An Object Model for Shared Data

Gail E. Kaiser
Columbia University
Depanment of Computer Science
New York, NY 10027

Brent Hailpem
IBM Research Division
T.J. Watson Research Center
Yorktown Heights, NY 10598

CUCS-514-89

Abstract

The classical object model supports private data within objects and
clean interfaces among objects, and by definition does not permit
sharing of data among arbitrary objects. This is a problem for centain
real-world applications, where the same data logically belongs to
multiple objects and may be distributed over muliiple nodes on the
network. Rather than give up the advantages of encapsulated objects
in modeling real-world entities, we propose a new object model that
supports shared data in a distributed environment The key is
separating distribution of computation units from information hiding
concems. We introduce our new object model, describe a motivating
example from the financial services domain, and then present a new
language, PROFIT, based on the model.

Introduction

The classical object model {27) supports private data within objects
and clean interfaces among objects. The standard mode of
communication between objects is for a client object o send a
message to a server object o request some service defined in the
server's interface; the client is not aware of the private data hudden
within the server and cannot manipulate this data except through
side-effects of the server's responses lo its messages. This
encapsulation makes it impossible for two or more arbitrary objects
to transparendy and symmetrically share data in a tightly-coupled
manner. This is reflected in both the compile-time view of objects as
information hiding units and their execution-Ume view as processes.
Our goal 1s to extend the classical object model to suppor
transparent, symmetnc, tighuy-coupled sharing.

The classical object model permits code and data definitions to be
shared via inheritance, but not data values. Dawa values can be
shared symmetrically but non-transparently, by encapsulaling the
shared data in 3 turd object accessed through message passing [1).
Data can be shared asymmetrically by encapsulating it within one of
the objects, which may access it transparenuy, but the only access
available to other objects is through message passing; any shanng is
by convention and outside the programming model. [t is possible to
share data symmetrically and transparently, but only among all
instances of a certain class (class vaniables) or a cenain set of classes
(pool variables). or all objects (global variables) (11]. We know of
one previously proposed object model that does support shared data
among arbitrary objects: Self [25) weats all data as potentally
sharcd, transparently and symmetrically, but the data is loosely-
coupled. There is no mechanism for compile-lime consistency
checking of access to any data; instead, all access is through message
passing. We drew upon many ideas pioneered in Self during the

CH2854-8/90/0000/0136801.00 © 1990 [EEE

development of our object model.

We are concerned with operation in a distributed environment, where
the client and server may reside in different processes, and processes
may themselves be multi-threaded. (By process, we mean the
standard operating system process with its own address space: by
thread, we mean a coniext consisting of registers and a control
stack.) Distribution complicates sharing because (wo objects that
share a common subpart may not reside in the same address space,
and in these cases apparendy direct access must be implemented via
message passing. A few distributed object systems (e.g., {26}, (22])
support some form of partitioning of subobjects among different
nodes, but subobjects cannot be shared.

We propose a new object model that supports data sharing among
arbitrary objects in a distributed environment by separating compile-
time and execution-time concerns. There are three important
components: facers, objects and processes. Facets are subobjects,
the minimal unit of data and control; facets may be shared among
multiple objects and may be replicated in multiple processes. Our
objects reflect the compile-time aspect of classical objects: each
object encapsulates one or more facets and provides an extemal
interface. Qur processes reflect the execution-time aspect: each
process colocates one or more facets within a single address space
and manages a number of threads. Objects and processes are
orthogonal: objects are not contained in processes nor vice versa.

Our new model is motivated by an important application domain,
financial services. Advanced financial services, e.g., *‘programmed
wrading”’, involve: (1) enormous amounts of data; (2) sharing of data
among large numbers of users; (3) logical representation of this data
as local variables as opposed o entities in an extemal database; (4)
rapidly changing data (e.g., prices); (5) changes to data outside the
conurol of the system (e.g.. from the stock exchange wire); and (6)
severe economic penaltes for making decisions based on obsolete
data. These problems have been articulated by other researchers, but
not solved (e.g..(20]). In this paper, we are concermned primarily
with points 1-3; we have considered points 4-6, but due 1o space
limitations, we mention timing concems only as needed to explain
our decisions regarding other aspects of the design.

Objects are naturally suited for modeling such real-world
phenomena, except there is no provision for sharing data among
objects. This is the motivation for our extension of the classical
object model 1o support transparent, symmetric, tightly-coupled
shanng of data Transparency is needed since the shared data is
logically pant of cach sharing object. Symmetry is needed to treat
multiple users uniformly. Tight coupling is required o guarantee
stalic semantic consistency at compile-time. Tight-coupling is also
imponant at run-time, since our rapidly changing data is similar to
the real-time data of manufacturing and telecommunications: the
data changes when it changes, and cannot be blocked unul

convenient. However, financial applications are more like
telecommunications than manufactunng, since operation can degrade
gracefully (to a point) as changes arc sometimes missed and changes
arise on the order of seconds rather than microseconds.

Financial services is also one of the primary motivating applications
for databasc management systems, which support shared data (the
database) and scparate compile-time (data definition) from
execution-time (data access). But conventional databases do not
support encapsulation within objects, or even a clear noton of
**object’’, while object-oriented databases [9] do not support sharing
among objects. Neither makes execution-time issues such as threads
of control and data placement among nodes explicit in the
programming model, but buries concurrency and distribution in the
underlying database manager. Our object model addresses these
problems, although it does not treat persistence or queries. Our
object model is not specific to financial services, but is suitable for
other applications, such as intelligent network management (18],
weather modeling and animation [12], with similar requirements.

