Al Techniques in Software Engineering

Gail E. Kaiser
Department of Computer Science
Columbia University
New York, NY 10027

CUCS-515-89

1
)
i
v

212 KNOWLEDOE ENGINEERING: APPLICATIONS

Stoll, H.W. (1986). Design for Manufacturing—An Overview. Appl. Mech. Rev. 3%9):1356-1364.

Stotts, P.D., and Ning Cai. Z. (1988). Modclling Temporal Behavior of Robot Lattices with Binary
Timed Petri Nets. University of Maryland, College Park, Md.

Stotts, P.D., Jr., and Pratt, T.W._ (1985). Hierarchical Modcling of Software Systems with Timed
Petri Nets. Proc. Int. Workshop on Timed Petri Nets, pp. 32-39.

Szenes, K. (1982). An Application of a Parallel Systems Planning Language in Decision Suppost-
Production Scheduling. In: Advances in Production Managemeht: Production Manage-
ment Systems in the Eighties. Proc. IFIP WG 5.7 Working Conf., Bordeaux, France. pp.
241-249.

Tulkoff, J. (1981). Lockheed’s GENPLAN. Proc. 18th Numerical Control Society Annual Meeting
and Tech. Conf., Dallas, Texas.

Tzafestas, S.G. (1986). Knowledge Engincering Approach to System Modelling, Diagnosis, Su-
pervision and Control. Preprinis, IFAC Int. Symp. on Simulation of Control Systems,
Vienna, pp. 17-31.

Tzafestas, S. (1988a). Al Techniques in Control: An Overview. In: Al, Expert Systems and Lan-
guages in Modelling and Simulation (IMACS Proc. 1987) (C. Kulikowski and G. Ferrate,
Eds.). North-Holland, Amsterdam,

Tzafestas, S.G. (1988b). Expent systems in CIM Operations: Key to Productivity and Quality.
Proc. 3rd Int. Symp. in Systems Analysis and Simulation, Berlin, GDR.

Tzafestas, S.G. (1988c). System Fault Diagnosis Using the Knowledge-Bused Methodology. In:
Fault Diagnosis in Dynamic Systems: Theory and Applications (R. Patton, P. Frank, and
R. Clark, Eds.). Prentice-Hall Intl. (UK) Ltd., London, Chapter 15.

Tzafestas, S. (1988d). Knowledge-Based System Diagnosis, Supervision and Control. Plenum,
New York.

Tzafestas, S$.G., and Tsihrintzis, G. (1988). ROBBAS: An Expert System for Choice of Robots.
In: Managerial Decision Support Systems and Knowledge-Based Systems (M. Singh and
D. Salassa, Eds.). Elsevier/North-Holland, Amsterdam.

Tzafestas, S.G., Singh, M., and Schmidl, G. (1987). System Fault Diagnostics, Reliability and
Relused Knowledge-Based Approaches, Vol. 2, D. Reidel, Dordrecht and Boston.

Valette, R.. Cardoso, J., Aatabukhche, H., Courvoisier, M., and Lemaire, T. (1984). Petri Nets
and Production Rules for Decision Levels in FMS Control. Proc. 12th IMACS World Con-
gress, Paris, Vol. 3, pp. 522-524,

Vancza, J. (1988). Organizing Classificatory Knowledge by Induction: A Case Study in Manufac-
turing Process Planning. Proc. 12th IMACS World Congress, Vol. 4, pp. 258-260.

Viswanadham, N., and Narahari, Y. (1987). Colored Petri Net Models for Automated Manufac-
turing Systems. Proc. IEEE Int. Conf. Robutics and Automation, Raleigh, N.C., pp. 1935-
1990.

Walker, A. (1985). Syliog: An Approach to Prolog for Nonprogrammers. In: Logic Programming
and Its Applications (M. van Cancghem and D.H.DD. Warren, Eds.). Ablex, Norwood, N.J.

Warman, E. (1985). Al in Manufacturing: An Organic Approach to Manufacturing Cells. Data
Proc. 27(4):31-34,

Warren, D.H.D. (1974). WARPLAN: A System for Generating Plans. DCL Memo 76, Dept. of
Al, Edinburgh Univ.

Weill, E.. Spur, G., and Eversheim, W. (1982). Survey of Computer-Aided Process Plunning'Sys-
tems. Ann. CIRP 31(2).

Wilkins, D.E. (1985). Recovering from Execution Error in SIPE. Comput, Intell. J. 1,

Williams, T.J. (1983). Developments in Hierarchical Computer Control Systems. Proc. CAPE'83,
Amsterdam.

Woo, T.C. (1982). Feature Extraction by Volume Decomposition. Proc, Conl. CAD/ICAM Tech-
nology in Mechanical Engineering, Cambnidge, Mass., pp. 76-94,

Zenie, A. (1985). Colored Stochastic Petni Nets. Proc. Int. Workshop on Timed Petri Nets, pp.
262-271

Zenie, A (1987). Qualnative and Quantitative Validation of a DDMS Model Using u CSPN. In:
Applied Modelling and Simulation of Technological Svstems (P. Borne and S. Tzafestas,
Eds.). Elsevier/Nonh-Holland, New York, pp. $37-545. '

CHAPTER

Al TECHNIQUES
IN SOFTWARE
ENGINEERING

GAIL E. KAISER

1 INTRODUCTION

The idea of using artificial intelligence techniques to support programming has
been around for a long time. The earliest notion was to avoid programming
entirely. The human user would just tell the computer what to do, without say-
ing how to do it, and the computer would do the right thing. Even if this were
feasible, however, it would be much oo tedious, since each time the user
would have to repeat the details of what he wanted done. So the goal of pro-
gramming was (o explain things to the computer only once, and then later on
be able to tell the computer to do the same thing again in some short form,
such as the name of the *‘program.”” Thus the idea evolved that a user would
somehow tell the computer what program was desired, and the computer
would write down the program in some internal form so that it could be re-
membered and repeated later. The assumption was that the resulting program
would be correct, complete, efficient, easy to use, and so forth. It would also
be exactly what the human user wanted.

Secveral problems would have to be solved to achieve this goal. The first
is determining exactly what the human really wants. This is a notorious prob-
lem in software engineering; the customer stales extensive requirements, the
company develops software that seems to them to meet all requirements to the
fullest extent, but then the software is next to useless for the customer because
what he said he wanted was not really what he needed. It may have been a
computerized version of manual procedures that were themselves idiosyn-
cratic, or there may be a better way to do things once computers are intro-
duced, or the customer’s employees just might not be ready to accept comput-

213

214

KNOWLEDGE ENGINEERING: APPLICATIONS

erization. Today there is often no explicit customer, but a perceivegd
marketplace for which software is developed. Understanding and predicting
the marketplace is more of a black art than a science.

When there is a specific customer, or an internal marketing group simu.
lating the potential customers, some of these problems cun be solved by rupig
prototyping. Rapid prototyping generally involves a “*quick and dirty’’ version
of the program, often in an interpretive language such as Lisp or Smalltalk,
This version usually does only a tiny fraction of the things needed and most
likely does them extremely slowly. The point is that it is relatively fast and
inexpensive to build a prototype, and then the customer can get the fecl of the
eventual program by playing with this prototype. In theory, any problems with
the requirements are discovered during this phése. when only a small amount
of time and energy have been expended. Some programs go through multiple
prototypes before the customer finally agrees that this was what he was look-
ing for. Then development of production quality software begins.

The second problem with our scenario of the user telling the computer
what is desired and the computer then writing the program is, How does the
user tell the computer what he wants? Once upon a time, it was assumed that
natural language would do the trick. But research on natural language under-
standing has not advanced to the point where this scenario is feasible and pos-
sibly never will. One problem is that natural language is inherently imprecise,
and it may be impossible for the human to express exactly what he wants in
natural language. Another problem is that conversation among humans pre-
sumes a large amount of shared context, based on similar education, social and
corporate culture, working together toward a common goal or on a shared
task, and generally being in the same place at the same time. Popular psychol-
ogy dwells on how people do not always understand each other, even when
they speak the same language and have very similar backgrounds, except for
the very simplest of communication scenarios. The knowledge acquisition task
is formidable for humans, perhaps impossible for computers (at least until
someone invents the *‘mind reading’’ module).

Once natural language was abandoned (or perhaps just put on the shelf
for a while), researchers turned to more precise notations for describing what
is desired. Formal and informal specification languages have been developed
for expressing the requirements for computer programs. Formal specifications
are typically based on mathematics and logic, and the concerns include making
sure a particular specification is complete, consistent, and correct. An often
neglected issue is whether the specification defines what the program should
not do as well as what it should do. An informal specification, by definition,
cannol be entirely complete, consistent, and correct. Some means must be
provided for user feedback, for example, **No, that's not quite right—I really
meant such-and-such.’" The obvious preference is for an interactive, incre-
mental style of debugging the specification, where the user can quickly try out
small changes 10 each part and immediately determine at least the gist of the
resulting change in the final program.

Al TECHNIQUES IN SOFTWARE ENGINLERING 218

Given that the computer understands what the human wants, the third
problem is producing the software. It must run on the available hardware and
devices, most likely using the available operating system and utilities rather
than the bare machine. Resource usage must be reasonable—there are many
slow, wasteful ways to do things, but these are not usually acceptable. How-
ever, some resource-related desires may not be feasible to achieve in a given
operating environment, while others involve trade-offs—lor example, the
usval time-space trade-off. Some requirements are just plain impossible with
current technology. or with any technology; for instance, there are physical®
limits to how fast a single-processor computer can execute instructions.
There have been a number of research efforts toward this goal of auto-
matic programming based on both formal and informal notations. One caveal
is in order: Program generation is not the same thing as automatic program-
ming. As with automatic programming, the user provides a formal specifica-
tion as input and the system generates the desired program. However, auto-
matic programming systems are general-purpose, while program generation
systems support an extremely limited but very well understood domain (for
example, window systems, parsers, database reports, syntax-directed editors).
In the following section, we briefly sketch two of the best-known and longest-
term automatic programming efforts, and provide references to the literature
for these and a few other projects.

A perhaps more realistic approach to applying artificial intelligence to
software development is to automatically perform certain menial tasks rather
than attempt to take over the creative activities such as programming. The
term *‘menial’’ is not intended to be pejorative. Menial tasks have to be done
but do not involve the same levels of analysis and synthesis as does program-
ming. Most bookkeeping tasks are relatively menial, for example, keeping
track of the status of bug reports, major and minor releases, documentation
updates, test data used for regression test suites, and so on. Invocation of
many tools, particularly batch (noninteractive) tools, is also menial; it is nec-
essary for someonc (or something) to know what processing tools Lo invoke in
what order with which switches and arguments and where to store away their
results.

Here again we run into the problem of how to describe the menial tasks
that need to be done and, more significantly, exactly under what circum-
stances they should be done. In most cases, it is not appropriate for the human
user to remember that the task has to be donc, recognize that now is the best
time to do it, and then tell the computer ““do such and such task right now,”
because this is likely to take more effort on the part of the human than just
doing the task hersclf. Therefore, the system must continuously monitor the
user’s activities in order to keep track of what is going on and what is the right
thing to do next.

