounds on theε-complexity for
this problem. These bounds depend on the costc(δ) of calculating aδ-noisy
information value. As an example, if the cost of aδ-noisy evaluation is pro-
portional toδ−t , then theε-complexity is roughly(1/ε)t+1/µ.

∗This research was supported in part by the National Science Foundation under Grant CCR-99-
87858, as well as by a Fordham Univeristy Faculty Fellowship.

1



1 Introduction

We are interested in the worst case complexity of solving Fredholm problems of
the second kind

(I − Tk)u = f (1)

on the unit cubeI d = [0, 1]d , where

Tkv =
∫

I d

k(·, y)v(y) dy ∀ v ∈ Lp(I d)

for a continuous kernel functionk : I d × I d → R. Here,p ∈ [1,∞], and error is
measured in theLp(I d)-norm.

Previous work on this problem has either assumed that we have had complete
information aboutk, or thatk andf have had the same smoothness, see, e.g., [5],
[6], [8], [10], [14], [15, Sec. 6.3], and the references contained therein.

What happens when we weaken these assumptions? There are two issues to
deal with. First, we want to know where smoothness counts the most for Fredholm
problems, as we did in [16] for two-point boundary value problems. That is, we
would like to know which is more important—the smoothness of the kernel or of
the right-hand side—in determining the complexity. In addition, note that (with
the exception of [8]) the references listed above have all assumed that the available
information is exact. But in practice, information evaluations are often contami-
nated by noise [11]. Hence we wish to know how noisy information affects the
complexity, as well as which algorithms are optimal when the information is noisy.

In this paper, we study the worst case complexity of Fredholm problems under
the following assumptions:

1. The right-hand sidef belongs to the unit ball ofWr,p(I d), with r > d/p.

2. The kernelk belongs to a ball ofWs,∞(I 2d), and I − Tk is an invertible
operator onLp(I d).

3. Only noisy standard information is available. That is, for anyx, y ∈ I d , we
can only calculatef (x) or k(x, y) with error at mostδ, whereδ ∈ [0, 1] is a
known noise level.

We are able to determinern(δ), thenth minimal radius ofδ-noisy information,
i.e., the minimal error when we usen evaluations with a noise level ofδ. We find
that1

rn(δ) � n−µ + δ

1In this paper, we use4, <, and� to denoteO-, �-, and2-relations.
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with a proportionality factor independent ofn andδ, where

µ = min
{ r

d
,

s

2d

}
. (2)

Moreover, we describe an algorithm usingn evaluations with noise levelδ that
is a nearly-minimal error algorithm. This algorithm is a modified finite element
method (MFEM) using noisy information. The modification consists of replacing
the kernelk and the right-hand sidef that would appear in the “pure” finite el-
ement method by their piecewise-polynomial interpolants. Hence this algorithm
uses noisy standard information, rather than continuous linear information. We
shall refer to this algorithm as the “noisyMFEM.” This is, of course, a bit of a mis-
nomer, since the algorithm isn’t noisy (only the information is noisy); but “noisy
MFEM” is more succinct than “MFEM using noisy information.”

We also analyze the cost of the noisyMFEM. Let c(δ) denote the cost of evalu-
ating a function with a noise levelδ. Then the information cost of this algorithm is
c(δ) n.

Let us now discuss the combinatory cost of the noisyMFEM. This algorithm
requires the solution of ann × n linear system(A − B)u = f. Here,A is the Gram
matrix of the finite element space,B depends on the kernelk andf depends on the
right-hand sidef . If we were considering only a single fixed kernelk, then we
could precompute the LU-decomposition of the nonsingular matrixA − B, since
this is independent of any particularf . We could then ignore the cost of this
precomputation, considering it as a fixed overhead, since it need only be done once.
Even so, the combinatory cost of our algorithm would be2(n2), since the factors
of the LU-decomposition ofA − B are densen ×n triangular matrices. Of course,
things are much worse for our problem, since both the right-hand sidesf and the
kernelsk are varying. Clearly, the factorization ofA − B is no longer independent
of the problem element being considered, and so we would not be able to ignore
the O(n3)-cost of this factorization. Hence, we see that the combinatory cost of
the noisyMFEM would overwhelm the information cost asn grows large.

We can overcome this difficulty by using a two-grid implementation of the
noisy MFEM. This algorithm has the same order of error as the original noisy
MFEM, and its combinatory cost isO(n). Hence, we can calculate the two-grid
approximation using2(n) arithmetic operations, which is optimal.

Using these results, we can determine tight bounds on theε-complexity of the
Fredholm problem. There exist positive constantsC1, C2, andC3, independent
of ε, such that the problem complexity is bounded from below by

comp(ε) ≥ inf
0<δ<C1ε

{
c(δ)

⌈(
1

C1ε − δ

)1/µ
⌉}
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and from above by

comp(ε) ≤ C2 inf
0<δ<C3ε

{
c(δ)

⌈(
1

C3ε − δ

)1/µ
⌉}

.

These upper bounds are attained by two-grid implementations of the noisy modi-
fied FEM, with δ chosen to minimize the right-hand sides of the upper bound.

As a specific example, suppose thatc(δ) = δ−t for somet ≥ 0. We find that

comp(ε) �
(

1

ε

)t+1/µ

.

Thus we have found sharp bounds on theε-complexity.
How much do we lose when we go from exact information to noisy informa-

tion? Suppose once again thatc(δ) = δ−t for somet ≥ 0. Since exact information
is merely noisy information witht = 0, we see that the complexity for exact infor-
mation is proportional toc(1/ε)1/µ, wherec is the cost of one function evaluation.
For the sake of comparison, let us write the complexity for noisy information as
(1/ε)1/µ′

, where

µ′ = µ · 1

1 + tµ
.

Note that since the information is noisy, we havet > 0, and soµ′ < µ. Hence we
see that the complexity of our problem using noisy information of smoothness(r, s)

is the same as the complexity using exact information of lesser smoothness(r ′, s′),
wherer ′ = r/(1 + tµ) ands′ = s/(1 + tµ).

We now outline the rest of this paper. In Section 2, we precisely describe the
problem to be solved. In Section 3, we prove a lower bound on the minimal er-
ror using noisy information. It is easy to find a matching upper bound using the
general approach of interpolatory algorithms. However, this approach does not ad-
dress the issue of combinatory cost. Since the problem is nonlinear, it is unclear
whether there exists an interpolatory algorithm with (roughly) linear combinatory
cost. The remainder of this paper deals with showing that such an algorithm ex-
ists, and is given as a two-grid implementation of a noisy modified finite element
method (noisyMFEM). In Section 4, we define some useful finite element spaces,
which are used in Section 5 to define the noisyMFEM. In Section 6, we establish
an error bound for the noisyMFEM. In Section 7, we show that the noisyMFEM is a
minimal error algorithm. In Section 8, we describe the two-grid implementation of
the noisyMFEM, showing that its error is essentially the same as the noisyMFEM

itself, and that its combinatory cost is essentially optimal. Finally, in Section 9, we
determine theε-complexity of the noisy Fredholm problem.
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2 Problem description

In this section, we precisely describe the class of Fredholm problems whose solu-
tions we wish to approximate.

For an ordered ringR, we shall letR+ andR++ respectively denote the non-
negative and positive elements ofR. Hence (for example),Z+ denotes the set of
natural numbers (non-negative integers), whereasZ

++ denotes the set of strictly
positive integers. For a normed linear spaceX , we letBX denote the unit ball
of X . We assume that the reader is familiar with the standard concepts and nota-
tions involving Sobolev norms and spaces, as found in, e.g., [3].

We are givend ∈ Z
++ and p ∈ [1,∞], as well as real numbersr and s

satisfyingr > d/p ands > 0. Hence, the Sobolev spaceWr,p(I d) is embedded in
the spaceC(I d) of continuous functions, andWs,∞(I 2d) is embedded inC(I 2d),
by the Sobolev embedding theorem.

For k ∈ Ws,∞(I 2d), defineTk : Lp(I d) → Lp(I d) as

(Tkv)(x) =
∫

I d

k(x, y)v(y) dy ∀ x ∈ I d.

The operatorTk is compact, see, e.g., [4, pg. 518], and henceI −Tk is an invertible
operator onLp(I d) iff 1 is not an eigenvalue ofTk.

We are now ready to describe our class of problem elements. We first describe
the class of kernelsk. Let c1 > 0 andc2 > 1 be given. Then we letK = Kc1,c2

denote the class of all functionsk ∈ Ws,∞(I 2d) such that

‖k‖Ws,∞(I2d) ≤ c1

and
‖(I − Tk)

−1‖Lin[Lp(Id)] ≤ c2.

Here,‖ · ‖Lin[X ] is the usual operator norm. The class of right-hand sides will be
BWr,p(I d). Finally, we let

F = BWr,p(I d) × K .

be our class of problem elements.
We are now ready to define our solution operatorS : F → Lp(I d) as

S([f, k]) = (I − Tk)
−1f ∀ [f, k] ∈ F.

Henceu = S([f, k]) is the solution of (1) for [f, k] ∈ F .
We wish to calculate approximate solutions to this problem, using noisy stan-

dard information. To be specific, we will be using uniformly sup-norm-bounded
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noise. Our notation and terminology is essentially that of [11], although we some-
times use modifications found in [12].

Let δ ∈ [0, 1] be anoise level. For [f, k] ∈ F , we calculateδ-noisy information

z = [z1, . . . , zn(z)]

about [f, k]. Here, for each indexi ∈ {1, . . . , n(z)}, either

|zi − f (xi)| ≤ δ for xi ∈ I d ,

or

|zi − k(xi, yi)| ≤ δ for (xi, yi) ∈ I 2d.

The choice of whether to evaluatek or f at theith sample point, as well as the
choice of theith sample point itself, may be determined either nonadaptively or
adaptively. Moreover, the information is allowed to be of varying cardinality.

For [f, k] ∈ F , we letNδ([f, k]) denote the set of all suchδ-noisy informa-
tion z about [f, k], and we let

Z =
⋃

[f,k]∈F

Nδ([f, k])

denote the set of all possible noisy information values. Then analgorithm using
the noisy informationNδ is a mappingφ : Z → Lp(I d).