We start by discussing an extended financial services example in
general terms 10 motivate our new object model. Then we give an
overview of a new programming language, PROFIT (PROgrammed
Financial Trading), based on our model. PROFIT is an extension of
C, and most statements and declarations will be wrinen in C. We
then present PROFIT's facets, objects and processes. Discussion of
timing constraints is outside the scope of this paper. We briefly
compare 10 related work, and summarize our contributions. A subset
of PROFIT has been implemented in a pilot study.

Example Portfolio Management System

Consider a financial market, with both stocks and options,
collectively called instruments. Our example system manages
portfolios made up of combinations of such instruments. For the
sake of the example, we assume there are only three companies,
Institutional Books and Materials, Domestic Educational
Corporation and Supplies, Umbrellas and Novelries, abbreviated
INS, DOM and SUP. Options on their stocks are available with
various cxpiratdon dates. The system, called Stock Environment
Calculator (SEC), monitors the current prices of the stocks and
options and exccutes the appropriate purchases and sales (according
10 cenain constraints associated with the particular portfolio by a
financial analyst) as market condinons change. We describe three
aspects of SEC: consisient access to the current pnces of a stock and
1ts options (the 9am stock price along with the 9:10am option price
could result in disastrous financial strategies): easy programming of
the objects that track the changing pnces to determine when action
must be taken: and transparent shanng of the pnces by all the users
of the system.

VOV Y NV VD
AN W W W WA

Figure 1: Example Portfolio

137

An individual portfolio consists of a set of wnstruments, their current
prices and a set of strategies for when to buy and sell. Each portfolio
is organized into subparts, where each part represents the instruments
for a particular company, together with any aspect of the strategy
specific to that company (see Figure 1). For example, if the price of
a stock increased 10% since purchase, buy more. Additional
subparts support strategies that cut across companies and maintain
any other data needed. A subpart representing the instruments of a
particular company contains the current prices of the stock and
options. Multiple portfolios will refer to the same company with
independent criteria for when price changes are significant 0 the
financial analysts’s strategies.

The difficult problem is how to notify the computations reflecting
the strategies of these portfolios when the prices of the stocks and
options change. There are three ways to structure the solution. The
active value approach propagates each change to every interested
portfolio. Polling requires every interested portfolio to poll the
current value. The third approach uses daemons. We compare these
three approaches at an abstract level, and describe PROFIT'S
implementation of the daemon approach in the remainder of the
paper.

In the active value approach (e.g., (23]), any change 10 any value can
be propagated to other pants of the program. The propagation
invokes code associated in advance with the data and the kind of
change. An exemplary application is changing the speed of a
simulated car, resulting in an updated display of the speedometer
reading and the consumption rate of fuel. In Figure 2, the active
value approach combines the shared data (D) and whatever
computation is necessary to monitor (M) the changes (o the data in
the same object. The monitoring is not a separate thread of control,
but instead a side-effect of the procedures that update the data. The
monitor code has the responsibility to notify all other interested
computations (C) of changes.

The active value approach has a significant flaw with respect to rthis
application: since price changes are frequent and typically small (1/4
point), some changes may be insignificant from the point of view of
some portfolios. Thus the system can be flooded by many
notification messages to which few portfolios are paying attention.
One solution is for the monitor code to know the separate criteria for
each interested portfolio regarding what changes are considered
impontant. This would add a significant computational component (0
the active value and greatly complicate the programming of the
monitor code.

Figure 2: Active Value Approach

Ceie
M 6D

Cele
Méo

Figure 3: Polling Approach

Polling is the traditional means for implementing device drivers, and
can be implemented in any imperative programming language. The
idea is 10 check over and over again whether a data item has
changed. Figure 3 illustrates this approach: the shared data (D) is
passive, and the interested computation objects (C) directly
incorporate the monitoring (M) of changes to the data. The
computation code must include explicit statements 10 check whether
the shared data has been changed in a manner considered significant
by the particular computation.

Polling overcomes the problems with the active value approach,
since each portfolio can decide how often 10 check each price and
under what criteria 10 take action. Unforwnately, a naive
implementation — consisting of tedious busy-wait loops — obscures
!.he logic of the main portfolio program. This is not a serious
impediment when polling only a single price, but is complicated
when the latest prices of multiple instruments must be considered
both individually and in combination (Figure 4).

INS_o_10%: ot oid_INS. od_OOM:
{sed_iNS().} whde (1) |

INS down 18%: 1 {INS_prces(1 1°0a_INS))
o 80501 {804 _INS0.00_INS=iNS_prices.

4 (INS_pnce«i0.05"ad_NS))
{ouy_INSQ.osd_INS=INS_prce)
A{INS_pnoe»DOCM _prce 44 od_INS«asd_DOM)
{ouy_DOM(): sai_INSQ):
od_INSaiNS_prce;
od_DOMOOM prcs)

INS_ezceecs _DOM:
{ouy _DOM(). sei_INS() }

without explicit
polling

with explicit polling

Figure 4: Complexity of Polling

DB

Méd
CEP

Méo

Figure S: Dacmon Approach

138

We prefer a more sophisticated solution in which the shared prices
are monitored by simple daemons (2]. Each daemon contamns a
tigger that informs the main-line strategy when something
‘‘interesting’’ happens. Active values and polling both employ 1wo
objects, one representing the prices and the other the ponfolio
manager. The daemon approach uses three objects, adding an
intermediate object that polls the prices and behaves as an active
value with respect o the portfolio manager. The advantages include
a simpler programming model and the capability for each portfolio to
decide how best to use its computational resources. Figure 5 shows
the three objects: passive shared data (D) as in polling, the strategic
computarion (C) as in the active value solution, and a scparale
daemon (M).

