PARALLEL EVALUATION OF DATALOG PROGRAMS BY LOAD SHARING

Quri Wollson

Columbia University
Dept. of Computer Science
Technical Report CUCS-509-89 (revised version)

PARALLEL EVALUATION OF DATALOG PROGRAMS BY LOAD SHARING

Ouri Wolfson

Computer Science Department
The Technion - Israel Institute of Technology
Haifa 32000, Israel
and
Computer Science Department
Columbia University
New York, NY 10027

ABSTRACT

We propose a method of parallelizing the evaluation of data-intensive Daualog programs. The method is
distinguished by the fact that it is pure i.c., docs not require inlerprocessor communication, or synchroni-
zation overhead. The method cannot be used to parallelize every Datalog program, but we syntactically
characterize several classes of Datalog programs thal are sharable, i.e. programs to which the method can
be applied. We also provide a characterization of a class of nonsharable programs, and demonstrate that
sharability is a fundamental notion that is independent of the syntactic paraliclization method proposed in
this paper. This notion is related to bottom-up cvaluation (we propose a formal characterization of this
type of control-strategies) and to program classification.

A preliminary version of this paper appears in the Lniemational Symposium on Databases in Parallel and Distributed Sysiems, Dec. 1988.

(&%)

1. INTRODUCTION

1.1 Background

In recent years, the emphasis in database research has shifted to knowledge base sysiems ([U2]). A
knowledge base is a database augmented with a set of Horn-clause rules (the logic program). The rules enable infer-
ence of information which is not explicitly stored in the database, and, because of its declarative style, Logic Pro-
gramming is easier and more natural for specifying inferences in many problem domains. The main difficulty in
knowledge base implementation turns out to be the performance of query processing. The reason is, that in order 10
answer a query the logic program has o be "evaluated”. This means that the relevant information which is implied
by the knowledge base, should be actively inferenced. Given a large knowledge base, logic program evaluation can
be a very lengthy process. This performance difficulty is evidenced by the extensive research published recently on
optimization of logic program evaluation. Surprisingly little work has been done in terms of obtaining speedup by
parallelism. We shall refer to this and other relevant work in subsection 1.4, but next we discuss the overhead in

parallelization.

Assume an cnvironment with multiple processors, which either communicate by message passing, or have
common memory. Parallel computation, on either type of architecture, usually involves an overhead required for
synchronization and communication among the processors. Synchronization overhead occurs, for example, when
one processor has to wait for intermediate results from another processor, or, when it waits 1o enter a critical section.
Communication overhead occurs in a message passing architecture when processing incoming or oulgoing mes-
sages. For parallel computation by hundreds of processors, the above overhead causes the thrashing phenomenon.
This means that increasing the number of processors beyond a certain limit causes a decrease, rather than an
increase, in performance (see, for example, [DIY]). Some problems are amecnable to pure parallelization i.c., paral-
lelization which does not incur any communication and synchronization overhead. Therefore, it is imporiant 0

investigate if pure parallelization is possible, and if so, how it should be done,

1.2 The Method

We propose a method of pure parallelization of the ¢valuation of data-intensive logic programs, of the type
employed in knowledge base systems ([U1]). The proposcd method is based on the data-reduction paradigm, intro-

duced in [WO). The paradigm is to algorithmically create, for a given logic program, P, other logic programs called

'

restricted versions of P, and to assign to each processor a different restricted version. Each processor evaluales its
restricted version using as input a local copy of the database. At the end, the union of oulputs comprises the output
of the original program (compleicness). Therefore, if these outputs are sent to the same device or stored in the same
file, the result is equivalent to a single-processor evaluation. A restricted version of P is a logic program obtained by
appending hash-function predicates to the body of some rules of P. A hash function maps each instantiation of the
rule to a processor that becomes "responsible” for the instantiation. Instantiation-partitioning results in less output,

and thus smaller relations to manipulate at each processor (hence the name data-reduction).

In this paper we concentrate on pure data-reduction, namely on the method called load sharing. A program
has a load sharing scheme if its complete output can be produced by restricted versions evaluated in an independent
fashion, i.e., without incurring a communication overhead among the processors. The next example demonstrates

load sharing.

Example 1: Throughout this paper we assume familiarity with a subset of the language Prolog, called Datalog (see
[MW]). Assume that a database has three relations UP, FLAT, and DOWN, which represent a directed graph with
three types of arcs. The logic program below defines a tuple (a,b) to be in the intentional relation, §, if and only if

there is a path from a 10 b having k UP arcs, one FLAT arc, and K DOWN arcs, for some nonnegative integer &.

S (x,y):— UP (x,w),S (w,2),DOWN (z2,y)

S(xy)- FLAT (x,y)
The above program is called in [MPS] the canonical sirongly linear (csl) program.

Given processors { 0,...,r-1 |, we propose that they share the load of cvaluating the relation §. as follows.
Processor i executes the cs/ program, with the predicate i = x mod r appended to the body of the second rule of the
program’. In other words, processor i computes (independenty of the other processors) the tuples (a,b) for which
the path goes through a FLAT arc (c,d), with i =¢ mod r*". It is intitively clear that for a large random graph,
cach one of the processors generates less tuples.