Remark.Note that the permissible information consists of function values off

andk. One could allow the evaluation of derivatives as well. We restrict ourselves
to function values alone, since this simplifies the exposition. There is no loss of
generality in doing this, since the results of this paper also hold if derivative evalu-
ations are allowed.

We want to solve the Fredholm problem in the worst case setting. This means
that thecardinality of informationNδ is given as

cardNδ = sup
z∈Z

n(z)

and theerror of an algorithmφ usingNδ is given as

e(φ, Nδ) = sup
[f,k]∈F

sup
z∈Nδ([f,k])

‖S([f, k]) − φ(z)‖Lp(Id).

As usual, we will need to know the minimal error achievable by algorithms
using specific information, as well as by algorithms using information of specified
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cardinality. Letn ∈ Z
+ andδ ∈ [0, 1]. If Nδ is δ-noisy information of cardinality

at mostn, then
r(Nδ) = inf

φ usingNδ

e(φ, Nδ).

is the radius of information, i.e., the minimal error among all algorithms using
given informationNδ. An algorithmφ∗ using Nδ is said to be anoptimal error
algorithm2 if

e(φ∗, Nδ) � r(Nδ),

the proportionality constant being independent ofn andδ. Thenth minimal radius

rn(δ) = inf{ r(Nδ) : cardNδ ≤ n },

is the minimal error among all algorithms usingδ-noisy information of cardinality
at mostn. Noisy informationNn,δ of cardinalityn such that

r(Nn,δ) � rn(δ),

the proportionality factor being independent of bothn and δ, is said to benth
optimal information. An optimal error algorithm usingnth optimal information is
said to be annth minimal error algorithm.

Next, we describe our model of computation. We will use the model found
in [11, Section 2.9]. (However, note that in the present paper, the accuracyδ is
the same for all noisy observations, whereasδ may differ from one observation to
another in [11].) Here are the most important features of this model:

1. For anyx ∈ I d and anyf ∈ Wr,p(I d), the cost of calculating aδ-noisy value
of f (x) is c(δ).

2. For any(x, y) ∈ I 2d and anyk ∈ K , the cost of calculating aδ-noisy value
of k(x, y) is c(δ).

3. Real arithmetic operations and comparisons are done exactly, with unit cost.

Here, the cost functionc : R
+ → R

++ is nonincreasing.
For any noisy informationNδ and any algorithmφ using Nδ, we shall let

cost(φ, Nδ) denote the worst case cost of computingφ(z)(x) for z ∈ Z andx ∈ I d .
We can decompose this as follows. Let

costinfo(Nδ) = sup
z∈Z

{cost of computingz}

2In this paper, we ignore constant multiplicative factors in our definitions of optimality. The more
fastidious may use the term “quasi-optimal” if they desire.
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denote the worst caseinformation cost. Note that ifNδ is information of cardinal-
ity n, then

costinfo(Nδ) ≥ c(δ) n.

Here, equality holds for nonadaptive information, but strict inequality can hold for
adaptive information, since we must be concerned with the cost of choosing each
new adaptive sample point. We also let

costcomb(φ, Nδ) = sup
z∈Z

sup
x∈I d

{cost of computingφ(z)(x), givenz ∈ Z}

denote the worst casecombinatory cost. Then

cost(φ, Nδ) ≤ costinfo(Nδ) + costcomb(φ, Nδ).

Now that we have defined the error and cost of an algorithm, we can finally
define the complexity of our problem. We shall say that

comp(ε) = inf{ cost(φ, Nδ) : Nδ andφ such thate(φ, Nδ) ≤ ε }

is theε-complexityof our problem. An algorithmφ using noisy informationNδ for
which

e(φ, Nδ) ≤ ε and cost(φ, Nδ) � comp(ε),

the proportionality factor being independent of bothδ andε, is said to be anoptimal
algorithm.

3 Lower bounds

In this section, we prove a lower bound on thenth minimal error usingδ-noisy
information.

Theorem 3.1. Recall from(2) that

µ = min
{ r

d
,

s

2d

}
.

There is a constantM0, independent ofn andδ, such that

rn(δ) ≥ M0(n
−µ + δ)

for all n ∈ Z
+ andδ ∈ [0, 1].
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Proof. We first claim that
rn(δ) < n−r/d + δ. (3)

Indeed, sinceT0 = 0, we find thatS([f, 0]) = f for all f ∈ Wr,p(I d). ThusAPP,
the problem of approximating functions fromBWr,p(I d) in theLp(I d)-norm, is a
special instance of our problem, and so

rn(δ) ≥ rn(δ; APP),

the latter denoting thenth minimal radius ofδ-noisy information forAPP. Clearly

rn(δ; APP) ≥ rn(0; APP). (4)

Moreover,
rn(0; APP) < n−r/d,

see, e.g., [9, pg. 34]. Hence

rn(δ; APP) < n−r/d. (5)

Thus, to establish (3), we only need to prove that

rn(δ; APP) < δ. (6)

Let Nδ be noisy information of cardinality at mostn. By the results in [11, Chapter
2.7], there exists nonadpative informationN

non
δ of cardinalityl′ such that

r(Nδ; APP) ≥ 1
2r(N

non
δ ; APP).

By [11, Lemma 2.8.2],
r(Nnon

δ ; APP) < δ.

Hence
r(Nδ; APP) < δ.

SinceNδ is arbitrary information of cardinality at mostn, we find that (6) holds.
Using (4)–(6), we find that (3) holds, as claimed.

We now claim that
rn(0) < n−s/2d (7)

holds. Our approach follows that outlined in [5, pp. 260–261].
Let

θ1 ∈ (c−1
2 , 1) and k0 = min

{
θ1c1, 1 − 1

θ1c2

}
,
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and define
f ∗ ≡ 1 and k∗ ≡ k0.

Now
‖k∗‖Ws,∞(I2d) = k0 < c1. (8)

It is easy to see that

‖Tk‖Lin[Lp(Id)] ≤ ‖k‖C(I2d) ∀ k ∈ K . (9)

In particular, we have
‖Tk∗‖Lin[Lp(Id )] ≤ k0 < 1,

so that

‖(I − Tk∗)−1‖Lin[Lp(Id)] ≤ 1

1 − k0
≤ θ1c2 < c2. (10)

From (8) and (10), we see thatk∗ ∈ K . Since it is clear thatf ∗ ∈ BWr,p(I d), we
find that [f ∗, k∗] ∈ F .

Let N be noiseless information of cardinality at mostn. Then we may write

N([f ∗, k∗]) = [z1, . . . , zl]

for somel ≤ n, where eachzi is an evaluation of eitherf ∗ or k∗. Suppose that
there arel′ evaluations ofk∗. Without loss of generality, we may assume that that
these evaluations have the form

zi = k∗(xi, yi) (1 ≤ i ≤ l′).

From [2] (see also [9, pg. 34]), we can find a functionw ∈ BWs,∞(I 2d) such that

0 ≤ w(x, y) ≤ k0 ∀ x, y ∈ I d,

w(xi, yi) = 0 (1 ≤ i ≤ l′),
‖w‖Ws,∞(I2d) = 1,∫

I2d

w(x, y) dx dy ≥ θ2

(l′)s/2d
,

whereθ2 is a positive constant that is independent of the points(xi, yi) and ofl′.
Let

θ3 = min{(1 − θ1)c1, 1 − c−1
2 − k0}.

Note that sinceθ1 < 1 andk0 ≤ 1−(θ1c2)
−1, we havek0 < 1−c−1

2 , and soθ3 > 0.
We define

k∗∗ = k0 + θ3w.
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We claim thatk∗∗ ∈ K . Indeed, we have

‖k∗∗‖Ws,∞(I2d) ≤ ‖k0‖Ws,∞(I2d) + θ3‖w‖Ws,∞(I2d) = k0 + θ3

≤ θ1c1 + θ3 ≤ c1.

Moreover,

‖Tk∗∗‖Lin[Lp(Id)] ≤ ‖Tk0‖Lin[Lp(Id)] + θ3‖Tw‖Lin[Lp(Id)] ≤ k0 + θ3 < 1, (11)

and thus

‖(I − Tk∗∗)−1‖Lin[Lp(Id )] ≤ 1

1 − (k0 + θ3)
≤ c2.

Hence,k∗∗ ∈ K .
Letting f ∗ ≡ 1, we let

u∗ = S([f ∗, k∗]) and u∗∗ = S([f ∗, k∗∗]).

Since

[f ∗, k∗], [f ∗, k∗∗] ∈ F with N([f ∗, k∗]) = N([f ∗, k∗∗]),

we have
r(N) ≥ 1

2‖u∗ − u∗∗‖Lp(Id), (12)

see, e.g., [13, pp. 45, 49].
We claim thatu∗∗ > 1 onI d . Indeed, since (11) holds, the Neumann series

(I − Tk∗∗)−1 =
∞∑

j=0

T
j

k∗∗

converges in Lin[Lp(I d)]. Now

T
j

k∗∗ = Tk∗∗
j

forj ≥ 1,

where{k∗∗
j }∞

j=1 is defined inductively as

k∗∗
j (x, y) =




k∗∗(x, y) if j = 1,∫
I d

k∗∗(x, t) k∗∗
j−1(t, y) dt if j ≥ 2

∀ x, y ∈ I d.

Hence

u∗∗ =
∞∑

j=0

T
j

k∗∗f
∗.
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By induction, we find that

k∗∗
j (x, y) ≥ k

j

0 ∀ x, y ∈ I d,∀j ≥ 1,

and thus forx ∈ I d , we have

u∗∗(x) = 1 +
∞∑

j=1

∫
I d

k∗∗
j (x, y) dy ≥ 1 +

∞∑
j=1

k
j

0 = 1

1 − k0
> 1,

as claimed.
Hence

u∗∗(x) − u∗(x) = k0

∫
I d

[u∗∗(y) − u∗(y)] dy + θ3

∫
I d

w(x, y)u∗∗(y) dy.