Overview of PROFIT

We have designed our programming model to provide the
appropriate building blocks 10 easily represent the daemon solution
as well as active values and polling. Our contribution is an explicit
programming model for shared data in a concurrent object system.
This is reflected in our design of the PROFIT programming language.
There are three main concepts:
¢ Facer, the minimal unit of data and control, in particular,

the unit of shared data. A facet consists of a number of

named slots, each of which may contain either a data

value or procedure code. A facet may execule a single

thread of control at any one time.

» Object, 8 statically defined collection of facets
representing an information hiding unit. An object
defines a context for binding references between facets
in the same object and an external interface for passing
messages to and from other objects.

e Process. a statically defined collection of facets —
orthogonal to objects — that must execute at the same
physical locadon. That is, a process represents a single
virtual address space. Creation and scheduling of
threads. employing single or multiple processors, is
handled by processes.

Figure 6: Facets, Objects and Processes

Every facet is a member of one or more objects and one or more
processes. In the simplest case, there is exacy one process in the
program, and all objects execute on the same machine within the
same virtual address space. When there are multiple processes.
different facets of the same object may reside in different processes.

Processes are units of separate compilation, while objects may be
reated as declaradons included during compilation as needed or as
source code also compiled separately. Objects and facets can be
written independently of processes, and later configured into a
system by defining processes; any configuration will provide a
logically correct program, although one may be more efficient than
another on a given concurrent architecture.

We posit one SEC process containing all the prices, and one
additional process for each individual user of the SEC. Each user
would define one object corresponding to each of his portfolios,
consising of computation and daemon facets and the relevant
previously defined prices facets. The computation and daemon
facets would live in the user's process, while the prices facets would
be updated only in the SEC process but replicated and thus read in
the user processes. The analogy to traditional database servers is not
accidental. This relationship between facets, objects and processes is
illustrated in Figure 6.

A program specifies the objects and processes that together make up
a single application, the physical locations of the processes at
execution-time and the injtialization code to start the application
running. For the purposes of this paper, we assume that facets,
objects, processes and programs are all defined statically, so it is not
possible to add new components while a program is executing. In
the more general case, however, it would be necessary 1o be able
add user-defined objects (ponfolios) and processes to an already-
execuling system.

PROFIT's facets and objects provide abstractions for programming
each of the three approaches to our example above:

o In the active values approach (Figure 2), a prices facet is
shared among several objects. This facet must provide
the data, change monitoring and notfication of
interested objects. Each of these objects also conlains a
non-shared facet that receives the notification and
carries out the appropriate financial strategy.

o In the polling approach (Figure 3). the prices facet
contains only shared data. Each interested object
includes a non-shared facet that carries oul both
computation and change monitonng. Although this
pemits the programmer 10 set the prionity of moniloring
change, that is, the time interval between polls. it
unnecessanly complicates the overall computaton by
mixing polling activities and the contro! associated with
the main-line strategy.

¢ In the daemon-based approach (Figure 5), the pnces
facet contans only shared data. Each nterested object
includes two non-shared facets, one that cames out the
computation and the other that monitors changes. The
latter is devoted to polling the shared facet, performing

only that computation necessarv to determine which
changes are interesting 1o its object, and notifying the
strategy facet accordingly.

Processes support the run-time behavior of our example: the
execution of a thread within a partcular facet makes it possible for
the programmer 10 casily control the rapidity with which change is
montored and acted upon. That is, all relevant iming constraints are
cxpressed directly by the procedures provided within a facet, so each
daemon facet can poll/notify at the ime intervals appropriate for the
portfolic management object(s) containing it. it is the responsibility
of the enclosing process 10 schedule execution of facet threads. Only
one replica of a facet can be executing a thread at a ume in the
general case, requiring significant synchronizaton overhead, which
we ignore in this paper. However, we expect most shared facets will
contain only data slots (¢.g.. shared prices) and no procedure slots. so

replicauon could be optimized o allow muluple reading threads with
no contention and no synchronization. Altematively, pnces facets
might not be replicated, in which case the daemon facet would have
to poll via interprocess communication, perhaps across a network.

PROFIT is more a language extension than an entirely new language,
in that it does not define the details of the base language, in this case
the data and procedures that may appear in siots. We intend these w0
be written in conventional programming language(s); for now we
assume C. Thus data slots contain C data values and procedure slots
contain C functions. Macros and subroutines will be provided for
evaluating slots within the same facet, handling indirection to other
facets and objects, referring to any facets and objects retumed by
these evaluations, interacting with threads, and so on. One issue is
whether multiple data slots, of the same or different facets, can point
to the same data structure. This is a problem since different facets
might reside in different processes, so direct sharing is not always
possible. One solution might be distributed virtual memory (15].
We follow a simpler approach: no sharing of data structures, only
entire facets (i.e., there is no pointer aliasing). Data structures are
copied when transmitted as arguments, whether within the same
process Or across process boundaries.