The bulk of this chapter is concerned with intelligent ussistance as a
Practical alternative to automatic programming. Intelligent assistance is
loosely defined as any knowledge-based technology that assists human users

216 KNOWLEDGE ENGINEERING: APPLICATIONS

in carrying out their activities in a manner that does not require any creativity
on the part of the assistant, Intelligent assistance is feasible as an extension of
existing software development environments and tools and needs relatively lit-
tle additional effort to become commercially viable.

2 AUTOMATIC PROGRAMMING

Refine is a commercial product marketed by Reasoning Systems, Inc. I s
based on many years of research on automatic programming and intelligent as-
sistance at Kestrel Institute (Goldberg, 1986; Kedzierski, 1984; Smith et al.,
1985). Refine is essentially a programming environment for a wide-spectrum
programming language called the Refine language. A wide-spectrum language
is one that includes a range of fucilities from very high-level constructs that are
not directly executable (except perhaps by extremely slow interpretation) to
relatively low-level (and efficient) constructs in a conventional programming
language. Refine in particular integrates programming language constructs
from set theory, logic, conventional procedural programming, and transforma-
tion rules. The rules are used to semiautomatically transform a Refine pro-
gram—basically a formal specification of the desired software system—into a
conventional Lisp program. The user interacts with the transformation process
when Refine gets stuck or has multiple choices. Refine may be considered an
automatic programming system, since it generates a software system from its
specification, but it cannot operate without a lot of help from a human user.
Very large programs have been successfully developed using Refine, including
the Refine system itself. However, since Refine generates Lisp, which is itself
a prototyping language, even the final output of the Refine system is really
only a prototype.

A number of other research projects have investigated program transfor-
mation systems, with two basic orientations. The first, which appears for ex-
ample in CIP (Broy and Pepper, 1981), is based on a small set of mathematical
formalisms. The system automatically replaces components of the specifica-
tion by applying correctness-preserving transformations. In contrast, Draco
(Freeman, 1987), FSD (Balzer, 1985), PDS (Cheatham et al., 1979), and similar
systems allow transformations to be selected by the programmer to reflect de-
sign decisions. This kind of system can deal with incomplete specifications and
a growing catalog of transformations, as the programmer works together with
the system to produce a complete program.

The Programmer’s Apprentice (Rich and Waters, 1988a; Waters, 1986) is
a long-term research project at the MIT Al Laboratory. Several automatic pro-
gramming systems have been developed as part of this project. The best
known is KBEmacs, for Knowledge-Based Emacs, which extends the well-
known Emacs word processing system (Stallman, 1981) with facilities for un-
derstanding a very restricted natural language description of the desired pro-
gram and interactively producing a program in any one of several languages
(e.g.. Lisp, Ada). The description is in terms of a library of programming

AUTECHNIQUES IN SOFTWARE ENGINERRING 217

clichés, which consists of abstract program fragments ranging from very sim-
ple abstract data types such as lists o abstract notions such as synchronization
and complex subsystems such as peripheral device drivers. The apprentice in-
teracts with the human user, who is thus able to make corrections and rear-
range parts of the program. At any time the human can compictely take over
the programming task, interact directly with Emacs and other programming
tools, and then return control to the apprentice. Only very small programs
have been produced to far, in large part due to underestimating the inherent
difficulties of this approach (Rich and Waters, 1988b). Another aspect of the
Programmer's Apprentice project has been to *‘reverse engincer’” existing pro-
grams by recognizing the clichés. This technology is still in its infancy but has
great potential for solving at least part of the **corporate memory’ (or lack
thereof) part of the maintenance problem, since it may become possible to ex-
tract (and presumably go on to change) previous design decisions.

3 INTELLIGENT ASSISTANCE

Genie and Marvel are two representative examples of intelligent assistants.
Both take over some of the programmer’'s more menial burdens. Genie is pas-
sive, essentially an intelligent help system componeat of a programming envi-
ronment, and responds only to questions from the programmer. Genie figures
out and tells the programmer what sequence of commands (i.c., bookkecping
operations and tool invocations) should be used to accomplish some goal se-
lected by the programmer. Marvel is an active knowledge-based programming
environment and continuously monitors the programmer's activities. Marvel
participates when appropriate by automatically carrying out sequences of com-
mands (again, bookkeeping operations and tool invocations) according to goals
set in advance by the programmer or project management. For simplicity in
the rest of this chapter, we will refer to commands, functions, operations,
tools, and so on, as *‘commands.”’

3.1 Genie

Programming environments provide resources and facilities intended to sup-
port and assist programmers. A conflict arises between creating an environ-
ment simple enough for a new user of the environment yet sophisticated
enough to accommodate an expert. Note that a new user may be an expert
programiner, while an expert user of the environment need not be a program-
mer at all, as most large software development teams involve some
nonprogrammers; to reduce confusion, we will refer to “‘users’ rather than
‘‘programmers.”” A common solution to this conflict is to expose beginners to
a set of starter commands but also provide more comprehensive features they
can learn later. However, many beginners get trapped in the stlarter set, since
they are not encouraged to progress to more powerful commands. One solu-
tion to this problem would be an automated consultant that answers a user’s

-wos noge auoawos Juipunwar 1oy aeudosdde asow s1 voymuiofur (nuoy
=Iifac] "uoN3UNSIP SIY1 SAUYRD JYUING Z-4 N1 [RUORIRIISU S| Ry} Uonew
~10Jul puw [RUONIUYAP SI 1TY) UOHBWIOJUI UIIMIIG UOHDIUNSIP ¥ S] I13Y |
“1-L 81 Ut pazu
-rwwns se surpd 0} s[pod Junrejas se Ajenaed 1ses) v pazuodaed aq uwd sau
-anb aasn ‘sguiddeo [pnuatod oy utesnsuod 0) Jopio ug “s1amsur Jqissod Auvw
01 souanb Jasn Auew jo Futddew e Juinnbas se jasy sjuasasd woqoad ayg
‘urjd auo ury) 210w Aq paysnes aq Arw [ro3 e ‘asouayung “pautjop Ajood s
[ROR & 12810 2y 1Y) DSRD SY) U0 Atow ST 1] M Ajsnes 0) uejd B puw yse) s Jasn
7 JO JudAIRIS 351931d © U9aM1ag 25Udpuodsaliod 1294Ip B AJaIR1 S1 919y
“uawuonaud Jutwweadosd oy yuam asnzadxa noy) Suipuarxa
Ul S1950 SpIR IRy} JURISISSE 1UdI[|91un uv piing 01 Moy Jo A103Y) © 1a]JO pue Sans
=S1 ASAYL SSAIPPR 0] ST 0JJD Y21RraSAL UAN) Y] JO 2ANIAIGO Y], "uaping sy
JO QWOS dADI[AL UED JRY) swsieyddw apiaoid 0] 3jqe 2q pinoys sanbuysa) wa
-84s 11ad¥;] udIoNAL ay) yim Sunuawiadxa Kdwis 10 519410 jo djay Jur
-¥se fspenuew y3noayy Suysieas Aq auop AjjeardAs s siyy, ‘uonreunoym eud
-oadde a1 Bunuaog Jo uaping ayi 1eaq s1asn 1eY) S1 UdWUONAUD Junuwesdosd
B UM S|JINS mau 3utuied] Jo Aduaidijgaul ay) 10j uoseas Arewnd vy -asiaad
%2 pajeonsiydos asow dofdaaap 0} Swh Juie] URY) 19YIRI UMOUY [JOM DIB 1BY)
SPOYIatL Ay gaur vo A1a1 Avw s1asn ‘(uonriuawndop Sunum **3:3) oneaoneay
-nq Ajurtind su paaadsad aaw SYSEI 3yl YoIYM Ul SJUIWUOTIAUD JWOS Ul *3I0W
-43yLngg “saseaunop Aanonposd ‘anbiuysa) 1uadigge ue dopasp 10 purwwod
areudosdde ay) pury 01 awn 2w 1SNW 138N Y} VIYAL “¥SEI UsAIB v 10) [Pwndo
3Q 10U ARt 951112 XD JIST YIIYM UT U0 SI UDIMIIQ UI WNNUIUOD YL "N JIA0
Asaisew 21adwod paused sey oym padxo UB puw JUIWUONAUD UR JO UEIT])
-1 Y1 AJUO SMOUY OYm IIIA0U B UIIMIAQ PUNOLT 3jppiu a81e| ® S1 219y |,
‘sjeod
duiysydwosor 1saq so surjd Jo spoyidw 0] $S230% sannbas ospe 11 ‘ajge
IRAR SpuRwiwon oY) sty uawuonaud Juiwureifold ay) jo saaneay 3iy1d
-3ds a1 $IQUDSIP IRY) UONRWIOJUI 0] $52II7 S31INb3I SIY] "WaY) JO asn 1saq
YEW 01 Moy pur sanljiqeded s1 mouy ISNW JISN B ‘A|9ANIDIJI JUIWUOIIAUD
Ur asn 0} Jap1o u] "SINTWNOHIANT ONIWINVEDOUI NI ONILINSNOD 1°1°€

"SANTIOR) dSEQRIVP 0] UOTIINPOIIUI IAISUIXD ue asnbas
Aew syw Suneisur pue Suikjipow 1noqe uonsanb & s)iym ‘uoISSNISIp 3y} ol
uohruojul mau ot A1aa Suidnponuy annbaa |nim saBessaw ajdwis Suipuas
o1 dunvias uonsanb y asnsadxa jo uoNRZ1I0§1RD B 01Ul]3I0 |[B) 10U [[IM 1SN
T yong raseqeiep wuaurvwaad gy ur woy) Julpieisul pur—safueys apod a2IN0s
3uipuodsanios ay1 01 19§21 01—syW pa12jdwos Sunejouur yum suou jsowe
PUE SIDSTAN10 0) SYIN SuIpIemio] yiim 2ousL3dXd DAISUIIXD daRy AvW Josn
B UAWUMIIAUD YN un wogy apdwexd sayjour Sunm], apow 1asn ay) pue aseq
aFpaymouy ay1 uddMIag Yyaiew ayl Jo sisArur ur uo paseq a1e suonsanb s 19sn
P AIMSUT 01 MOY INOQE SUOISIIA(] “aseq 28pajmouy ay) Jo aInonas oyl Hojdxa
O1 1apI0 U1 [apotu 125N ® SE pasn s1 uoneuasaidal pardjuad-ysel y |, 'pIey,, 10
LASTa s sunid pue spuewiwon jo SUONEDNJISSE[D 20y PR prROIQ U0 URYL JoY)Rl