To demonstrate the time saved for a specific input to the csl program, consider the extensional database rela-

tions of Figure 1. UP consists of the wples (i.i+1) for i = 1,....4, FLAT consists of the tples (i,6) fori=1,..,5and

DOWN consists of the wples (i, i+1) for i = 6,...,9. The set NEW, dcfined below, consists of the tuples of S which

* i=(x+y)modr works as well
** This works for character-stnngs as well, since the bnary representation can be regarded as a natural number

R L I
5 0 0 3 O

Figure 1: Sample input to the ¢sl program.

are not in FLAT.

NEW= (&7, @G, Cn. 4D,
3.8), 28. (13),

2.9, (1.9).

(1,10)}

Assume that § is computed by the naive evaluation method (see [B]). It assigns FLAT to § and then iteratively adds
10 § the tuples in the (projection of) UP join S join DOWN. Then in the first itcration, a single processor evaluating
csl performs the join of a 4-wples relation (UP), with a 5-tuples relation (S), with a d.wples relation (DOWN). In
the sccond itcration the relations UP, S, DOWN are of sizes 4,9,4, respectively (first row of the set NEW has been

added 10 S); third iteration 4,12,4 (sccond row has been added); fourth iteration 4,14.4; fifth and last iteration 4,15 4.

However, if two processors share the load by having processor i execute the csl program with the predicate
i = xmod2 added to the nonrecursive rule, then the arcs (1,6), (3,6), (5.6) will be assigned to processor 1, and the
rest to processor 0. The maximal computation burden is placed on processor 1, performing five itcrations with rela-
tions of sizes 4,34, 454, 474, 484, 4,94, Duc to the smaller S-relation at cach ilcration, a
significant time saving compared 10 the single processor case occurs. Processor 0 has a lower computation burden
than processor 1, and completes even faster. If therc are five processors instead of two a greater time saving results.
In this case the maximum burden is placed on processor 0, performing five iterations, with relations of sizes 4,14,

424, 434, 144, 454, respectively.

Similar observations can be made if the evaluation is semi-naive ([B]) or relational wop-down ([U3]), rather

than naive. O

1.3 Main Results

The main objective of this paper is to determine which programs are sharable, i.c., can be evaluaied by the
load sharing scheme described in subsection 1.2. Specifically, we formally definc what it means for a program 1o be
sharable, and explore the syntactic characterization of sharable programs. We characterize a large subclass of all
the linear programs (i.e. programs in which each rule has at most one intentional predicate in the body) which is
sharable. In the class of simple chain programs (originally defined in {UV], and redefined in subsection 4.3), we also
characterize a subclass that is sharable. Additionally, we define the potential-speedup measure for a load sharing
scheme. It is the "best-case” speedup, as measured in terms of the output size. We show that all programs in the
sharable classes we characterize have a load sharing scheme with an optimum potential-specdup. Then we provide
a necessary syntactic condition for a program to be sharable. Several wetl known programs do not satisfy this con-

dition (e.g. path systems, introduced in [C)).

Well, maybe when work sharing cannot be obuined by appending hash-function predicates 1o the original
Datalog program, some other method, with similar parallelization propertics, will work. The answer is negative for
bottom-up type of methods, and positive for others. To show this we extend the definition of sharability by res-
tricted versions of the original program, 1o sharability by general algorithms for logic-program evaluation. In other
words, we do not restrict a parallel algorithm to consist of independent evaluations of restricted versions, although
we still insist that it is pure. Then we discover that the programs that arc not sharable by restricted versions, are also
not sharable by bottom-up algorithms. This demonstrates that sharability is a fundamental property of the coupling
of some logic-program classes with bottom-up control, and the property is independent of the syntactic paralleliza-

tion scheme that we propose.

1.4 Other Relevant Work

The efficient evaluation of intentional database relations, defined by means of recursive logic programs, has
recently emerged as a very active area of research ([U2], {BR], [K]). Two main methods of improving performance

have received most of the attention. One is selection propagation, and the other is parallel evaluation.

Selection propagation speeds-up the evaluation by using constants passed as paramcters (o the database query
processor, thus reducing the number of relevant input-database tuples. This usually necessitates a rewriting of the
logic program which defines the intentional relation. The best known rewriting algorithms are "magic sets”

([BMSU, BeR])), and "magic templates” ([R1)).

Parallel evaluation uses multiple cooperating processors [or the purpose of speed-up. Most cfforts in this arca
have been devoted 1o characterization of the logic programs which belong to the NC complexity class ((UV], [K],
[CK], [AP]). If a program is in NC, it mcans that it can be evaluated very fast, given a polynomial (in the number of
input-database tuples) number of processors; they have 10 communicate exlensively, usually through common
memory. If the number of processors is constant (as we assume), then the NC-type of evaluation algorithms can be
adapted, by assigning the work of multiple processors 1o a single processor. However, it turns out that which multi-
ple processors are assigned to a single one, i.e. how the pieces of work are grouped, is very important as far as over-
head (particularly if the processors do not share memory). The present paper studies the issue of work sharing with

zero overhead.

