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ABSTRACT

We address the problem of parallelizing the evaluation of logic programs in data intensive applications.
We argue that the appropriate parallelization strategy for logic-program evaluation depends on the program
being evaluated. Therefore, this paper is concerned with the issues of program-classification, and
parallelization-stratcgies. We propose several parallelization stratcgies based on the concept of data-
reduction - the original logic-program is evaluated by several processors working in parallel. each using
only a subset of the database. The strategies differ on the evaluation cost, the overhead of communication
and synchronization among processors, and the programs to which they are applicable. In particular, we
start our study with pure-parallelization, i.c., parallelization without overhead. An interesting class-
structure of logic programs is demonstrated, when considering amenability to pure-parallelization. The
relationship to the NC complexity class is demonstratied. Then we propose strategies that do incur an over-
head, but are optimal in a sense that will be precisely defined.

This paper makes the initial steps towards a theory of parallel logic-programming.
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L. INTRODUCTION

It is accepted by now that declarative languages present numerous advantages over navigational
ones, and should constitute the interface to the next-generation databases, such as deductive and object
oriented databases ([B]). We feel that parallelization holds the key (o acceptable performance of a declara-
tive language. In this paper we continue the study of Daialog parallelizaton, begun in [WS, W]. Datalog
(see [MW)]) is a simple logic programming language. An example of a recursive Datalog program, consist-
ing of two rules, is the following:

T(xy):=Tx.z2), Az.y)

T(xy):—Axy)
[t computes the transitive closure of the relation A. The program is evaluated in a set-oriented fashion by
initializing the relaton T 10 A, and then iteratively adding to T the new tuples obtained by joining (or com-
posing) the relations T and A.

At the heart of our present study lies the realization thal "no single paraliclization strategy is
appropriate for all logic programs” (1o rephrase the analog statement in [MNSUV], that no single evalua-
Lion strategy is appropriate). Therefore, a large part of this paper is devoted to the classitication of pro-
grams according to some fundamental parallelization propertics. The most powerful property is strong-
decomposability. It enables the evaluation 10 be separated into any number of completely independent
tasks, that can be carried out in parallel. Program classes that enable partial independence of the evalua-

tion tasks, are also introduced (section 6).

The other part of the paper is devoted (o parallelization stratcgics, i.¢., sets of algorithms coopera-
tively evaluating a program. We propose several classes of parallelization strategies, and analyze their pro-
perties and limitations. The parallelization strategics proposed are based on the data-reduction principle;
cach processor evaluates the original logic-program, but using only a subset of the database. This principle
underlies parallclization in many domains, including computcr vision and vector-computing. In this paper
we demonstrate its application to logic programming. For example ((WS}), the transitive closure program
presented above can be evaluated in parallel, by having one processor start from the even nodes, thus com-
puting the wples of the relation T in which the first component is even, and the second processor start from
the odd nodes. This can be done if one processor evaluates the program having the predicate even (x)
appended to the body of both rules, and the other evaluates the program with odd (x) appended. The perfor-
mance of such methods is analyzed in this paper.

The strategies analyzed in this paper diffcr in their evaluation cost, overhead, and classes of pro-
grams 10 which they can be applied. We postulate that the performance of a parallelization srawegy
depends on these two factors: the total evaluation cost, and the overhead of communication and synchroni-

zation among the algorithms of the strategy °.

?  As ofien demonstrated (e.g. [LY, DIY]), communication overhead Limits the potenuial gains in perform?nc; by paralleliza-
uon. For example, the parallel evaluation of the transiuve closure, descnbed above, docs not nced any communication between the
LWO Processors.



We first formally define and study purc paralletization, i.c., parallelization without overhead. We
focus on pure parallelization strategies of minimal evaluation cost, and show that a program can be paral-
lelized by such a strategy, if and only if it is strongly decomposable. By cost-minimality we mean that the
total evaluation cost of all the processors working in parallel, is not higher than the cost of a single proces-
sor performing the evaluation single-handedly; and this holds for every input of the logic program. The dis-
tribution of the work to processors is static, i.e. independent of the input to the datalog program, and is per-
formed by a hash function. If it distributes the workload evenly, then minimal total evaluation cost
translates into optimal speed-up. Our result is obtained using three different evaluation cost measures. One,
"the number of successful inferences”, was introduced by Bancilhon and Ramakrishnan ([BR]). The others

are introduced in this paper.

The results of this paper combined with the results in [W], demonstrate an interesting class structure
of programs, with respect 1o pure parallelization. Most amenable is the class of strongly-decomposable
programs. A program in this class can be purely parallelized, with minimal total evaluation-cost. Next is
the class of sharable programs. Such a program can be purely parallelized, but the evaluation cost may not
be minimal. Finally, the class of nonsharable programs cannot be purely parallelized. The relationship
between these classes of programs, and the programs in the NC complexity class is demonstrated. The class
of NC programs intersects the class of sharable and strongly decomposable programs, but is neither con-
tained in, nor contains, any of them,

Next we consider strategies that do incur an overhead. We distinguish between control-overhead and
data-overhead. The former consists of control messages being transmitted between processors, and the
latter consists of data messages, i.c. relations or part of them, being transmitted. We propose an indepen-
dent parallelization strategy, i.e. a strategy that incurs control- but not data-overhead. It is still restricted in
applicability to the strongly decomposable programs, but it has minimal total evaluation cost and it bal-
ances the evaluation work-load among the processors. Load-balancing is dynamic: when a processor
becomes idle it takes work from the other processors. Finally, we introduce a strategy, called DS3, that can
be applied to parallelize all programs, and it incurs minimal data-overhcad. DS3 also has minimal

evaluation-cost for the linear programs.

The parallelization stralegies proposed in this paper arc “scalable”, i.c., an arbitrary number of pro-
cessors can be effectively utilized. (In any case, we assume that the number of processors is significantly
smaller than the number of tuples in the databasc). The datalog programs considered, are the ones with
two rules, and one, unary or binary, intentional predicate (such a program is called single rule program, or
sirup, in [CK]). They are syntactically simple, yet as demonstrated, provide a rich test-bed, with subclasses
having different parallelization propertics. Additionally, the strategy DS3 can be casily generalized 1o arbi-
trary datalog programs.

Conceming relevant work, most efforts in the arca of parallelization have been devoted to characteri-
zation of the logic programs which belong to the NC complexity class (see (UV], [CK], [K], [AP]). If a

program is in NC, it means that a query can be evaluated very fast (in polylogarithmic time), given a very




large number of processors (polynomial in the number of database tuplcs). The processors have 1o com-
municaie cxtensively, usually through common memory. If the number of processors is constant, then the
NC-type of evaluation algorithms can be adapied by assigning the work of multiple processors 10 a single
processor. However, it turns out that, which multiple processors are assigned to the single one, is very
imponant as far as overhead (particularly if the processors do not have shared memory) and evaluation
cost are concerned. The work in this paper can be regarded in some sense, as the study of this issue - how

1o partition the work among the processors.

An approach, called horizontal paritioning, is taken in the parallelization of production systems
(IS, M,St, TM)). It partitions the rules among the processors, and each processor evaluates its own set of
rules, while communicating with the other processors. The data-reduction approach advocated here, is
orthogonal 1o horizontal partitioning (perhaps should also be called vertical partitioning). Data-reduction
partitions the data (or some of it) rather than the rules. However, a variant of data reduction, named "copy
and constrain”, was proposed independently in the production-system literature ((SMM]), and its merit was
demonstrated experimentally using OPS3 ([P]). But, the topics of this paper, namely program classification

and parallclization strategies, have not been addressed previously.

Another body of relevant rescarch has been performed on parallel and concurrent variations of PRO-
LOG ({DL]). Much of this research, along with a description of the threc leading languages that have
emerged ( Flat Concurrent Prolog, Parlog, and Guarded Horn Clauses ) is summarized in the collection of
papers [Sh]. However, there is a fundamental difference between logic program evaluation in knowledge
bases, which is performed bouom-up (or forward chaining), and concurrent Prolog, which is evaluated
top-down (or backward chaining). As a result of this difference we fecl that not much of the research on

concurrent Prolog can be utilized in knowledge bases.

Bottom-up-evaluation for logic programs in knowledge bases. usually amounts 1o iteratively per-
forming several relational algebra operations, and deducing new facts, until a fixed point is reached. There
has becn work on parallelization of relational algebra operators, particularly the join (e.g. [BBDW]). How-
ever, when parallelizing these low level operations in knowledge bases, the processors have 1o be syn-
chronized at the completion of each iteration, then each processor has 1o exchange its newly gencrated
facts with the newly generated facts of every other processor, and duplicate climination has to be central-
ized at a single processor, Therefore, the communication and required synchronization among the proces-
sors is extremely high. Much of this overhcad can be avoided by considering the whole sequence of rela-
tional operations, performed in all the iterations, rather than cach individual operation. In some sense, the
work in this paper amounts (o studying the parallclization of a sequence of relational operations.

Finally, [W] and [WS] proposed methods for pure parallclization, and analyzed their applicability.
The mcthods basically consist of rewriting a program by a set of other programs (each of which works with
smaller refations), and evaluating them in parallel. [W] also formally defined pure parallelization in terms
of algorithms that evaluate a program in parallel, and studicd the class of sharable programs. This paper

cxtends that work in several ways. First, it demonstrates that there is something fundamental about



decomposability, independent of the parallelization methods proposed in [W] and [WS]. This fundamental
property, partitioning of the output domain, is introduced in section 3 of this paper. In fact. we show that
there are two notions, decomposability and strong decomposability. We provide a complete characteriza-
tion of the single rule programs with respect to both, and show their relationship to parallelization strategies
with cerain desirable properties. Second, in the present paper we analyze the evaluation cost of paralleliza-
tion strategies. Third, we propose and analyze siralcgies with communicaling algorithms, that overcome the

limitations of pure parallelization.

The rest of this paper is organized as follows. In the next section we provide main definitions used in
the rest of the paper. In section 3 we study decomposability, and in section 4 we study pure parallelization,
and analyze its cost and its limitations. In section 5 we introduce control-overhead for the purpose of load
balancing. In section 6 we discuss the general parallelization strategy, DS3, and related program classes.

We conclude and discuss future research in section 7.

2. PRELIMINARIES

In this section we define the basic terminology as well as provide some relevant definitions. The
Datalog language has threc building blocks: predicate symbols, variables and constants. With each predi-
cate symbol is associated a fixed arity. A predicate symbol with arity k followed by a list of k arguments is
a literal. An atom is a literal with a constant or a variable in cach argument position. A constant is any
natural number. (The results in this paper are applicable to character strings as well, since their binary
representation is a natural number). We shall denote constants by lowercase letters from the beginning of
the alphabet, a through n, and variables by lowercasc letiers from the end of the alphabet, w, x, y. z. Predi-
cate symbols arc denoted by uppercase letters.

If an atom has a constant in each argument position, then it is a fact. An R —atom is an atom having
R as the predicate symbol. An atom has a repeated variable iI it has a variable that appears in more than
one argument position. A rule consists of an atom, Q, designated as the head. and a finite sct of one or
more atoms, denoted @', ..., Q*, designated as the body. Such a rule is denoted Q:- @', ..., Q% which
should be read "Q if Q' and Q2, and, ....and Q*." A variable that appears in the head of the rule is called a
distinguished variable. An instantiation of a rulc, or a set of atoms, //, is a function that maps each vari-
able in H 10 a constant. If / is a set, and f is an instantiation of it, then the instantiated set, denoted H-f is
the sct of facts obtained by replacing the variables in // according 10 f. If /{ is a rule of the form head :-
body, then the instantiated rule, H-f, consists of two scts: head-f, the atom derived by f, and body-f. When
no confusion can arise, the instantiated rule, #/-f, rather than denoting two sets, shall denote only one set:
head-f_jbody f.

A datalog program (sce [MW]), or a program for short, is a finite sct of rules whose predicaie sym-
bols are divided into two disjoint subscts: the extensional predicates, and the intentional predicates. The
extensional predicates are distinguished by the fact that they do not appear in any head of a rule. We res-

trict our discussion 10 datalog programs with onc intentional predicate, denoted S, that is unary or binary.