6T ONDEEINIDNG IMVAM 1408 NI SHNDINHIEL IV

1sed ag) ur paiadwod SRY SN AY) 1RY] SHSE DYI UO PISRQ SI PIO) 3q pINoYs pur
SMOUY J9SN 241 IrYym Inoqe suoneidadxi] A1anb s aasn e Juimorio) swasasd
JuRISISSE JUIBPRIUE 51 uonRULIOU! JHIAdS jeYM $IDUINYJUI SPURLWIOD puE
‘suryd *srod 03 21ns0dXa S [RNPIAIPUT UR UO UONRWIOJUL ‘prRIISUL “Aenbapeul st
,Madxa, 10 ‘:RIpawialul,, | *3J1A0U,, SR SIISD JO UOHEZLIOBIILD [RQO(3 JRY)
pue aendoaddeur st as1uadxa Jo |9A3] 2y) 01 Juiprodoe seod pue ‘sued ‘spurwi
-wod FUIAPSSEP IRl SJAIAQ Y1 WOl SMO[[0) Jusueduiod puodas Yy,
RUELIT
SIAUD YW PY1 ulynm d|qe[iear spurwiwod senoited sy uodn puadap |pm
u_.mm. ey Sunnoaxd 1oy ueid ay], “waysAsqns eyl 10j dqisuodsas 1aFeuew Iy}
01 WwAsAsqns Junoied B guam pIUIaduOd 13Sqns 9yl pIemlo) pue SIdWOIsnd
Aq panugns sYW JO 195 ® praa1 0) 3q ySiw yse) e ‘9|dwex? 10j ‘JUIWUONIAUD
(W) 15anba1 uoneappows € uf “1WAWAO[PAIP 2IBM1JOS JO 3RS UIAIE ® Ul Ajeud
-01dde)sow s suvid pood Ajjenba Aurw jo ysiym pue sjeos Ajsnes ues surd
J9Y19ym 3ZA[EUE O))} SMO[[E OS[R ING SPURWIWOD Yiim PIIEIDOSSE SUONDR Y)
INOQP UOSEAI 01 ATUIN) SMO[[e Iseq a[nJ 3y |, “sukld ay) dn ayew 1eY) SPUBLIWIOD
sy} pue *wayl Juiysijdwoase ur pasn sueld Y1 JUIWUOIIAUD Y] UIYIIM PIULIO]
-12d 2q ue> 1BY] SYSRI Y1 USIMIFG SAIYSUOIIR[3I AY) INOQE UONEULIOJUI JDHdXD
sapnjoul a8pajmouy urewop ayJ, ‘93pajmouy urewop s,JuBISISSe ay) sapiaoid
12yl uonwuIsaIdas Fpaimouy [RIIYDIRIDY J3IB| B puER 101ABYIQ S,IUB]ISISSH
3y} saunyap 1eY) aseq I [frws e s ysvosdde ayy jo usuodwod 1811y Y],
‘ueds uoljuaye 10 dwn 3u
-ISeM INOYIIM [NJasN K[21IpaWWI 3q 01 JIPIO Ul “I1ISN ¥ 0] PIPIA0Id Jomsue oY)
JO 1UUOD Y} UO SI SND0) Y) ‘Jvndiired uf ‘1XIUOD JUILIND IY) UIYUM SPIU
§,13sn B Jo uondunj 19311p © s1 udA1d djay 3y yoiym ur yorordde pasaiuadr-ysel
© S9)®B] 21USN) "Op 01 MOY SMOUY APE2I[® 135N 24} teym pur op 0) Butdn s1 1asn
3Y1 1BYMm UO {10Q PASBQ 1XI) SIIRIIUDT || "JULINSUOD PIIRWIOINE UB S8 SOABYQ
1Y) JURISISSR JUIB0IUL UR ST (RR6] ‘IOSTRY pUR ZIOM ‘KRG ‘ZIOM) AUIND
-aseq 28pajmouy xa|dwod pur jSBA
e wol) uonewiojul Aeudordde atejnoige pue asooyd 01 moy ‘Appweu ‘sanbiu
991 wIsAs 11adxd Juisn uonNjos ® 0} ||am Jjasll spud] wajqord ayy “reu
-01ny anuepad Apaso ue Suipiaoid Aq padxa ayy sisul Jou uonruLojul xajd
-Wod Yonw 00} Yum 331A0u 3yl sdurems 124115u Jry) uoneunojul aeudoidde
ay1 apiaoiad 01 moy uays s1 wajqord ay] 1onposd azemiyos ay Jo Alfenb ay)
pue Ananonpold 1asn 3sEaIIUI URD ‘pury 18 yser ay) 10) djay 2reudosdde du
-A13 *JURIINSUOD P2RIRWOINE U SE JARYIQ URD juy)) Juejsisse Juadijoul vy
*138N 3y} JOJ YSEI SWOs INo Aued 0 (sdars
Jo 2ouanbas 1) umd € se paINIIXI 2q ISNW SPURWILIOD JO 135 B ‘13AIMO0Y
2102 Yl 1Y "yd33ds s® Yons SIOBHIUI pAedNSIYdos d10uw UIAD IO ‘SIDIAIP
Funuiod 10 3xonsAay Yum snudw ‘ssdendue] purunwod apnjdul yFiw JudwUo)
-IAUD 3Y] 0] $S3IIV JO SURIW YL “JUIWUONAUD JrY) Ul Juswdo|2A3p 21eMm)jOs
01 21j19ads s[eod 1o syser ysidwodde ued 1asn e yoiym Ylim SpurwIliod Jo 13s
€ JOo 3unsisuod se pazuaideleyd 29 ued siuswuonaud Sunwwesdosd |y
"Ananonpoad s gasn ayy wody Sunoesnap ueyy sayies SuduEyud ‘Juswsde
-Inodud Sy opiaoad o) pauFisop JOUURW ¥ UI JUNUUOIIAUD JY) INOQR suonsanb

RIS

SNOLLYDI'VddY ‘ONITANION ADTITMONY Q17

220 KNOWLEDGE ENOINEERING: APPLICATIONS

-t

. Command specification: What does command C do?
2. Goal satisfaction:
a. What do | do to accomplish goal G?
b. Plan P accompiishes goal G, but Is there a better way?
3. Analyze or debug a plan:
a. What does plan P do?

b. Why doesn't plan P accomplish goal G?

FIGURE 7-1
Typical questions uscrs ask. .

thing they have previously used, while instructional information is more
appropriate for introducing new commands. These types differ not only in
their format and level of detail, but also in their emphasis and the degree to
which related information is included. Clarifying and elucidating require a
careful mixture of reminding and introducing. Genie addresses only the first
four types of answers. Marvel, described in the next section, automatically
generates and executes plans for the user.

Although the categorization in Fig. 7-1 constrains the question, while the
taxonomy in Fig. 7-2 constrains the answer provided, the requisite knowledge
and the processes needed to search that knowledge are still complex. The pro-
cesses include the abilities to estimate the user's goal, to understand the user’s
plan, to evaluate the current situation in order to formulate an answer that
does not digress from the current task, to analyze the user's plan in terms of
the estimate of the goal and within the current situation, and to choose an ap-
propriatc answer and explanation depending on the user’s current knowledge
of the environment. This requires knowledge of the commands provided, the
possible tasks that can be accomplished, the plans that may accomplish those
goals, the things that typically go wrong (bugs), and what the user currently
does and does not know about the commands, goals, plans, and bugs.

Introduce: Present commands and plans that the user has not encountered
before.

Remind: Brielly describe commands and plans that the user has been ex-
posed to bul may have forgotten.

Clarity: Explain details and oplions about commands and plans to which
the user has been exposed.

Elucidate: Ciear up misunderstandings that have developed about commands
and plans to which the user has been exposed.

Execute: Perform commands and plans directly for the user.

FIGURE 7-2
Types of responses a consullant nught provide.

Al TECHNIQUES IN SOFTWAKE ENGINEERING 221

Much of this cannot be completely known. For example, it seems un-
likely that all possible goals achievable within a given programming environ-
ment will be known before the environment is used exlensuvcl.y. It also does
not seem possible to predict with certainty what the us.cr's task is and what l.hc
user knows. Thus not only must the processes described above operate with
incomplete information, but also they ought to be able to 'do S0 em?clwc!y.
Innovative techniques or novel applications ought to be easily and reliably in-
corporated into the knowledge base. '

From an Al perspective, these issues can be encapsulated in two funda-
mental problems:

1. How can the search through a vast and complex knowledge base bc're-
stricted in order to glean the appropriate information for the immediate
needs of the user? ' .

2. What decisions must be made in order to choose the appropriate form in
which to present that information?

Genie solves both of these problems.

3.1.2 AN INTELLIGENT ASSISTANT FOR CONSULTING. Consulting can be
characterized as a three-stage process of question understanding, problem
analysis, and answer generation. Genie’s understanding component is cur-
rently a simple menu-based front end, sidestepping the natural language un-
derstanding problem, since it concentrates on the latter two stages: analysis,
through a rule base called the Plan Analyst, and generation, through a rule
base called the Explainer. The organization of Genie is depicted in Fig. 7-3.
Genie attempts 1o answer a question by doing a two-phase search of the
knowledge bases. In the first, the Plan Analyst constructs a relationship be-
tween the user's question, his user model, and the capabilities of the envi-
ronment in an attempt to find the most appropriale information. Based on
the Plan Analyst’s output, the Explainer constructs a coherent textual ex-
planation that takes into account what the user already knows. Both rule
bases will be discussed extensively in the examples later in this section.
The structure of the knowledge representation and details of the under-
standing and generation components that are not obvious from the exam-
ples follows below.

Genie's ‘‘understanding’’ component is a simple menu-based interface.
Figure 7-4 shows the top-level menu, which is a reformulation of the questions
of Fig. 7-1. The user can select a task or a command by typing the proper word
or phrase at a command prompt or by browsing a menu of goals or commands.
The menus can be arranged alphabetically, or the order of presentation can be
based on links between related goals in the expert knowledge base. Plans that
can be identificd by name from the knowledge base can be entered from the
command prompt. Otherwise, the user must construct a plan by selecting an
ordered list of commands and goals.

222 KNOWLEDGE ENGINELRING: APPLICATIONS

USER REQUEST4—-\

PLAN
* | ANALYST

EXPLAINER
1 [l

\ - FIGURE 7-3
\J\)/ Genie organization. Please select a
REPLY TO USER — question:

When Genie is invoked within a programming environment, both the ex-
pert knowledge base and user model are loaded. The world model is con-
structed on the basis of the user's current status within the software develop-
ment project. Depending on the question type selected, the user is prompted to
provide a command C or a goal G, or to construct a plan P.

The expert knowledge base is a hierarchy of the goals that can be satisfied in
the target environment. Goals contain links to alternative plans for satisfying the
goal. A plan can be linked to a subgoal or an ordered sequence of subgoals that
describe how it can be executed, or to a command that execules it directly. En-
coded within a goal arc links that describe the relationship between plans.

Commands describe the operators, functions, tools, and so on, of the en-
vironment. Their representation includes information about the correct syntax
of the command, its precondition and postcondition, and the actions associ-
ated with switches and parameters. The precondition defines a state that must

. What does (select command) do?