Sinceu∗∗ > 1 onI d andw > 0 onI 2d , we find that

(1 − k0)

∫
I d

[u∗∗(x) − u∗(x)] dx = θ3

∫
I2d

w(x, y)u∗∗(y) dy dx

> θ3

∫
I2d

w(x, y) dy dx

≥ θ2θ3

(l′)s/2d
≥ θ2θ3

ns/2d
,

the latter sincel′ ≤ n. By Minkowski’s inequality, we have

(1 − k0)

∫
I d

[u∗∗(x) − u∗(x)] dx ≤ (1 − k0)‖u∗∗ − u∗‖Lp(Id).

Using the last two inequalities and (12), we get

r(N) ≥ θ2θ3

2(1 − k0)ns/2d
.

SinceN is arbitrary information of cardinality at mostn, the inequality (7) holds,
as claimed.

From (3), we see that
rn(δ) < δ,

which, together with (7), implies that

rn(δ) < n−s/2d + δ.

The theorem now follows immediately from this inequality and (3).
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4 Some finite element spaces

Now that we have a lower bound on thenth minimal radius for our problem, the
next task will be to find a matching upper bond and annth minimal error algorithm.
This algorithm will be a modified finite element method using noisy information.
Before describing the algorithm, we need to define some finite element spaces.

In what follows, our notation is based on the standard one found in, e.g., [3]
and [15, Chapter 5].

Let m ∈ Z
+. ForK ⊆ R

d , let

Qm(K) =
{ ∑

0≤α1,...,αd≤m

aαx
α : x ∈ K

}

denote the polynomials of degree at mostm in each variable, with the domain
restricted toK. Here, we recall thatxα = x

α1
1 . . . x

αd

d for any multi-indexα =
(α1, . . . , αd). ClearlyQm(K) is a function space overK, with

dimQm(K) = (m + 1)d .

In particular, we note that the spaceQm(I d) has a basis{ŝ1, . . . , ŝa} consisting of
tensor products. More precisely, let

p̂i(ξ̂ ) =
∏

0≤j≤m
j 6=i

ξ̂ − ξ̂j

ξ̂i − ξ̂j

, (0 ≤ i ≤ m)

be the usual one-dimensional Lagrange basis polynomials, where 0< ξ̂1 < · · · <

ξ̂m < 1. Let{α(i)}(m+1)d

i=1 be an enumeration of the multi-indicesα ∈ (Z+)d satisfy-
ing max1≤j≤d αj ≤ m; we writeα(i) = (α

(i)

1 , . . . , α
(i)
d ). We can set

ŝi(ξ̂1, . . . , ξ̂d ) =
d∏

j=1

p̂
α

(i)
j

(ξ̂j )

and
x̂i =

(
ξ̂ α(i)

1 , . . . , ξ̂ α(i)

d

)
.

Then{ŝ1, . . . , ŝ(m+1)d } is a basis forQm(I d) such that

ŝj (x̂i) = δi,j for 1 ≤ i, j ≤ (m + 1)d.
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Associated with the spaceQm(I d), we have an interpolation operator5̂ : C(I d) →
Qm(I d) defined as

5̂v̂ =
(m+1)d∑

i=1

v̂(x̂i )ŝi ∀ v̂ ∈ C(I d).

Now let K be a cube inRd whose sides are parallel to the coordinate axes.
ThenK can be written as the image ofI d under an affine bijectionFK : I d → K

having the form
FK(x̂) = hKx̂ + bK ∀ x̂ ∈ I d,

wherehK is the length of any side ofK andbK is the element inK closest to the ori-
gin, i.e., the smallest corner ofK. We get a basis{s1,K, . . . , s(m+1)d ,K} for Qm(K)

by taking
sj,K = ŝj B F−1

K ,

that is,

sj,K(x) = ŝj (x̂) wherex̂ = F−1
K (x) = x − bK

hK

,

for 1 ≤ j ≤ (m + 1)d . Defining

xj,K = FK(x̂j ) for 1 ≤ j ≤ (m + 1)d ,

we find that
sj,K(xi,K) = δi,j for 1 ≤ i, j ≤ (m + 1)d.

Associated with the polynomial spaceQm(K), we have an interpolation operator
5K : C(K) → Qm(K) defined as

5Kv =
(m+1)d∑

j=1

v(xj,K)sj,K ∀ v ∈ C(K),

so that

(5Kv)(x) = (5̂v̂)(x̂) for v̂ = v B FK andx̂ = F−1
K (x).

We are finally ready to define finite element spaces. Chooseh > 0 such that
1/h is an integer. LetQh be a decomposition ofI d into congruent cubes whose
sides parallel the coordinate axes and have lengthh. Then

Sh =
{

I d v−→ R : v

∣∣∣
K

∈ Qm(K) for K ∈ Qh

}
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is our finite element space. Note that since|Qh| = h−d , we have

nh := dimSh =
(

m + 1

h

)d

. (13)

We now construct a basis{s1, . . . , snh
} for Qh. Let bK1, . . . , bK

h−d
be an enumera-

tion of the points{bK}K∈Qh
by lexicographic ordering. This induces an enumera-

tion K1, . . . , Kh−d of the cubesK ∈ Qh. We then let

sh−d (i−1)+j = si,Kj
for 1 ≤ j ≤ h−d , 1 ≤ i ≤ (m + 1)d ,

with eachsi,K being extended fromK to I d as being zero outsideK. Analogously,
we let

xh−d (i−1)+j = xi,Kj
for 1 ≤ j ≤ h−d, 1 ≤ i ≤ (m + 1)d .

We then find that
sj (xi) = δi,j for 1 ≤ i, j ≤ nh.

Associated with the finite element spaceSh, we have an interpolation operator
5h : C(I d) → Sh, defined as

5hv =
∑

K∈Qh

5Kv ∀ v ∈ C(I d),

where each5Kv is extended fromK to I d as being zero outsideK. Alternatively,
we may write

5hv =
nh∑

j=1

v(xj )sj ∀ v ∈ C(I d).

We have a second interpolation operator5h⊗h : C(I 2d) → Sh ⊗ Sh, defined as

(5h⊗hv)(x, y) = 5h

[
x 7→ 5h

(
y 7→ v(x, y)

)]
=

nh∑
i,j=1

v(xi, xj )sj (y)si (x)

for x, y ∈ I d andv ∈ C(I 2d).

Remark. In the sequel, we shall often writesi,h andxj,h rather thansi andxj , to
indicate their dependence onh.

We now present some standard error estimates, which will be useful in the
sequel.
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Lemma 4.1. Let t ≥ 0 and q ∈ [1,∞]. There existsM1 > 0 such that the
following hold:

1. Letv ∈ Wt,q(I d). Then

‖v − 5hv‖Lq(Id) ≤ M1h
min{m+1,t}‖v‖Wt,q (I d).

2. Letw ∈ Wt,q(I 2d). Then

‖w − 5h⊗hw‖Lq(I2d) ≤ M1h
min{m+1,t}‖w‖Wt,q (I2d).

Proof. ForK ⊆ R
d , let

Pm(K) =
{ ∑

|α|≤m

aαx
α : x ∈ K

}

denote the polynomials of total degree at mostm. SincePm(I d) ⊆ Qm(I d), we
see that5̂v̂ = v̂ for all v ∈ Pm(I d). Hence the local estimates of [3, pp. 118–122]
hold. Since there are no inter-element continuity relations to deal with, the global
estimates of [3] hold as well. This suffices to establish the lemma.

Let h > 0. Recall that the mappingPh : L2(I
d) → L2(I

d), defined as

〈Phv,w〉 = 〈v,w〉 ∀ v ∈ L2(I
d), w ∈ Sh, (14)

is theorthogonal projectorof L2(I
d) ontoSh. Here,〈·, ·〉 is the standard duality

pairing

〈v,w〉 =
∫

I d

v(x)w(x) dx ∀ v ∈ Lp(I d), w ∈ Lp′(I d),

with
p′ = p

p − 1

denoting the exponent conjugate top. It is well-known thatPh is a self-adjoint
operator with rangeSh and unit norm. The next lemma shows that{Ph}h>0 is
uniformly bounded in the otherLq(I

d)-norms.

Lemma 4.2. Letq ∈ [1,∞]. There existsπq > 0 such that for anyh > 0,

‖Phv‖Lq(Id ) ≤ πq‖v‖Lq(Id) ∀ v ∈ Lq(I
d).

Proof. See, e.g., [15, pp. 177-178], and the references cited therein.
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5 The noisy modifiedFEM

We now define the noisy modified finite element method (noisyMFEM). This is
an algorithm using information consisting of noisy function evaluations. As men-
tioned in the Introduction, it would be somewhat more accurate to describe this
method as the “MFEM using noisy information,” but the conciseness of “noisy
MFEM” outweighs its mild inaccuracy.

The easiest way to describe the noisyMFEM is by following three steps. First,
we describe the pure finite element method, which uses inner product information.
Next, we describe the noise-freeMFEM, which uses noise-free standard informa-
tion. Finally, we describe the noisyMFEM, which uses noisy standard information.

We first recall how the pure finite element method is defined. Let [f, k] ∈ F

andh > 0. Then the purefinite element method(pure FEM) consists of finding
uh ∈ Sh such that

B(uh,w; k) = 〈f,w〉 ∀ w ∈ Sh,

where

B(v,w; k) = 〈(I − Tk)v,w〉 ∀ v ∈ Lp(I d), w ∈ Lp′(I d).

Alternatively, we have
(I − PhTk)uh = Phf.

If we write

uh(x) =
nh∑

j=1

υj sj,h(x) ∀ x ∈ I d,

then we see that the vectoru = [υ1, . . . , υnh
]T is the solution of the linear system

(A − B)u = f ,

where

ai,j = 〈sj,h, si,h〉 and bi,j = 〈Tksj.h, si,h〉 for 1 ≤ i, j ≤ nh

and
f = [〈f, s1,h〉 . . . 〈f, snh,h〉]T .

Of course, the pureFEM requires the calculation of〈f, si〉 and〈Tksj , si〉. These
are weighted integrals off andk. Since we are only using (noisy) standard infor-
mation, such information aboutf andk is not available to us. Instead, we replace
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f andk by their interpolants. This gives us an approximation, the modifiedMFEM,
that uses only standard information.