Facets

The facet is the minimal unit of data and control. A facet has a
unique name and a set of named slots, each of which may contain
either a data value or procedure code. Slots are typed. ¢ither the type
of the data (a C datatype) or the return value of the procedure (a C
datatype or void). Procedure slots must be equated to specific C
functions at compile-time. Evaluating a data slot retumns the valuye,
while evaluating a procedure slot executes the procedure (with the
parameters provided) and returns the result of the execution, if any.
(Facels correspond closely to Self objects.)

For example, the set of prices for the instruments of the INS
company would be represented as a facet, called INS-instruments

(Figure 7). The only operations are (implicit) get and put. In this
example, there is one possible writer — some agent extemal o SEC
representing the stock exchange wire — and multiple readers from
different portfolios. Another example would be the dacmon that
monitors the changing prices of DOM's instruments (Figure 8). The
dacmon would keep certain local data such as high and low trigger
values, used when deciding whether to notify the corresponding
portfolio manager.

INS-instruments Eﬂ]
stock-price $114.75
1Q-option-price | ($115,$.50)
2Q-option-price | ($115,$4.75)

Figure 7: INS-instruments Facet

139

| DOM-daemon @x\
| high-trigger $122
low-trigger $86
monitor-code |("&~C-function

Figure 8: DOM-daemon Monitor

There is a distinguished slot within each facet, called active, that
represents the currently executing thread of control. There can be at
most one thread executing within a facet. Among other things, the
thread indicates its originating object (see next section). If the
active slot is null, then the facet is not doing anything. A prices
facet, for example INS-instruments, would normally be passive
except while get or puct is running. The get operation must be
able 1o retum multiple prices from the INS-instruments facet to
ensure consistent access, while the put operation could be restricted
to a single value since price changes are independent. A portfolio
Mmanagement stralcgy, say involving statistics specific 1o the INS
instruments, would also nomnally be passive, until the daemon wakes
it up after a significant change.

A facet represents a closed scope, meaning every use of an identifier

maiches an identifier defined within the facet. There are no free
variables. Of course. each procedure in a procedure slot of a facet is

also a scope, with its own local variables. The facet's other
procedure and data slots are global 1o the procedure, that is, the facet
is treated as the procedure's enclosing scope and the procedure can
call the other procedure slots and access the data slots. [n order o
support references between facets, a slot may be declared indirect, as
in Figure 9. The containing object is then obliged to provide a
binding, 10 a slot in some other facet within the same object or to an
entry in the interface of another object: see next section. Every
object has a binding table for this purpose. When code references an
indirect slot, then the semantics are 1o refer to the cumrent object's
binding table 10 resolve the reference. Thus, a procedure in one facet
can call procedures or access data in other facets via the
corresponding indirect slot in its own facet

This approach is based on delegation [16), where when one object
cannot handle a message, it defers it 0 another. We modify
traditional delegation by binding ar the enclosing object level rather
than separately for each individual facet® This means a facet can be
written without knowledge of which specific other facets it will
delegate to (see Figure 10).

DOM-daemon @
high-trigger $122
low-trigger $86
monitor-code | (& C-function
strategy-wake @ indirect
stock-price Y| indirect
1Q-option-price indirect
2Q-option-price | [®] indirect

Figure 9: Indirect Slots

{ DOM-daemon @

high-trigger $122
low-trigger $86

K

to wakeup entry in

/' DOM-strategy

/ DOM-nstruments q

monitor-code

strategy-wake

stock-price @__ tockprice 70000

1Q-option-price @®| TmH1Q-option-price [($90.510)
f .

2Q-optlon-price ’_".ZQ-ODUOn-p ce [($50.312)

Figure 10: Binding

Objects
Generic Object P~
facet-A "
actlve et —
e 1 data5| 3.1416
data2 ncirecy opt
datad | ‘abe :
op1 rcten e L
op2 ncrect L . Bindings |-
s “4| . [racetc

pctive

External Interface

dothls
dothat

Figure 11: Generic Object

Binding Table

(facet-B,data5)
(facet-C,op4)
(facet-C,dataé)

(facet-A,data2)
(facet-A,op2)
(facet-B,datad)

Figure 12: Generic Binding Table

As in the classical object model, a PROFTT object is the compile-gme
unit of information hiding. It defines an extenal interface and
encapsulates its internal data and procedures. The inmrface'd.eﬁnes
the object’s unique name and the set of entries (proccdun;s) visibie to
other objects. PROFIT objects are different in that the internal data
and procedures are supplied by a set of facets with bindings be'lwgm
the facets. A generic object is shown in Figure 11. The binding
table maps cach indirect slot of every facet within the object, either
10 a slot of a facet in the same object or to an entry in the interface of
another object. Figure 12 shows how several facets may be bound
together within an object, and Figure 13 the bindings for the SUP
portfolio manager object.

®Further, we fully delegate 1o the receiving facet’s own context (its owm‘slou)
rather than evaluating a slot from the receiving facet as if it were 2 slot in the
delegating facet. i.c., there is no *self pointes’”. This is relevant if the evaluated siot
us s procedure that references other slots.

A &

SUP-dasmon SUP-instruments <7
active active T
high-trigger 1523 tock-price $14.38
low-trigger $13 P11 Q-option-prics [($15.5.38)
monitor-code &2 1. |RQ-opton-price |($15.5.88)
stralegy-wake B Dl
stock-price] ‘
1Q-option-price] I
2Q-option-price| ¥ * -1 SUP-strategy <7
E -3 active
SUP-portfolio N buy
interface sell x o
buyeit | -t query
solleit | --]-cieiiteieaiiia. waka-up
status P I FERREET TR strategy-code
SUP-Portfolio ! broker
Manager ...