. What do | do to accomplish (select goal)?

. | use (construct plan) 10 (select goal), but is there a better way?
. What doses (construct plan) do?

5. Why doesn't (construct plan) accomplish (select goal)?

& W =

FIGURE 7-4.
Top Level Menu for Question Selection

Al TECHNIQUES IN SOFTWARE ENGINEERING 223

be true before a command can be correctly executed. It may also cop(ain a
link to a goal that could satisfy it. The postcondition encodes the actions of
commands when they are applied (o the world model. Currcn}ly the wgrld
model is represented as a simple add/delete list that describes pos§|blc
states in the environment. Therefore postconditions are encoded as direc-
tives to add or delete a state from the world model. (It would probably be
better to maintain the world model as an objectbase, as is done for Marvel.)

The user model has exactly the same representation as the expcr% knowl-
edge base. It contains a history of what the user has done in the past in terms
of what tasks have been completed and what plans and commands were used.
It is currently coded and updated by hand, but a monitoring system like Mar-
vel could update the user model automatically.

Most of Genie's responses are stereotypical. At the same time, the con-
tent of a response must be customized to the user's needs and expertise.
Therefore, a rule-based system that ultimately leads to *‘canned’” text is in-
appropriate, since the text is fixed in advance. Similarly, since Genie's
range of discourse is limited, a completely open-ended nau.xral‘languagc
generation facility seems equally inappropriate. Template filling is a tech-
nique that allows both customization and stereotyped responses. To gener-
ate an answer, the Explainer selects an appropriate set of response agenda
based on the output of the Plan Analyst. The response agenda comprises
directives for filling textual templates. Representative templates are pre-
sented in Fig. 7-5.

3.1.3 MAIL SYSTEM EXAMPLE. The feasibility of this approach is explored
through a relatively simple example environment. In particular, Genic has
been applied to the real-world problem of the Berkeley Unix mail system, no-
torious for the great power it provides experts and the great confusion it cre-
ates for novices and even long-term nonexpert users. While ¢lectronic mail
systems are not programming environments, they are mandatory compo-
nents or adjuncts of programming environments and provide a smaller-scale
laboratory for experimenting with intelligent assistance. It is important to
keep in mind that Genie is not intended to replace this mail system but to
augment it with intelligent behavior that makes its capabilities accessible to
casual users. _

We now consider two example queries based on the question types in
Fig. 7-1 to demonstrate Genie’ capabilities. The cxamples describe the rules
used by the Plan Analyst to select the appropriate information. They also show
typical scenarios of how the content of the user model and the user’s question
affect the output of both the Plan Analyst and the Explainer.

The first question is: What does type do? This is an instantiation of the
“*What does C do?"’ category of Fig. 7-1. In order to ask this question, the user
selects question | in the menu of Fig. 7-4. A second menu allows the user to
enter a command name, or to search commands alphabetically or by traversing

224 KNOWLEDGE ENGINEERING: APPLICATIONS

COMMAND_INTRODUCE(c)
{c->name] is used 1o {c->satisfies->description]. 1t has the form (c->form},
where FOR_EACH (x,f->parameters, " (x| refers 1o {px->description}™).
{c->namc) requires that EXPAND_PRECOND(c->precond). It causes
EXPAND_POSTCOND(c->postcond). For example,
EXAMPLE(c->form,WM).

COMMAND_REMIND(c)
{c->name): (c->form). It is used w (c->satisfies->description). For
example, EXAMPLE {c->form,WM]}.

GOAL_REMIND_SIMPLE(g)
You can (g->description} by using the command (g->command). For
cxample, EXAMPLE(c->form,WM) would
EXPAND_POSTCOND(c->posticond).

GOAL_INTRODUCE_SIMPLE(g)
GOAL_REMIND_SIMPLE(). You must make sure
EXPAND_PRECOND(g->command->preconds).

GOAL._ INTRODUCE_COMPLEX(g.fault)
In order 1o (g->description), you must
FOR_EACH(gx,g->subgoals,"GOAL_INTRODUCE_COMPLEX(gx)"). IF
fault DESCRIBE_FAULT(fault->plan). The commands to (g->description)
are
FORMAT_PLAN_INSTANTIATION(gx, g->subgoals,gx->command, WM).
SHOW_MAPPING(gx,g->subgoals,gx->description,gx->command).

GOAL_REMIND_COMPLEX(g)
In order 10 {g->description), use
FORMAT_PLAN_INSTANTIATION(gx,g->subgoals,gx->command, WM).
SHOW_MAPPING(gx,g->subgoals,gx->description,gx->command).

/* Operations appear in capital leticrs. Variables are surounded by braces. WM = Woild Model. Simple
goals arc satisfied direcily by commands. Complex goals are satisfied by a plan that
maps 10 subgoals. */

FIGURE 7-§
Representative response agenda.

links between goals. Using one of these methods the user indicates that the
desired command is type.

Figure 7-6 shows the portion of the expert knowledge base required to
answer this question. The Plan Analyst uses the following rules to determine
what information is relevant to the Explainer:

1. If the user model contains command C, then report knowledge of C, else
report no knowledge of C.

If there exists a command that is directly satisfied by some goal H, which
has the least complex link to the goal G that satisfies command C, then
D = that command.

3. If D exists in the expert knowledge base and the user model contains C,

then report knowledge of D,

el

In the example, the Plan Analyst would determine whether the user al-
ready knows about type, and in this case, since there is a link to print,
whether the user knows about print. The outcome of this analysis is passed
10 the Explainer.

Al TECHNIQUES IN SOFTWARE ENGINLERING 225

Four analyses are possible based on the existence of C and D in the user
model. These are illustrated in Fig. 7-7 along with the corresponding Explainer
output, If the user knows nothing about either type or print, Genie generates
the standard introductory template for type and does not overwhelm the user
with the fact that print is a synonym. Figure 7-8 shows how the response
agenda for COMMAND_ INTRODUCECtype) is filled from the expert knowledge
base. If the user knows about print, Genic states the fact that type is a syn-
onym, reminds the user about print, and then introduces type. If the user
knows about type but not print, Genie reminds the user about type and
makes an aside that there is a synonym for type called print. Finally, in the
last case, if the user knows about both, Genie just reminds him about type.

The second question is: How can I reply to a message? This is an
instantiation of the “*How can I satisfy G?'' category of Fig. 7-1. To ask this
question, the user selects question 2 in the menu of Fig. 7-4. In a second menu,
the user selects the desired goal. Let us assume (he user chose
“reply.to.mesasage.” In this case it might be easier to locate the goal by

Goal type.goal,
G type: Direct /* Ssatisfied directly by command */
Satisfied by: Command type:
Sslated goale: ALL

Goal prist.goal,
G_type: Direct
Satisfied by: Command print;
Related goals: RL1

Gosl display.list.of .messsges,
Description: display each massage in the sequence specified
G_type: Subgoals /* Satisfied through subgoals */
Satisfied Dy: Goal type.goal; Goal print.goal:

Command print, Form: print (message_list)
Preconditioa: FR1 and PRZ and ¥R,
Postoondition: PO1,

Satisfles: print.goal
Pa : ge-list

Command type, Fomm: type {(messsage_list)
Precoadition: PRl and FPR2 and PRI,
Postoondition: P01,

Satisfies: type.goal
FParsmaters: massage-list

Plan P1, etsate: (exists contemts_of (message _list))
use: list.msesage

Plan P2, etats: (at read-level)
use: get.to.read.lavel

Plan P3, state: (size (message-list) > soreen-siss)
uss: set.window.soroll

Rule RL1, type.goal, print.goal
Relation: synonyms

FIGURE 74
Expert knowledge for question 1.

‘€7 uonsanb oy sasuodsas s ua0)
6-L ARNDIA

(uwrd<-3Tnez ‘2wpuee 03 ATuo" ATde) XETHOD IDOAOMINI TYOO
:andIno aeuteidex

ebperacuy ou Aydey :puwewod
sHussem PUBS (- [BAST PRSI BaweT
<~ ehussow vawsc-
nou Atdex <- ueyd :uaouy jo0u uwyd
aepuwe ‘03 'Ayuo - K1dex <- mou 'A1dex :uwyd 3eeq :andino Jekywuy uwia
/v oDusseow pUSS (- [GAG] ' PUSI SaAWSY <-
sbussow save (- ofvssem 03 ATdex eUTEIUCD TBpOm IeEn ,/

(xopues ‘03 Atuo - K1de1) FTANIS ONINNY TYOO :andano zeupwydex
ebpetnouy A(dey :puvewmod
2wpues ‘03 Afuo - A1dex :uerd aseq
uerd z0en = ueyd Iveq :30d3no JeAyeuy uwyy
/v 3epume 03 Arvo-Ardex - sou Lydes <-
sbessem 03 A1dex sujwluod [Epow 2SN 4/

(efwsnom’ 03 A1dea) FIONIS EOOAOMINI TYOD
(uwyd 3seq) mria’ 3% TEOONS :3ndyno aeuyeydey
ebpernouy ou A1dey :puvemoco
sopuee "o3 Aywo - Aidex
<- mou'A1dex <- eSwesem-o3-Lidea: ueyd aseq
tyu :ueyd zeen :andino Jskyeuy uveyry
/+ sbussem os0dmod TYTWE POSS FTTEIVOD [EPOm IWFN 4/

‘AllednewWwoIne pappe aq pnom aseq adpajmouy uadxs ay) u Apeaufe
10U 20w 1ng YJoam 0) uaddey jey) sueld £eap] "Alne) se ury) JISYIEE ‘UMOUY JOU SE
payIsse|d st pur sydom ueld oy 319} "6-£ ‘81 Ul UMOYS ISED ISB| 3Y) SI ISED 13)1E)
Y raseq adpapmouy 11adxd ay) ul uaad Jou s1 uepd § 98N Yl uoym 10 ueyd
S, 2130 yaew jou $aop urjd § 1050 Y1 UIYM parmyYmE 3G 0) urjd B SIapISu0d
3wany ‘urd 11199 Sy pur ueyd s 1950 ayt Jo s uamiaq syull ay) Juipraosd
AQ 1a119q st 1t Aym swiedxd 1u30) “Aem 131134 ¥ SIONPOLJUL IILIN UYL ‘Ajprem
“¥ME 1 $00p nq $adessdw 0} A)das 01 MOY mOuY O] SWIIS 1ISN IY) JI *I0AD
-mO "A1day purwiuos dy) IN0Qe 1asn ay) spuiwas Ajduns ud) uayy ‘Ajuad
-2 1 sdop pur ised oy ur sdFussow 01 poydal sey 1asn Yy | "1x3) 2dnposd
01 papurdxa s1 ased siy) Joj epuade Isuodsas oyl moy smoys (] -, 21n3iq