More precisely, leth, h̄ > 0. For [f, k] ∈ F , we define

Bh̄(v,w; k) = B(v,w;5h̄⊗h̄k) ∀ v ∈ Lp(I d), w ∈ Lp′(I d)

and let
fh(w) = 〈5hf,w〉 ∀ w ∈ Lp′(I d).

Note that forv ∈ Lp′(I d) andw ∈ Lp′(I d), we have

〈T5h̄⊗h̄kv, w〉 =
nh∑

i,j=1

k(xi,h̄, xj,h̄)〈sj,h̄, v〉〈si,h̄, w〉,

so that

Bh̄(v,w; k) = 〈v,w〉 −
nh∑

i,j=1

k(xi,h̄, xj,h̄)〈sj,h̄, v〉〈si,h̄, w〉.

Moreover

fh(w) =
nh∑

j=1

f (xj,h)〈sj,h, w〉 ∀ w ∈ Lp′(I d).

Themodified finite element method(MFEM) consists of findinguh,h̄ ∈ Sh such that

Bh̄(uh,h̄, w; k) = fh(w) ∀ w ∈ Sh.

If we write

uh,h̄(x) =
nh∑

j=1

υj sj,h(x) ∀ x ∈ I d,

then we see that the vectoru = [υ1, . . . , υnh
]T is the solution of the linear system

(A − B)u = f.

Here

ai,j = 〈sj,h, si,h〉 and bi,j = 〈T5h̄⊗h̄ksj,h, si,h〉 for 1 ≤ i, j ≤ nh,

and
f = [fh(s1,h) . . . fh(snh,h)]

T .

Of course, theMFEM uses noise-free information. If we allow noisy evaluations
in theMFEM, we get the noisyMFEM. More precisely, leth, h̄, δ > 0. For [f, k] ∈
F , we calculate

f̃i,δ ∈ R such that|f (xi,h) − f̃i,δ| ≤ δ for 1 ≤ i ≤ nh,
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and

k̃i,j,δ ∈ R such that|k(xi,h, xj,h) − k̃i,j,δ | ≤ δ for 1 ≤ i, j ≤ nh̄.

Let

Tk;h̄,δv =
nh̄∑

i,j=1

k̃i,j,δ〈sj,h̄, v〉si,h̄ ∀ v ∈ Lp(I d).

and

5h,δf =
nh∑

j=1

f̃j,δsj,h.

For k ∈ K , define a bilinear formBh̄,δ(·, ·; k) approximatingBh̄(·, ·; k) as

Bh̄,δ(v,w; k) = 〈v − Tk;h̄,δv, w〉 ∀ v ∈ Lp(I d), w ∈ Lp′(I d)

and a linear formfh,δ approximatingfh as

fh,δ(w) = 〈5h,δf,w〉 ∀ w ∈ Lp′(I d).

Thenoisy modified finite element method(noisyMFEM) consists of findinguh,h̄,δ ∈
Sh such that

Bh̄,δ(uh,h̄,δ, w; k) = fh,δ(w) ∀ w ∈ Sh.

Writing

uh,h̄,δ(x) =
nh∑

j=1

υj sj,h(x) ∀ x ∈ I d,

we see that the vectoru = [υ1, . . . , υnh
]T is the solution of the linear system

(A − B)u = f. (15)

Here

ai,j = 〈sj,h, si,h〉 and bi,j = 〈Tk;h̄,δsj,h, si,h〉 for 1 ≤ i, j ≤ nh,

and
f = [fh,δ(s1,h) . . . fh,δ(snh,h)]

T .

Let
Nh,h̄,δ([f, k]) = [Nh,δ(f ), Nh̄,δ(k)],

where
Nh,δ(f ) = [f̃1,δ, . . . , f̃nh,δ]
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and
Nh̄,δ(k) = [N

(1)

h̄,δ(k), . . . , N
(nh̄)

h̄,δ
(k)],

with
N

(i)

h̄,δ(k) = [k̃i,1,δ, . . . , k̃i,nh̄,δ] for 1 ≤ i ≤ nh̄.

If uh,h̄,δ is well-defined, then we can write

uh,h̄,δ = φh,h̄,δ

(
Nh,h̄,δ([f, k])

)
,

where

cardNh,h̄,δ = n2
h̄
+ nh =

(
m + 1

h̄

)2d

+
(

m + 1

h

)d

� h̄ −2d + h−d.

6 Error analysis of the noisy modifiedFEM

In this section, we establish an error bound for the noisy modifiedFEM. We do this
as follows. First, we establish the uniform weak coercivity of the bilinear forms
B(·, ·; k) for k ∈ K . Once we know that the bilinear forms are uniformly weakly
coercive, we can obtain an error estimate by using Strang’s lemma (see below). The
remaining task is then to estimate the various terms appearing in Strang’s lemma.

So, the first task is to establish uniform weak coercivity. Before doing so, we
establish two auxiliary lemmas.

The first lemma shows that the inverses of certain operators are uniformly
bounded. Let

h0 =
(

1

2c1c2M1

)1/ min{m+1,s}
.

Recall that theadjoint of a linear transformationA : Lp(I d) → Lp(I d) of normed
linear spaces is the linear operatorA∗ : Lp′(I d) → Lp′(I d) satisfying

〈A∗v,w〉 = 〈v,Aw〉 ∀ v ∈ Lp(I d), w ∈ Lp′(I d).

In particular, for anyk ∈ K , we have

(T ∗
k w)(y) =

∫
I d

k(x, y)w(x) dx ∀ w ∈ Lp′(I d).

Lemma 6.1. Leth ∈ (0, h0] andk ∈ K . ThenI −T ∗
5h⊗hk is invertible onLp′(I d),

with
‖(I − T ∗

5h⊗hk)
−1‖Lin[Lp′ (I d)] ≤ 2c2.
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Proof. Let h ∈ (0, h0] and k ∈ K . Note that since(A∗)−1 = (A−1)∗ for any
invertible linear transformationA, we find thatI − T ∗

k is invertible and

‖(I − T ∗
k )−1‖Lin[Lp′ (I d)] ≤ c2.

Let us write
I − T ∗

5h⊗hk = (I − T ∗
k ) + T ∗

k−5h⊗hk.

From (9) and Lemma 4.1, along with the definition of the classK , we find

‖T ∗
k−5h⊗hk‖Lin[Lp′ (I d)] ≤ ‖k − 5h⊗hk‖L∞(I2d) ≤ M1h

min{m+1,s}‖k‖Ws,∞(I2d)

≤ M1h
min{m+1,s}
0 · c1 = 1

2c2
,

and so

‖T ∗
k−5h⊗hk‖Lin[Lp′ (I d)]‖(I − T ∗

k )−1‖Lin[Lp′ (I d)] ≤ 1

2c2
· c2 = 1

2.

From this inequality and [7, Lemma 1.3.14] we see thatI − T ∗
5h⊗hk is invertible,

with

‖(I − T ∗
5h⊗hk)

−1‖Lin[Lp′ (I d)] ≤
‖(I − T ∗

k )−1‖Lin[Lp′ (I d)]

1 − ‖T ∗
k−5h⊗hk‖Lin[Lp′ (I d)]‖(I − T ∗

k )−1‖Lin[Lp′ (I d)]

≤ 2c2,

as required.

Remark.Note thatT ∗
5h⊗hk : Sh → Sh. Hence ifh ∈ (0, h0], the mappingI −

T ∗
5h⊗hk is an invertible linear operator onSh.

Our second auxiliary lemma shows that certain inner products can be bounded
from below by products of norms.

Lemma 6.2. Let v ∈ Lp(I d) be nonzero. For anyτ ∈ (0, ‖v‖Lp(Id)), there is a
nonzero functiong ∈ Lp′(I d) such that

〈v, g〉 ≥ (‖v‖Lp(Id) − τ)‖g‖Lp′ (I d ).

Proof. Suppose first thatp < ∞. Let g = (sgnv)|v|p−1. Theng is nonzero, with

〈v, g〉 = ‖v‖Lp(Id)‖g‖Lp′ (I d),
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which is a stronger result than that which we want to prove. Hence it only remains
to show that the lemma holds whenp = ∞. We use an idea found on [1, pg. 26].
For τ ∈ (0, ‖v‖L∞(I d)), let

E = { x ∈ I d : |v(x)| > ‖v‖L∞(I d ) − τ }.

From the definition of the essential supremum, measE > 0. Letg = (sgnv)χE be
the characteristic function ofE. Theng is a nonzero function, with

‖g‖L1(I
d) =

∫
I d

χE(x) dx = measE.

Hence we have

〈v, g〉 =
∫

E

|v(x)| dx ≥ (‖v‖L∞(I d) − τ) measE = (‖v‖L∞(I d) − τ)‖g‖L1(I
d).

Hence the lemma holds whenp = ∞.

Let
p′ = p

p − 1

denote the exponent conjugate top. We are now ready to prove uniform weak
coercivity of the bilinear formsB(·, ·; k) over allk ∈ K .

Lemma 6.3. There existh1 > 0 andγ > 0 such that the following holds: for any
k ∈ K , anyh ∈ (0, h1], and anyv ∈ Sh, there exists nonzerow ∈ Sh such that

B(v,w; k) ≥ γ ‖v‖Lp(Id)‖w‖Lp′ (I d). (16)

Proof. Let k ∈ K andh ∈ (0, h0]. Let v ∈ Sh. If v = 0, then this inequality
holds for any nonzerow ∈ Sh. So we may restrict our attention to the casev 6= 0.

By Lemma 6.2, there exists nonzerog ∈ Lp′(I d) such that

〈v, g〉 ≥ 1
2‖v‖Lp(Id)‖g‖Lp′ (I d ).

Recalling the definition of the orthogonal projectorPh from (14) and using the
remark following Lemma 6.1, we see that

w = (I − T ∗
5h⊗hk)

−1Phg

is a well-defined element ofSh. Sincev ∈ Sh, we clearly have

〈v, (I − T ∗
5h⊗hk)w〉 = 〈v, g〉 ≥ 1

2‖v‖Lp(Id)‖g‖Lp′ (I d).
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Moreover, from Lemmas 4.2 and 6.1, we have

‖w‖Lp′ (I d) ≤ ‖(I − T ∗
5h⊗hk)

−1‖Lin[Lp′ (I d)]‖Phg‖Lp′ (I d)

≤ 2c2‖Phg‖Lp′ (I d ) ≤ 2πp′c2‖g‖Lp′ (I d).