The cvaluation strategies for Datalog programs usually amount to ilcratively performing onc or morc join
operations, then adding the newly generated tuples to the intentional relations, until a fixed point is reached.
Another way of utilizing a constant number of processors [or the evaluation, is to parallelize relational algebra
operators, particularly the join operation (e.g. [BBDW, VGJ). However, if so, then in order to assurc that all output
tuples are generaled, at each iteration, each processor would have 10 exchange its newly generated tuples with the
newly generated tuples of every other processor. This procedure involves a lot of message passing, or synchroniza-
tion in accessing common memory. Generally, the use of hash-functions for partitioning the data or the work of
evaluating rclational algebra operations has been employed in the past (e.g. [Be, Bol). The novelty of our approach
is the logic-program analysis to determine whether or not hash-based parallelism with zero amount of communica-

tion is possible.

Another data-reduction method of parallelizing the evaluation without synchronization, was introduced in
[WS]. It resembles the one we proposed above, except for an important difference. The method requires that each
new tuple generated in the evaluation process is computed by a unique processor. The purpose is 1o partition (rather
than share, as in our method) the evaluation load. But, conscquently, the [WS] method is applicable only to a very

restricted class of logic programs, calied decomposable. For cxample, in the class of simple chain programs ([UV],

[AP]), only the regular ones are decomposable. Thercflore, the csl program of cxample 1 is not decomposable.
Inwitively, the reason for this is that since there may be more than one path between a and b, it is not guaranteed
that cach tuple is computed by a unique processor. For instance, in the sample input of example 1, if, in addition to
the listed wples, the wple (2,9) is also in FLAT, then the tuple S(2,9) is computed by both processors 0 and 1.
Decomposable sirups were completely characterized syntactically in [CW], and in [WO] we proved that it is unde-
cidable to detcrmine whether or not an arbitrary Datalog program is decomposable. Two notions related to load-
sharing were introduced in [D]. The first classifies the programs for which there exist inputs, such that the Datalog
program can be evaluated in parallel with zero overhead and disjoint outputs. (In contrast, the decomposability
notion requires that an evaluation with these properties exists for every input.) The second classifies the programs
for which the output can be obtained as union of the outputs of the program on all fixed-size subsets of the input. In

contrast, load sharing does not make the all-fixed-size-subsets requirement.

A variant of data reduction, named "copy and constrain”, was also proposed, independently, in the
production-system literature ([SMM]), and its merit was demonstrated experimentally using OPSS ([P]). However,
the issue addressed in this paper, namely classification of programs that are (are not) amcnable to pure data-

reduction, has not been discussed.

Another comment concerns the work on parallel and concurrent versions of Prolog (see [DL,S]). There has
been a lot of research on the subject, but because of the fundamental difference between the wple-oriented process-
ing in programming languages, and the sct-oricnted processing in knowledge-bascs, the possible cross-fertilization
between the two is not clear. The reason for set-orientation is that databasc applications are data intensive, and they
usually look for all answers 10 a query. A way of viewing the difference is that parallclizing tuple-oniented process-
ing usually employs control- (or agenda- , in [CG] terminology) paraliclism, whercas parallelizing set-oriented pro-
cessing usually employs data- (or result-) parallelism.

Finally, Ramakrishnan proposes in [R2] an interesting measure for comparing the inherent parallelism of vari-
ous the evaluation methods that are bascd on sips. Exploiting this parallelism, and the overhead in doing so, ar¢ not
discussed. We, on the other hand, emphasize these aspects, and in this sense, the approaches seem complementary.

More work is necessary to reap the benefits of both of them simultancously.

1.5 Paper Organization

The rest of this paper is organized as follows. In section 2, we provide the preliminaries, and in section 3 we
define the concepts of a load sharing scheme, and its potential specdup. In section 4 we characierize classes of pro-
grams which have a load sharing scheme, and in section 5 we prove that a whole class of single rule programs can-
not have a load sharing scheme. In section 6 we define the theory which enables extension of the results to parallel

computation by general algorithms. In Scction 7 we conclude and discuss future work.

2. PRELIMINARIES

A literal is a predicate symbol followed by a list of arguments. An atom is a literal with a constant or a vari-
able in each argument position. A constant is any nonnegative intcger. The other arguments of an atom are the vari-
ables. An R-atom is an atom having R as the predicalc symbol. A rule consists of an atom, Q, designated as the
head, and a set of one or more atoms, Q', ..., Q% designated as the body. Such a rule is denoted Q:- Q'....,Q*%,
which should be read "Q if Q! and Q2 and,and Q*." A rule, or an atom, or a st of atoms, is an entity. If an
entity has a constant in each argument position, then it is a ground entity. A ground atom is also called a fact. A
substitution applied 10 an entity, is the replacement of each variable in the entity by another variable, or by a con-
stant. It is denoted x 1/y 1,x2/y2, ... ,xn/yn indicating that xi is replaced by yi. A subslitution is ground if cach
variable is replaced by a constant. A ground substitution applied 10 a rule is an instantiation of the rule. An instan-

tiation is one-to-one if each variable is mapped to a distinct constant.

A Datalog program, or a program for short, is a finite set of rules whose predicate symbols are divided into
two disjoint subsets: the extensional predicates, and the intentional predicates. The cxtcnsional predicates are dis-
tinguished by the fact that they do not appear in any head of a rule. For a predicate symbol R, a finite set of R-
ground-atoms is a relation for R. A database for P is a relation for cach predicate of P. An inputto Pisa rclauon
for each extensional predicate. Then the output of P given an input / is denoted O (P,/), and consists of all the
intentional facts that have a derivation trec. A derivation tree for a fact, a, is a rooted directed finite tree with facts
as nodes; it has a as the root, each leaf is an atom of the input /, and for cach inicrnal nodc, b, that has children
by.....b, there is an instantiated rule of P with b as the head, and b,, . .., b, as the body. We say that b and its

children represent the instantated rule in the derivation tree.