‘A1day 1 purw
-wod JuwAdR Kjuo oY) | tabessawr3cadwod noge smouy 13sn 3y UG
“121R] URY) JOYIRS MOU DUOP AQ PIHOYS YSEI T jrY) $31edIput IFpamouyridw
oyl puwe ‘aapuds ayi 03 Kluo £jdat 01 aq pinoys asuodsal Yyl eyl sajedipul
IX2IUOD Y *ased SIYY Ul “syuI| JO dTPIMouNRIdW pu JXIUOI IY) Uo paseq
uepd | 1594,, € $103[9s awan) ‘ddessow v o) A|das 0] moy noge Junplhiue mouy
10U S30p 13sn 3Y) J{ "6~ 31 ul paensnyp e sasuodsas ajgissod aoay |,

‘umouy~jou-uefrd = jyney

1odas 28)9 ‘umouy ~jou~uerd podal ‘ueid preA st umouyTjoutue(d J| °§
‘ueid-uasn = uwidTisaq odas uoyi ‘o = dJI v

LT ONIHLANEINGG IV MLIOS NESHOOINHDAL Y

“adA) purwiiod 3y) 2anpoayn o) pavidual)xay,
8L ANNNIA

‘¢ qbnoiqy [sebuesew ekeyrdsyp
€:1 odiy

:eydurxe
I04 ‘usexds wyy vo pelewydsyp wq 03 sy sbessewm eyl uy sbBessem YOwe
30 IXS) el SSENED 31 "UGSIOs WYl uo 3173 seduesem gl ITQ] POV TSAST
PESI ¥ &Y Iesn eyl IPYJ ‘IeTES 7Y sbessew oyl JO EIUNIUOD Y3 WYl
sexynbex odiy ‘sed 30 b ® 03 sxezex (3877 ebussem) exoya

(3837 eBveswm) odi3

‘w103 g3
sey 31 °TwuysIel eyl uwo Sees 30 b v odf3 o3 pesn ey edAy

‘d = umouy~jou~ueid pyod

-a1 uay) ‘(urld §,195N 3yl d UILIUOD JoU $I0p Iseq IBpajmouy 1adxd Yl §| €
*SPUBLIWIOD JURA3[I) KUv JO 23pajmouy s 1asn pue p = uepd-3s3q poda

uay) ‘0 10j O uejd WAV JSOW B SUIRIUOD ISEG IBpamouy 112dXd S §] T
"SPURILIOD JUBAJDL JO ITpajmouy S Jasn

pue 4 = uejd-aaen odal udy) ‘1) 10}] Ueld B SUIRIUOD (IPOW JISN YL J] °]

15311 SuIMo]|0) Y} SIS
IsAjeuy uRld oy, “Joutrpdyy oY1 o) 1 sassed pue Aydswaany [eod oy ydnonp
201} B S]IN1SU0D JsA[euy uejd 2yl ‘siaquaw dnosd 19410 0} jou pue 1asn
Tey) 01 A[uO 1uds Sem JeY) IFeSSOW B SUIRIUOD [SPOW PlIOM 3Y) 1Byl duinsse
Iayung sn 197 auo paznaqeyd(e ue ueYy) JaYiR1 nUdW Paseq-{rod e Bulyoleas

‘| uonsanb 0) sasuodsay
L-L 34NO1A

(edX3) QUINTE OODW00 :and3no aeuyeidxy
sOpetaouy edi3 :puvemoo :3ndino Jekiwuy uwrys
/s 3u7ad pus edil 30q SUTEIVOO TEPOW Ieen ./

((3upad ‘edA3) MNIT FEIUDS2A) LODWOOD XALE TNV
(odX3) QNI QVe0 :andjno zeaywrdxx

ebpetacuy ou juyxd :puTEmoO
sbpeynouy edly :pusewoo :3ndino ekyeuy ustaL
/» 3uyxd 20m Ing ‘odky STTEIUCD TEPOom Iesn 4/

(0d£3) IDOAOMINT_ QHTIN0O

{3o72d) ORINEM OIOW00
(u7ad‘edi3) xnI1 FEINOSEA :and3no zeuywidsn

sbpeyraouy 3utid puwEwod
sbpeyacuy oo edk3 :puwmmod :3ndine ashyeuy ceta
/e ®dKk3 30u 3Inq ‘3u3ad suywluod (EPOM TeEn 4/

(dX3) EDOCOUINI QNVIND :andano IecyerdEx
sfpetaouy ov odf3 :puwmmoo :yndano jFekywuy uvid
/e utzd 30 edk3 IOYIYe TTEIV00 30U #EOP [opom 3een o/

SNOLLY. I HY (ONREEINIONS AN IMONA - 9T

228 KNOWLEDUE ENGINEERING: APPLICATIONS

In order to reply to s ge it is s d you want to reply right
awsy and reply oaly to tha sender. To do this, you sust indicate you
wish to reply and campose a messsge. You can indicate you wish to
reply by ueing the command ‘Reply’. For exasplas,

Reply

would put you in write mode, the receiver of your msssage would be
idanticsl to the wxiter of the massage you just xeceived.

FIGURE 7-10
Text generated to introduce the goal ‘reply to 8 message.”’

A refinement of the second question is: To reply to a group of users, |
reply to each individually—is there a better way? This is an instance of the
**Given P, is there a better plan for G?"* category of Fig. 7-1. In this case the
user must identify the question type and select a goal and plan. Let us assume
the user selected the goal “*reply.to.all’ and the plan

FOR_EACH (x in group)

send.mail.to.individual

In the first case in Fig. 7-9, the world model contains a message that was
sent to the user and others. In the second case, it contains a message that was
sent only to the user. In the third case, the world model does not contain any
message.

This question is analyzed using rules 2-5 of the last example. Rule | is
unnecessary since plan P chosen by the user should be in the user model.

Three possible responses are illustrated in Fig. 7-11. In the first, the mes-
sage to which the user wishes to reply was addressed to a group of users. Ge-
nie chooses to tell the user about the reply command since a group exists in
the world model. In the second case, the message was addressed only to the
user. Genie chooses a plan that requires the user to identify a group of users.
In both cases, since the user knows how to send mail, Genie simply reminds
the user about how 1o send mail and describes the links between the suggested
plan and the user’s. In the third case, the context does not allow a choice be-
tween these plans. Genie presents both options. Both plans are preferred to
the user’s plan because they require less work on the user's part. In the event
that the user’s plan is equivalent to the suggested solution, Genie would inform
the user of this and follow links to justify why the user’s plan is best.

In summary, Genie is an intelligent assistant for automated consulting
within programming environments. The research focuses on answer genera-
tion. Genie's knowledge is separated into two components, a rule base that
captures knowledge of how to consult, and a frame-based hierarchical knowl-
edge representation that encodes knowledge of the domain about which to
consult—the programming ¢nvironment (the Berkeley Unix mail system in the
example). Users are not categorized along a spectrum of expertise, nor com-

Al TECHNIQUES IN SOFTWARE ENGINEERING 229

mands along a spectrum of level of difficulty. Instead Genie reflects a task-
centered approach where an answer to a question about the environment is
based on knowledge of what the user has done in the past and is trying (o, ac-
complish now. There are several other research efforts similar to Genie, where
the intelligent assistant is essentially passive and answers user questions.
Rather than preencode expected plans, however, Grapple (Huff and Lesser,
1988) and Agora (Bisiani ct al., 1988) perform planning as needed with respect
to the commands provided by the programming environment.

3.2 Marvel .

Software systems are getting larger and morc complex all the time. Typically,
many programmers work together on devcloping and maintaining a system
composed of numerous parts. Each part often has several variants, for in-
stance because of revisions to repair errors or to run on different kinds of com-
puters, which are combined into configurations that select the appropriate

/* the world modal coatains msasage that was sent to user and others */
flan Analyst output:

user_plan: reply.to.each.in.group

best_plan: rxeply.to.all -> reply.group.known

command: reply no_knowlsdge

Explainer ocutput:

GOAL REXIMD SIMPLE (reply.to.each.in.group)

oou. INTRODUCE_COMPLEX (reply . group . known)

DESCRIRE _LIMK (reply.to.each. in.group, reply.group.known)

/* the world modal contsins masssage that was just sant to user */
Plan Analyst output:

user_plan: reply.to.esch.in. group

best_plan: reply.to.all -> reply.group.create.alias

command: alias no_knowledge

Rxplainer output:

GOAL REMIND SIMPLE (reply.to.each.in.group)
GOAL_INYROUUCE_COMPLEX (reply.group.create ., alias)

DESCRIBE . LIMK(reply.to.each.in.group, reply.group.create.slias)

/* the world model does Dot contain explicit reference to a massage 4/
Plan Analyst output:

user_plan: reply.to.sach.in.group

best_plan:reply.to.all -> reply.group.cresate.alias

command: reply no_knowledge

command: alias no_knowledge

Explainer output:

GOAL_REMIMD SIMPLE (reply.to.each.in.group)

00!1. INTRODUCK_COMPLEX (reply.group.creste.alias)

DRSCRIRR _LIMK (reply.to.sach. in.group, reply.group.creste.aliss)
GOAL_INTRODUCK_COMPLEX (reply.group. known)

DRSCRIBE ._LINK (reply.to.each. in.group, reply.group.known)

FIGURE 7-11
Response to question 2b.

230 KNOWLEDGE ENGINEERING: APPLICATIONS

variants of each part of the system. Programmers working on a large-scale sys-
tem spend a considerable portion of their time coordinating their activities, lo-
cating the right system components, and building tools to help them in their
efforts. These facts point to the importance of programming environments that
manage and automate the ‘‘menial’’ jobs programmers would otherwise do
manually.

It is not sufficient to create a single, very powerful programming envi-
ronment to take care of all these menial tasks. Each software project has its
own characteristics: ils own organization, its own development method, and
its own relations among its components. It is thus necessary for the program-
ming environment (0 understand these characteristics and behave differently
for different characteristics. In other words, a knowledge-based programming
environment can provide better assistance than a *‘moronic’’ programming en-
vironment that treats every development project in the same way.

Many programming environments are tailored to a chosen programming
language, support some particular development methodology, and incorporate
a selected set of tools. A knowledge-based programming environment, on the
other hand, is fairly easy to retarget to another language, another methodol-
ogy, or new tools by modifying the knowledge base. Marvel (Kaiser et al.,
1988a; 1988b) is a knowledge-based programming environment in the sense
that its behavior is dictated by the policies set by the manager of each distinct
project. Marvel actively participates in the development of a system by
automating many of the tasks peculiar to that project as well as those common
to a wide range of projects. In order to do this, Marvel needs to know the fol-
lowing:

* The organization of the project including the classes or types of software ob-
jects, such as source code in the programming language, binary machine
code, and text documentation, and the valid operations on these objects,
such as compilers, loaders, and word processors.

* The relations among the various objects input and produced by the project—
for example, one object is a variant of another and uses a third.

* The rules specific to the chosen development process, as determined par-
tially by management and partially by the requirements of the software de-
velopment tools available. Marvel rules are based on the rules of production
systems.