Hence

〈(I − T5h⊗hk)v,w〉 = ‖v‖Lp(Id)‖g‖Lp′ (I d) ≥ 1

4πp′c2
‖v‖Lp(Id)‖w‖Lp′ (I d).

Sinceg andv are nonzero, this inequality implies that〈(I−T5h⊗hk)v,w〉 is nonzero.
Since the latter is linear inw, we see thatw 6= 0.

Using (9) and Lemma 4.1, we find

|〈Tk−5h⊗hkv,w〉| ≤ ‖Tk−5h⊗hkv‖Lin[Lp(Id)]‖w‖Lin[Lp′ (I d)]

≤ ‖k − 5h⊗hk‖L∞(I2d)‖v‖Lin[Lp(Id)]‖w‖Lin[Lp′ (I d)]

≤ M1h
min{m+1,s}‖k‖Ws,∞(I2d)‖v‖Lin[Lp(Id)]‖w‖Lin[Lp′ (I d)]

≤ c2M1h
min{m+1,s}‖v‖Lin[Lp(Id)]‖w‖Lin[Lp′ (I d)].

Hence

B(v,w; k) = 〈(I − T5h⊗hk)v,w〉 − 〈Tk−5h⊗hkv,w〉

≥
[

1

4πp′c2
− c2M1h

min{m+1,s}
]

‖v‖Lin[Lp(Id)]‖w‖Lin[Lp′ (I d)] .

Letting

h1 = min

{(
1

8πp′c2
2M1

)1/ min{m+1,s}
, h0

}

and

γ = 1

8πp′c2
,

we see that the desired estimate (16) holds forh ∈ (0, h1].

Since the bilinear formsB(·, ·; k) are uniformly weakly coercive fork ∈ K ,
we haveStrang’s lemma:

Lemma 6.4. Suppose there existδ0 ∈ (0, 1] andh2 ∈ (0, h1] such that the follow-
ing holds: for anyδ ∈ [0, δ0], anyh, h̄ ∈ (0, h2], and anyk ∈ K , we have

|B(v,w; k) − Bh̄,δ(v,w; k)| ≤ 1
2γ ‖v‖Lp(Id)‖w‖Lp′ (I d) ∀ v,w ∈ Sh,

whereγ is as in Lemma6.3. Then there existsM2 > 0 such that the following hold
for anyδ ∈ [0, δ0] and anyh, h̄ ∈ (0, h2]:
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1. The noisy modifiedFEM is well-defined. That is, there exists a uniqueuh,h̄,δ ∈
Sh such that

Bh̄,δ(uh,h̄,δ, w) = fh,δ(w) ∀ w ∈ Sh.

2. Letu = S([f, k]). Then

‖u − uh,h̄,δ‖Lp′ (I d) ≤ M2 inf
v∈Sh

[
‖u − vh‖Lp(Id)

+ sup
w∈Sh

(
|B(v,w; k) − Bh̄,δ(v,w; k)|

‖w‖Lp′ (I d)

+ |〈f,w〉 − fh,δ(w)|
‖w‖Lp′ (I d)

)]
. (17)

We now estimate the quantities appearing on the right-hand side of (17).

Lemma 6.5. There existsM3 > 0 such that

|B(v,w; k) − Bh̄,δ(v,w; k)| ≤ M3(h̄
min{m+1,s} + δ)‖v‖Lp(Id)‖w‖Lp′ (I d)

for any positiveh, h̄, andδ, for anyk ∈ K , and for anyv,w ∈ Sh.

Proof. Choose positiveh, h̄, andδ, along withk ∈ K andv,w ∈ Sh. Then

|B(v,w; k) − Bh̄,δ(v,w; k)| ≤ |A1| + |A2|, (18)

where
A1 = B(v,w; k) − B(v,w;5h̄⊗h̄k) = 〈Tk−5h̄⊗h̄kv, w〉

and

A2 = B(v,w;5h̄⊗h̄k) − Bh̄,δ(v,w; k)| = 〈(T5h̄⊗h̄k − Tk;h̄,δ)v,w〉.

We first estimate|A1|. Using (9) and Lemma 4.1, we find

|A1| ≤ ‖Tk−5h̄⊗h̄k‖Lin[Lp(Id)]‖v‖Lp(Id)‖w‖Lp′ (I d)

≤ ‖k − 5h̄⊗h̄k‖L∞(I2d)‖v‖Lp(Id)‖w‖Lp′ (I d)

≤ c1M1 h̄ min{m+1,s}‖v‖Lp(Id)‖w‖Lp′ (I d).

(19)

To estimate|A2|, let

ζ(x, y) =
nh̄∑

i,j=1

(
k(xi,h̄, xj,h̄) − k̃i,j,δ

)
sj,h̄(y)si,h̄(x).
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Then

|A2| ≤
∣∣∣∣
∫

I d

∫
I d

ζ(x, y)v(y)w(x) dy dx

∣∣∣∣
≤ sup

x,y∈I2d

|ζ(x, y)|
∫

I d

|v(y)| dy

∫
I d

|w(x)| dx

≤ ‖ζ‖L∞(I2d)‖v‖Lp(Id)‖w‖Lp′ (I d).

(20)

Now for x ∈ I d , define supp̄h x as

i ∈ supp̄h x iff i ∈ {1, . . . , nh̄} andx is in the support ofsi,h̄. (21)

By construction of the basis functions forSh̄, there exists positive constantsσ1

andσ2, independent ofx, j , andh̄, such that

| supp̄h x| ≤ σ1. (22)

and
‖sj,h̄‖L∞(I d) ≤ σ2. (23)

Hence for anyx, y ∈ I d , we have

|ζ(x, y)| ≤
∑

i∈supp̄h x

j∈supp̄h y

∣∣∣k(xi,h̄, xj,h̄) − k̃i,j,δ

∣∣∣ |sj,h̄(y)| |si,h̄(x)|

≤ σδ sup
1≤j≤nh̄

‖sj,h̄‖2
L∞(I d)

≤ σ1σ
2
2 δ.

Sincex, y ∈ I d are arbitrary, we thus have

‖ζ‖L∞(I2d) ≤ σ1σ
2
2 δ. (24)

Using this inequality in (20), we obtain

|A2| ≤ σ1σ
2
2 δ ‖v‖Lp(Id)‖w‖Lp′ (I d).

Combining this result with (20), recalling the decomposition (18), and letting

M3 = max{c1M1, σ1σ
2
2 },

we obtain the desired result.

Lemma 6.6. There existsM4 > 0 such that

|〈f,w〉 − fh,δ(w)| ≤ M4(h
min{m+1,r} + δ)‖w‖Lp′ (I d)

for any positiveh andδ, for anyf ∈ BWr,p(I d), and for anyw ∈ Sh.
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Proof. Choose positiveh andδ, along withf ∈ BWr,p(I d) andw ∈ Sh. Then

|〈f,w〉 − fh,δ(w)| ≤ |A3| + |A4|, (25)

where
A3 = 〈f − 5hf,w〉

and

A4 =
〈
5hf −

nh∑
j=1

f̃j,δsj,h, w

〉
.

We first estimate|A3|. Using Lemma 4.1, we have

|A3| ≤ ‖f − 5hf ‖Lp(Id )‖w‖Lp′ (I d) ≤ M1h
min{m+1,r}‖w‖Lp′ (I d). (26)

We now estimate|A4|. We find

|A4| ≤
∥∥∥∥

nh∑
j=1

[f (xj,h) − f̃j,δ]sj,h

∥∥∥∥
Lp(Id)

‖w‖Lp′ (I d)

≤ δ

∥∥∥∥
nh∑

j=1

|sj,h|
∥∥∥∥

Lp(Id)

‖w‖Lp′ (I d).

Now ∥∥∥∥
nh∑

j=1

|sj,h|
∥∥∥∥

Lp(Id)

≤
∥∥∥∥

nh∑
j=1

|sj,h|
∥∥∥∥

L∞(I d)

.

But for anyx ∈ I d , we may use (21)–(23) to see that

nh∑
j=1

|sj,h(x)| =
∑

j∈supp̄h x

|sj,h(x)| ≤ σ1σ2,

and thus
|A4| ≤ σ1σ2δ.

Using this inequality, along with (26), in (25), and setting

M4 = max{M1, σ1σ2},

the desired result follows immediately.

The final preparatory step is to prove a “shift theorem,” which relates the
smoothness of(I − Tk)

−1 to the smoothnesses off and ofk.
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Lemma 6.7. Let0 ≤ t ≤ min{r, s}. For k ∈ K andf ∈ Wt,p(I d), we have

‖(I − Tk)
−1‖Lin[Wt,p(I d)] ≤ 1 + c2c3,

where

c3 =



(

d + s

d

)1/p

c1 if p < ∞,

c1 if p = ∞.

(27)

Proof. Let k ∈ K . First, we show that

‖Tk‖Lin[Lp(Id),Ws,p(I d)] ≤ c3, (28)

with ‖ · ‖Lin[Lp(Id),Ws,p(I d)] denoting the usual operator norm. We shall prove only
the casep < ∞, the casep = ∞ being analogous. Letα be a multi-index of order
at mosts. Then for anyv ∈ Lp(I d), we have

|(∂αTkv)(x)| =
∣∣∣∣
∫

I d

∂α
x k(x, y)v(y) dy

∣∣∣∣
≤ sup

y∈I d

|∂α
x k(x, y)|‖v‖Lp(Id)

≤ ‖k‖Ws,∞(I2d)‖v‖Lp(Id),

so that
‖∂αTkv‖Lp(Id) ≤ ‖k‖Ws,∞(I2d)‖v‖Lp(Id ).

Sinceα is an arbitrary multi-index of order at mosts in d variables, we obtain

‖Tkv‖Ws,p(I d) =
[∑

|α|≤s

‖∂αTkv‖Lp(Id)

]1/p

≤
(

d + s

s

)1/p

‖k‖Ws,∞(I2d)‖v‖Lp(Id),

from which the desired result (28) follows.
Now letf ∈ Wt,p(I d), and setu = (I − Tk)

−1f . Sinceu = f + Tku, we get

‖u‖Wt,p(I d) ≤ ‖f ‖Wt,p(I d ) + ‖Tku‖Wt,p(I d).