Furthermore, programs do not have any constants, and each one consists of two rules: an exit rule, denoted
S (x,y):=B(x,y) or S (x):-B (x), and a recursive rule, in which the predicate symbol B does not appear. The
recursive rule of a program is range restricted, i.e., every variable in the head of a rule also appears in the
body of the rule. The input I 1o a program P is a finite set of R-facts, where R is some extensional predicate
symbol. The outpu: of P for the input /, denoted O (P,/), is a set of S-facts. A fact, a, is in the output if and
only if it has a derivation tree. This is a finite tree, with the nodes labeled by facts; a is the root, the leaves
are facts of /, and for each internal node, b, with children b4, . . . , by, there is an instantiated rule which has
b as the head and b, . . . , b, as the body. For self containment of this paper, we describe in appendix C the
most popular, bottom-up, serial algorithm that produces the output of a program, namely semi-naive
evaluation ([Ban Bay]). Given an input / 10 a program, an instantiation f of the recursive rule is useless if
(1) the atom head-f has a derivation tree of height one (representing the instantiated exit rule), or (2)
head-fe body-f. A derivation tree for a facl is free from useless instantiations if none of its instantiations is
useless. A derivation tree with useless instantiations can always be replaced by a smaller tree; thus this kind
of tree is not interesting, and whenever we refer 1o a derivation tree, we assume that it is free from useless

instantiations.

We assume that the recursive rule of a program is minimal, i.e., there is no atom which can be elim-
inated from the body of the rule to obain an cquivalent program (i.e. a program that produces the same
output for cvery input). Sagiv provides a polynomial-time algorithm that minimizes a given sirup ([Sa]).
Let A,B be two predicates symbols, and #/ a set of facts. Then, an A-to-B substitution of H is the set of facts
obtained by replacing every occurrence of the predicate symbol A in /7, by the predicate symbol B. For
example, $-10-B substitution of the set {S(1.1), A(1,2). (2, 1)}, is the set (B (1,1), A(1.2), B(2,1)}. The

following thcorem is an immediate consequence of Sagiv’s algorithm.

Theorem 2.1 (Sa]: Let P be a program (minimal of course). and fa 1-1 instantiation of the recursive
rule. Let / be a §-10-B substitution of body-f, and I” an arbitrary nonempty subset of /. Then head-f is not in
o, 1-r. 0O

In other words, the theorem says that if we take a 1-1 instantiation of the recursive rule, eliminale at least
one atom of it, and feed the resulting set as an input 10 P, then the head of the instantiated rule cannot be
obtained.

3. CHARACTERIZATION OF (STRONGLY) DECOMPOSABLE PROGRAMS

In this section we study the notion of decomposability. If a program is decomposable, it means that
its output domain, i.e., the infinite sct of possible output tuples, can be partitioned such that the following
condition is satisfied. For each input, cach intentional fact, a, has a derivation tree in which all the inten-
tional facts belong 10 the same partition-member as a. In other words, the cvaluation of the decomposable
programs can be partitioned a priori into a number of completely independent tasks, cach working on a dis-

joint st of partition-members. As we shall explain in the first subsccuion, the decomposability notion is




important for parallel, as well as sequential processing. We completely characterize the programs that are
decomposable, and an interesting phenomenon is exhibited. If a program has a partition in which more
than one member is "nontrivial” (i.e. contains facts that cannot be derived from an exit rule alone), then it
has a partition with an infinite number of members that are nontrivial. We shall argue that programs that
sausfy the above condition are more interesting. We call them strongly decomposable, and completely

characterize them as well.

3.1 Definitions and Complete Characterization of Unary Programs

A program is unary (binary) if the intentional predicate S is unary (binary). For the unary programs
we define the owtput domain, denoted O, to be the set of all S-facts, namely the infinite set { S(@) | ais a
constant }. Similarly we define the output domain of binary programs. A set of two or more sets,

My, ... My, .. isapartition of the output domain if UM, = O, and cach M, is nonempty, and the M;’s are

pairwise disjoint. Let D be a partition of the output domain for the program P, and let M; be a member of
D. The fact g € M; is proper, if: for every input / such that g is in the output O (P.]), the atom g has a
derivation tree in which all the S-facts are in M,. A program P is decomposable if it has a partition D, for

which every fact in the output domain is proper. Then, the set D is called an eligible partition of P.

Decomposable programs are interesting for parallel as well as sequential processing. For parallel-
ism, each processor can assume responsibility for producing the output of the program belonging to some
members of an eligible partition. This way, each processor works with a smaller §-relation during bottom
up evaluation (such an algorithm, e.g. semi-naive evaluation in appendix C, consists of iteratively evalua-
tion the output, when at each iteration, a join involving the relations S and/or AS is performed). Further-
more, since each output fact is proper, there is no overhead for transmitting intermediate results between
processors, and if each member of the partition is assigned 10 a processor, then the complete output is

guaranteed 1o be produced (see strategy DS1 in the next section).

For sequental processing, once a fix-point is reached within a member of the partition, all the output
facts of the member can be removed from the relation S. This in turn reduces the size of § for further pro-
cessing. For example, consider the transitive closure program P i:

PlL S0y) =Sx,z2), Afz,y)
S(x.y) - B(x.y)
As we shall see it is decomposable, and assume that it is semi-naively evalualed. If at some iteration the
differential AS does not contain any more tuples of the form (2.k) (but in prior iterations it did), then all

such tuples can be output, and removed from S. Thus S is reduced for the next iteration.

The next lemma is widely referred 1o in the proofs of this section concerning unary, as well as
binary programs. We define two S-facts 10 be neighbors with respect to P. if there is a 1-1 instantiation f of
the recursive rule of P, such that S (@) , S (@-) € rule-f.



Lemma 3.1: If a program P has an eligible partition D, then every two neighbors with respect to P are in
the same member of D.

Proof:  Assume that there is a 1-1 instantation, f, of the recursive rule of P such that
$@,).S@) € rule-fbut S(@,), S (&) are not in the same member of D. Let / be the input / = S-to-B sub-
stitution of body-f. Suppose that head-f is in member M, of D. At least one of the facts S (€,), S(€>) is in
body-f and is not in M;. By the definition of an eligible partition D, head-f has a derivation tree in which all
the S-facts are in M,. If B (€),) is a node in this tree, then S (@;) must also be a node in the tree (remember
that predicate symbol B does not appear in the recursive rule). Therefore, f-head is in O(P,/-{ B (€}) }).
Contradiction to Theorem 2.1, O

Next we characterize the decomposable programs. First the unary programs and then the binary ones.
Theorem 3.1: A unary program is not decomposable.

Proof:  Let P be an unary program in which S (x) is the head of the recursive rule. Assume that P has an
eligible partition D. We shall exhibit that every two S-facts in the output domain are in the same member of
D, and therefore D is not a partition. Let §(g),S (b) be two S-facts in the output domain. Note that there
exists an S-atom in the body of the recursive rule, in which the argument is a variable different than x, say
y. Such an atom exists since (1) P is recursive, so there is at least one S-atom in the body of the recursive
rule, and (2) P is minimal, so S (x) is not in the body of the recursive rule. Let fbe a 1-1 instantiation of
the recursive rule of P, in which x is instantiated to 'a” and y is instantialed 10 'b’. By Lemma 3.1,
S (a),S (b) are in the same member of D. O

3.2 Sufficient Conditions for Decomposability

For the rest of this section we only consider binary programs. A set of atoms is
first - ficed (second —fixed) if all the S-atoms in that set have the same variable in the first (second) argu-
ment position. A program P is first—fixed (second —fixed) if the sct of atoms in the recursive rule is first-
lixed (second-tixed). For example, the transitive closure program P 1, is firsi-fixed. If the recursive rule is
S (x,y):=A (x.2),8(z,y), then the program is second tixed. Another example of a second-fixed program, this
ume nonlinear, is the following one: S(x,y):-S(z,¥).Siw.,¥),4 (z,w,x),C(y). For cach natural number i,
denote by M, the infinite set of facts {S(i,k) 1k > 1}. Lel P be a firsi-fixed program. Define the infinite set
{M,1i 2 1} 10 be the natural partition for the first-fixed program. Similarly a nawral-partition is defined for
a second-fixed program (M, = {S (ki) k > 1}).

Lemma 3.2: A program, P, which is first-fixed, or sccond-fixed, is decomposable. The natural partition
for P is also an cligible partition for P.

Proof:  Let P be a first-fixed program, and S (i,j) a fact in member M, of the natural partition for P. Itis
casy 1o sec that for every /, such that S (i,5) € O (P.I), all the derivation trees for § (i, ) contain only S-facts

with the constant i as their first argument. These S-facts belong to member M,. Therefore any fact is



proper, and the natural partition is an eligiblc partition of P. The proof for a second-fixed program is simi-
lar. O

A program is repeating if every S-atom in the recursive rule (head and body) has a repeated variable. For
example, the program with the recursive rule S(x,x):=S(y,¥), $(z,z), A (x,y,z) is repeating. Define the par-
tition {M,M,}, where M| = {§(i,/)1(i=))} and M, = {S(i,j)i#}}, 10 be the degenerate partition. A fact
is a one-constant fact if the same constant appears in its two arguments. Otherwise, the fact is a two-

constant fact. For example, S (a,a) is a one-constant S-fact, while § (a,b) is a two-constant S-fact.

Lemma 3.3: A repeating program P, is decomposable. An eligible partition for P is the degenerate one.

Proof:  Note that in the output of P, the two-constant §-facts are derived only by instantiations of the exit
rule. Therefore, these facts are proper in any partition of the output domain, particularly, in the degenerate
one. The one-constant S-facts have the following property. All the derivation trees of a onc-constant S-fact

contain only one-constant S-facts. Therefore, these facts are also proper in the degenerate partition. O

Next we define a discriminating program. The definition, in contrast to the others in this paper, is not
entirely syntactic. For an input / 1o a program P, define the nontrivial output, denoted nt (1), to be the set of
S-facts which are in O (P./), but not in the B-10-S substitution of /. In other words, S (a,b) can be in ni (/).
only if B(a.b) is not in /. Inwitively, the nontrivial output is the output that cannot be obtained only by
instantiations of the cxit rule, i.e, the facts that do not have derivation trees of height onc. Furthermore,
define the two-constant subinput, denoted /°, (o be the inpul obtained by eliminating from / all the one-
constant B-facts. Define a program 0 be a reverse program if the head of the recursive rule has distinct
variables, and if we denote the head atom of the recursive rule by S (x,y), then there is an atom S (y,x) in
the body.

A program is discriminating if the following two conditions are satisficd:
(1)  the program is reverse, and

(2)  foreach input/, nt(/y=nt(I").

In appendix A we provide an algorithm for determining whether or not a program P is discriminat-
ing. The program with the recursive rule S (x,y):~5(¥.£),5 (x.2),S (2,y) is an example of a discriminating
program. The two conditions in the above definition are independent. For example, the reverse program
having the recursive rule S (x,y):=S (y,x).$ (x,2).4 (x,y,z) does not salisfy condition (2). To sce this, con-
sider the input /={B (2,1), B(1,1), A(1,2,1)}. S(1,2)isin ar(/), butis not in ne(/").

On the other hand, there are programs, that satisfy only the second condition. For example, the pro-

gram with the recursive rule S (x,x) :— S (x.n), S(n.x) is not reverse, but satisfies condition (2).

Lemma 3.4: A discriminating program P, is decomposable. An cligible partition for P is the degenerate

one.



Proof: In areverse program, the nontrivial output, ni(/), contains only two-constant §-facts for every /.
To see that, note that every instantiation of the recursive rule, which derives a one-constant S-fact, contains
that one-constant S-fact in the body of the instantiaicd rule. Hence, that S-fact could be derived by an
instantiation of the exit rule. The rest of this proof is similar to the proof of Lemma 3.3. For every /, the
one-constant S-facts can be derived by an instantiation of the exit rule, so they are proper in any partition,
particularly in the degencrate one. The two-constant S-facts have a derivation tree in which all the S-facts
are two-constant S-facts (by condition 2 in the definition of a discriminating program). Therefore, these

facts are also proper in the degenerate partition, O

3.3 Necessary Conditions for Decomposability

Next, we characterize all the decomposable programs. We prove that if a program is not first-fixed,
nor second-fixed, nor repeating, nor discriminating, then it is not decomposable. This proof involves a
lengthy casc analysis. First, we prove two lemmas that introduce two properties of decomposable pro-
grams. Then, Lemma 3.7 shows that among the reverse programs, only the discriminating ones are decom-
posable. Lemma 3.8 proves that among the non-reverse and non-repeating programs, only the first-fixed or
second-fixed programs are decomposable. In general, we prove that a program is not decomposable, by
showing that all the output domain facts of that program must be in onc member of any eligible partition.
Define a set of atoms H to be a variant of another set of atoms £/” if H can be obtained from H’ by renam-

ing the variables in /1" (different variables are renamed by different variables).

Lemma 3.5: Let P be a decomposable program. If the recursive rule r of P, contains two S-atoms, M and
N, such that:

(1)  Atmost one of the atoms has a repeated variable, and
(2)  The set {N,M} is not first-fixed, nor second-fixed, nor a variant of {§ (x,y),S (y,x)}.