S P (Joe-Broker,cusiomen

Figure 13: SUP Portfolio Manager Object

When a procedure is executing within a facet, it may directly access
only those slots defined in the same facet. Accesses to indirect slots
are resolved through the binding table. First we describe calls within
a facet, and then calls from one facet 1o another. A call within a
facet is treated like a convendonal procedure call. The acwal
parameters and caller’s rewm point are pushed on the stack
maintained by the current thread (i.e., each thread has a separate
stack), and control is transferred to the called procedure. Calling a
procedure slot means calling a C function. The local variables of the
C functions are stored on the stack. All external references made by
the C function must appear as slots in the facet. When the procedure
retums, any result is left on the stack, and control is transferred back
to the calling procedure.

For calls between facets, we consider first the callee and then the
caller. If a call amives while the callee facet is already active, the
call is queued. When a call reaches the front of its queue, the facet
accepts the call and sets its act ive slot and binding table according
10 the calling object. Subsequent indirection is with respect to this
binding table. When the call completes, the response is sent 1o the
caller and the facet goes on to the next queued call The caller
initiates a call by pushing the actual parameters and retum point on
its stack. The caller facet is then released, and can accept a new call.
When the call retums, it simply adds itself o the end of the original
caller's queue. Note that the caller is not suspended. but may
continue by accepting the next call in its queue. When the call
retums and reaches the front of the queue, the caller continues
execution of that thread at the point where it left off.

MOntor_code: good_tuy:
SUP-dsemon > € 4F (siocs_pmoe G » gy
active T I (A good_buy) B: L
monltorcode {C sramgy_wake:
good-buy o
stock-pr
call to return from

— - % — -
}—{@_ﬁ\d_buy good_buy
Thread T Thread T Thread T

Figure 14: SUP-daemon Call Within Facet

141

These discussions of both caller and callee viewpoints are equally
valid for indirection to another facet in the same object or t0 an enury
in the interface of another object (and ultimately a facet in this other
object). However, when a call is made across processes, the calling
thread must be suspended at the process level (i.¢., the calling facet is
not msegnded) and a new stand-in thread created in the called
process. " On rewurn, the suspended thread is resumed by the
process. In the next section we discuss the details of implementing
these synchronous calls, and also describe mechanisms that permit
asynchronous calls.

Consider the following example: The SUP-daemon periodically polls
the SUP-instrumerus prices, to compare 1o its own trigger values. If
the criteria are met, the daemon notfies the SUP-strategy
computation. The SUP-daemon’s call to evaluate a data slot within
its own facet is shown in Figure 14, while the SUP-daemon call to
get data from the SUP-instruments facet is depicted in Figure 1S.
The asynchronous call needed for the SUP-daemon 1o notify SUP-
strategy is discussed later,

When a facet is shared among multiple objects, each of these objects
provides a different binding table that must resolve all the shared
facet’s indirect slots (Figure 16). When a facet is active. only one
binding is actually used, the one belonging 1o the object from which
the facet was invoked. Since a shared facet may be invoked from
another shared facet, it is necessary for the appropriate binding table
(i.e., its pointer or index) to be passed as an implicit parameter.

Communication between objects is a simple extension of the
communication between facets. When a call is received at the
interface of an object, the object maps the call (o a procedure slot of
one of its member facets. When the call retumns, the object sends the
result back to the calling object. Because objects can communicate
with many other objects, we associate a queue with each object’s
external interface. As soon as a call in this queue has been mapped
to a particular facet, it is moved from the object's queue 10 the
facet’s queue, and the object goes on 1o resolve the next external call,

== HiE
“’% ===

(1) call to stock-price
Theans T

(3) T dequeued, vaiue fetched

(2) Thread T is queued

=i =

Theaas T
—yey

(4) call retums, T queued

Figure 15: SUP-daemon Call 1o SUP-instruments

““The thread is not copied, 50 up-level sddressing of non-local variables cannot be
suppored, since the semantics would be differen: depending on how the object was
dutmbuted. Forunately this is not a problem when C is the base language.

1 Jugeso[TEep UTy T
m:mqmj}oodvmpnnnvmumumnummwpdozmodunwm

‘suod ssaioe siuaumise
fr onrea Aq pessed 3q wed Ao yBnoyire poredndau o pareys
3q ouued Aan ¥dadx? 5130%) LIHOUd AT ST are s13(qo sauuay
‘sassoaid apisun perensdesus are 5199(qo suod padAy jo suud
Ut *IoBUIIUL [EWANXD AN Sauyyap ssoaud A 'souay Ul sassadaud
pue §192(q0 Y1oq sspitacud teyn aBenBue| Jejiuns sfioue st [g]
soUUdY speanp S, 115034 01 snoSoreue are sassaoaud gBamiydy
s, sy -sueiprend snBry yorew A(250]9 pnom 1Msau AN ‘ssadad
® OSTE Sem 102[Q0 AJ2A2 peRAISUL INQ IDUNISTP 10U wWIm SIssIdad
pue §192{q0 L40¥d JI "s109qo snduy 01 rejiuns ae $190) 1140¥d
1) snduy 011595010 jqeqoud st 1140u4 *sa8enBue] 8unsixo Suoury