Now
‖Tku‖Wt,p(I d) ≤ ‖Tk‖Lin[Lp(Id),Wt,p(I d)]‖u‖Lp(Id)

≤ ‖Tk‖Lin[Lp(Id),Ws,p(I d)]‖u‖Lp(Id)

≤ c3‖u‖Lp(Id)

≤ c3‖(I − Tk)
−1‖Lin[Lp(Id)]‖f ‖Lp(Id)

≤ c2c3‖f ‖Lp(Id).
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Hence

‖(I − Tk)
−1f ‖Wt,p(I d) ≤ ‖f ‖Lp(Id) + c2c3‖f ‖Lp(Id) = (1 + c2c3)‖f ‖Lp(Id),

which establishes the desired result.

We are now ready to show that the noisy modifiedFEM is well-defined, as well
as to establish an upper bound on its error.

Theorem 6.1. Let the degreem of the finite element spacesSh andSh̄ be chosen
as

m = min{r, s} − 1.

Choose positiveh2 andδ0 such that

M3(h
s
2 + δ0) ≤ 1

2γ. (29)

Then there existsM5 > 0 such that the following hold forh ∈ (0, h1], h̄ ∈ (0, h2],
andδ ∈ [0, δ0]:

1. The noisy modifiedFEM is well-defined.

2. We have the error bound

e(φh,h̄,δ, Nh,h̄,δ) ≤ M5(h
min{r,s} + h̄ s + δ).

Proof. Let h ∈ (0, h1], h̄ ∈ (0, h2], andδ ∈ [0, δ0]. Using Lemmas 6.4 and 6.5,
we see that the noisy modifiedFEM is well defined. It only remains to establish the
error bound.

For [f, k] ∈ F , let u = S([f, k]) anduh,h̄,δ = φh,h̄,δ

(
Nh,h̄,δ([f, k])

)
. Using

Lemmas 4.1 and 6.7, and setting

C4 = M2(1 + c2c3),

we find
‖u − 5hu‖Lp(Id) ≤ M1h

min{r,s}‖u‖Wmin{r,s},p (I d)

≤ M1(1 + c2c3)h
min{r,s}‖f ‖Wmin{r,s},p (I d)

≤ C4h
min{r,s}.

(30)

Now letw ∈ Sh. By the definition ofc2, we find

‖5hu‖Lp(Id) ≤ ‖u − 5hu‖Lp(Id) + ‖u‖Lp(Id)

≤ C4h
min{r,s}
p + c2‖f ‖Lp(Id) ≤ C4 + c2,
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and thus using Lemma 6.5, we find that

|B(v,w; k) − Bh̄,δ(v,w; k)| ≤ M3(h̄
s + δ)‖5hu‖Lp(Id)‖w‖Lp′ (I d)

≤ (C4 + c2)M3(h̄
s + δ)‖w‖Lp′ (I d).

(31)

Moreover using Lemma 6.6, we have

|〈f,w〉 − fh,δ| ≤ M4(h
r + δ)‖w‖Lp′ (I d). (32)

Hence using (30)–(32) in Lemma 6.4, we get

‖u − uh,h̄,δ‖Lp(Id) ≤ M2
(
C4h

min{r,s} + (C4 + c2)M3(h̄
s + δ) + M4(h

r + δ)
)
.

Taking
M5 = M2

(
C4 + (C4 + c2)M3 + M4

)
,

we get the desired error bound.

Remark.We have a wide amount of latitude in choosing parametersh2 andδ0 such
that (29) holds. One simple choice is to pick

h2 =
(

γ

4M3

)1/s

and δ0 = γ

4M3
.

7 The noisy modifiedFEM is a minimal error algorithm

Let n ∈ Z
+. In this section, we show how to choose the meshsizesh andh̄ such

that the noisy modifiedFEM is annth minimal error algorithm.
We define integer parametersl andl̄, as follows:

1. Suppose thats < 2r. In this case, we haves < 2 min{r, s}. Take

l = ⌈
ns/(2 min{r,s})⌉ and l̄ =

⌊√
n − l

⌋
.

2. Suppose thats = 2r. Take

l = ⌈
1
2n
⌉

and l̄ =
⌊√

1
2n

⌋
.

3. Suppose thats > 2r. Take

l̄ = ⌈
nr/s

⌉
and l = n − l̄ 2.
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With these definitions forl andl̄, define

h = min{r, s}
l1/d

and h̄ = min{r, s}
l̄ 1/d

.

Recalling that the degreem of our finite element spaces is given by

m = min{r, s} − 1,

we see that
nh = l and nh̄ = l̄

by (13). With these choices ofh andh̄, let

Nn,δ = Nh,h̄,δ and φn,δ = φh,h̄,δ.

That is, for any [f, k] ∈ F , we have

Nn,δ([f, k]) = [Nl,δ(f ), Nl̄2,δ(k)],

where
Nl,δ(f ) = Nh,δ(f ) and Nl̄2,δ(k) = Nh̄,δ(k).

SinceNn,δ([f, k]) usesl̄2 noisy evaluations ofk andl of f , we have

cardNn,δ = l̄2 + l ≤ n.

We now have

Theorem 7.1. Recall from(2) that

µ = min
{ r

d
,

s

2d

}
.

1. There existsn∗
0 ∈ Z

+ such that theφn,δ is well-defined for alln ≥ n∗
0 and all

δ ∈ [0, δ0].

2. There existsM6 > 0 such that

e(φn,δ, Nn,δ) ≤ M6(n
−µ + δ) for n ≥ n∗

0 andδ ∈ [0, δ0]. (33)

3. Thenth minimal radius satisfies

rn(δ) � n−µ + δ.

4. The informationNn,δ is nth optimal information, andφh,δ is annth minimal
error algorithm.
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Proof. The first item follows from Theorem 6.1. Once we establish (33), the re-
maining items will then follow immediately from (33) and Theorem 3.1. Hence, it
remains to prove (33).

We prove (33) on a case-by-case basis. Suppose first thatr < 2s. We then have

h � l−1/d � n−s/(2 min{r,s}d) and h̄ � l̄ −1/d � n−1/(2d).

Sinces < 2r, we haveµ = s/(2d). Hence

e(φn,δ, Nn,δ) 4 hmin{r,s} + h̄ s + δ 4 n−s/(2d) + δ � n−µ + δ.

Next, suppose thatr = 2s. We have

h � l−1/d � n−1/d and h̄ � l−1/d � n−1/(2d).

Sincer < 2r = s, we have min{r, s} = r. Thus

e(φn,δ, Nn,δ) 4 hmin{r,s} + h̄ s + δ 4 n−r/d + n−s/(2d) + δ � n−µ + δ.

Finally, suppose thatr > 2s. We have

h � l−1/d � n−1/d and h̄ � l̄ −1/d � n−r/(ds).

Sincer < 2r < s, we have min{r, s} = r. Thus

e(φn,δ, Nn,δ) 4 hmin{r,s} + h̄ s + δ 4 n−r/d + δ.

But sinces > 2r, we haveµ = r/d. Thus

e(φn,δ, Nn,δ) 4 n−µ + δ.

Hence (33) holds in all three cases.

8 Two-grid implementation of the noisy modifiedFEM

We have just seen thatφn,δ is annth minimal error algorithm. Its information cost
is c(δ) n. Hence if we were only interested in informational complexity, then we
would have a source of optimal algorithms, see, e.g., [13, Section 4.4].

Unfortunately, the combinatory cost of this algorithm is generally much worse
than2(n). Indeed, for any [f, k] ∈ F and anyn ≥ n∗

0, this algorithm presents us
with a linear system(A − B)u = f. The matrixB is a full l × l matrix, where

l �
{

ns/(2 min{r,s}) if s < 2r,

n if s ≥ 2r.
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Hence, if we were to use Gaussian elimination to solve this linear system, the
combinatory cost would be proportional tonκ , where

κ =



3s

2 min{r, s} if s < 2r,

3 if s ≥ 2r.

Sinceκ ∈ [ 3
2, 3], the combinatory cost is notO(n).

Rather than using Gaussian elimination to directly solve the linear system
(A − B)u = f, we shall use a two-grid algorithm to obtain a sufficiently accurate
approximation of the solutionu. This will give us a nearly optimal approximation
at nearly optimal cost.

Our approach will closely follow that of [7]. For givenn, we shall definel,
l̄, h and h̄ as at the beginning of Section 7. This will give us a linear system
(A − B)u = f whose solution we wish to approximate. We letn∗ be a second inte-
ger, satisfyingn∗ = 2(n1/3). If we were to set up the linear system corresponding
to the noisyMFEM using information of cardinalityn∗, we would get anl∗ × l∗ lin-
ear system(Ã − B̃)ũ = f̃. Here,l∗, l∗, h∗, andh∗ are the parameters for the noisy
MFEM using information of cardinalityn∗, as defined at the beginning of Section 7.

Before describing the two-grid method, we need to introduce some prolon-
gation and restriction operators, as described in Sections 5.2 and 5.3 of [7]. Let
X = Lp(I d), Xl = (Rl, ‖ · ‖`p

), andXl∗ = (Rl∗, ‖ · ‖`p
). We define thecanonical

prolongationPh : Xl → X as

Phv =
l∑

j=1

vj sj,h ∀ v = [v1 . . . vl] ∈ R
l .

Thecanonical restrictionRh : X → Xl is defined as

Rhw = A−1[〈w, s1,h〉 . . . 〈w, sl,h〉]T ∀ w ∈ X.

Note thatPh and Rh are uniformly bounded mappings, i.e., there exist positive
constantsCP andCR such that

‖Ph‖Lin[Xl,X] ≤ CP and ‖Rh‖Lin[X,Xl ] ≤ CR ∀ h > 0. (34)

Moreover
RhPh = I and PhRh = 5h. (35)

(See [7, pg. 161].)
We then define theintergrid prolongation operatorp : Xl∗ → Xl and theinter-

grid restriction operatorr : Xl → Xl∗ as

p = RhPh∗ and r = Rh∗Ph.
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We will also need to use the adjoint operatorp∗ : Xl → Xl∗ , defined as

p∗v · w = v · pw ∀ v ∈ Xl, w ∈ Xl∗ .