Then in every cligible partition D of P, all the two-constant facts in the output domain are in the
samec member of D.
Proof:  Consider two two-constant facts, S(@;) = S(i.) and S(e%) = S(k,[). We shall divide the proof
INtO LWO Cases.
case 1: Assume that ik, and i#/, and j#k, and j=/. Then there are three subcases to consider.

(1.1) M and N do not have a shared variable, and nonc of them has a repeated variable. Then there isa 1-1
instantiation f of r such that N-f = §(i,j) and M-f = § (k.[). Using Lemma 3.1 ends this subcase.

(1.2) M and VN have at least one shared variable, but do not have any repeated variable. Since {M,N} is not
a variant of {S(x.y).S (y.x)}. there is exactly one variable with two occurrences in the set {M,N}.
Additionally, since the set {M N} is not first-fixed, nor sccond-fixed, these two occurrences arce not in
the same position. Therefore, {M, N} is {§(x.¥),5(z.x)} (actually a variant of the set). Consider the

following 1wo instantiations:
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Let fbe a 1-1 instantiation of r, in which f (y) =k, f (x) = J, f (z) =i. By Lemma 3.1, §(j,k), S(.j)
are in the same member of D,

Let g be a 1-1 instantiation of ~, in which g(y) =1, g(x) =k, g(z) = j. By Lemma 3.1, S(k,0), S (j.,k)
are in the same member of D.

Therefore, the three facts S(i.j), S (k,!), and S{j k) are in the same member, particularly the first
two.

(1.3) At least one of the atoms M, N has a repeated variable. Assume that N = S (x,x) is that atom. Since
{M.N} is not first-fixed, nor second-fixed, x does not appear in M. Consequently, we can assume that
M is S (y,2). Let o be a new constant. The following two inslantiations ¢nd this case.
Let fbe a 1-1 instantiation of r, in which f (x) =0, f (¥) =i, f (z) = j. By Lemma 3.1, § (0,0), S (i.).
are in the same member of D.
Let g be a 1-1 instantiation of r, in which g(x) =0, g(¥) =k, g(z) =/. By Lemma 3.1, S(0,0) and

§ (k,!) are in the same member of D. As in subcase 1.2, S (i,j) and S (k,{) are in the same member.
case 2: Assume that i=k, or i=l, or j=k, or j=I. Then, we can find a third two-constant fact, $(@,), with
constants that are pairwise-different from both, S (€} ) and S (€,). Based on case 1, S (¢€}) and S (€) are in
the same member of D, and § (€,), S (¢3) are in the same memberof D. O

Lemma 3.6: Let P be a decomposable program, and assume that the recursive rule of P, has thrce atoms
that are variants of the set {S(z,z), S (w,z), S(z,w)} (Note that no pair of atoms satisfies the condition of
Lemma 3.5). Then, in every eligible partition D of P, all the two-constant S-facts are in the same member
of D.

Proof:  We shall prove that every two two-constant facts, S (i,j) and S (k,{), with pairwise-different con-
stants, are in the same member of D. The proof is obtained by the following five 1-1 instantiations of the

recursive rule.

Let fy be:  fi(w)=j, f1(z) =i. By Lemma 3.1, $ (i.i), S(i,j), S(.{) are in the same member of D. Denote
itM,.

Let fobe:  fa(w)=1i,f(z) = j. By Lemma 3.1, S (j.j). S(j.i) and S(i.j) arc in M,.

Letfybe:  fy(w) =k, f3(z) = j. By Lemma 3.1, S(j.j), S(k.j), and § (j,k) are in M..

Let fabe:  fa(w) =], fa(z) = k. By Lemma 3.1 S (k.k), S(k.j) and S (j k) are in M,.

Let fs be: fs(w)=1, fs(z)=k. By Lemma 3.1, S(k.k), S(k,{) and S(l.k) are in M,. Therefore,
S (k,0), $(i.j) are in the same member of D.

If the two facts have common constants, the proof is idcntical (o case 2 of Lemma 3.5. O

A linear program is a program with only one S-atom in the body of the recursive rule. Define a program 1o
be switching if it is reverse and linear. A switching program is. in fact, cquivalent 10 a non-recursive pro-

gram (rcplace the S predicate symbol in the body of the recursive rule by B). Note that this cquivalence
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does not contradicts our notion of minimality, since we did not delete an atom, but rather replaced one

atom by another.

Lemma 3.7:  If a reverse program is decomposable, then it is discriminating.
Proof:  We first prove the following three claims.

Claim 3.7.1: A reverse program, whose recursive rule has an S-atom with a repeated variable, is
not decomposable.

Proof: Let P be a reverse program, and N an atom of the recursive rule, r, that has a repeated vari-
able. Denote the head of the recursive rule by S(x,y). Assume, by way of contradiction, that P is
decomposable. Hence, P has an eligible partition D = {M,,...,M,,...}. We show that all the facts in
the output domain are in the same member of D. First, we show this for the two-constant facts. There
are two cases.

1)  The repeated variable in N is not a distinguished variable. In this case, N and the head of r are
two atoms that satisfy the conditons of Lemma 3.5. Conscquently, all the two-constant S-facts are
in the same member of D.

2)  The repeated variable in N is a distinguished variable. Let N = § (x,x). Then the recursive rule
contains the atoms §(x,x), S(x,y). S (y.x). By Lemma 3.6, all the two-constant S-facts are in the
same member of D.

Now, suppose that M, is the member of D that contains all the two-constant facts. Let S (€) be a one-
constant fact. We select a 1-1 instantiation, £, in which N-f = S (@) and head-f is a two-constant fact.
By Lemma3.1,S@) isin M,. Oripn 374

Claim 3.7.2: A switching program is discriminating.

Proof: A switching program is a reverse program, and therefore for every input /, the nontrivial
output, nt(f), contains only two-constant facts. Additionally, in such a program, every derivauon
tree of a fact in ar(/) contains only one B-fact, which is also a two-constant fact. Therefore, every
factinm(/)isinnt(I”). Ogjam 192

Claim 3.7.3: Let D be an cligible partition of a reverse, non-lincar, and decomposable program.
Then, all the two-constant facts in the output domain are in the same member of D.

Proof: By Claim 3.7.1, the referred program does not contain an S-atom with a repeated variable.
Additionally, because of the non-linearity of the program, there is an S-atom in the body of the recur-
sive rule, having at most one distinguished variable. Decnotc this atom by M. Denote the head of the
recursive rule by S(x,y). Next, we show that there are two S-atoms in the rule that satisfy the condi-
tions of Lemma 3.5. Thus, all the two-constant S-facts are in the same member of D, If M does not
have a distinguished variable, then S(x,y) and M are the two desired S-atoms. If M has a dis-
tinguished variable, say x, then the following holds. If x appears in the first position of M, then M and

S (y.x) are the two desired atoms; otherwise M and S(x,y) are the two desired atoms, Oeigym 373




Proof of Lemma 3.7: Consider a decomposable reverse program P. Assume, by way of contradiction,
that P is not discriminating. We shall show that in any eligible partiion D of P, all the facts in the output
domain are in the same member of D, contradicting the fact that D is a partition. By Claim 3.7.2, P is not

linear; thus by Claim 3.7.3, all the two-constant S-facts are in the same member of D, say M;.

It remains to show that all the one-constant §-facts are also in M,. Let S(J,/) be a one-constant fact.
P is a reverse program but not a discriminating onc. Thus there is an input, /, such that nt (I *)cnt (I). We
shall assume without loss of generality, that / has the following property (minimality): nt (/" )cnt (1), but if
we eliminate any one-constant B-fact, B (€), from /, then nt (/ —{B (@)})") = nt (I —={B (€)}). Such an input
can be obtained by starting with an input for which the proper containment is satisfied, and eliminating
one-constant B-facts, repeatedly, until equality is obtained; then return the last eliminated B-fact. Now sup-
pose. again without loss of generality, that the constant j is not in / (otherwise we can add j+1 to all the
constants in ). Obviously / has a fact B (i,i). Denote by /,, the input oblained from /, by replacing each
occurrence of the constant i by j. It is easy to sce that / satisfies the following properties: (i) B (j,j) is in
I4, and (if) nt(Ig)cnt (I,4); in other words there is a two-constant fact, a, in nt (), that is not in nz (/o).
Consequently (remember minimality), /¢ forces S (j,/) and a 10 be in the same member of D, namely M;.

DLtmma 37

Lemma 3.8: If a non-reverse and non-repeating program is decomposable, then the program is first-fixed
or second-fixed.

Proof: We first prove the following 2 claims.

Claim 3.8.1: A non-reverse and non-repeating program, P, that has at least two S-atoms with
repeated variables in the recursive rule, is not decomposable.

Proof: Assumc, by way of contradiction, that the program P has an eligible partition D. We show
that all the facts in the output domain are in the same member of D. Every two one-constant facts are
in the same member of D because they are neighbors with respect to P. Denote this member by M;.
P is not a repeating program, therefore the recursive rule includes an S-atom with two different vari-
ables. Denote it N. Now consider a two-constant S-fact, S (@), and let f be a 1-1 instantiation of the
recursive rule in which N-f = S(€). Since rule-f contains a one-constant S-fact, we obtain, using
Lemma 3.1, that S@) is in M;. Ogigm 351

Claim 3.8.2: If a non-reverse and non-repeating program, P, is decomposable, and has an eligible
partition, D, then, there are two two-constant S-facts that are not in the same member of D.

Proof: Assume, by way of contradiction, that all the two-constant S-facts are in one member, M,,
of D. Then, there is a one-constant S-fact that is not in M,. Denote this fact by S (i,i). We consider
IWO cases.

1) The recursive rule includes an S-atom with a repeated variable. Assume itis M = §(z,2). Since
the program is not repeating, there is an S-atom with two different variables. Denote this atom by N.
Let fbe a 1-1 instandation such that f (z) =i. By Lemma 3.1, both M-f and N-f arc in the same




member of D, M;. Contradiction to S (4,{) not being in M.

2) The recursive rule does not include an S-atom with a repeated variable. Denote the head of the
recursive rule by S(x.y), and let f be the following instantiation: f (x) = f (y) = i (which means that f
is not 1-1) and for all the other variables f substitutes distinct constants, that are different from i. Let
I be the input consisting of the S-t0-B substitution of body-f. The relation B in [ contains only two-
constant facts since (i) the recursive rule does not include an atom with a repeated variable, and (ii)
the program is non-reverse. Therefore, I forces S(i,i) to be in the same member of the partition as

some two-constant S-fact. This member is M,, contradiction. Deigim 35.2

Proof of Lemma 3.8: Let P be a decomposable, non-reverse and non-repeating program. By Claim
3.8.1, P contains at most one S-atom with a repeated variable. Assume, by way of contradiction, that P is
neither first-fixed, nor second-fixed. We shall show that in any eligible partition D of P, all the two-
constant S-facts are in the same member of D, which contradicts Claim 3.8.2.

There are two cases:

(1) The head of the recursive rule has two distincl variables. Since the program is non-reverse, there are
two S-atoms in the recursive rule, that satisly the conditions of Lemma 3.5. From Lemma 3.5 we

conclude that all the two-constant S-facts are in the same member of D.

(2)  The head of the recursive rule has a repeated variable. In this case, one can find either two S-atoms
that satisfy the conditions of Lemma 3.5 or, two S-atloms in the body of the recursive rule that
together with the head satisfy the conditions of Lemma 3.6. In either case, all the two-constant S-

facts are in the same member of D. O, pims 38

Theorem 3.2: A program is decomposable if and only if it is first-fixed, or second-fixed, or repeating, or
discriminating.

Proof: (if) from Lemmas 3.2, 3.3, 3.4.

(Only if) from Lemmas 3.7, 3.8. O

3.4 Strong Decomposability

For some decomposable programs, having multiple processors does not provide a real advantage
compared 1o a single processor, particularly if the lauer, as explained in subsection 3.1, removes members
as it reaches member-fixpoint. For example, consider a repeating program with the degencrate partition.
We can assign responsibility for each one of the two members to a different processor, but the processor
that reccives the member M, = {S (i,j) | i#j} cannot produce any nontrivial output, i.e. output for which the
recursive rule has 10 be instantiated. It does remove from the other processor the burden of handling the
members of M,, when generating the members of M. But a single processor can also remove the
members of M ., after the first iteration of (semi-) naive evaluation. Well, maybe a repeating program can

have another partition, in which more than one processor can produce nontrivial facts. We shall prove in




Theorem 3.3 that this is not the case, i.e., for every partition of a repeating program, there must be one
member which conuins all the facits of M. The same arguments can be made for discriminating pro-

grams. For them, the "real” work is carried out by the processor which is assigned responsibility for M ,.