All three factors may change over the project’s lifetime, so Marvel must be
able to adjust dynamically.

Marvel uses this knowledge (o tailor itself to the specific needs of each
individual project. For example, the team of programmers working on project
A might nced a set of commands C(A) while another team working on project
B might need another set of commands C(B). If Marvel knows how the com-
mands in cach set interact among themselves and how they manipulate the dif-
ferent components of systems A and B, respectively, it can participate in the
development of A and B in different ways. Marvel would automatically invoke

Al TECHNIQUES IN SOFTWARE ENGINEERING 231

commands from the set C(A) only with project A, and only in accordance with
the rules that define A’s development process. It can do the same for B.

3.2.1 ORGANIZATION OF PROGRAMMING ENVIRONMENTS. A Marvel pro-
gramming environment is created by tailoring a standard kernel to the policies
desired for the system being developed or maintained. This is done in two
phases, as illustrated in Fig. 7-12. First, a skilled user called the superuser
writes a description of the project using a special notation called the Marvel
Strategy Language (MSL). This description specifies the organization of the
software project (e.g., a program is made up of modules and procedures) and
models the process of development of that particular project (e.g., a procedure
can be printed only after it has been formatted). Any user can then load this
description into Marvel and start using this instantiated Marvel to work on the
project. Marvel actively participates in the development of the project by using
the description it was fed, organizing the components of the project in the way
requested, and automatically invoking the appropriate commands at the right
times.

For example, a superuser might write a description for an arbitrary C
system, stating that any such project would include a number of module
(source file) objects, whose attributes (subparts) include macros, types, vari-
ables, and procedures. The description might also state how to invoke com-
mands on the corresponding objects to do C-specific type checking, compila-
tion, and so on. It could further state that this project requires programmers to
sign off all program modifications with their respective managers, and the en-
vironment should automate this communication task by sending electronic
mail after a programmer completes each modification task.

The organization of a project is the way that the various software artj-
facts are set up in relation to each other. Marvel uses an objectbase to main-

SuperUser
User

!

| Tailored
] Mzarvel's kemel o Environment

Formal
Description

Object
Repository

>

FIGURE 7-12
Marvel organization.

232 KNOWLEDGE ENGINEERING: APPLICATIONS

tain all the software artifacts that are components of the software system itself
or are used in its development, including mechanisms for invoking external
tools such as the editors, compilers, and mail systems represented by com-
mands. Each object in the objectbase is an instance of a class (that is, the class
defines the type of the object). The organization of the project includes all the
classes angd the syntactic relations among the various classes. Figure 7-13
shows three classes of objects, PROJECT, MODULE, and PROCEDURE.
From this declaration, Marvel deduces that instances of the MODULE class
are enclosed in PROJECT objects.

objeclbase:
PROJECT:: = superclasses: ENTITY:

printname : string 3
status : (Linked, NotlLinked) = *‘*NotbLinked’’;
timestemp : real = **0.0°"

mods : set_of MODULE ;
executable : binary
END

MODULE:: = superclasses: ENTITY:
status : (ModlsComp,ModinComp,ModNoComp) =

**ModNoComp’’;
Procs : set_of PROCEDURE;
END

PROCEDURE: : = superclassea: ENTITY:
analyzed : (Analyzed,InAnalysais,NotAnalyzed) =

‘**NotAnalyzed’’;
edited : (Edited,NolEdited) = **NotEdited’’;
state : (Changed,NolChanged) = ‘‘NotChanged’’;
END
Rclu{T;;5:

inproject: PROJECT MODULE
exp: MODULE PROCEDURE

imp: MODULE PROCEDURE
contains: MODULE PROCEDURE

/+ Esch class conaists of 1ta name, a list of zero or more
superclasses (ENTITY 13 the bullt-in root claas), and & list of zero
or more attributes. Class names are in UPPERCASE. Attributes are
typed, and may be inttialized. The type 13 either & class name, a
bultit-in type given 1n italics, & conatruclor (none shown), or an
enumerated sel of values. Relatllions conaist of their names and tLhe
names of two classes, since only binary relations are supported
currently., MSL keywords are only underlined.s/

FIGURE 7-1)
Classes and relationy.

Al TECHNIQUES IN SOFITWARE ENGINEERING 233

Besides syntactic relations among classes of objects, components of a
software project can be related by external relations. Unlike syntactic rela-
tions, these do not imply any particular organization on the participating com-
ponents. The relations are simply stored in the objectbase 1o maintain infor-
mation that cannot be deduced from the hierarchical structure. Using the
example'in Fig. 7-13, a relation named contsins maps the MODULE class to
the PROCEDURE class. An instance of this relation, contains(m,p), would
be stored in the objectbase.

The syntactic and external relations define how the project is set up.
However, Marvel must also understand the model of development and/or
maintenance desired for the system. Marvel needs to know the capabilities of
cach object, that is, the operations that can be performed on the object, in-
cluding the activities that affect more than one object.

3.2.2 OPPORTUNISTIC PROCESSING IN PROGRAMMING ENVIRONMENTS.
One aspect of intelligent behavior by a programming environment is under-
standing the process of software development and maintenance. This requires
understanding the activities that can be performed to transform the system
from one stage in its life cycle to another. For example, Marvel needs to know
how (o add a new object to the project. If the team is developing a C program,
Marvel needs to know how to add a new procedure definition in terms of how the
procedure relates to all the existing objects, including how to place it in the source
file representing its module, what other modules (files) to recompile, and so on.
The rules part of strategies instantiates Marvel with the model of the development
process. Rules formalize the application of one object (a command) to another (a
software artifact) and define Marvel's automatic behavior.

Marvel rules are based on those of expert systems but differ from most
others by having three parts instead of the conventional condition-action pair.
Marvel rules have preconditions, an activily, and a set of postconditions,
where preconditions are more or less the same as the traditional condition and
the activity together with the postconditions roughly correspond to the action.
As in expert systems, preconditions and postconditions are written in the first-
order predicate calculus.

One big difference is that expert system rules have a single action, deter-
ministically selected by the condition. Marvel rules, on the other hand, must
have multiple postconditions, since it is impossible for the condition to
uniquely determine the result. A programming activity might have a set of
postconditions, exactly one of which is true after the activity terminates. The
processing performed by the command (tool) invoked in the activity deter-
mines which of the postconditions is true. For example, a compiler might pro-
duce ecither error messages or object code, but which one cannot be deter-
mined except by running the compiler. This notion of multiple postconditions
distinguishes Marvel’s rule base from most other rule-based systems. Through
chaining the preconditions and postconditions of several rules, Marvel per-
forms what is called opportunistic processing, because Marvel carries out

234 KNOWLEDGE ENGINEERING: APPLICATIONS

chores as the opportunity arises, Marvel uscs both forward chaining and back-
ward chaining to invoke commands automatically, switching from one to the
other as explained below.

The typical operation of opportunistic processing is as follows. The user
requests some command. Marvel checks whether the precondition of the com-
mand is already satisfied (i.c., it evaluates to “true™). If so, Marvel invokes
the command. If not, Marvel attempts to do whatever is necessary 1o satisfy
the precondition. This involves finding one or more other rules whose
postconditions may change the state of the project in such a way as to make
the precondition true. So Marvel tries to invoke the command in the activ-
ity part of these rules. But before it can do that, the preconditions of these
rules must be true. So Marvel applies another round of backward chaining.
Eventually, Marvel will cither satisfy the original precondition and invoke
the command originally requested by the user, or it will explain to the user
why it is impossible to do so given the rules and what the user has to do to
fix things.

After Marvel has invoked a command, the correct one of its several
postconditions is asserted, changing the state of the project—usually in some
small way, just new values for a few attributes. But the postcondition may
cause the preconditions of one or more other rules to now be satisfied, so Mar-
vel can go ahead and automatically carry out the corresponding activity (that
is. invoke its command), under the assumption that the user will soon want its
results, These commands have their own postconditions that may make true
the preconditions of other commands, so forward chaining repeats until Mar-
vel runs out of things to do—all preconditions in the entire rule base are now
unsatisfied (falsc).

For example, the compile rule in Fig. 7-14 states that the compiler can be
applied 10 a MODULE object only after checking that there exists a PROCE-
DURE object that is a component of this module and that has been edited and
analyzed successfully since the last time the module was compiled. The result
of applying the compile command could be either errors or successful compi-
lation into machine code.

3.2.3 STRATEGIES. Strategies are metadescriptions of a project or a family of
similar projects. A strategy encapsulates information about classes of objects,
their capabilities, the external relations among them, and the rules guiding
their manipulation as part of software development activities. Each strategy
consists of four parts. The first describes the interface between this and other
strategies by means of imports and exports. The second part describes a view
of the objectbase by specifying classes of objects with their operations and
syntactic relations. The third part defines the external relations among in-
stances of these classes by declaring the name of each relation and the domain
and range classes. The last part of a strategy is the rules that model the soft-
ware devclopment process.

Al TECHNIQUES IN SOFTWARE ENGINEERING 235

Rules:
edit [?p: PROCEDURK] :
{ EDITOR edit ?p)
(?p.edited = Edited)

analyze(?p:PROCEDURE] :
Ir (?p.edited = Kdited)

{ ANALYZER analyze ?p }
(?p.analyxed = Analyzed) AND .
(?p.state = Changed) AND
(?p.edited = NotEdited)

(?7p.analyzed = NotAnalyred) AND
(?7p.edited = Notxdited)

compile(?m: MODULE) :
(forall PROCEDURE ?p) such that
{member (?m.procs ?p))

(?p. analyzed = Analyred) AND
{?m.status = ModNoComp)

{ COMPILER compile ?m }

(?m.status = ModIsComp)

oR

(?m.atatus = ModNoComp)
profile[?7proj: PROJECT) :

{ PROFILER type_info ?p }
build{?proj: PROJECY) :

(forall MODULE ?m) such that
(member (?proj.mods 7m))

{(?m.status = ModIaComp)
{ BUILDER build ?proj }

{?proj.status = Linked)
oR
{(?proj.status = Notlinked)

/* A rule consists of its name, formal parameters with their types, and
then its body. The body consists of a precondition indiocated in a variant of
first order predicate logic, an aotivity, and ons or more postoonditions

saparated by "OR™. The activity oconelsts of tha name of the tool, the
partiocular ocperation to be carxied out by the tool, and its arguments. "=~
and similar operators are provided by MSL. */

FIGURE 7-14

Rules.

O — s, it = - ok’ TN % 2

PO A

b
!

236 KNOWI EDGE ENGINEERING: APPLICATIONS

Strategies combine three major concepts:

1. Classes of objects and multiple inheritance similar to object-oriented lan-
guages ‘

2. Rules that are similar but not identical to rules in production systems

3. Modularization and information hiding

A single strategy might provide only a partial view of the project. Then
the complete description of the project is captured in a collection of interacting
strategies in a way similar to modules or packages in a conventional program-
ming language. Modularization has become a standard concept in large-scale
programming. the basic idea being that programmers work on one piece at a
time and then put together all the pieces. The same concept was followed in
designing strategies. Different superusers, or the same superuser at different
times, develop a set of strategies where each strategy encapsulates a single
role of a class of team member, part of the development process, or subpart of
the software system.