Fi0m PIIeIoY

*21WoTe A[TR 10U ISINGI JO S1 'SHiurensuod Suiwn 1xw
01 Aes *(oeq pafial 10u pue) padnuAul 3q Ued ey {fEd |, d1Wole,,
ue :a8uey> o1 uondeu pides 10j PSU AN Wi SPIJUd Apdulp
ANd1woTe 20utls ‘feuonudul St AIDIWOIE JO XOB} SIYY 190E) dwes
3y 10} pananb speanp paiejasun £Q uanumiaao 3unaq jo 193uep ou §1
Ay AWIYM *YIBIS §, PR Y1 U SNYT Put — (UONdUTY D) unpaoad
SutTed 21 JO SI|qEUEA [B0] A1 Ul PAJOIS 3Q ISNW BIEP ST ‘1308
JIOUT 01 (T2 Snouayouks e SUUNP SIN[EA JUALND JI3N UIEjURW
01 SW3 EIEp UTELD 10 AIBSS309U S1 11 AIdYMm SISBD ISOU1 U] 'S10S
erep s 01 sofueys Areniqre ul imsa Aew Buymnims 1x2U00 SIYL
-ananb S11 Ul PRANN 1X3U Y1 SIAIIS pUE peang s1t saysinbuijal 1t *1308)
110U 01 [{ed SNOUQIUIUAS E SINBW 13T8) B UYAL I90R) dures gl
urm sainpaoasd 1410 01 STTed snouarnyduAs aq o1 uaddey (aanisuen
pue 15311p) sTred A[uo asoym saunpasosd pue sand *s3sb jo sIsed
[e1AlD 3 0] 139X ‘[TBd Jrwosp Ue SXEW OF Aem OU St asdn uBisap
114084 an W mey uaredde ue sisaomm Sumdolq jo yoe| SMUL

*(199®] JayI0UE WAY [TE9 snouasyduse remorued e Joj 1rem ‘ATeidual
oW *10) [Ted SNOUCR{SUASE AN jo uona{dwod a1 10j lem 01 1908}
Bunres ap nuwuad 10u S0P ST 1B NON P33P SI pEARD S
*s3191dwod e SNOUGIYIUASE U UdYM nugoa wnjaz ou St uAN ey
51 PUOD9S U "UOTINIIXI SINUNUOI PealSUl ING *PBAIY] 11 ISEI[A 10U
$20p 1908 SuT[TED U1 1B} ST ISIY YL "SIOUIJJIP OMI Uilm — 3A0GE
poure(dx? se S[Ted SNOUQIYOULS ST JWES U HOM ST[ED SNOUAIYIUASY

*190e) Sutqred A 10}
1t sananb pue ‘peanp Sured popuadsns p Yiim d3essaw AR Sy W
ssaoaud Sutpuss sy -anonb s ssooaud Furpuads ap 01 yorq Sfessat
B Spuas ssoooxd an *pA1o[dwod St B AU URA 190B) PIEdIpUL
An Joj peanpn an sanonb pue peanp Sutpuodsauod e saeAnd
*ananb sut u1 afessaw 1y A saaowal ssaoaid Butaizoas syl -onanb
s,ss90a1d Suiaoa o o1 popuadde s1 a8essow ayl -91qe1 Burpuiq
sreudasdde Jn 1091es 01 papasu *152(qo Suired & Jo uonesyNUAPL
swos pue uiod wma C‘sigtourered ‘(1ojs ‘120e)) Junedipui
‘ssaoaud Japo o o1 aBessow e spuas ssaoaud A ‘ajlymuealy
‘ananb s1t ut peany 1xau 3y s1daose 1908y Suned Ayl ‘19A?) ssIdaid
AN 1 papuadsns st peanp Bunres g ‘ssadoid ssyour ul sopisal
1’ 1978 JNQIOUR STIED JIJB) B UIYA, "IPRW SI [[ED SNOUOIYouAse
Ue uym pue souepunoq ssaoaid ssQioe opRW S1 f[Ed B um
SPEAND mou JTBAID S955300Jd YOSMym Ul SUOMEBMIS OM) 3IE Iy

‘ss3oaud 0wl 3 W pateaId prAnN U-puUEIs € pue papuadsns
3q 1snw peanp Bulfed 3 ‘sauepunoq ssaooud ssaide apew e
STred uaypy “suonesado Jamuiod Aq paScurw s1 speanp jo Sumnanbap
pue Sumanbud amdym ‘ssavoud swes i unpm $1998) Suoure
Auo sxygom sy “J9MED oW1 10j pananb st pranp A ‘s;ojdwod

(441

e X uay~ ‘peas pananbap an duI2JA 01101 AT 2T SIi §19§
130 1 “IUQY AN SRYIBAU PEUY E UYAW paNnanb st [Ted N Yuim
POIRIDOSSE PR AN ‘2ANIE APBAU[E S! 1IE) A I{IYsm SIAUIE [
e j1 -sassadasd o) pananb (saBessaw) s[Ted 01 ssuodsas ul speuy
JO uomeAd A uAN pue ‘sananb 1908} ut speann jo uonemdivTw
AN SSNISIP am g CS[ed rewand Suiddrw wl pau dwm
-utu §,5159(Q0 A 1240 aXEl sassadaud pue 'ssadaud yoes w sananb
Jresedas se pawawadwt ae sananb 1d2(qo ‘uonmussada feasdyd
ou 2ABY $139(Q0 20UIS “[TED AN JO 1IXNUOD) sapiaocud yowym *prasp
e Aq pawwasasdas st ananb 1208) B Ut fTed yye3 's1592(qo 10j pue $190T)
10j sired Bumnanb jo uonou A PISSNISIP Im “UONIFS snotaasd A ug