We are now ready to define the two-grid iteration scheme. This is the vari-
ant TGM′ found on [7, pg. 179].

function TG(n : Z
+; A, B : R

l×l; f : R
l) : R

l;
begin

if n is sufficiently smallthen
computeu ∈ R

l such that(A − B)u = f
else

begin
u := 0;
for i := 1 to 3 do

begin
Solve the linear systemAũ = f + Bu; {Picard iteration}
d := p∗(Aũ − f − Bũ); {compute defect}
solve the system(Ã − B̃)δ = d; {coarse-grid solution}
u := u − pδ {coarse-grid correction}

end
end;

TG := u
end;

Finally, let
Ňn,δ = [Nl̄2,δ, Nl2,δ, Nl,δ]

be two-grid informationof cardinality at mostn. Let

ǔn,δ = Ph[TG(n, A, B, f)] =
l∑

j=1

υj sj,h, (36)

Then ǔn,δ depends on [f, k] ∈ F only through the informatioňNn,δ([f, k]), and
so we may writeǔn,δ = φ̌n,δ(Ňn,δ([f, k])), whereφ̌n,δ is an algorithm using the
informationŇn,δ. We callφ̌n,δ the two-grid algorithm.

Our first task is to analyze the cost of the two-grid algorithm. Before doing
this, we prove the following

Lemma 8.1. Let n ∈ Z
+. For v ∈ R

l, we can calculateBv using at mostO(n)

operations.
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Proof. Let S ∈ R
l̄×l have(̄ , j) entry

σ̄,j = 〈s̄ ,h̄, sj,h〉 for 1 ≤ ̄ ≤ l̄, 1 ≤ j ≤ l,

and letC = [k̃ı̄,̄ ,δ]1≤ı̄,̄≤l̄. We then haveB = STCS. Forv ∈ R
l, we calculateBv

as follows:

1. Leta = Sv ∈ R
l̄. Since each row ofShas onlyO(1) nonzero elements, this

matrix/vector multiplication can be done in at mostO(l) operations.

2. Letb = Ca ∈ R
l̄. This is the usual multiplication of an̄l × l̄ matrix by an

l̄-vector, which can be done in at mostO(l̄2) operations.

3. Letc = STb ∈ R
l. Since each row ofST has onlyO(1) nonzero elements,

this matrix/vector multiplication can be done in at mostO(l) operations.

ThenBv = c. Moreover, the cost of calculatingz is clearlyO(l̄2 + l) = O(n)

operations, as required.

We then have

Lemma 8.2. The cost of the two-grid algorithm satisfies

cost(φ̌n,δ, Ňn,δ) 4 c(δ) n.

Proof. By construction, the informatioňNn,δ has cardinality proportional ton.
Hence the information cost of the two-grid algorithm is at mostc(δ) n. Hence,
it remains to determine the combinatory cost.

Let [f, k] ∈ F . We need to find the cost of computing TG(n, A, B, f).

1. We first do the Picard iteration. From Lemma 8.1, evaluatingBu costsO(n),
and hence the cost of evaluatingz = f + Bu is alsoO(n). Furthermore, the
bandwidth ofA is bounded, independent ofn, since there are no interelement
continuity requirements. Thus the cost of the Picard iteration step isO(n)

operations.

2. Next, we compute the defect. Since the number of elements in any row ofA
is bounded, the cost of evaluatingAũ is O(l) operations. By Lemma 8.1, we
can calculateBũ in O(n) operations. Thus we can calculatew = Aũ−f−Bũ
in O(n) operations. It only remains to calculatep∗w, which can clearly be
done inO(l) operations.

3. To calculate the coarse-grid solution, we need to solve ann∗ × n∗ linear
system. Sincen∗ = 2(n1/3), we can do this inO(n) operations.
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4. The coarse-grid correction can clearly be done inO(l) operations.

Thus we can compute TG(n, A, B, f) with a cost of at mostO(l̄2 + l) = O(n)

operations, as required.

Our next task is to analyze the error of the two-grid approximation. Before
doing this, we need to do a little groundwork. WriteY = Wmin{r,s},∞(I d). Let
Yl = (Rl , ‖ · ‖Yl

), where
‖v‖Yl

= inf
v∈R−1

l (v)

‖v‖Y .

The norm‖ · ‖Yl∗ and spaceYl∗ are defined analogously.
For future reference, we note that the linear system(A − B)u = f may be

rewritten in the form(I − K )u = g, where

K = A−1B and g = A−1f.

We will also have cause to refer to the matrixK̃ = Ã−1B̃. We have the following

Lemma 8.3. There exist positive constantsCS, CK, CB, CI, and CC, which are
independent ofn, such that the following hold:

1. Stability: ‖(I − K )−1‖Lin[Xl ] ≤ CS.

2. Discrete regularity:‖K‖Lin[Yl ] ≤ CK.

3. Uniform boundedness of prolongations:‖p‖Lin[Xl∗ ,Xl ] ≤ CB.

4. Interpolation error:‖I − pr‖Lin[Yl ,Xl ] ≤ CI(l
∗)− min{r,s}/d.

5. Relative consistency:‖rK − K̃r‖Lin[Yl ,Xl∗ ] ≤ CC

(
l∗
)−s/d + δ.

Proof. We first prove stability. Letf = [α1 . . . αl]T ∈ Xl andu = (I − K )−1f. Let
ŭ = Phu andf̆ = Phf. Then

Bh,h̄,δ(ŭ, w) = f̆h,δ(w) ∀ w ∈ Sh.

Using Lemmas 6.3 and 6.5, there exists nonzerow ∈ Sh such that

Bh,h̄,δ(ŭ, w) ≥ 1
2γ ‖ŭ‖Lp(Id)‖w‖Lp′ (I d).

Using Lemma 6.6, we easily find that

|f̆h`,δ(v)| ≤ 3M4‖f̆ ‖Lp(Id)‖v‖Lp′ (I d),

35



and thus

‖ŭ‖Lp(Id) ≤ 6M4

γ
‖f̆ ‖Lp(Id). (37)

From (35), we haveu = Rhŭ. Using (34), we see that

‖u‖Xl
≤ CR‖ŭ‖X. (38)

Sincef̆ = ∑l
j=1 αjsj,h, we use the discrete Minkowski inequality to find

‖f̆ ‖X =
(∫

I d

∣∣∣∣
l∑

j=1

αjsj,h(x)

∣∣∣∣
p)1/p

dx

≤
{ ∫

I d

[( l∑
j=1

|αj |p
)1/p( l∑

j=1

|sj,h(x)|p′
)1/p′]p

dx

}1/p

= θ‖f‖Xl
,

(39)

where

θ =
[ ∫

I d

( l∑
j=1

|sj,h(x)|p′
)p/p′

dx

]1/p

.

Now
l∑

j=1

|sj,h(x)|p′ ≤ max
1≤j≤l

‖sj,h‖p′
L∞(I d)

| suppl x|,

where

j ∈ suppl x iff j ∈ {1, . . . , l} andx is in the support ofsj,h.

As in the proof of Lemma 6.5, there exist positive constantsσ1 andσ2, independent
of x, j , and`, such that

max
1≤j≤l

‖sj,h‖L∞(I d) ≤ σ1 and | suppl x| ≤ σ2.

Hence
θ ≤ σ1σ

1/p′
2 .

Using (39), we find that
‖f̆ ‖X ≤ σ1σ

1/p′
2 ‖f‖Xl

. (40)

Let CS = 6M4CRσ1σ
1/p′
2 /γ . Using (37), (38), and (40), we obtain

‖(I − K )−1f‖Xl
= ‖u‖Xl

≤ CS‖fl‖X`
.
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Sincef ∈ Xl is arbitrary, we find that part 1 holds, as required.
We next check that discrete regularity holds. From [7, Remark 5.2.3], we find

that
K = RhTk;h,h̄,δPh. (41)

Using the definition of the norm‖ · ‖Yl
, we find that‖Rh‖Lin[Y,Yl ] = 1, and so

‖K‖Lin[Xl,Yl ] ≤ ‖Rh‖Lin[Y,Yl ]‖Tk;h,h̄,δ‖Lin[Y,X]‖Ph‖Lin[Xl,X]

≤ CP‖Tk;h,h̄,δ‖Lin[Y,X],

whereCP is defined by (34). Now

‖Tk;h,h̄,δ‖Lin[Y,X] ≤ ‖Tk‖Lin[Y,X] + ‖Tk − Tk;h,h̄,δ‖Lin[Y,X].

From (28), we have
‖Tk‖Lin[Y,X] ≤ c3,

whereas from the proofs of Lemma 6.5 and Theorem 7.1, we find that

‖Tk − Tk;h,h̄,δ‖Lin[Y,X] 4 h̄s + δ 4 n−µ + δ.

Combining the previous inequalities, we see that part 2 holds.
To prove uniform boundedness of prolongations, we use Exercise 5.3.6(a) on

[7, pg. 171], finding that part 3 holds withCB = CRCP.
Next, we establish the interpolation error. Note that since (35) holds, we have

I − pr = RhPh − RhPh∗Rh∗Ph = Rh(I − 5h∗)Ph.

Hence using Lemma 4.1, we find

‖I − pr‖Lin[Yl ,Xl ] ≤ ‖Rh‖Lin[X,Xl ]‖I − 5hl∗ ‖Lin[Y,X]‖Ph‖Lin[Yl ,Y ]

≤ CRCPM1(h
∗)min{r,s} 4 (l∗)− min{r,s}/d,

so that part 4 holds withCI = CRCPM1.
We now establish relative consistency, using a perturbation of the proof of [7,

Lemma 5.3.11]. Using (41), we have

rKp = (rRh)Tk;h,h̄,δ(Php) = Rh∗Tk;h,h̄,δPh∗ = K̃ + Rh∗EPh∗ ,

where
E = Tk;h∗,h∗,δ − Tk;h,h̄,δ.