Therefore, for the purpose of parallelization, we arc more interested in the programs with an eligible
partition, in which the recursive rule has to be "used” for more than one partition-member. [n this subsec-
tion we completely characterize the strongly decomposable programs, i.e the program for which there is an
eligible partition such that more than one processor does “real” work. We determine that of the decompos-
able programs, only the first-fixed, sccond-fixed, and switching are strongly decomposable. Furthermore, a
program in each of these classes has a natwral partition, i.e., a partition with an infinite number of members,
each of which requires real work to produce. Consequently, as we shall show in the next section, an arbi-

trary number of processors can be effectively utilized for producing the output, given a large enough input.

For a program P, and an input /, a fact a € O (P,/} is nontrivial if it belongs to the nontrivial outpul.
The program P is strongly decomposable if it is decomposable, and has an eligible partition, D, such that
for some input, more than one partition member coniains a nontrivial fact. The partition D is called a
strongly eligible partition. Although the definition reguired some nontrivial facts for some input, we shall
demonstrate in corollary 3.4, that if a program is strongly decomposable. then every fact in the output

domain is nontrivial for some input. Therefore, the "real” work is distributed among the processors.

In Claim 3.7.2 we proved that a swikching program is discriminating. In addition to the degenerate
eligible partition, it has the eligible partition D = {M, 1i 2 1,y 2 1} where each M ; is {§(i,/),5 (.i)}. This
partition is called the natural partition of the switching program (different than the natural partition of a

first-fixed program).

Theorem 3.3: A program is strongly decomposable if and only if it is first-fixed, or second-fixed, or

swilching.

Proof:  (if) It is easy io0 see that the natural partition for cach program in one of these classes, is a

strongly eligible partition, and therefore those programs arc strongly decomposable. For example, if the

program is first-fixed, then the desired input is obtained in the following way. Let f be a 1-1 instantiation of

the recursive rule in which f (x)=1. Let g be a 1-1 instantiation of the same rule, in which g (x)=2. Then, /

i$ the §-10-8 substitution of (body-fi_body-g).

(only if) All the programs that are not decomposable cannot, of course, be sirongly decomposable. Thus, it

suffices 10 show thal repeating programs, and non-lincar discriminating programs, are not strongly decom-

posable. We do it so by showing that for every cligiblc partition, the nontrivial facts must belong to the

same partition member.

(1) Repeating programs - The recursive rule contains at least two S-atoms with repeated variables: the
head, and at least one atom in the body. Thus, cvery two one-constant facts are neighbors with
respect to the program. Note that only one-constant facts can be nontrivial, and that by Lemma 3.1

these facts are in the same member of any cligible partition.



(2)  Non-linear discriminating programs - These programs are reverse programs, so only two-constant S-
facts can be nontrivial. Additionally, by Theorem 3.2, the discriminating programs are decompos-
able, and by Claim 3.7.3, in every eligible partition for the program, all the two-constant S-facts are

in one member. O

The next corollary establishes the robustness of the strong-decomposability concept; when a program is
strongly decomposable, then it has a partition with an infinite set of members containing nontrivial facts,
and furthermore, every fact can be nontrivial.

Corollary 3.4:  If a program is strongly decomposable, then it has an infinite eligible panition (e.g. the
natural partition). Furthermore, for each & members of the partition R ,...,R;, and for each k facts g; € R,

for i=1,...,k, there is an input for which each g; is nontrivial. O

The next proposition indicates that for the strongly decomposable programs there is no strongly eligi-
ble partition which is "finer” than the natural partition.
Proposition 3.5:  Let P be a srongly decomposable program, and let a, b be two facts of a member, say
M;, of the natural partition of P. Then, in every strongly eligible partition of P, a and b belong to the same
member.
Proof:  Consider a first-fixed program P. The facts a and b have the same constant in their first position;
thus they are neighbors with respect to P. By Lemma 3.1, g, b are in the same member of any eligible par-
tition of P.

Similar arguments are used to prove the proposition for a second-fixed program, or a switching one,

The next proposition establishes the relationship between the family of srongly decomposable pro-
grams and the family of programs in the NC complexity class (assuming P=NC).
Proposition 3.6:  There are strongly decomposable programs that are also in NC (c.g. the linear transitive
closure), there are strongly decomposable programs that are not in NC (e.g. the first-fixed program
S (w,x):— S(w,y).5(w,2),H (x,y,2) ), and there are programs in NC thal are not strongly decomposable (e.g.
the program S(x,y):- A (x,2),5 (z,w),C (w,y) ).
Proof:  The linear wransitive closure, and the program S (x.y) := A (x,2), S(z,w), C(w,y) are in NC by
results from [AP, UV]. The program P2:  S(w.x) - S(w.¥), S(w,2),/{(x,y.z) is P-complcte. We prove it
by a rcduction from the first known P-complete program, path-systems ([C]), which is
S(x):- S(), S(z), H(x,y,z). Given an input, /, 10 path-systems, we transform it 10 an input, /’, to program
P 2 as follows. The relation H in /” is the same as in /. Let "o be some constant. The relation B in I’ consists
of all the tuples B(a,i) such that B (i) is in /. Then S(a.,i) is in O (P2, 1) if and only if S(i) is in
O (path-systems, I). O

The next comment concerns the extension of the positive results of theorem 3.3. If a program is
first-fixed, or second-fixed, or switching, then it is strongly decomposable even if we allow the body of the
recursive rule to contain negated extensional-atoms, provided that the variables in these atoms also appear

in nonnegated atoms in the body (stratified and safe ncgation). Furthermore, such programs are strongly
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decomposable even if the predicate symbol B is allowed to appear in the body of the recursive rule.

In sum, in this section we defined two propertics of programs: decomposability and strong decompo-
sability. We completely characterized the programs thai have each onc of these properties, and the result is
that only a narrow class of programs possesses them. In the next section, we prove that only the strongly
decomposable programs can be evaluated by several pracessors that do not communicate, nor duplicate any
work. Thus, the importance of the above characterization is in its "only if" direction, that is, the negative
result. Except for the strongly decomposable programs, there is no program that can be evaluated with
minimal total evaluation cost and without communication. New strategies, that involve (minimal) commun-
ication or duplicaton of work, are needed. Sections 4.4, 5, and 6 discuss such strategies. Furthermore, in
[WO)] we have extended the decomposability definition to arbitrary datalog programs (not necessarily
binary sirups), and we have shown that for such programs decomposability is undecidable. Similarly, the
strong decomposability definition can be extended, and the proof of [WO] can be repeated verbatim to
show that strong decomposability is also undecidable. Thus, complete characierization can be obtained
only for subclasses of programs, such as the binary sirups considered in this paper. Moreover, in [WS] we
syntactically define the pivoting property for arbitrary datalog programs. The strongly decomposable pro-
grams (semantic property) are exactly the pivoling binary sirups. Also, cvery pivoting arbitrary-datalog-
program is strongly decomposable.

4. PURE PARALLELIZATION

In the previous section we have scen that strongly decomposable programs are amenable to paralleli-
zation that does not incur communication or synchronization overhead, namely pure parallelization. It is
achieved by replicating the input at muluple processors, and assigning output responsibility for each
member of a strongly-cligible-partiion to some processor. Two questions immediately arise. First, what is
the performance of this parallelization method? Second, what are the limits of pure parallelization, i.e., can
other programs be purely parallelized, possibly by another method? In this section we answer these ques-
tions, which tumn out to be related as follows. There are other programs, although not all of them, that can
be purely paralielized. However, the ones that can be purely paralielized while guaranteeing minimal total
evaluation-cost, are exactly the strongly decomposabic ones. Therefore, we discover a class-structure of
programs with respect to pure parallelization. This structure is illustrated in figure 1 (following the refer-

ences).

4.1 Parallelization Schemes

In this subsection we provide the formal detinition of a parallelization scheme, i.c., a set of parallel
algorithms that together cvaluate a program. Each algorithm in the scheme cvaluates the program with less
than the whole input: consequently, it is faster, but, on the other hand, does not produce the whole output.
Then we distinguish between two types of parallelization schemes: decomposition and sharing. Both of

them guaraniee that the whole output is obtained as the union of all the facts produced by the algorithms,
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therefore, if these facts are sent to an oulput processor, or a common file, completeness of the result is
ensured. However, decomposition schemes also guarantee that the processors executing the parallel algo-
rithms do not duplicate onc another’s work. Finally. we define pure parallelization schemes, i.e. schemes

that do not incur any overhead.

Let P be a program, and let / be an input o P. A partial computation, denoted A,(/), is a partially
ordered set of facts from / \y O(P,]). The subscript i in A;(/) stands for the identity of the processor that
produces the partial computation. Each fact S (€) in A;(/) is labeled computed or transmitied. If S (€) is
computed, then it must be preceded in A;(/) by all the facts of one of its derivation trees. Intuitively. the
partial order in A;(/) represents the time-order in which the output of P is evaluated, and the requirement
that S () must be preceded by all the facts in some derivation tree means that § must "know” all these facts
before being able to compute S(@). The set A,(/) is called a "partial” computation, since not all facts of
O (P,I) have w be in A;(/). A wansmitted fact is received from another processor, thus a derivation tree
does not necessarily precede it. For example, the semi-naive evaluation by a single processor produces a
partial computation consisting of the input facts, followed by all the output facts, in the order in which they

are evaluated; all the facts are computed.

An r—parallelization—scheme, A, for partial computation of P, is a function which maps each input,
1, into r partial computations, A (/) = {A,(/),...,A, (I}, such that if some fact is ransmitted in some A;(/),
then it is computed in some A;(/) 3 Ais called a scheme for short. The set of all partial computations with
subscript i constitutes the (output of) algorithm A, of A. We denote by p, the processor that cxecutes 4;. A
scheme, A, is sharing if (i) (completeness) for ¢very input /, cach facta € O (P.I) is in some partial com-
putation of A (/), and (if) (ime-saving input) for at least onc input, /', there is no partial computation in
A (/") that conuains the whole nontrivial output. A scheme, A, is a decomposition scheme il (i) it is shar-
ing, and (ii) (disjointness) for every input /, no fact is a computed fact in more than one partial computa-
tion of A (/). Intuitively, a complete scheme docs not lose output, and, assuming that a certain amount of
work is necessary o produce each output fact, processors executing (the algorithms of) a decomposition
scheme do not duplicate one another's work. Existence of a time saving input, simply ensures that the

scheme is not trivial, i.e., does not consists of a single-processor cvaluation algorithm.

A scheme A is independent if for cvery input /, cach partial computation in A (/) docs not contain any
transmitted facts (i.e all the intentional facts arc computed). Independence ensures that facts arc not
transmitted between algorithms, i.e. there is no data overhead. In this section we discuss only independent
schemes. An independent scheme, A, is data-driven if for each input /, and for each fact b € O(P,I), and

for cach set of input facts, Z, the following two conditions are satisfied for cach algorithm A, € A:

(1) (contribution) If b € A,(/) and the set of derivation trees of b for the input / U Z is a superset (not

necessarily proper) of the set of derivation trees of b for the input/, then b € A (1 U Z).

} Actually, addivonal requirements have to be saustied by the set A{T), but we omit them since they are not used in this paper.
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(2)  (noncontribution) If b € A;(/), and the set of derivation trecs of » for the input / is a superset (not

necessarily proper) of the set of derivation trecs of b for the input/ w Z, then b € A;(/ U Z).

Inwitively, the fact that a scheme is data driven ensures that the output of each processor depends
solely on the input, and not on communication with another processor; in other words, there is no control
overhead. The contribution requirement is simply that if the fact b is in A;({), and Z contributes to the
derivation of b, then its addition to / cannot suppress the production of . Note that if A; is monotonic, then
the contribution requirement is satisfied, but if stratified negation is allowed, A; is not monotonic but may
still satisfy the contribution requircment. The noncontribution requirement is that if the fact b is not in
A;(l), and the set Z does not "contribute” to the derivation of b (i.c., there is no derivation tree which con-
tains a fact in Z), then b is also not in A;(JUZ).

Remark 4.1: It can be shown that an independent decomposition scheme that satisfies the contribution

requirement, also satisfies the noncontribution requirement.

Let A be an independent, data-driven, parallelization scheme for the partial computation of P. A is
called a pure parallelizaiion scheme, or, for short, a pure scheme. Such a scheme does not incur the over-

head of communication among the algorithms.

4.2 Strong Decomposability and Pure Parallelization

In this subsection we prove thal the programs having pure parallelization schemes are exactly the
strongly decomposable programs. Then we outline a strategy (i.c. a class of schemes), called DS 1, that

contains all the pure decomposition schemes.