For each rule, a variable which appears in the head, is called a distinguished variable. For simplicity we

assume that each rule of a program is range restricted. i.c. every distinguished variable also appears in the body of

the rule. Additionally, we assume that none of the rules of a program has constants. Our main results hold even if

constants are allowed in some argument positions, and we shall point this out throughout the paper.

An evaluable predicate is a predicate of the form e, § e, where e, is an arithmetic expression involving
some subset of { +, -, *, modulo}; the same for e,. The predicate symbol, 8, is an arithmetic €Omparison operator
(ie. <,>,%,2, =, #). Arule, say ra, is an restricted version of some rule r, if r and ra have exactly the same vari-
ables, and r can be obtained by omitting zero or more cvaluable predicates from the body of ra. In other words, ra
is r with some evaluable predicates added to the body, and the arguments of these evaluable predicates are variables
of r, or constants (note that in the evaluable predicates, in contrast to the other predicates, constants are allowed).
For example, if r is:

S(xy,z)— S(w,x,¥), A(w,z)

then one possible ra rule is:

S (x,y,2):- S(w.x,y), A(w,2), x-y=5
A program P; is a restricted version of program P if each one of its rules is a restricted version of some rule of P. P;
may have more than one restricted version of a rule r of P, To continue the above example, if P has the rule r, then
P; may have the rule ra as well as the rule ra”:

S (x,y,2)- S(w.x,y), A(w,2), x—y=6
Throughout this paper, only a restricted version of a program (but not the program) may have evaluable predicates,
and they are used as hash functions that map each rulc-instantiation to a processor. The input of a restricted version
is defined as before. The output is also defined as before, with the following exception. If an instantiated rule is
represented in the derivation tree, then the instantiation must satisfy the cvaluable predicates of the rule. In other
words, instantiations for a restricted version of a rule are disregarded, if they do not satisfy the additional cvaluable
predicatcs. Intuitively, this is the reason we are interested in restricted versions. Their evaluation is faster since it
necessitates performing only a fraction of the instantiations (the others are disallowed by the hash functions), and
this traction of the instantiations also considers a smaller database.

A predicate Q in a program P directly derives a predicate R if it occurs in the body of a rule whose head is a

R-atom. The predicate Q is recursive if (Q,Q) is in the nonrefiexive transitive closurc of the "directly derives” rela-

tion. A program is recursive if it has a recursive predicate. The predicate Q derives predicate R if (Q.R) is in the

* for example, the subsutution x/14,y/8 sausfies the evaluable predicate x-y=6, whereas the substitution x/13,y/9 does not.

10

reflexive transitive closure of the "directly derives” relation (particularly, cvery predicate derives itself). A rule is

recursive if the predicate in its head derives some predicate in its body.

3. LOAD SHARING SCHEMES

In this section we define and discuss the concept of a load sharing scheme. Then we define and discuss the
notion of potential speedup of a load sharing scheme. In subsequent sections we determine that all the load sharing

schemes discussed in this paper have the maximum potential speedup.

Assume that P is a program, and P,...,P, are restricted versions of P. The set D = {P,,....P.} is a load shar-

ing scheme for evaluating P, if the following two conditions hold:

1. For each input I to the programs P,P,....,P,, O (P;.1)2 O(P,I) (completeness).

2. There is an input /o, such that O (P./4) o O (P;.1) for each i (nontriviality).

If the program P has a load sharing scheme, then we say that P is sharable.

In order 10 inwitively explain the above definition, we assume that each processor has an restricted version of the
program P, and the whole database, i.e. the set of input base relations, is replicated at each one of r processors.

Alternatively, the database may reside in common memory.

The complcteness requirement in the definition, is thal no output atom is lost by evaluating all the P;’s, rather

than P. Although the requirement is for inclusion in one direction only, the fact that O (P;,/) does not contain

any output atoms which are not in O (P,/) is implied by the fact that each P; is a restricted version of P. Thus, by

using multiple processors and taking the union of the outputs, the exact output of P is obtaincd.

The nontriviality requirement says that for some input, /o, the output of cach P; is smaller than the output of
P. If, along the lines suggested in [BR, Section 4], the load of evalualing an intentional rclation is measured in
terms of the number of new tuples generated in the process, then the evaluation by the load sharing scheme com-
pletes sooner for the input /. The very permissive form of the nontriviality requircment, namely that time saving
occurs for "some” input, has (wo independent reasons, each interesting in its own right. First, cven for this permis-
sive form, some single-rule-programs do not have a load sharing scheme, thus strengthening the negative results.
Second, for the classes of programs shown sharable in this paper, there is an infinite number of inputs which satisfy

a stronger condition than nontriviality. For each onc of them the output-production load is cvenly partitioned among

11

the processors. This will be shown using the potential-speedup notion. Furthermore, although we use moduio

throughout this paper, any hash function can be used insicad.