Each strategy requires other strategies and uses their exported facilities.
These facilities include both class definitions and specific objects—com-
mands—such as a performance profiler object. Consider a set of two strate-
gies: a programming language strategy and a programming environment strat-
egy. The Clanguage strategy defines the syntax and semantics of an extension
of C, as depicted in Fig. 7-15. A C module consists of a set of procedures.
Each procedure has a source code segment and an object code segment. State-
ments, expressions, and such are ignored for simplicity.

The Cenvironment strategy of Fig. 7-i6 combines the MODULE class
imported from the Clanguage strategy with the separate MODULE class de-
fined locally. The result is the internal representation of a single MODULE
class defined according to the union of the Cenvironment and Clanguage def-
initions of MODULLE. Objects in the combined class may appear as elements
of the mods attribute of PROJECT objects and any other places in the
objectbase where instances of the MODULE class are expected. Both EDI-
TOR and COMPILER specialize the TOOL class by giving a command string
for invoking themselves. Note that both EDITOR and COMPILER are spe-
cific objects rather than classes of objects.

Strategies can be reused by other strategies, due to the information hid-
ing and strict interfaces. The ease of reusability is cnhanced by building a
library of strategics, where cach strategy is categorized according to the
task(s) it performs. For example, strategies that define programming lan-
guages are all grouped together while those describing memory manage-
ment techniques are also grouped together, leading to a lattice of strategies.
The interface to the library includes methods for depositing a new strategy,
retricving an existing strategy, and scarching for strategics that perform a
specific task.

Al TECHNIQUES IN SOFTWARE ENGINEERING 237

STRATEGY: Clanguage;

Interface:
Ert.: none.
Exports: all;

objectbase:

NODULK: := suparclasses: ENTITY:
printname : siring ;
procs : sei_of PROCKDURK ;
exportlist : sei_of EXPITEM ;
importlist : sei_of INPITEM |
xND .

PROCEDURE: := superclasses: ENTITY:
printname : string
code_c : flexi ;
coda_o : binary ;

END

EXPITEN: := superclasses: ENTITY:
expelem : PROCEDURE
END

IMPITEM: := supexrclasses: ENTITY:
impelem : PROCEDURE ;
module : MODULK

END

DD Clanguage

/* Wone and all have the obvious msaning. In the genaral case, Imports
lists the names of imported strategies while Exports lists tha names of
exported classes, relations, tools and rules. */

FIGURE 7-15
Strategy.

3.2.4 MERGING STRATEGIES. When two or more strategies are loaded into
Marvel, they are merged into a single internal representation that is treated as
if it were based on a single strategy. As mentioned earlier, a strategy provides
a view of the objectbase. When several strategies are active (i.e., loaded),
there are several views of the same objectbase. These views have to be merged
into one unified, composite view. Merging of strategies implies merging of
classes of objects, merging of relations, and merging of rules. If the strategies
being merged do not overlap, their merger is simply the aggregate of all parts
of all strategies. Two strategies are said to be overlapping if they contain

* Classes with the same name
* Relations with the same name
* Rules with the same name, same preconditions, or same activity

Merging overlapping strategies involves checking the consistency of
overlapping class definitions, overlapping relation definitions, and potentially

03y 91-L JANOIA

/s ‘voyjuxedo

Y3 ®YCAUY 03 OP OF CEY Iwsn SYJ ITYA JO UOTIVOTRUT UY GITA YOWe ° (mIeq umoqe
qews suo ATuc) euoTIRIMAO 83T IFTT 7003 YOEY ‘sswT0 UF-ITFOR W @Y 00 &/

JUeNUOITAUSD AN
(POYUTTIION = lﬁ»lun.ﬂOumwlv
(POUYT = .:u-u-.ﬂoul.nw
{ foxd: prynq wsaiing)
(dm0)eIPON = sn3eIs wi)
((u¢ spow (oadi) Teques) ’

Y3 Yone (Wi FINOOM TT9303)
: [20mroua: foadi)prng

(d¢ ozuy »dA3 wr1rs0ua)
: (aDuroud: foxdy)ergyoxd

(dmsoDONPOM = n3e3s - wmy)

O

(AmOD8IpPOoM = snjwis - -wl)

{ Wi or7dwod ¥TFIIH0OO |

(dSODONPOM = STIINIE ‘W)
aNY (pezAteuy = pesAiwue-dy)

((dy edo1d-wy) Tequwem)
3G yone (d¢ INAEO0MA T1#363)
: [21nQ0M w¢ e TTdwod

. (P®ITPEION = pe3Tpe-dy)

ANV (pezLTeuyioN = peadkyeuw-di)
w0

(P®3ITPRION = perype dy)

GNY (pebusyD = ®3w3s-dy)

GNV (peszdiwuy = pexAywuw-di)
{ d¢ exAtsuw waIXTWNY)}

(pe3TDa = peajpe-de) 4T
: (manaxooua :de) wxhywue

(pe3ypa = peaype di)
§ d¢ 3vpe woirias }
T (manaaooud :de) avpe

reeTy

~ aNy
t.aety30xd, = Sunys 1 ojuy edky

G6€T ONIHIANIOND 3HYMLA0S NI SANDINHOAL IV

‘A33jans yjouy
91-L N4

:suoywaedo
17001 sesseioIsdns :dFIILONA
ana
.30 TPOUNI,, = YulNS I ITPe
:suoyaIvIedo
17001 secswioIedns : lHOLIAX

anz
LLpTING, = fwar L prIng
:GuoTIeaedo
1700l :sesew(ozedns : WACIING

aNa
r.exlpeue, = Vs ;. ezdyeus
:suotawIedo
7001 :TosewToIedNE @ YAZXTYNY

anz
r,e73dwod,, = Surys . eyydwod
:guoTanIedo
1001 weecwTOISdns INTTIINOD

MUNAIIONI TTNAON : FUTEIUCD
TINAOR TTNAOW :dwy
FUNATO0Hd TInaoM :dxe
FTAAOW 1DAroda :deloaduy

BT

aNa
:.pebuwydIoN,. = {(pebuwydioN’pesbuwyd) @ e3e3s
{.POITPAION.. = (PSITPIION'PSITPT) @ PRITPW
. poz&TeUVioN.,
= (pezATeuyioN’eysdreuvul ‘peziteuy) : pezxiteuw
D ALINT GBESETOIedNE = YUNTEAIOEI

aNa

: ., IODONPON..

: Kioupq . eTQqEINDEXW

! WINAON fo o8 : wpow

220 0. = I03: : durejoearyl

!, P®NUTTION., = (POYUTIION 'PONUTT) :@ enjele
! Sutys : ewwujuyad

ALIINY (G®sewTOx

ieuwqIoelqo
ITY ¥330dxy
rebenbuerd :€320dE]
HCELFEL R I

I JUBSUOI TAURD XONIVELE

SNOLLYDI IV (ONRTANIONT 3DATTAONY - §€7

240 KNOWLEDGE ENGINBERING: APPLICATIONS

contradictory rules. Unloading of strategics, on the other hand, may cause
portions of the objectbase to become inaccessible. If a strategy was loaded in
the first place only because it was imported by the strategy now being un-
loaded, it will be unloaded also.

When two overlapping strategies are merged, a consistency checker ver-
ifics that the overlapping items can be unified. If two object classes in two
strategies have the same name, they can be unified if their sets of attributes are
disjoint or if attributes having the same name are identical. Two attributes are
identical if they have the same name and the same type. Similarly, two rela-
tions are identical if they have identical domain and range classes. Checking
the consistency of rules is much harder, since multiple rules with the same ac-
tivity but different preconditions and postconditions are not necessarily con-
flicting. In particular, Marvel checks only that their preconditions and
postconditions, respectively, are not obviously contradictory.

For example, consider three strategies A, B, and C. B imports some fa-
cilities from C, and both A and B define a class called X. A defines X as having
iwo attributes art! and a2, while B defines X as having only one attribute,
attd. If the user loads only strategy A, any instance of class X will have only
two attributes, attl and ar2. However, if she later loads strategy B, all in-
stances of X are updated to have a third attribute ar13. Also, strategy C is
loaded automatically because it is used by B. The rules available at this point
on instances of X assume that X has three attributes. However, rules that were
defined in strategy A operate only on artl and a2, while rules defined in B
assume only the existence of aft3. Now if strategy B is unloaded, C is also.
Furthermore, art3 will no longer be accessible. This does not mean that attd is
deleted from all instances of class X, but rather that the current rules (i.e.,
those defined in strategy A) cannot access atr3. Thus, ar3 will be “unused”’
until B is reloaded; a3 retains its previous value.

Merging rules from different strategies is more complicated. There are
several issues. First, if two or more rules invoke the same activity, how does
one combine their preconditions and their postconditions? Second, if several
rules invoke distinct activities but they have the same preconditions, which of
them is invoked if the precondition becomes true? Third, if several rules have
the same postcondition but invoke distinct activities, which does one invoke
during backward chaining?

The first problem has two solutions: Marvel can either AND all the pre-
conditions or it can OR them. The example in Fig. 7-17 depicts two rules in
two strategies. Both rules have the sume activity (build system). When Marvel
merges these two rules, it can build the system cither when all the procedures
are compiled AND analyzed or when all the procedures are either compiled
OR analyzed. Since the former is probably what is intended, the default inter-
pretation ANDs all the preconditions for the same activity; Marvel allows the
user o change the interpretation to OR.

In summary, Marvel defines a methodology for acquiring the knowledge
required by knowledge-based programming environments. The methodology

Al TECHNIQUES IN SOFTWARE ENGINEERING 241

STRATEGY: A;
STRAZSSS

Rules:
build{?proj: PROJRCT]) :
(forall MODULR 7m) such that
(mamber (?proj.mods ?m))
‘(?-,ntntu- = ModIesComp)
{ BUILDER build ?proj} }
(7proj.status = Linked)

oR .
(?proj.status = MotLinked)

STRATEGY: B

Rules:

build(?pro): PROJECT) :
IF (Tproj = ?current_focus)

{ BUILDER build ?proj)

(?proj.status = Linked)
on
(?proj.status = NotLinked)
FIGURE 7-17

Overlapping rules in two strategies.

consists of a notation for describing families of software projects and a kernel
that is instantiated by the description. The modular units of the language is
strategies, which describe the classes of objects making up the objectbase, the
relations among these objects, and the rules for manipulating objects and ap-
plying commands to them in the process of developing and maintaining the
system. The kernel tailors its behavior according to the description and thus
provides the user with a specialized environment that provides more intelligent
assistance than previous programming environments.