Lemma 4.1:  Assume that A is a pure decomposition scheme for a program P, and let b be a fact of the
output domain. If for some input, /, and for some algorithm A, of A, the fact b € A,(/), then for every other
input,/’,ifbe O(P,I)thenb € A (.

Proof:  Assume, by way of contradiction, that b € A, (/). Then, by compleicness of the scheme,
be Ayl'), j=k. Let I” be the input / w/’. By the contribution requirement of a data-driven scheme,
b e A (/") because b € A(I"). By the same requirement, b € A,(I”) because b € A;(/). Contradiction to

the disjointness requirement, i.¢ that every fact is computed in a unique processor. OO

Under the assumptions of the previous lemma we say that A, is thc home-algorithm of b in A. Note that
every fact in the output domain has a unique home algorithm (by disjointness and completeness of A).
Given a program P, a restricted version P, of P (sce [WS}) is a program obuiined from P by appending
evaluable predicates 10 the body of some, or all, of the rules of P. For example the program with the recur-
sive rule S(x,y) :- S(x.2), A(z.y). odd (x) is a restricted version of P 1, defined in subsection 3.1. A set of
facts / is an input to P, if and only if it is an input to P. The output of P, is defined as the output of P, with
the following exception: in a derivation tree, cvery instantiation of a rule, r, must satisfy the evaluable

predicate appended to r.
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Theorem 4.1: A program P has a pure decomposition scheme il and only if it is strongly decomposabie.
Furthermore, let A be a pure decomposition r-scheme, and denote by M; the set of facts in the output
domain, which have A; as their home-algorithm, for i = 1,...,r. Then {M, ..., M,} is a strongly cligible
partition for P,

Proof:  (if): Let P be a strongly decomposable program. By Theorem 3.3 P is first-fixed or second-
fixed or switching. Assume P is first-fixed. We show a pure decomposition scheme A = {A|,A,} for P. 4,
is the semi-naive evaluation (see appendix C) of the restricied version, P;. P; (P,) is P with the evaluable
predicate odd (x) (even(x)) appended to the recursive and exit rules. Now, let us prove that A is a pure
decomposition scheme. Given an input /, the partial computation in processor { consists of the input facts
(unordered), followed by all the output facts. in the order in which they are evaluated. A (/) contains all the
facts in O (P.I) with an odd constant in their first position. 4 (/) contains all the other facts in O (P.[) (i.e.
the output facts with an even conslant in their first position). Therefore, completcness and disjointness are
satsfied. A also has a time-saving input, e.g. the input provided in the proof of Theorem 3.3, the (if) part.
Consequently, A is a decomposition scheme. Moreover, all the facts in the partial computations are com-
puted, and therefore A is an independent scheme. Additionally, A; and A, are monotonic; hence the contri-
bution requirement is satisfied. The non-contribution requirement is also satisfied by Remark 4.1. Conse-
quently, A is pure.

Similarly, we can prove that second-fixed and switching programs have decomposition schemes (for
switching programs the odd-even(x+y) cvaluable predicates are used).

(only if): P has a pure decomposition scheme A = {A,,...,4,}. Let D be the following partition of the
output domain of P. D = (M, ... M,} where M, contains all the facts that their home-algorithm is A,. We
shall show that D is a strongly eligible partition. Let/ be an input to P, and S(2,) a fact in O (P,/) with the
home-algorithm A,. By Lemma 4.1, § (&,) € A,(/), and by the independence of the scheme, S@,) is pre-
ceded in A, (/) by a derivation tree; thus all the intentional facts of that trec are in member M, of D. Conse-
quently, D is an eligible partiion. It remains to show thal D is a strongly cligible partition, i.e. there is an
input for which two nontrivial facts belong to different members of D. It is easy to see that the input that is

time-saving in A, is such an input. O
Next we describe a set of pure decomposition schemcs, namely a strategy.

Strategy DS1:

A strongly decomposable program P, is cvaluated by algorithms {A,,...,A }, for any number of processors,
r. Let A be some hash function that maps cach natural number (pair of natural numbers for swilching pro-
grams) into a unique member of the set A ={1,...,r} (for cxample, the modulo r function). We assume that
some number is mapped by 4 into each member of A. Each algorithm, A,, evaluates the restricted version
of P with the predicate h(x)=i, or h(y)=i, or h(x,y)=i (for P a first-fixed, or second-fixed, or switching pro-
gram, respectively) appended to the exit and recursive rules. Thus, for a lirst-fixed program, processor i is

assigned responsibility for the members M, of the natural partition, for which A (k) = i. If P is swilching,
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then A must be commutative.

A scheme in the strategy DS is obtained by fixing the hash function, the number of processors, and
each A; (naive, semi-naive, or some other evaluation method). The scheme obtained is obviously a pure-
decomposition-scheme. Observe that uniting several (but not all) members of the natural partition into one

member, leaves an eligible partition.

It can be shown that a scheme is a pure decomposition scheme if and only if it is in DS 1. The (if)
part of the proof is similar 1o the if part in Theorem 4.1. For showing the converse, let A” be a pure decom-
position scheme for r processors. Theorem 4.1 and Proposition 3.5 indicate that in A’, each algorithm is
responsible for some members of the natwral partition. We select a hash function A’ which maps each
natural number to the set {1,...,r}, such that for every two natural numbers, i and j, the following is
sausfied: A'(i)=h(j) (h'(i1,i2)= h'(j1,j2) for swilching programs) if and only if members M; and M,
(M;),i2 and M;, ;5 for switching programs) of the natural partition belong to the same member of D. Then
A’ is a scheme in DS1, for which the hash function is #’. O

4.3 Evaluation Cost of Strategy DS1

In this subsection, we consider schemes in DS1, where the algorithm of cach processor is semi-naive
cvaluation (see appendix C). We establish that for these schemes, for each given input, the total amount of
work performed by all processors in evaluating a program is minimal, i.e., not higher than the amount of
work in semi-naively evaluating the program by a single processor. Therefore, given a good hash function,
the speed-up is maximum. Intuitively, DS1 saves time for a first-fixed program, because at cach iteration
of naive or semi-naive evaluation, the predicate h(x) = i cuts (approximately by a factor of 1/r) the size of
every relation, extensional or intentional, having the auribule x. Additionally, it can be shown that the

number of iterations does not increase. Identical results can be shown for the naive evaluation algorithm

(tUD.

Next we define three cost measures to quantify the amount of work performed by an algorithm for
evaluating a program P given an input /. These measures will be used in our cost analysis of the strategies.
The first, denoted cost ', assumes that the cost of an itcration i of semi-naive evaluation is ¢+ §*™' |, where
| $*=! 1 is the number of tuples in the relation S at the end of the i —1 iteration (i.e. at the beginning of the
i-th iteration). ¢ is fixed for a given input (the results presented in this section still hold if cost' is a super-
linear function of I1S*1). Then, cost' of evaluating O (P./). is the total cost of all the itcrations performed

during the ¢valuation. Note that the cost of an ileration increascs as the evaluation proceeds.

The second cost measure, denoted cost?, is the number of "successful inferences of rules” performed
during the evaluation. An inference of a rule is a substitution of facts, one for cach atom in the rule body.
For example, every join can be regarded as a sequence of such substitutions. If the inference succeeds,

namely, equal constants replace the same variable, then itis a successful inference. Note that a fact can be



derived by several successful inferences; then, the price of deriving that fact is greater than one. The meas-
ure was introduced and justified in (BR].

In the third measure, cost®, the cost of a join of two relations is the multiplication of their sizes.
Here we assume that the join is computed by a trivial nested loop. As before, cost® of evaluating O (P,1) is
the total cost of all the joins in all the iterations.

In all the threc measures, the instantiations of the exit rule are ignored. The reason is, that these
instantiations can be done immediately by copying all the relation B to S. Thus, the first itcration of semi-
naive evaluation, that we speak of in the proofs is the first iteration of the "repeat loop” (see appendix C),
and contains only instantiations of the recursive rulc. Anyway, our results are valid even if the price of the

instantiations of the exit rule is not zcro.

We demonstrate the three measures by the following example. Consider the transitive closure pro-

gram Pl of subsecion 3.1, and the input /= (B(1,2), B(2.4), B(1,3).8(3,4), B(4,5).

A(1,2), A(2,4). A(1,3) ,A(3,4), A(4,5)). The costs of performing semi-naive cvaluation on P 1 and / are:
cost! = c+(5+6+T) ,cost® =2+1+0 ,and cost® =55+ 1-5+ 15,

In the rest of this subsection, let {A,...,A,} denote the execution of a scheme in DS1, that evaluates a
strongly decomposable program, P, with an arbitrary input, /. Each A; is the semi-naive cvaluation of the
restricted version of P, for some hash function denoted 4. The semi-naive evaluation of P, on a single-
processor, given the same input /, is called A. We denote the S-relation at the end of the i-th iteration of A
(i.c. at the beginning of the i+1 iteration), by S* (59 is the S-relation at the beginning of the first iteration,
i.e. the set of facts obtained by instantiations of the exit rule). Moreover, the set of new facts derived at
that iteration is denoted AS‘ (AS* = §'~§*~1 except for AS® = §%). Similarly, the S-relation at the end of the
i-th iteration of A, is denoted S%, and the st of new facts derived at that iteration is denoted ASj. Thus
AS = §5-8,7" except for AS? = §9. Another notation is k,(AS*): the set of facts in AS*, that are mapped by
the hash function to0 j. Similarly, 4,(S') is the set of facis in $* that A maps to j. For example, if the pro-

gram is first-fixed, then h5(AS*) is the set of facts in AS' such that A maps their first argument 10 2.

Lemma 4.2:  For every processor j, and for every itcraton i, AS} = A,(AS").

Proof:  Simple induction on the iteration number. O

Corollary 43:  For each j, the number of itcrations in algorithm A, is not higher than the number of
iterations in algorithm A (because if in the i-th itcration A, derives a new fact, so does A). O

Corollary 4.4: Every successful inference performed in itcration i of algorithm A, is also performed in

itcration i of A, and is performed the same number of times (because at the beginning of iteraton £,
S = h(ST) and AS)TT = (AS'TY). O

Theorem 4.2: The following inequalities hold for 4,4 ,...,A,:

(1 icost‘(A,)Scosl’(A) () icoslz(A‘)Scosl:(A) (3 icosﬂ(A,)sCos:’(A).

i=l i=1 =1



Proof:

1)

(2)

3)

By Lemma 4.2, and the disjointness and complcieness requirements, we obtain that in every iteration
i

@n YiIsir<is

1=!

(1X1 denotes the number of facts in relation X).
If i is greater than the number of iterations in processor j, then ISi1=0.
For j=1....,r we denote by m; (m), the number of itcrations that algorithm A; (A) performs when
evaluating /. By Corollary 4.3, max(m,,....,m,) <m.

m, .
We obtain: cost'(A;)=c-3 1571, and
past

cost'(A)=¢c-T 1S,

:=]

Based on equation 4.1, it is easy to see that:

S cost' (A;) <cost'(A)

s=
By Corollary 4.4, and the fact that every successful inference is performed by a unique algorithm of
the scheme, we obtain that for every iteration i

#.2) Ep; <p'.
7=1

where p) (p‘) is the number of successful inferences performed during iteration i of algorithm
A, (A).

An arithmetic manipulation, similar to the one done for cost' in (1), completes the proof.

Assume that in the body of the recursive rule, there are k& S-atoms. Suppose that the sizes of the
extensional relations joined by algorithms A, for j=1,...,r, at each iweration are /; y,...,; 4. (The sizes
obviously do not change from iteration to iteration). Let /,=/, ;-...:l, 4. Similarly, we denote the size
of the exicnsional relations joined by A, by /y,....I5,and [={,-...l4. Clearly,, </ for j = 1,...,r. Note
that |
S(xy) = S(3.x), A(x,y), even (x+y), the cvaluable predicate "cuts” the size of the relation A.

may be strictly smaller than (. For cxample, in the restricted version

By Lemma 4.2, and the disjointness and completeness requirements, we obtain that in every iteration

i

(4.3) S IAS) I < 1ASYI
j=t
If i is greater than the number of iterations in processor j, then lAS, 1 =0.
m,-l

Additionally: cost™ (A,) =1,k ¥ (1S;157-1AS; 1), and
=0

m-1
cost* (A)=1k- Y (1S 1471148 1),
=0



An arithmetic manipulation, similar to the one done for cost! in (1), shows that:
r m-1 7r .
Teost*(A) <14 T T(ISHIET-1AS0 ).

j=t i=0 j=1
Thus, using incqualities (4.1) and (4.3), it is casy to see that:

z_lcosﬂ(A,) <cost*(A) O

4.4 Pure Parallelization of Other Programs

Theorem 4.2 indicates that if we insist on purc parallclization of programs, we must relax the dis-
jointmess requirement, and consequently the minimal total evaluation cost. This approach was taken in [W],
where pure sharing (not decomposition) schemes were examined (pure sharing schemes were defined in
section 4.1). Programs that have a pure sharing scheme are named sharable. [W] showed that all lincar
programs are sharable, while there are programs, such as path-systems, blue-blooded-frenchman (see
[CK]), and others, all of which belong 1o a syntactic class called propagating programs, are not sharable.
The class of sharable programs is strictly larger than the class of strongly decomposable programs. and is
incomparable to the class of decomposable programs (see figure 1).