Finally, observe that the combination of completencss and nontriviality forces the size of any load sharing

scheme to be bigger than one.

Given a program P, the set of restricted versions {Py,...,P,} is a load decomposing scheme if it is a load
sharing scheme, and an additional requirement, called lack-of-duplication, is satisfied. Lack-of-duplication states
that for each input [to P,,...,P,, each pair of distinct outputs, O (P;,/) and O (P;.1), arc disjoint. In other words, two
restricted vers_ions do not duplicate one another’s work, by computing the same output atom. Load decomposition
was defined in [WS]. In this type of parallelization, the total work of all the processors is equal to the work done by
one processor (see [CW]), using a serial evaluation method. However, as explained in the introduction, it is applica-

ble to a much more restricted class of programs.

Assume now that there is an algorithm which given P, and 1he set of restricted versions, D ={P,,....P,},
determines whether D constitutes a load sharing scheme for evaluating T in P. Then we could solve the following
problem, polynomial solvability, which is undecidable based on results in (MR}, [Hi}. Given a polynomial
p(xi,...x3) in 13 variables, with integer coefficicnts, are there natural numbers a,,...,0y3 such that
p(ay,...,043)=0. For a given polynomial, say po(x;.....x;3), consider the program S(xi,....x13):=B (x1,....x13)
and restricted versions of it:

S (X| S 4 |3):—B (X‘113), po(xlXu) =0

and
S(xy...oxp3)-B(xy.0x13), polxy . X3} 20,
Completeness is obviously satisfied, and nontriviality is satisficd if and only if po(x;....x,) has 2 solution in the
natural numbers. Therefore,
Proposition 1: For a given program, P, and a set of restricted versions, D = {P,....P,}, it is undecidable t0 deter-
mine whether D is a load sharing scheme for evaluating P.
A related problem is that of determining for a given program, P, whether there exists a load sharing scheme

for evaluating it (assuming that we restrict attention 1o computable evaluable predicates). We conjecture that this

problem is also undecidable.

12

Next we define the notion of the potential speedup. Let P be a program, and D = {Py,...,P.} aload-sharing
scheme for evaluating it. The potential speedup of D, denoted Ps (D), is the maximal number M for which the fol-
lowing condition is satisfied. For every integer n and cvery €, there is an input / for which 10 (P,/)! > n, and

1O (P, 1)1/max10(P;,])| 2M—-e. Inwitively, the potential speedup is the number to which the ratio
1O (P.1)/max 10 (P;.[)! can come arbitrarily close, for an input / which is arbitrarily large. The definition is

somewhat complicated since there are load-sharing schemes (the ones discussed in subscction 4.3) for which the
potential speedup cannot be achieved, but 1o which the ratio can come arbitrarily close. Note that the fact that D is a

load-sharing scheme implies that 1<Ps (D)<r.

The potential speedup means that for cach one in an infinite set of inputs, the output of each P; is at least
Ps (D) times smaller than the output of P; also, this output reduction occurs for arbitrarily large outputs. When the
load to evaluate P is measured in terms of new ground atoms generated in the evaluation process, Ps(D) is the ratio
between the load of evaluating P with one processor, and the maximum load of a processor of the scheme.
Although we defined the potential speedup based on some infinite set of inputs, for the load sharing schemes that we
are discussing in this paper, it is intuitive that time saving can be achieved for the "average input”. The reason is
that each load-sharing scheme discussed in this paper is obtained by adding the cvaluable predicate
i = (x1+,....+x)mod r to some of the rules, where x| ,....x; are distinguished variables. For an input which is distri-
buted evenly across a range of natural numbers, this reduces the number of newly generated tuples at cach proces-

SOr.

Finally. note that the potential-speed notion can be similarly defined for D being any parallel evaluation algo-
rithm, not necessarily a load sharing scheme. However, a moment of reflection will reveal that the more communi-

cation and synchronization overhead the algorithm incurs, the less accurate the output-size measure becomes.

4. SHARABLE PROGRAMS

4.1 Pivoting Single Rule Programs

A single rule program (see [CK]), or a sirup for shon, is a Datalog program which has a single intentional

predicate, denoted S in this paper. The program consists of two rules. A nonrecursive rule,

13

Sx1,..,xn)- B(x1,....xn).

where the xi’s are distinct variables; and one other, possibly recursive, rule in which the predicate symbol 8 docs
not appear.

Assume that R is a sct of atoms, with each atom having a variable in cach argument position. The set R is
pivoting if there is a subset d of argument positions, such that in the positions of d:
1. the same variables appear (possibly in a different order) in all atoms of R, and
2. each variable appears the same number of times in all atoms of R.
A member of 4 is called a pivor. Note that a variable which appears in a pivol may also appear in a nonpivot posi-
tion. The recursive rule of a sirup is pivoting if all the occurrences of the recursive predicate in the rule constitute a
pivoting set. For example, the rule

S(w,x,x,y,2) == S(u,y,x,x.w), S(v.x,y,x,w), A(u.v,z)
is pivoting, with argument positions 2, 3 and 4 of § being the pivots.