goueuuopad Jpquial 01 pea] A1aX1] pIRom 'ssadaud
13d 1278) 2u0 Ut Bunnsas *siseq 1328)-13d € UO SPEAYl 1yTrom-Aacay
$I|qeURA Jwreudp Jo uoiunda Ipnpud pinom SXIEIS [ONUOD
umo 2t inoyim speann wyBam-yBn ‘Ajaanewaly uorsundd
Sumiuuad AQaiapn ‘(s1o1s unpaoasd JO SUONEN[EAD) STED P2iIsdu
199M13Q 1X3IUOD SUPIUTEW PRAnyl 1140¥d € '1GNUod jo sndo| ajduwis
T (m BUOTy speand MYBIam-WMIPIW PullWl Ul ABY a4 (NOTIS
[onuos ‘sudsiar) 1xauod pue (soeds ssappe) miep Jo diysioumo
an st speanpl jJo A13uBA 2 saysinBumsip leysm JONIUOd JO
snoo] afButs e sey peany) B eyt st 1daouod uowwod Yy [z) sssoaud
xrun My e ut se wBiam-Aaeay 01 (9] a8exded pramp-d S.UTIN
W se yBom-wmipsw 01 [17] Speann mes s ydey ut se gdiam-1ydi
woyj wnnodads e Bunguru ‘peanp jo suonou Aurw OSTE are 1Y)

d1qeyipow
100 st pue sum-a)dwod T PIUTULISIIP S1 UOLIBULIOFUL ST aUIS
PEaYIIA0 Wwn-uru ou Yim ‘ssadaud A13Ad ur partedsiidas are 133(qo
K1343 Jo 21qE1 Buipuiq puE JJRpIAILT [PWAIXD AL "$I553501d 1UIYJIP
1 apisay Aew 109(Q0 Jures AN jO S1998) PUE ‘AdYMAUR , A1, JOU
op $129(qQ :s190%) jo uoneziuedso sum-andwod agr wasardar s139(qo
JSENUOY U] "§190Y) JO uoneziuedio awn-uonnadxd oyl uasadu
snp $assedald ‘paumbar st uonesida Jum/pear sSupdwwAs
@1 Auo sou ng aaded sap ur pawswsidun st uonesnda
MOy SSAUPPE 10U Op am :[Q1]1908) 2wes an jo sesidas A (e
Suowe Ksuasisuod Sutureurew 10 [qisuodsas oste s1 sassaoaud 0]
uoddns wasks ayy "ssaocud Suueiuod st Aq padewew are esnda
e w Sunnoaxs speasyl Aue pue ‘sassasaid sidnnuw wr paeonda
2q Aew 1908] yseg °[QNUOD JO SPEARY AUOW IO JUO SUTEIUOD puE
aoeds ssappe 38uis e swuasauda ssedaud 10dd v O ({y '8 ‘T L))
swasAs poseq-109/qQo waunduoed Junusixs ur padayau sIssadasd
pue $123(q0 u3ami1aq sdiysuoneias jo wnnoads e st ady), ‘sassaoad
10} 9jau rejnorued e £jidads 10u S0P [3pow 199(QO0 [BIISSE[D L

$3§833044

19084 pareys :91 andyg

N
0] 4 s|it
© N
.| Ni H \
1E] M L O
o[¥ Qg-iedey [«RLELA
PRLEL]]
\\ v s (|04 2]
. . 661 A vy 2
(0Q)| ') \| g-wa8;)/ 40} | Al
o) (s'g} Z]Nn Bupuni|| €2 xi
nelwao g-ieow; v-ieoe;
Bumpuig
z welao (@=Ll e}

it is also interesting to compare PROFIT to Linda 5], which defines a
paradigm for parallel programming quite different from Argus or
Hermes. Communication among processes in Linda is via tuples in a
global tuple space. Facets can be viewed as the static analog of
tuples. On the other hand, facets may be treated as the dynamic
analog of Flavors's mixins [19]). Mixins provide data and procedure
slots that may be inherited by arbitrary objects. Such inheritance is
concemed with structure, however, not contents. In particular, each
inheriting object may have different values in the data slots inherited
from the same mixin. Facets, in contrast, provide direct sharing of
data slot values as well as definitions, in the style of Self. The most
significant difference between PROFIT and Self is that PROFIT
supports concurrency, both multiple threads and multiple processes,
while Self is a purely sequenual language. Another imporant
difference is that PROFIT data and procedure slots are provided in C,
allowing access to existing application code — which is obligatory
for the financial applications envisioned, while Self is a uniform
language.

Conclusions

The primary contribution of this paper is our new object model for
shared data (facets) based on the separation of compile-time
information hiding (objects) and execution-lime compulation
concemns (processes). We have demonstrated by our portfolio
manager example a methodology for using our new object model in a
practical application domain with specialized requirements.

Acknowledgments

Isai Shenker has completed an implementation of a subset of PROFIT,
in C. that supports most facilities except multiple processes and
provides timing-related constructs not presented here. An Gross is
working on a separate subset implementation in C++. We would like
10 thank Steve Popovich for developing, jointly with Kaiser. an
earlier noton of facets as a proposed extension to the Meld language
[13]. We would also like to thank Tien Huynh and Catherine Lassez
for motvating the financial services example [14], and Dan Schutzer
for discussions of pragmatic financial industry concems. Nasser
Barghouti and Travis Winfrcy made extensive comments on a
previous draft.