For evaluating the linear programs in parallel, the following strategy of pure sharing schemes was
proposed in [W]. The strategy is denoted SS1 in this paper. It ¢valuates a linear program P that is not
strongly decomposable, by algorithms {A,,...,A,}. Each algorithm, A,, evaluates the restricted version of P

having the predicate A (x)=i appended to the exit rulc only *; A is some hash function.

Inwitively, a pure sharing scheme does not guaraniee a minimal total cvaluation cost, since the algo-
rithms of the scheme do not necessarily produce disjoint sets of facts, and therefore, the same fact may be
"examined” in the scheme by more than one algorithm. It can be easily shown that there are programs and

inputs, for which the algorithms of SS1 do not satisfy the incqualities of Theorem 4.2.

However, it can be shown that when considering cost?, the tollowing is satisfied. For each input, the
maximum (among all participating processors) amount of work in semi-naively evaluating a program by

SS1, is not higher than the amount of work in evaluating the program by a single processor.

In conclusion, the class-structure of programs with respect to pure-parallelization is illustrated in
figure 1. Finally, consider the following question. Can the class of sharable programs be characierized in
terms of output domain partitioning, as we have done for programs that have a pure decomposition scheme
? This is an open problem at this point, but obscrve that the natural way of doing so does not work. This
natural way is in terms of an output domain "cover”, i.e. set of fact-scts that are not necessarily disjoint.

For example, §(x,y):-S (w,z),A (x,y,w,z) does not have such a cover bul is sharable.

‘ h(y)=ior h(x+y)=i work as well.
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5. DYNAMIC LOAD DISTRIBUTION

Pure parallelization pays for lack of overhead with two limitations. First, it is applicable only to
decomposable programs. Second, even for decomposable programs, the evaluation-load cannot be bal-
anced dynamically among the processors; thus. for DS1 we cannot ensure that minimal total-cost translates
into time minimality. Consequently, in this section we examine independent-parallelization i.e., paralleli-
zation with control-overhead but without data-overhead. We suggest a strategy, DS2, for the parallel
evaluation of a strongly decomposable program. Strategy DS2 is an adaptation of DS1 that balances the
work-load dynamically, by using control messages. We assume that every two processors can communi-

cate and every transmitted message arrives to its destination (no failures).

Strategy DS2:

By using a restricted version of a program, as in DS1, every one of the r processors assumes respon-
sibility for computing some members of the natural partition (see subsection 3.2) of the program. Each pro-
cessor performs its evaluation, one member at a time, in increasing order of members. For example if pro-
cessors 0 and 1 cooperate, and processor 0 is responsible for the even members, then it evaluates M, first,
then M, then M, etc. When some processor, i, terminates evaluating all its members, it announces com-
pletion to all the other processors. In response, each one of them broadcasts the identification of the parti-
tion member it is currently working on. Processor i assumes responsibility for 1/r of the unprocessed
members of each processor. Consequently, each processor is left with (r—1)/r of the members it had
before the announcement of i. To continue the example, if processor 0 terminates the even members, it
sends a control message indicating so to processor 1. Processor 1, thal is responsible for the odd members,
responds with the identification of the member it is working on, say 7. This indicates to processor O that
responsibility for the odd partitions that succeed 7, is divided; processor O takes the members M,
M3, M5, and processor 1 takes members M, M s. My, ..., etc. The work continues with each algo-
rithm nolifying its companion upon completion, and the lattcr responding with the partition number it is

working on at that ime. O

Note that only control messages, i.e. partition-identilications and ermination messages, are sent between
processors, by DS2. It is easy 10 realize that every scheme in DS2 is an independent parallelization scheme

(see definitions in subsection 4.1).

For the rest of this section assume that the algorithm executed by cach processor is semi-naive
cvaluation. For example, a processor of DS2 semi-naively evaluates M,, then it semi-naively evaluates
M, then Mo, etc. It is easy to show that each scheme in DS2 has minimal evaluation cost, by the three
measures introduced in section 4.3, cost?, cost’, and cost®. In other words, an analog to Theorem 4.2 can
be shown for schemes in DS2. The proof is based on the obscrvation that the cost of semi-naive evaluation
of a sequence of members by a processor in DS2, is not higher than the cost of a processor in DS that is

assigned responsibility for the same members (the latier evaluates all of them together, and not one by one
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as the former does).

We argue that schemes in DS2 are optimal within the strategy of partition-oriented independent
decomposition schemes. Intuitively, this is the strategy of independent decomposition schemes in which for
every input, the output in a member of the natural partition is never “split” between two or more partial
computations. Such splitting necessitates extra work (o determine that every fact is proper for an input, and
a partition-oriented independent decomposition scheme avoids this extra work. Observe that only strongly

decomposable programs have a partition oriented independent decomposition schemes.

Schemes of DS2 are optimal, up 1o one partition-member 5 for the following two rcasons combined.
First, the towl work-load of all the processors is minimal, i.e. not higher than the work-load of one proces-

sor performing the evaluation single-handedly. Second, all processors are busy until completion.

Finally, note that strategy SS1 can also be exiended 1o strategy SS2, that distributes the load dynami-
cally. A scheme in S§S2 cvaluates any linear program, P, as follows. "Member” M; consists of the set of
output facts derived from the input, where the relation B is restricted to the set {B(i,c) |c is a constant}.
Each processor evaluaies the members in increasing order. The cvaluation of a member consists of the
evaluation of the restricted version of P having x=i appended to the exit rule. Work redistribution occurs

when a processor compleltes, as in DS2,

6. A PARALLELIZATION STRATEGY APPLICABLE TO ALL PROGRAMS

In this section we present a gencral purpose parallelization strategy, DS3. In contrast to the sira-
tegies presented thus far, DS3 can be used for the parallclization of every program. It incurs a data-
overhead involved in transmitting tuples among the processors, but we show that in some sense the over-
head is minimal. We also show that for the linear programs, the total evaluation cost of the processors is

minimal.

6.1 The Strategy DS3

As the previous strategies, DS3 is a datwa-reduction strategy, i.c., each processor evaluates a program
P, using less than the whole database. Given a hash function h, processor { is responsible for computing the
facts that satisfy h (x)=i, where x is the first variable in the head of the recursive rule 5. In DS3, each pro-
cessor executes a modified version of semi-naive evaluation (an adaptation of naive evaluation is also pos-
sible, and even simpler). To ensurc completeness, cach processor communicates with the others in the fol-
lowing way. Processor { has a set of predicates, T, for j=1,., rand j#. Each T, depends on the program
being cvaluated, and the hash function. Processor i ransmits processor j all the facts that i computes, and

that sausfy predicate T,,. Next we provide the formal description.

*  This means that in any other scheme, say DSm, for some input, the last processor to complete may do so before the last pro-

cessor of DS2 completes. But if so, then the last processor of DS2 tralls the last processor of DSm by at most the time it takes to
cvaluate one partition-member in that input.

¢ Obviously, an analog of DS3 exists for A (y)={ where y is the seccond vanable in the head of the rules.
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Strategy DS3:

Given a system of r processors. a hash function A that maps the natural numbers into {1, .. ,7}, and a pro-

gram P, processor i executes the following procedure:
(1) If P is surongly decomposable - execute DS1 or DS2 (no facts have to be transmitted).

(2)  Determine the transmission predicates Tij for j=1, .. ,r and j#i, according 1o the flow-chart in figure
6.2 (next subsection).

()  Let P; be P with the hash function A (x)=i appended to the exit and recursive rules; x is the first vari-

able in the head of both rules. Compute O (P,7) by semi-naive evaluation.

At the end of each iteration do:
3.1 Denote by AS; the set of new tuples that i computed during its last iteration. For
J=1, ...r j#iransmit processor j all the facts in AS, that satisfy the predicate T;.
3.2 Add 10 the relation AS;, the set of all tuples that were received from other processors dur-
ing i's last iteration (this set may be empty).
3.3 If AS, isempty, then wait until some tuples are received from other processors.

end.

The computation ends when all processors are in step 3.3, and no tuples are "in transit” i.e. have been sent

but not received yet. O

Note that the processors perform their computation completely asynchronously. Also, the only
assumption that we make about the communication network is that each tuple that is sent, eventually
reaches the destination processor (no FIFO arrival of massages is necessary). In appendix B we provide an

example of evaluating a program by a scheme in DS3, and discuss its performance.

6.2 The Transmission Predicates

In strategy DS3, processor i sends 10 processor j the facts that i compules, and that satisfy the
transmission predicate T;;. In this subsection we define these predicates, whose purpose is to reduce the
number of transmitted facts. Intuitively, a fact does not have 0 be ransmiued to j, if once arrived there, it
will cither be eliminated by ;s hash functon, or, it will not contribute 1o the evaluation performed by pro-
cessor j. Such facts will not satisfy the predicate 7,,. For example, assume that the head of the recursive
rule is S(x,¥). and there is a single S-atom in the body, S(z,x). Then, the program is not decomposable,
but regardiess of the input, a fact S (c.d) such that j=h (d), does not have 1o be sent to j. Such a fact is never

instantiated in the body of the recursive rule of j, because j's hash function prevents this.

In an unary program, T,, fs TRUE for any i and j. In other words, cach processor transmits all its
computed facts to all the other processors. Thus, for the rest of this subsection we consider only binary pro-
grams.

The predicate T,; depends on the class of binary program, P, being evaluated. We define several

classes of programs, each with ils own set of transmission predicates. Denote the recursive rule of P by r,




and let the first variable in its head be x. A program is first-consistent if every S-atom in the body of r con-
tains the variable x. For example, the program with the recursive rule S(x.y) :— S(x,z2), S(y.x) is first-
consistent. A program is partially-firsi-consistent (partially-first-fixed) if the removal of all the S-atoms
with repeated variables from the body of r, leaves a first-consistent program (a first-fixed program, or a
program with an empty r-body). For cxample the program with the recursive rule
5(x.y):=8§(x.2), $(y,x), S (z,2) is a partially-first-consistent program, while the program with the recursive
rule $(x,y) :- $(x,2), S (x,m), S (¥,y), A (z,m) is partially-first-fixed.

Now we define a partially-discriminating program. Given an instantiation, f; of the recursive rule of
P, denoke by I} the following input to P. It consists of {the facts in $-10-B substitution of body-f} minus
{all ‘the onc-constant B-facts, except B (f (x).f (x))}. P is partially-discriminating if head-fe O (P.I}) for
any instantiation f of r. In other words, a program is partially-discriminating if for every instantiation, f,
there exist a derivation tree of head-f, as follows. Each leaf of the tree is in body-f (the S predicate symbol
is replaced by B); also, each B-fact in the tree is either a two-constant fact, or the fact B{(f (x).f (x)). Ina
discriminating program, for every instantiation, f, that derives a new fact, there exist a derivation tree in
which each B-fact is a two-constant fact. Thus, every discriminating program is also a partially-
discriminating program. The algorithm that decides whether or not a program is partially-discriminating is

described appendix A.

The definition of T}, is given using the flow-chart in Figure 6.2.

Every fact
satisfies T‘J

AfsctS(a.b) AfactS(a.b) AfsctS(ab) AfuctS(a,b)
satisfies T;; iff satisfies T; iff satisfies T; iff satisfies T;; iff
h(b)=j a=b h(b)=j cra=b axzb

Figure 6.2; Defining the transmission predicates

We end this subsection with the following remark. The decomposable programs, along with the new
program classes defined in this section, comprise the set of "coverable” programs. We shall not formally
define here this extension of the decomposability concept, bul will just mention that, a coverable program
has a cover of the output domain, for which every fact is proper. The notion of a cover is weaker than the
notion of a partition, in the sense that the members of a cover need not be disjoint, but cach one is smaller

than the whole output domain.
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6.3 Correctness of the Strategy DS3

In this subsection we establish that each scheme in stratcgy DS3 is actually a decomposition scheme.
A moment of thought will reveal that two of the three properties of such a scheme, disjointness and
existence of a time-saving input, are trivially satisfied. Completeness is not, particularly since a processor
executing DS3 does not send to all the other processors, all the facts that it compules.