Hence
rK − K̃r = rK (I − pr) + Rh∗EPh∗r.
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Now
‖rK (I − pr)‖Lin[Yl ,Xl ] ≤ CBCKCI(l

∗)−µ.

Moreover,
‖Rh∗EPh∗r‖Lin[Yl,Xl ] ≤ CRCPCB‖E‖Lin[Y,X].

Now
‖E‖Lin[Y,X] ≤ ‖I − Tk;h∗,h∗,δ‖Lin[Y,X] + ‖I − Tk;h,h̄,δ‖Lin[Y,X]

4
(
h∗)s + δ 4

(
l∗
)s/d + δ

the latter following from the proofs of Lemma 6.5 and Theorem 7.1. Combining
these results, we see that part 5 holds, as claimed.

Using some of the ideas found in the proofs of [7, Theorem 5.5.7 and Theo-
rem 5.6.4], we are now ready to estimate the distance between the exact solutionu
of the linear system(I − K )u = f and the solutioñu = TG(n, A, B, f) produced
by the two-grid method.

Lemma 8.4. We have

‖ũ − u‖Xl
4
(
n−µ + δ

) ‖f‖Xl
.

Proof. It is no loss of gereality to assume thatn is sufficiently large that we do not
solve the linear system(A − B)u = f directly. Let

MTG = I − (I − K̃)−1r(I − K̃ )K

and
c = (I − K̃)−1r(I − K̃ )K (I − K )−1f.

Using Lemma 8.3 and [7, Theorem 5.4.3], we have

‖MTG‖Lin[Xl ] ≤ CTG

(
(l∗)− min{r,s}/d + (

l∗
)−s/d + δ

)
,

whereCTG = (CI +CBCSCC)CK. Arguing as in the proof of Theorem 7.1, we find
that

‖MTG‖Lin[Xl ] ≤4 (n∗)−µ + δ.

Sincen∗ = 2(n1/3), it follows that

‖MTG‖Lin[Xl ] 4 n−µ/3 + δ,

It is fairly easy to check (see also [7, Theorem 5.4.3]) thatũ = ũ(3), where

ũ(0) = 0,

ũ(i) = MTGũ(i−1) + c (1 ≤ i ≤ 3).
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Moreover, it is also easy to see thatu = MTGu + c, so that

‖u − ũ(i)‖Xl
≤ ‖MTG‖Lin[Xl ]‖u − ũ(i−1)‖Xl

.

Combining these results, we find

‖ũ − u‖Xl
≤ ‖MTG‖3

Lin[Xl ]‖u‖Xl
4
(
n−µ + δ

) ‖u‖Xl

4
(
n−µ + δ

) ‖f‖Xl
,

the latter following from part 1 of Lemma 8.3.

We are now ready to state and prove the main result of this section.

Theorem 8.1. There exist positive constantsM7 andM8 such that for anyn ∈ Z
+

andδ ∈ [0, δ0], the full multigrid algorithmφ̌n,δ satisfies

e(φ̌n,δ, Ňn,δ) ≤ M8(n
−1/µ + δ),

with
cost(φ̌n,δ, Ňn,δ) ≤ M7c(δ) n.

Proof. For [f, h] ∈ F , let un,δ = φn,δ

(
Nn,δ([f, k])

)
andǔn,δ = φ̌n,δ(Ňn,δ([f, k])).

By Theorem 7.1 and Lemma 8.2, it suffices to show that

‖un,δ − ǔn,δ‖Lp(Id) 4 (n−1/µ + δ)‖f ‖Lp(Id). (42)

Now un,δ = Phu, whereu is the exact solution of the linear system(A − B)u = f
given by (15), anďun,δ = Phũ, whereũ = TG(n, A, B, f). Using (34) along with
Lemma 8.4, we obtain

‖un,δ − ǔn,δ‖Lp(Id) ≤ CP‖u − ũ‖Xl
4 (n−µ+δ)‖f‖Xl

.

Hence (42) holds if
‖f‖Xl

4 ‖f ‖Lp(Id). (43)

For i ∈ {1, . . . , l}, define

εi = 〈f, si,h〉 − fh,δ(si,h).

Let
e = [ε1, . . . , εl]

T

and
f∗ = [〈f, s1,h〉, . . . , 〈f, sl,h〉]T .
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Then
‖f‖Xl

≤ ‖e‖Xl
+ ‖f∗‖Xl

.

Since
‖e‖Xl

= ‖e‖`p(Rl ) ≤ l1/p′‖e‖`∞(Rl )

and

|εi| 4 (n−µ + δ)‖f ‖Lp(Id)‖si,h‖Lp′ (I d) 4 (n−µ + δ)l−1/p′‖f ‖Lp(Id),

we see that
‖e‖Xl

4 (n−µ + δ)‖f ‖Lp(Id). (44)

On the other hand, we havePhf∗ = 5hf , so thatf∗ = RhPhf∗ = Rh5hf by (35).
From (35) and Lemma 4.1, we obtain

‖f∗‖Xl
≤ CR‖5hf ‖Lp(Id) ≤ CR(1 + M1)‖f ‖Lp(Id).

Using this inequality and (44), we obtain our desired result (43), which completes
the proof of the theorem.

9 Complexity

In this section, we determine theε-complexity of the noisy Fredholm problem. We
recall from (2) that

µ = min
{ r

d
,

s

2d

}
.

Our main result is

Theorem 9.1. Let ε > 0. There exist positive numbersC1, C2, andC3, depending
only on the global parameters of the problem but independent ofε, such that the
following hold:

1. The problem complexity is bounded from below by

comp(ε) ≥ inf
0<δ<C1ε

c(δ)

⌈(
1

C1ε − δ

)1/µ
⌉

.

2. The problem complexity is bounded from above by

comp(ε) ≤ C2 inf
0<δ<C3ε

c(δ)

⌈(
1

C3ε − δ

)1/µ
⌉

. (45)
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The upper bound is attained by using the noisyMFEM φ̌n,δ using informa-
tion Ňn,δ, where

n =
⌈(

1

C3ε − δ

)1/µ
⌉

, (46)

with C3 = M−1
8 from Theorem8.1 and whereδ is chosen to minimize the

appropriate right hand side appearing in(45).

Proof. To prove the lower bound, suppose thatφ is an algorithm using noisy in-
formationNδ such thate(φ, Nδ) ≤ ε. Then cardNδ ≥ n, wheren must be large
enough to makern(δ) ≤ ε. Theorem 3.1 immediately tells us that we must choose
δ < M−1

0 ε and that we must have

n ≥


(

1

M−1
0 ε − δ

)1/µ

 .

The cost of any algorithm usingn information evaluations must be at leastn c(δ),
and so

cost(φ, Nδ) ≥ c(δ)



(

1

M−1
0 ε − δ

)1/µ

 .

Sinceφ andNδ are an arbitrary algorithm and information such thate(φ, Nδ) ≤ ε,
we find that

comp(ε) ≥ c(δ)



(

1

M−1
0 ε − δ

)1/µ

 .

Finally, sinceδ > 0 is arbitrary, we get the desired lower bound withC1 = M−1
0 .

To prove the upper bound, letδ > 0. If (46) holds, then we may use Theo-
rem 8.1 to see thate(φ̌n,δ, Ňn,δ) ≤ ε. Moreover, we have

cost(φ̌n,δ, Ňn,δ)(ε) ≤ M7c(δ)



(

1

M−1
8 ε − δ

)1/µ

 ,

SetC2 = M7 andC3 = M−1
8 . Choosingδ minimizing the right-hand side in these

inequalities, the desired result follows.

The lower and upper bounds in Theorem 9.1 are very tight. For an error levelε

and a constantC, define the functiongε,C : R
++ → R

++ as

gε,C(δ) = c(δ)

(
1

Cε − δ

)1/µ

∀ δ > 0,
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and set
g∗

ε,C = inf
0<δ<Cε

gε,C(δ).

By Theorem 9.1, we see that

g∗
ε,C1

≤ comp(ε) ≤ C2 g∗
ε,C2

.

This inequality allows us to determine the complexity for various cost functionsc(·).
In particular, if the cost functionc(·) is differentiable, then the optimalδ must sat-
isfy g′

ε,C(δ) = 0, i.e., we must have

− c(δ)

c′(δ)
= µ(Cε − δ). (47)

As a specific example, consider the cost functionc(δ) = δ−t , wheret > 0. We
find that forε > 0, the optimalδ is

δ∗ = Cµtε

µt + 1
, (48)

so that

g∗
e,C �

(
1 + µt

C

)t+1/µ( 1

µt

)t (1

ε

)t+1/µ

.

Thus we see that the optimalδ∗ is proportional toε, and that

comp(ε) �
(

1

ε

)t+1/µ

.

Acknowledgments

I would like to thank W. Hackbusch, S. Heinrich, E. Novak, R. Israel, and S. Pere-
verzev for their various suggestions. I would also like to thank H. Wo´zniakowski
for his careful reading of an early draft of this paper.

References

[1] R. A. Adams.Sobolev Spaces. Academic Press, New York, 1975.

[2] N. S. Bakhvalov. On approximate calculation of integrals.Vestnik MGU, Ser.
Mat. Mekh. Astron. Fiz. Khim., 4:3–18, 1959. (In Russian.).

[3] P. G. Ciarlet. The Finite Element Method For Elliptic Problems. North-
Holland, Amsterdam, 1978.

42



[4] N. Dunford and J. T. Schwartz.Linear Operators. Part I: General Theory,
volume 7 ofPure and Applied Mathematics. Interscience, New York, 1958.

[5] K. V. Emelyanov and A. M. Ilin. Number of arithmetic operations necessary
for the approximate solution of Fredholm integral equations.USSR Comp.
Math. Math. Phys., 7(4):259–267, 1967.

[6] K. Frank, S. Heinrich, and S. Pereverzev. Information complexity of mul-
tivariate Fredholm integral equations in Sobolev classes.J. Complexity,
12(1):17–34, 1996.

[7] W. Hackbusch. Integral Equations: Theory and Numerical Treatment, vol-
ume 120 ofInternational Series of Numerical Mathematics. Birkhäuser,
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