Kaiser is supporied by NSF grants CCR-8858029 and CCR-8802741, by
grants from AT&T, Ciucorp. DEC, IBM, Sicmens, Sun and Xerox, by the

Center for Advanced Technology and by the Center for
Telecommunicauons Research.

References
(1 Gul Agha,

Actors A Model of Concurrent Compuwiation in Distribused Systems.
The MIT Press, Cambndge MA, 1986,

Maunce J. Bach.
The Design of the UNIX Operating System.
Prentice-Hall, Englewood Chffs NJ, 1986.

Dawvid F. Bacon and Robert E. Suom.

Implementing the Hermes Process Model.

Technical Report RC 14518, BM TJ. Watson Research Center,
March, 1989.

Andrew Black, Nomman Hutchinson, Enl Jul and Henry Levy.
Object Soucture in the Emerald System.
In OOPSLA 86, pages 78-86. September, 1986.

(21

13]

(3]

143

(5]

(61

M

(8]

9

(101

(1

(12]

(13

(14)

(151

{16}

(17

(18}

(191

{201

(21

Nicholas Camero and David Gelernter.
Linda in Context
Communications of the ACM 32(4):444-458, April, 1989.

Eric C. Cooper and Richard P. Draves.

C Threads.

Technical Report CMU-CS-88-154, CMU Department of Computer
Science, June, 1988.

Partha Dasgupta, Richard J. Leblanc Jr. and William F. Appelbe.

The Clouds Distributed Operating System: Functional Description,
Implementation Details and Related Work.

In8th ICDCS, pages 2-9. lune, 1988.

David Detlefs, Maurice Herlihy and Jeannetle Wing.

Inheritance of Synchronization and Recovery Properties in
Avalon/C++,

Computer 21(12):57-69, December, 1988.

Klaus Ditrich and Umeshwar Dayal (eds).
1986 Intemational Workshop on Object-Oriented Database Systems.
September, 1986

David K. Gifford.
Weighted Voting for Replicated Data.
In 7th SOSP, pages 150-162. December, 1979.

Adele Goldberg and David Robson.
Smallialk-80 The Language and its Implementation.
Addison-Wesley, Reading MA, 1983.

Paul E. Haeberli.

ConMan: A Visual Programming Language for Interactive
Graphics.

In SIGGRAPH '88, pages 103-111. August, 1988.

Gail E. Kaiser, Steven S. Popovich, Wenwey Hseush and Shyhtsun
Felix Wu,

Melding Multiple Granularities of Paratlelism.

ln 3rd ECOOP, pages 147-166. July, 1989.

Catherine Lassez and Tien Huynh.

An Expert Decision-Support System for Option-Based [nvestments
Strategies.

Journal of Computers and Mathematics with Applicaiions , 1990.

In press.

Kai Li and Paul Hudak.
Memory Coherence in Shared Virtual Memory Systems.
In 5th PODC, pages 229-239. August, 1986.

Henry Lieberman,

Using Prototypical Objects o Implement Shared Behavior in Object
Oriented Systems.

In OOPSLA 86, pages 214-223. September, 1986.

Barbara Liskov.
Distributed Programming in Argus.
Communications of the ACM 31(3):300-312, March, 1988.

Subrata Mazumdar and Aurel A, Lazar.

Knowledge-Based Monitoring of Integrated Networks.

In(FIP TC 6/WG 6.6 Symposium on Integraied Nerwork
Managemens, pages 235-243, May, 1989.

David A. Moon.
Object-Onented Programming with Flavors.
In OOPSLA '86, pages 1-8. Sepiember, 1986.

Peter Peinl, Andrea Reuter and Harald Sammer.
High Contention in a Stock Trading Database: A Case Study.
In SIGMOD, pages 260-268. June, 1988,

Richard Rashid, Avadis Tevanian, Michae! Young, David Golub,

Roben Baron, David Black, William Bolosky and Jonathan Chew.

Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures.

In ASPLOS 11, pages 31-39. October, 1987.

Marc Shapiro, Philippe Gauton and Laurence Mossen.
Persistence and Migration for C++ Objects.
In 3rd ECOOP, pages 191-204. July, 1989.

(23]

[24]

(25]

{26]

(27

Mark J. Stefik, Daniel G. Bobrow and Kenneth M. Kahn.

Integrating Access-Oriented Programming into a Muluparadigm
Environment.

IEEE Software 3(1):11-18, January, 1986.

Robert Strom and Nagui Halim.

A New Programming Methodology for Long-Lived Software
Systems.

18M Journal of Research and Development 28(1), January, 1984.

David Ungar and Randall B. Smith.
Self: The Power of Simplicity.
In OOPSLA '87, pages 227-242. October, 1987.

Horst F. Weddc, Bogden Korel, Willie G. Brown and Shengdong

Chen.

Transparent Distributed Object Management Under Completely
Decentralized Control.

Technical Report, Wayne State University, 1989.

Peter Wegner.
Dimensions of Object-Based Language Design.
In OOPSLA '87, pages 168-182. October, 1987.

1990 International Conference
on Computer Languages

March 12-15, 1990 New Orleans, Louisiana

®

|IEEE Computer Society Press
Los Alamitos, California

Washington ® Brussels °® Tokyo