Theorem 6.1:  Any scheme in DS3 satisfies the completeness requirement.

Proof:  Assume, by way of contradiction, that there is a scheme, A, in DS3, an input /, and a fact
S@) e O(P,I) that is not computed in any one of the partial computations A,(/). Consider a derivation tree
of §(€), with leaves in /. We select an instantiation. £, in that trec that satisfies the following two condi-
tions: (i) f derives a fact, S (a.b), which is not computed in any one of the processors, and (if) every S-fact
in body-f is computed by one of the processors. Such an instantiation exists since in the considered deriva-
tion tree, the root is not computed in any one of the processors, but every S-fact in the bottom of the tree
(derived by the exit rule) is computed by one of the processors. Assume without loss of generality that
h(a) = j (i.e. processor j is "responsible” for producing S(a,b)). Since the evaluation had terminated, but
S (a.b) was not computed, we conclude (remember condition (ii) of f) that there is at least one fact, S (c,d),
in body-f that is computed in another processor, but not transmitied to j. Suppose that S (c.d) = M-f, where
M is some atom in the body of the recursive rule, and that S (¢,d) was computed by processor i, i#j. Obvi-
ously, P is not first-fixed (otherwise h(c)=j). We shall prove that for any other program, S(c.d) must

satisfy the predicate T, and therefore must have been transmitted to j.

(1) A first-consistent program. In such a program, x appears in all the S-atoms in the body of the recur-
sive rule. We know that h(c)#/ and that f maps x 1o a, and that h(a)=/j. Thus a=d, and §(c.d) must
satisfy T

(2) A partially-first-fixed program, but not first-consisient. In such a program, every aiom in the recur-
sive rule is either an atom with a repeated variable, or an alom with the variable x in the first position.
Since h(c)#h(a), and consequently a#c, M is an alom with a repeated vanable. Thus S(.d)isa

one-constant fact, and therefore satisties T,

(3) A partially-firstconsistent program, but not first-consistent. nor partially-first-fixed. In such a pro-
gram, every atom in the recursive rule is cither an alom with a repeated variable, or it has the vari-
able x in one of its positions. Since h(c)#h(a), M is cither with a repeated variable, or x is in its

second position. Therefore ¢ =d, or d=a A h(d)=j, and conscquendy S (c,d) sausfies T,,.

(@) A partially-discriminating program, but not first-consistent, nor partially-first-fixed, nor partially-
first-consistent. By definition of a partially-discriminating program, S(a,b) can be derived from
body-f without using any one-constant facts other than S (a.a). We also know that if § (a,a) is com-
puted, then it must be computed by processor j. Since S(a,b) is not computed, we conclude that

§ (c.,d) is a two-constant fact, and theretore satisfics T ,.
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(5) A program which is not of the previous kinds. In such a program, every fact satisfies T, particularly
S(.d). O

6.4 The Performance of Strategy DS3

To estimate DS3 performance, we consider two factors: evaluation cost and data-communication
overhead. In this subsection we refer 1o thesc factors, and we start with the evaluation cost. Inwitvely,
lime-saving occurs in DS3 compared to the single-processor evaluation, for the following reasons. First, for
a given input, each one of the processors computes approximately 1/7 of the output tuples. Second, when-
ever T;; is a proper subset of the computed tuples, the evaluation cost of processor j (smaller S), is reduced.
Third. the evaluable predicate 4 (x)=i cuts the size of every relation having x as an autribute; consequently
the joins involving such relations are cheaper. Formally, we establish in the next theorem, that for linear

programs the total evaluation-cost of all the processors participating in DS3 is minimal.

Theorem 6.2: Let{A,,...,A,} be ascheme in DS3 that evaluates a linear program P. Denote by A the

algorithm that semi-naively evaluatcs P on a single processor. For every input / to P:

ZCOS[Z(Ai)SCOSIZ(A) (cost? is the measure introduced in subsection 4.3).

i=]
Proof:  We show that (i) Among the algorithms A ,....,A,, every successful inference is performed by at
most one of the algorithms, and in that algorithm, the successful inference is performed only once. (i)

Every successful inference performed in {A,,...,A,}, is also performed in A.

(i) Thescheme {A,,...,A,} is disjoint, thus every successful inference is performed by at most one of
the algorithms. Additionally, each A; is semi-naive, and the program is linear, thus every successful
inference performed by A,, is performed only once (when the differential relation includes the S-fact

in the body of the instantiated rule).

(1) Consider a successful inference, performed by some algorithm in {A|, ... ,A,}. The S-fact in the
body of the instantiated rule is in the output of A (Theorem 6.1), thus belongs to the differental rela-

tion in one of the itcrations of A. In thal iteration, the inference is performed by A. O

Nexl, we establish overhead minimality in the following sense. Let A be a decomposition scheme for
the partial computation of a program P. For an input / 10 P, the total number of transmitted facts in
A (,A2(,...,A(]) is the overhead of A for | (iransmitted facts are defined in subsection 4.1). Given a
scheme B in DS3, a decomposition scheme A for the partial computation of the same program, is called B-
alike if it satisfies the following condition: for cvery input, A computes the same facts as B at every proces-

sor (although A may transmit more or less of them),

For an input / to P, let $(€) be a computed fact in A (/), and a transmitted fact in A;(/). In other

words, i transmits S (€) 10 j. Then, A is simple if for every input, [’ 1o P, the following is satisfied. I § @) is




a computed fact in A;(/"), then it is a transmited fact in 4;(I"). Intitively, in a simple scheme, if for some
input, a processor, i, sends a computed fact, S (€), 10 another processor, j, then for every other input, i will
send S (&) to j. This means that processor ¢ does not incur the additional work of determining when to send
a fact and when not to do so. Note that every scheme in DS3 is simple.

To prove the minimal overhead theorem, we first prove the following lemma.

Lemma 6.1:  Let P be a program, let A={A 1»-+-,A} be a scheme in DS3 for partial computation of P,
and let A be its hash function. Let fbe a 1-1 instantiation of the recursive rule of P, such that S (a,b) is the
instantiated head, and S (¢,d) is in the instantiated body. Assume that A{a)=j and h(c)=i. Then, in every
simple A-alike scheme, B=(B, ... .B,}, and for every input /, if §(¢,d) is computed in B;(I), then S (c.d)
is transmitted in B, (/).

Proof:  Let/, be the S-10-B substitution of body-f. In any scheme for the partial computation of P, for the
input /o, S (a,b) is preceded by all the facts in body-f, as computed facis or as transmiited ones. Since B is
A-alike, §(a,b) is a computed fact in Bj({ o). but S(c,d) is not; thus S(c,d) is a transmitted fact in B,(/).
Since B is simple, this is satisfied for every input. O

The following theorem indicates that DS3 cannot transmit less facts than it actually does.

Theorem 6.3:  For every input, a scheme, A, in DS3 has a minimal overhead, among all the simple A-
alike schemes.

Proof: Consideran input/10A={A,,...,A,},and a fact S (¢,d) which is a computed fact in A,(/), and a
transmitted fact in A;(/), ie. T;(§(c.d))=TRUE. We show that in cvery simple A-alike scheme,
B={B,,...,B,}, with the input /, the fact S(c,d) is transmitted from / 10 j. We show it by demonstrating
a 1-1 instantiation of the recursive rule, in which § (c,d) is in the instantialed body, and another fact S (a.b),
such that h{a)=/, is the instantiated head. Since S (¢,d) is computed by processor i in A, h(c)=i, then using
Lemma 6.1 the thcorem follows.

We break down the analysis by program classes.

(1) A first-consistent program, but not first-fixed. S{c.d) is a ransmitted fact in A (/) and h(c)=i. Thus
(see flow-chart in figure 6.2) it is a two-constant fact, and h(d)=j. In such a program the head of the
recursive rule has the variable x in the first position while there is an atom N in the body with x in the

second position. A 1-1 instantiation, f, in which N-f = §(¢,d) is the desired one.

(2) A parually-firsi-fixed program, but neither first-consistent, nor first-fixed. Again, by the flow-chart in
figure 6.2, c=d. In the body of the recursive rulc there is an atom with a repeated variable, §(z,2). A
1-1 instantiation fin which f (z)=c, and f (x)=a such that h(a)=j, is the desired one.

(3) A partially-first-consistent program, but neither partially-first-tixed, nor first-consistent, nor first-
fixed. In this case. S(c,d) is either a one-constant fact, i.c. ¢ =d, or a two-constant fact, and h(d)=j.

If c=d, then the desired instantiation cxists as argucd in casc (2). If c=d, then the desired




instantiation exists as argued in case (1).

(4) A parually-discriminating program, but neither partially-first-consistent nor partially-first-fixed, nor
first-consistent, nor first-fixed. In this case, c#d. Also, there is an S-atom in the recursive rule, N,
without a repeated variable and without the variable x (otherwise the program is of previous kinds, or
first-fixed). Let a be a constant different than both, ¢ and d, such that 4 (a)=j. Then a 1-1 instantia-
tion, f, in which N-f = S (¢.d), and f (x)=a is the desired instantiation.

(5) A program which is neither of the four previous kinds, nor first-fixed. If c#d, then the desired instan-
Liation exists as argued in case (4). If c=d, we do not search for a 1-1 instantiation as before, but use
a different approach. Since the program is not partially-discriminating, there is an instantiation, f’,
such that if / is the S-10-B substitution of bodyf’, then the following holds. Every derivation tree to
head-f’ with leaves in / contains a one-constant B-fact other than B (f'(x),f'(x)). Consider a subset of
/, denoted I’, such that head-f’ € O (P.I), and the number of one-constant B-facts in /’ is minimal
(i.e., if we climinate a one-constant B-fact from I, then head-f’ is not any more in the output). Obvi-
ously, /” has a one-constant B-fact other than B (f'(x),f(x)). Assume it is B (m,m), and m=f’(x). Let
a be a constant satisfying h(a)=i, and supposc, without loss of generality, that the constants ¢ and a
are not in /” (otherwise we can add a+c +1 1o all the constants in /). Furthermore, denote by /”, the
input obtained from /’, by replacing each occurrence of the constant m by ¢, and each occurrence of
the constant f°(x) by a. The number of one-constant B-facts in /”” is minimal. Thus, for the input /",
S (c,c) has to be transmitted from processor i Lo processor j in any A- alike scheme, B (otherwise pro-
cessor j cannot compuie S (a,b), contradicting completeness for I”). If B is also simple, then § (¢c.c)

has to be transmitted from processor i to processor j for every input that produces it. O

Note that DS3 can be casily extended to arbitrary datalog programs, provided that an algorithm sends
all the new tuples computed at each iteration, to all the other processors. In conclusion, the properties of
the strategies discussed in this paper are summarized in the table of Figure 2 (following the references sec-

tion).

7. CONCLUSION AND FUTURE WORK

In this paper we first defined the notions of decomposability and strong decomposability, and pro-
vided a complete characterization of all the unary and binary single-rule programs, with respect to both
notions. Our notion of program-decomposability may be related to algebraic-operator decomposition, dis-
cussed in [TW], and 10 clausal decomposition, discussed in [LM] (although both papers, in contrast 1o ours,
do not require disjointness of the output scts, and not provide a syntactic characterization of programs). In

the future, we intend to investigate these possible relationships.
Then we swudied data-reduction parallelization and started by cxamining pure parallelization. We
showed that the programs that can be purely parallclized with minimal total evaluation cost, arc exactly the

strongly decomposable ones. Strategy DS1 can be used for this purpose. All lincar programs can also be




purely parallelized (strategy SS1), but not at minimal cost. Although strategy DS1 has minimal total cost,
this cost may not be evenly balanced among the processors. Strategy DS2, that is not pure but incurs only
control-overhcad, overcomes this limitation for the strongly decomposable programs. It is in some sense
optimal. Strategy SS2 is an adaptation of SSI to balance the load, for linear programs. Finally, we pro-
posed strategy DS3, that can be used for parallelization of every program. Strategy DS3 incur data-

overhead, but it is in a sense minimal; also, DS3 has minimal total evaluation cost, for the linear programs,

An obvious future-research direction is to extend the concept of data-reduction parallelization to all
Datalog programs, and other rule-based languages, such as OPS5 ([BFKM]). Also, it would be interesting
to devise general methods of combining data-reduction parallelization, with single processor optimization
techniques. At this point let us observe that some strategies are applicable in conjunction with the magic
sets method (see [BMSU]). For example the same gencration program produced by the method in response
10 a query is:

MAGIC (xp):— MAGIC (x), PARENT (x,xp)

MAGIC (a)

SG (x,x):— H(x)

SG(x,y):— MAGIC (xp), PARENT (x.xp), PARENT (y.yp), SG (xp,yp)

Then schemes SS1, SS2, and DS3 can be applied in the evaluaton of the program.