Theorem 1: If the recursive rule of a sirup, P, is pivoting, then P has a load-sharing scheme of any size. The
potential-speedup equals the size of the scheme.
Proof: Assume that argument positions i,,...,i; of § are the pivots. To obtain a scheme of size r, consider restricted
version P; of P which has the same recursive rule as P, and a nonrecursive rule

Sxl,....xn):- B(x1,...xn), j = (xi {+xi+,...,+xiy)mod r
for j=0....,r-1. It is casy to sece that D = {Py,...,P,_;} is a load-sharing scheme. Completeness is quite
straightforward, and has been shown in {WS, Theorem 2]. Intuitively, it results from the fact that, since the sirup is
pivoting, all the S-facts in any derivation tree have the same constants in the pivot positions, possibly in a different
order. Completcness results from the sum being a commutative function (in fact, any commutative function can be
used to hash the instantiations to processors). Based on the observation about derivation-trees, lack-of-duplication
has also been shown in (WS], namely, that for every input the outputs of the restricted versions are pairwise disjoint.
A potental-speedup of r, which obviously also implies nontriviality, can be demonstrated using as input a prefix of
the following sequence:
{B(1,...1,q,1,..,1) | g2r, and g appearing in position {; }. In other words, this is the infinite scquence of B-atoms
which in all positions, except the {,-th have a 1; in position i, the first member of the sequence has r, the second

has r +1, the third has r+2, ctc. Let n be an arbitrarily large integer. Take the input / to be the first n-r members of

14

the sequence. Then, the instantiation of the nonrecursive rule of each restricted version adds n ground-atoms to the
output. Note also that an instantiation of the recursive rule can add some atoms 10 the output, only if the body of the
rule does not contain any exicnsional-predicate atoms. In this case, for cach new ground-atom obtained by instan-
tiation of the recursive rule in one restricted version, there is a new atom obtained in any other restricted version.
Therefore, for the input /, the same-size output is gencrated by cach restricied version. Thus, by completencss and

lack-of-duplication, the ratio 10 (P,1)| /max 10 (P;, 1) cquals exactly r. []
Theorem 1 holds even if the sirup is allowed to have constants in nonpivot positions.

4.2 Linear Programs

In this subsection we discuss lincar programs. A program is linear if the body of each rule contains at most
one intentional predicate. Let A and C be sets of atoms without conslants. We say that A subsumes C if there is a
subset C” of C, and a substitution, s, such that C’ is obtained by applying s to A. Note that if A does not subsume C,
then for a one-to-one instantiation of C, there is no instantiation of A, such that the instantiated A is a subset of the
instantated C. A rule of a program P is an exit rule if its body consists of extensional predicates only. An exit rule,
r.. is distinct, if there is no other rule r of P for which the following condition is satisfied: the set of extensio:iaL
predicate atoms in the body of r subsumes the set of atoms in the body of r,. In other words, r, is not distinct if its
body is subsumed by the set of extensional-predicate atoms in the body of another rule. Note the exit rule of the ¢sf

program of Example 1 is distinct. A linear program is distinct if it has a distinct exit rule.

Theorem 2: If P is a distinct linear program, then there is a load-sharing scheme of any size, for evaluating P. The
potential-specdup equals the size of the scheme.

Proof: Assume without loss of generality that the first variable of the atom in the head of cach exit rule is x. To
obtain a scheme of size r, let restricted version P, of P be obtained by adding the predicate j =x mod 7 to cach exit
rule, for j=0, ... ,r-1 (all the other rules stay the same).

To show complelcness, assume that for some input, /, an atom, say a, is in the output of P. Consider a derivation
tree, ¢, for a. It is casy (o0 sec that exactly one instantiated exil rule is represented in the tree «. The reason for this is
the following. Since P is lincar, each node has at most onc internal (nonleaf) son, implying that there exists a path,
p. from the root to an internal node, which goes through all the internal nodes. If there are two instantiated exit

rules, then consider the internal nodes, d and e, corresponding to the heads of these rules. All the sons of d are

15

leaves, and so are all the sons of e, and consequently, none of these (wo internal nodes is an ancestor of the other.
This contradicts the existence of p. Therefore, consider the single instantiated exit rule in +. In the instantiation, x is
substituted by some constant, say n. Let { = n mod r. Then ¢ is a derivation tree for a in P,. Thus, aisin at least onc
O (P;,I). (It may be in more than one output if g can be obtained by a derivation tree with a different instantiauon of

an exit rule.)

Now we shall show a potential-speedup of r, and thus nontriviality. Specifically, we shall describe how to
obtain an arbitrarily large input, /, of P, for which the output is arbitrarily large, such that each one of the r restricted
versions outputs the same number of tuples; furthermore, the outputs are pairwisc disjoint. Thus, by completencss,

the ratio 10 (P 1)l /max 10 (P;,])) equals exactly r.

Denote the distinct exit rule of P by r,. For an arbitrary integer, n, the input / is the union of n - r sets of facts.

Each set §;;, 1<i <n, 1<j<r, consists of the body of some one-lo-one instantiation, /;;, of r,. We require that in

[TH
each instantiation /;;, the variable x is mapped to a constant, ¢, such that ¢ mod r = j. Additionally, we require that
the set of n - r instantiations is one-to-one, namely each constant is used (i.c. mapped-to) by at most one instantia-

tion. (For example, if instantiation / ;3 maps some variable, y, into 2001, then no other insiantiation maps a variable

into 2001.) There clearly exists such a set of instantiations.