Strategies are merged to give a complete description of the objectbase
and the development process at any time. Marvel adjusts dynamically 1o the
loading and unloading of strategies, which may cause the perceived state of the
objects to change according to the role of the user or the phase in the project’s
life cycle. Changes may be made to capabilities of objects, types of attributes
of objects, and interactions among objects (most notably, automated applica-
tion of command objects to other objects). Changes are propagated throughout
the objectbase to ensure that all the objects possess a consistent view of the
objectbase. In particular, only those parts of a class definition that are defined
in the currently loaded strategies are visible.

242 KNOWLEDXGE ENGINEERING: APPLICATIONS

The approach is novel in that Marvel handles the incorporation of new
commands without modifying the kernel or the tool executed by the command
and without physically moving the tool into the objecthase. A strategy simply
describes how to locate the tool externally and how it interacts with existing
objects before incorporating it in the objectbase.

Smile (Kaiser and Feiler, 1987) and the Common Lisp Framework (CLF)
(Balzer, 1987) are the immediate ancestors of Marvel. Smile is a hand-coded
programming environment for C that behaves as an intelligent assistant, ac-
tively participating in the development process, but it cannot be modified with-
out recoding. CLF is a rule-based programming cnvironment for Common
Lisp that supports forward chaining but not (directly) backward chaining. The
rules are written in APS (Cohen, 1986), a logical specification notation that can
be efficiently compiled into Lisp. It'is possible to simulate Marvel-like behav-
ior in CLF. but CLF is limited by its Lisp oricntation and implementation and
cannol integrate external tools.

Darwin (Minsky. 1985) is another rule-based programming environment
that supports backward chaining. Darwin does not actively participate in soft-
ware development in the sense of automatically carrying out activities on be-
half of the user, but instead it monitors the user’s activities and will not permit
him 1o do anything against the policies dictated by the project manager and
encoded in the rules. This kind of behavior can be simulated in Marvel using
restrictive preconditions as constraints but is outside its normal scope of be-
havior. It would be interesting to combine Darwin and Marvel capabilities in a
more general intelligent assistant.

Finally, Inscape (Perry, 1989} is a programming environment that com-
bines a form of automatic programming with a form of intelligent assistance.
Inscape supports the creative labors of its users—programming—but uses fa-
cilities more in line with intelligent assistance rather than automatic program-
ming. It operates in a monitoring mode similar to Marvel, always looking over
the programmer’s shoulder and joining in when appropriate.

lnscape provides a special notation for specifying, for cach subrou-
tine, its preconditions (things that must be true before executing the sub-
routine), postconditions (things that become true by virtue of executing the
subroutine), and obligations (things that must be done later on because the
subroutine has been executed). As a program is written and modified,
Inscape checks whether all preconditions and obligations have been satis-
fied by previous and subsequent postconditions, respectively. This is done
using a relaxed form of theorem proving. This checking is similar to but
much more significant than the symbol resolution, type checking, anomaly
detection, and so on of typical language-based editors such as the Cornell
Program Synthesizer (Teitelbaum and Reps, 1981), since semantic as well
as synlactic errors can be detected. Inscape has been implemented for the
C programming language. but the ideas could be applied to any procedural
language.

Al TECHNIQUES IN SOFTWARE ENGINFERING 243

4 CONCLUSIONS

As discussed in the introduction, applications of artificial intelligence to soft-
ware engineering have tended in two directions, automatic programming and
intelligent assistance. Automatic programming in its full glory is a very long
term goal, although at least one commercial product is already available. Much
additional work is needed in this ficld, and the notion of reverse engineering of
existing programs seems particularly important.

Intelligent assistance is a more immediately practical approach for im-
proving the productivity of individual programmers as well as the quality of
their programs. The next major research problem is to apply intclligent assis-
tance to coordinating a full software development team rather than interacting
with just one user at a time. {n the meantime, commercial exploitation of in-
telligent assistance seems imminent for single-user programming environ-
ments.

There is one catch, however: user acceptance of intelligent assistance.
Many programmers consider themselves pioneers fighting a rugged frontier,
making the computer do what they want it to do. The notion of the computer
telling the programmers what to do, as in Genie, or the computer just going
ahead and doing things for them, as in Marvel, is likely to meet with initial
resistance. Marketers of intelligent assistance products must be highly con-
cerned with human—computer interaction, and managers of software engineers
must be extremely careful in the introduction of intelligent assistance tools into
their workplace. A technology that is not used will never achieve its promise
for higher programmer productivity and higher program quality.

ACKNOWLEDGMENTS

The Genie examples were developed by Ursula Wolz and the Marvel examples
by Nasser Barghouti and Mike Sokolsky. Professor Kaiser's Programming
Systems group is supported by National Science Foundation grants CCR-
8858029 and CCR-8802741, by grants from AT&T, DEC, IBM, Siemens, Sun,
and Xerox, by the Center for Advanced Technology. and by the Center for
Telecommunications Research.

REFERENCES

Balzer, R. (1985). A 15 Year Perspective on Automatic Programming. IEEE Trans. Software Eng.
SE-11(11):1257-1268.

Balzer, R. M. (1987). Living in the Next Generation Operating System. [EEE Software,
November, pp. 77-85.

Bisiani, R., Lecouat, F., and Ambriola, V. (1988). A Planner for the Automation of Programming
Eavironment Tasks. In: 21st Annual Hawaii Int. Conf. on Systein Sciences (Bruce D.
Shriver, Ed.), pp. 64-72.

Broy, M., and Pepper, P. (1981). Program Development ay o Formal Activity. HEEE Trans. Soft-
ware Eng. SE-7(1):14-22.

244 KNOWLEDGE ENGINEERING: APPLICATIONS

Cheatham, T., Townley, J., and Holloway, G. (1979). A System for Program Refinement. 4th Int.
Conf. on Software Engineering, pp. $3-62.

Cohen, D. (1986). Automatic Compilation of Logical Specifications into Efficient Programs. Sth
Nat. Conf. on Artificial Intelligence, pp. 20-25.

Freeman, P. (1987). A Conceptuai Analysis of the Draco Approach to Constructing Software Sys-
tems. 1EEE Trans. Software Eng. SE-13(7):830-844.

Goldberg, A. T. (1986). Knowledge-Based Programming: A Survey of Program Design and Con-
struction Techniques. JEEE Trans. Software Eng. SE-12(7):752-768.

Huff, K. E., and Lesser, V. R. (1988). A Plan-Bascd Intelligent Assistant That Supports the Soft-
ware Development Process. In: ACM SIGSoft/SIGPlan Software Engineering Symposium
on Practical Software Development Environments (Peter Henderson, Ed.), pp. 97-106.

Kaiser, G. E., and Feiler, P. H. (1987). Intelligent Assistance Without Anrtificial Intelligence. 32nd
1IEEE Computer Secicty Int. Conf., pp. 236-241,

Kaiser, G. E., Barghouti, N. S., Feiler, P. H., and Schwanke, R. W_ (1988a). Database Support
for Knowledge-Based Engineering Environments. IEEE Expert X2):18-32.

Kaiser, G. E., Feiler, P. H., and Popovich, S. S. (1988b). Intelligent Assistance for Software De-
velopment and Mainteaance. IEEE Software, May, pp. 40-49.

Kedzierski, B. L. (1984). Knowledge-Based Project Management and Communication Support in
a System Development Environment. 4th Jerusalem Conf. on Information Technology.

Minsky, N. H. (1985). Contralling the Evolution of Large Scale Software Systems. Conf. on Soft-
ware Maintenance—I98S, pp. 50-58.

Perry, D. E. (1989). The Inscape Environment. L1th Int. Conf. on Software Engincering, pp. 2-9.

Rich, C., and Waters, R. C. (1988a). The Programmer’s Apprentice: A Research Overview. Com-
puter 21(11):10-25.

Rich, C., and Waters, R. C. (1988b). Automatic Programming: Myths and Prospects. Computer
21(8):40-51.

Smith, D. R., Kotik, G. B., and Westfold, S. J. (1985). Research on Knowledge-Based Software
Environments at Kestrel lnstitute. 2EEE Trans. Software Eng. SE-11(11):1278-1295.
Stallman, R. M. (1981). Emacs—The Extensible, Customizable, Self-Documenting Display Edi-

tor. SIGPlan SIGOA Symp. on Text Manipulation, pp. 147-156.

Teitelbaum, T., and Reps, T. (1981). The Comell Pregram Synthesizer: A Syntax-Dirccted Pro-
gramming Environment. Commun. ACM 24(9):563-573.

Waters, R. C. (1986). KBEmacs: Where's the A1? A Mag. VIHI(1):47-56.

Wolz, U. (1988). Automated Consulting for Extending User Expertise in Interactive Environ-
ments: A Task Centered Approach. Columbia Univ. Department of Computer Science,
Tech. Rep. CUCS-393-88. .

Wolz, U, and Kaiser, G. E. (1988). A Discourse-Based Consultant for Interactive Environments.
4th 1IEEE Conl. on Artificial Intelligence Applications, pp. 28-33.

CHAPTER

KNOWLEDGE-BASED
VISION
SYSTEMS

M. G. RODD

1 INTRODUCTION

Computer vision systems set out to replicate, to some extent, our powerful hu-
man ability to recognize and classify visually acquired images, or scenes. In-
herently they form a major component in the general category of scientific en-
deavor referred to as artificial intelligence. Also, inherently, one accepts them
to be knowledge-based—although it has been argued that early computer vi-
sion systems, like classic, sequentially programmed computers, only made use
of implicit knowledge, essentially that of the designer! This chapter takes a
pragmatic, user-oriented view of so-called knowledge-based computer vision
systems—a viewpoint highly biased toward the practical applications of the
technology as a component in a manufacturing, or process-plant, control sys-
tem. It investigates the characteristics of this area of application and defines
the potential role of vision-based systems. On the basis of this, it reviews cur-
rent progress in fulfilling these roles. It highlights critical areas, especially the
need to recognize that the industrial environment requires solutions that can
coexist in those very environments and can react at speeds that are acceptable
in the closed-loop control situation of which they form a part. It is argued
strongly that simply gluing together well-understood low-level processing sys-
tems and currently available expert-systems-based high-level processing is
bound to end in disaster! In practice, a total systems approach must be made,
recognizing the realitics of the application, including the still-unresolved prob-
lems relating to knowledge acquisition. Low- and high-level processing are in-
tegrated into highly flexible, explicit knowledge-based solutions: industrially

245

nuoso] oAy Aaupdy arodeduig onrg oG uenf ueg Sued An)) ewoyeyQ
NI2() MIN RIUCK URJIY 0MX3 PUPRY uopuo] uogsi Simquely
Ay Pedog pURPPBY 0OSIURL] UG SINOT] IS JI0A MIN

Cuedwo)) uysyqn g [PH-MeIDIN

Givaaalug) 210§ o1y Y |,
Yuipamdug par) jo wwaunandaqq

101p3 .__O—u< —ﬂ_._.c—ﬁ

SNOILLVOI'1ddV [T SWN[OA

ONIMAANIONE ADATTMONY