Finally, we intend to study the enhancement of data-reduction with some interesting ideas on parallel
processing, that appeared in the literature ([D, GST, HAC, R, RSL, VK}).
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Figure 1: When considering amenability to pure paraliclizauon, the following logic-program class structure
is exhibited. The strongly decomposable programs arc most amenable to purc parallelization. A represen-
lative of this class is the transitive closure program: S(x.y):- S(x.z),A(zy). Next in the hierarchy, is the
class of sharable programs. A representauve of this class is the canonical strongly linear program: S(x.y):-
UP(x.2).S(2.w),DOWN(w.y). Finally, the class of nonsharable programs is not amenable to pure paralleli-
sation. A representauve of this class is the path-sysicms program: S(x):- S(z).S(y).H(x,z.y). For com-
pleteness, we also show the class of decomposable programs, and the NC complexity class. Point A
represents  the  program:  S(x,x):-S(y.y).A(x.y). Pomt B rcpresents  the  program:  S(x,x):-
S(y.y).S(z.z).H(x,y,z). Point C represents the program: S(w.x):-S(w.y).S(w.2).H(x.y.z).
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Applicable to Programs | Overhead Load Distribution | Total Cost
DS1 | strongly decomposable no overhead static minimal
SS1 | linear no overhead static not minimal
DS2 | strongly decomposable | control overhead dynamic minimal
SS2 | linear control overhead dynamic not minimal ‘
DS3 | all minimal data overhead | static minimal for linear programs
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APPENDIX A: DISCRIMINATING PROGRAMS

In this appendix we provide two algorithms. The first, A.1, to determine whether or not a program is
partially-discriminating, and the other, A.2, to determine whether or not it is discriminating. The two algo-
rithms are quite similar. Both check all the partitions of the variables in the recursive rule, r, of the tested
program, P. A partition of the variables is a set of pairwise disjoint subsets, such that each variable is in
some subset. For each partition, the algorithms consider a corresponding instantiation. An instantiation, f;,
of r, corresponds to a partition p; if for every iwo variables, the following is satisfied: they are mapped to
different constants by f;, if and only if they are in different subsets of p;. Note that any instantiation of the
recursive rule corresponds to a partition of the variables of that rule. -Additionally, instantations
corresponding to the same partition are equivalent, and consequently, only one representative of each

equivalence class is considered in our algorithms.

Algorithm A.1 below determines whether or not a program is partially-discriminating. It does so by

simply checking the definition, and thus its correctness is trivial.

Algorithm A.l:

(1) Denote by py,....ps the partitions of the variables in 7.
For each partition, p;, do:
Consider an instantiation f; of . corresponding (0 p,. If head-f; & O (P.I7) then P is not partially-
discriminating. Halv (The notation /f is introduced in subsection 6.2).
End.

(2) P ispartially-discriminaung. 0O

The algorithm is exponential in the size of the program, but we assumed, as other works (e.g. [UV]),
that the size of the program is a constant. Next we provide the algorithm, A.2, for determining whether or

not a program is discriminating.

Algorithm A.2:

(1)  If the head of r is an atom with a repeated variable, then P is not discriminating. Halt.
Otherwise, denote the head of 7 by S(x,y) . If $ (y.x) is not in the body of r, then P is not discriminat-
ing. Halt.

(2) Denote by p,,...,p; the partitions of the variables in 7.
For each partition, p;, do:
Consider an instantiation, f,, of r, corresponding o p,. Let/ be the input obtained by the S-10-B
substitution of body-f,. If head-f, € body-f, and head-f,€ ni(I"), then P is not discriminating.
Halt. (The notation /” is explained in subsection 3.2).
End.



(3) Pisdiscriminating. O

In contrast to A.1, correctness of A.2 is not trivial, and the difficulty is due to the difference in
definitions of partially-discriminating and discriminating programs. A partially-discriminating program is
defined in terms of inputs created by instantiations of the recursive rule. In contrast, the definition of a

discriminating program is in terms of an arbitrary input.

Theorem A.3: Algorithm A.2 correcily determines whether or not a program is discriminating.

Proof: If the algorithm halts in step (2), then we found an instantiation f;, and an input / (which is the §-
10-B substitution of body-f;) such that (i) head'f; € nt(I) (because we required that head f; & body-f;), and
(ii) head-f; & nt (I"). Thus for this input, nt (/)zne(/").

If the algorithm halts in step (3), then we shall show that the program is discriminating. Assume, by way of
contradiction, that it is not discriminating. The program is reverse, thus there is an input /NP, for which
nt(INP)znt(INP"). Thus, there is a derivation tree, T, that satisfies the following condition: the root, $ @,
of T is in nt (INP) (i.e. cannot be derived by the exit rule), but is not in nt (/NP "), Without loss of general-
ity, we assume minimality in the following sense. T does not have any subtree whose root is in
nt (INP) - nt(INP"). Furthermore, we shall assume, again without loss of generality, that for every subtree
of T, if its root is in nt (/NP "), then all its B-leaves are two-constant facts (by definition of nt (/NP "), the
root has such a derivation tree). Since the root of 7 is not in nt (INP"), T has a one-constant B-leaf, say
B (i.i). Consider ils father, S (i,i), and all §(i,i)’s brothers. They represent an instantiation, say g. Clearly.
head-g is not in nt(INP"), since its derivation tree has B {i,i) as a leal. By minimality, head-g is the root.
S(@). Denote by /, the S-10-B substitution of body-g. We shall show that S(@) & nt(I;). 1f S(@) € ni (/).
then either every S-fact in body-g is not in nt (INP) (i.e. can be derived from the cxit rule), or is in nt(INP")
(by minimality). In both cases, §(@) € nt(INP"), contradicting the way T was chosen. Consequently,
S.(_e))ef nt{f;). Let f be the instantiation we created at step (2) of algorithm A.2, when we considered the
same partition of variables as g performs. Let /, be the S-10-B substitution of body-f. Clearly,
head-f € body-f if and only if head-g € body-g. Since the tree is frec of useless instantiations,
head-f & body-f. Also head-f € ni(I7) if and only if head-g € nt(I3). Thus, head"f & nt (/f), and the algo-
rithm must have stopped at step (2). O

APPENDIX B: EXAMPLES

This appendix demonstratcs by an example the cxecution of strategy DS3, using two processors, PO
and P 1. The cvaluation method of each processor is semi-naive. We usc the canonical strongly linear (csl)
program:

S (x,y):=UP (x,w),§ (w.2),DOWN (2,y)
S(x.y):=FLAT (x.y)
The extensional-database relations UP, FLAT, and DOWN represent a directed graph with three types of
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arcs. The csl program defines a tuple (a,b) to be in §, if and only if there is a path from a to b having k UP
arcs, one FLAT arc, and K DOWN arcs, for some integer k.

Let the input to csl be the extensional database relations of Figure B.l1. UP is the relation
{(1,2),(2,3)(3,4).(4.5)), DOWN is the relation {(6,7).(7.8),(8.9).(9,10)}, and FLAT is the relation
{G.6)1i=1,..5}.

Figure B, 1; Sample input to the csl program.

For simplicity, we assume that both processors finish cach iteration of the semi-naive evaluation at the
same time, and then messages exchange occurs. This assumption is justified in this example, since both

processors do approximately the same amount of work at each iteration.

Next we explain the example, and figure B.2 which summarizes it. P 0 evaluates csl with the predi-
cate x mod 2=0 appended (o the exit and recursive rules, therefore, it starts with the differential
{(2,6).(4.6)}. P! appends the predicate x mod 2 = 1 and starts with the differential {(1,6).(3,6).(5.6)} .
After the first iteration both processors reach a temporary lix-point, and P 0 wansmits the set {(2.6).(4.6)}
while P | transmits the set {(1,6),(3,6),(5,6)). Each processor adds the received sct of tuples 1o its present
differendal. PO obtains {(1,6).(3.6)(5.6)} and P obtains {(2.6).(4.6)). After the second iwration PO
obuains the differential {(2,7),(4,7)} and P 1 obwins {(1.7).(3.7)}. As result of tuples-exchange the dif-
ferentals of both processors become the same. Actually after all the following tuples-exchanges, the dif-
ferentals are the same. Ilteration 3 ends with the differential of P O being {(2.8)} and the differential of P 1

_being {(1.8).(3,8)). The rest of the evaluatons are in the table of figurec B.2. A final fix-point is reached
after the sixth iteration.

For comparison, consider strategy SS1. in which PO (P 1) cvaluaes csi with the predicate
xmod2=0 (x mod 2= 1) appended 10 the exit rule only. The differcnuals at the beginning of each itera-
tion of P1 (which performs worse than P0) are: ((1.6).(3.6).(3.6)}. ((+.7).(2. D}, ((3.8).(1.8)), {29},
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{((1,10)}, respectively.

For SS1, DS3 and the serial semi-naive evaluation, we summarize the relation sizes at each iteration
of each strategy, in the table of Figure B.3. The conclusions from this comparison are as follows. For each
one of the strategies, SS1 and DS3, the hardest-working processor performs better than the single proces-
sor. In SS1, P1 that works harder, has the same number of itcrations as a single processor, and at three of
the five iterations the size of the differential is approximately half the size of the single-processor’s dif-
ferentials . In DS3. PO and P 1 perform six iterations (five for the single processor), at each iteration the

size of UP is half the size in the single processor case.

Finally, observe that for DS3 the csl program is a worsl-case example in two respects. First, the pro-
gram classification that enables less tuples to be transmitied between processors, thus reducing overhead

and evaluation-cost, does not help in the csl case. Second, the size-cutting variable x, appears in only one

relation.
Processor 0 Processor 1
iteration sizes of the differentials sizes of the differentials
UP,AS. DOWN AS UP,AS,DOWN AS
1 224 (2,6)(4,6) 2,34 (5.6)(3.6)(1,6)
1.1 %) 4]
2 2,34 (1,6)(3,6)(5,6) 224 (2,6)4,6)
2.1 . 7.7) (1LD3B.N
3 244 2, NE.DHN3.7D 244 eACNI NI EN)
3.1 2.8) (1.8)(3.8)
4 234 (2.8)(1,8)3.8) 2,34 (2,8)(1.8)(3.8)
4.1 (2.9) (1,9
5 224 (2,919 2,24 (2.9)(1.9)
5.1 ) (1,10)
6 2,14 (1,10) 2,14 (1,10
6.1 %) @

Figure B.2: csl execution by strategy DS3. In a line marked by iteration i we specify the differentials at the
beginning of the i-th iteration and after messages-cxchange. In a linc marked by i. 1 we specify the dif-

ferentials at the end of the i-th iteration, and before the messages-exchange.
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. SS1 DS3
single-processor
iteration processor 0 | processor 1 | processor0 | processor 1
1 454 424 434 2,24 234
2 444 424 424 2,34 224
3 434 4,14 424 244 244
4 424 414 4,14 2,34 234
5 4,14 4,14 224 224
6 2,14 2,14

Figure B.3: Performance comparison. The table cntries consist of three numbers, for the size of relations
UP, the differential AS, and DOWN respectively.

APPENDIX C

In this appendix we provide the semi-naive evaluation algorithm for a single rule program. We use
Ullman’s terminology ([U]). Denote the atoms in the body of the recursive rule by T, ..., T,. The func-
ton EVAL RULE(T,,...,T,), is a relation for the predicate S. The relation consists of all the tuples that
can be derived by instantiations of the recursive rule, that use facts from relations assigned to the T;’s. Itis
obtained by joining these relations. EVAL RULE INCR(T,,...,T}), that compules the differential relation

obtained from the recursive rule, is defined as U EVAL RULE(T,. ..., T,y , AT, , T;yy, ..., ;) where

=]
the assigned relations are as follows. For j=i, the assigned relation is the extensional relation, or s, depend-
ing on the predicate symbol of T, (the lowercase letters denote the relations for the corresponding upper-
case predicate symbols). For j=i, if T/— has an extiensional predicate symbol, then the assigned relation is 9,

otherwise it is As (the differential relation computed by the previous ileration).

Semi-Naive Evaluation:
As « the B-10-S-substitution of the rclation b,
S e As
repeat
As « EVAL RULE INCR(T\,...,Ty)
Ase—As-5 * remove tuples that appeared before *

until As = ¢