Having defined /, note that, because of subsumption, for each £, in O (P,,/) there are only facts whose deriva-
tion tree represents instantiations of r,. Since x is a distinguished variable of r,, O (P,./) and O (P;,/) must be dis-
joint for each pair of restricted versions, P, and P;.

Finally, we have 10 show that all the output-sets are of equal cardinality. For this purpose we will define a
one-to-one, onto, mapping, f, from O (P;.1) 10 O (P;,I), for cach pair of restricted versions, P, and P;. Let us number
the atoms in the body of r, by 0,1...., m—1. Then each input fact can be labeled. Fact /,4 is obtained from the k'th
atom by instantiation /,,. Since the whole sct of instantiations is one-l0-one, there cannot be a fact with two dif-
ferent labels. A fact in O (P;,/) having a derivation tree, ¢, is mapped by f into the fact in O (P,,/) having a deniva-
tion tree, ¢, that is obtained from ¢ as follows. Replace cach input fact labeled /4, by the input fact labeled /4, and

replace each input fact labeled /,, by the input fact labeled /. Clearly, fis a bijection. {]

If the program P of Theorem 2 is not distinct, then the proof given does not work. For example, consider the

linear program

16

rl: S(I,y):—B(x»z)v B(yﬂw)v S(Vy)

r2: S(x,y)-B(x,z), B(y.w)

If 0dd (x) is added to the nonrecursive rule in restricted version P i» and even(x) in restricted version Py, then non-
triviality is not satisfied. For a proof of this fact, assume that for some input, /, the ground atom $(o0,a) is in
O(Py.1) but not in O(P,/), and the ground atom S(e,b) is in O(Py.7) but not in O(P.f). Therefore, the atoms
B(o.c), B(e.d), B(a,g), B (b,f), for some constants ¢, d, f. g arc in the input /. By instantiation of £ 2, the atom
S(o.b)isin O(P,I). Then,
S(e,b):— B(e.d), B(b.f), S(0.b)

is an instantiation of » 1 which derives $ (e,b) in P,. This contradicts our assumption that S (e,b) is not in O (P ,/).
Note that we have not shown that the above program does not have a load sharing scheme, just that the nontriviality
proof of Theorem 2 does not apply to it. However, the completeness part of the proof works for any linear program..
Note also that the proof of Theorem 2 holds even it we allow constants in the distinct linear program (but not in the

cxit rules).

Let us conclude this subsection with a practical example (taken from [N]) of a distinct lincar program. Sup-
pose that there is an extensional relation, PERFECTFOR(x,y), of people, x, and products, y, such that y is perfect
for x. Similarly, there is an extensional relation, IDOL(x,y), of people, x, and their idols, y, and an extensional rela-
tion, CHEAPER(x,y), of pairs of products, such that x is cheaper than y. Suppose that a person buys a product if it
is perfect for her/him, or if their idol buys it, or if it is cheaper than another product that the person buys. The fol-

lowing program defines recursively the predicate BUYS(x,y) of people, x, and the products they buy, y.

BUYS (x,y):— IDOL (x,w), BUYS (w,y)
BUYS (x,y):- BUYS (x,2), CHEAPER(y,2)

BUYS (x,y):— PERFECTFOR (x,y)

4.3 Weakly Regular Programs

A simple chain program is a recursive sirup in which: (a) all the predicates are binary, (b) the argument posi-
tions in the left hand side of the recursive rule have distinct variables, and these variables appear in the first argu-
ment position of the first atom in the body, and in the last argument position of the last atom, respectively, (c) all the
argument positions in the body of the recursive rule have distinct variables, cxcept that the first argument position of

the second atom has the same variable as the last argument position of the first atom, the first argument position of

17

the third atom has the same variable as the last argument position of the second atom, ete. For cxample, the follow-

ing is a simple chain program

S(X,y):- A(X,Z 1),5 (21,22),5(32,33),C(Z3,:4),D(Z4,y)

S(x.y)— B(x,y).
(4,8,C,D are extensional predicates).

Two sirups are equivalent if they produce the same output, for any given input (in the litcrature equivalence of
two programs is defined with respect 10 an inlentional predicate, ¢.g. [Shm], but since a sirup has a single intentional
predicate the definitions coincide). A simple chain program is regular if the recursive rule has cxactly one
occurrence of § in the body, and it is lefumost or rightmost. A simple chain program is weakly regular if the lefimost
(or rightmost) predicate symbol in the body of the recursive rule is §, and by replacing all other § predicate-symbols

in the body of the recursive rule, by B, an equivalent program is obtained. For example the program P°,

A (Xv)')i‘ \) (X,Z]),A (Z 1 vzz)'S(sz)’)
S(x.y):- B(x.y)

is weakly regular since it is equivalent 1o the following program (see [UV] for the equivalence proof):
S(x.y)-S(x21).A(21.22)B(22.y)
S(x,y):—B(x,y)

Similarly, any sirup. denote it P!, of the form
S(xy)-8(xz2,).5(z1.22),.....5(z0.y)
S(x.y):- B(x.y)

is weakly regular, since it is cquivalent to the program
S(x,y)=8(x,21).B(zy,22),.....B(24.y)
S(x.y)—B(xy)

In particular, note that the nonlinear transitive closure,
S (x¥):- S(x.2),5(z,y)

S(x.y):— B(x.y)
is a weakly regular simple chain program.

Although a weakly regular simple chain program can be rewritien as a regular program, which is decompos-

able, this may not be desirable for performance reasons. In [WS] it has been shown that among the simple chain

18

programs, only the regular ones are decomposable. In other words, programs such as P and P are not decompos-

able. Herc we show that the class of weakly regular simple chain programs are sharable.

Theorem 3: A weakly regular simple chain program has a load-sharing scheme of any sizc. The potential-speedup
is the size of the scheme.

Proof: Assume that x is the leftmost variable of the head of the recursive rule. To obtain a load sharing scheme of
size r, create a restricted version P;, by adding to the recursive rule the predicate i = x mod r, for i =0,...,r 1.
Completeness: Assume that for some input /, the ground atom S (a,b) is in S. Denote by P’ the regular program
obtained from P by replacing all § predicate symbols, cxcept the Icftmost one, by B. Since P and P’ arc cquivalent,
S(a.b) is in the output of P’ for the input /. Consider a derivation tree T for §$(a,b) in P'. Observe that cvery
occurrence of an S-atom in 77 is of the type S (a.n), for some constant 2. We replace in T” each B (c,d) node (except
the single one whose father is §(c,d), representing the instantiated exit rule) by the subtree S{c.d) — B(c.d),
representing an instantiation of the exit rule. The resulting wree, 7T, is a derivaton tree for S (a,b) in P. Assume that
a mod r=i. Then T is a derivation tree for § (a,b) in P;, for the following reason. By construction, each S-atom in T
is either obtained by an instantiation of the recursive rule that replaces x by a (thus satisfies the evaluable predicate
of P,), or is obtained by an instantiation of the exit rule, that is unrestricted by an cvaluable predicate.

Nontriviality and speedup: Consider the input / consisting of the following tuples, in each extensional predicate
relation of P.

{Gi+Di=1, N=1} U {Gi)li=],...N}

Then it can be shown that the output of P consists of all the tuples (i) such that i < j (casicr 1o sce by considering

NN+
2

“

P’ rather than P). Therefore, |O(P,1)] = .and O (P,I)imaxO (P.;,I)} -, r. O

—p00

Remark 1: The above theorem is proven by adding to the recursive rule in restricted version P, the predicate
x mod r = i. In this respect it is different than previous proofs, where the predicate was added to the nonrecursive

rule.

5. NONSHARABLE PROGRAMS

In this section we demonstrate that not every program has a load sharing scheme. Specifically, we provide a

necessary condition for a sirup 1o have a load sharing scheme. It trns out that some famous sirups do not satisty

19

the condition. An example is the first P-complete problem, path-systems ([C]). The input is a set of triples, the
hyperedges, and an initial set of "marked” nodes. The problem is to mark all additional nodes, according to the fol-
lowing rule. If there is a hyperedge of which two nodcs are marked then the third node is marked as well. The sirup,

P, for the problem is the following:

Sx)-SU),SE).H{xy.2)
Sx)-B(x)

Intuitively, that reason that path systems cannot have a load sharing scheme is as follows. Assume that a load
sharing scheme, {P;, P,} exists, and for some input, /, restricted version P produces S (b) but does not produce
S(a), and and restricted version P, produces S (a) but does not produce S(b). Then if we add 1o/ the fact H (n,a,b),
for a new constant n, then S (n) cannot be produced by P, nor by P, although it is in the output of P. This idea is

formalized in Theorem 4, and extended to a class of programs and to an arbitrary number of restricted versions.

Another example of a sirup without a load sharing scheme, is a variant of path systems called the blue

blooded frenchman ([CK]):

BBF (x):- BBF (m), BBF (f), MOTHER (x,m), FATHER (x.f)

BBF (x):—- FRENCH (x)

Some other sirups that have not been defined previously, as far as we know, and do not have a load sharing scheme,

are the following (the exit rule is obvious, thus its specitication is omitted):

S (xuy— Hy(xy.u).H (x,2,w),S (y,u),5 (z,w)

S (xyu):— H(x,y,z,u,w),S (y,u),S (z,w)

S (x):— Ho(x,w) H (w,y), H 2{w,2),5 (¥).5 (2).

S (e.w.y)i— UP(x,t,u),S(t,u.v), FLAT (v,w,2),S (2,r,5), DOWN(r,5,x)
Sxy)y- Holxow.2).H (u,v,y),S(w.2),S (u,v).

S (ey)i— Ho(wow,2) H | (u,v,up) H 2 (x,wo) 3 (. y).S (w.2), S (u,v).

What do the above sirups have in common? This is what the next definitions cstablish.

Given a sirup P, denote by A (P) the sct of atoms in the body of the recursive rule, and by V(P) the sct of
variables in A(P). LetR(P)={x | xisin V(P), and x appears in some S-atom of A (P)}. Let the extensional graph
of P, denoted G (P), be an undirected graph defined as follows. Its sct of nodes is V(P)-R (P), in other words, vari-

ables which do not appear in any S-atom in the body of the recursive rule. For two distinct nodes of G(P), xand y,

20

the edge x~y is in the graph if and only if there is an extensional-predicate atom, A, in the body of the recursive rule

such that x and y are variables of A. The sirup P is called propagating if the following requircments are satistied.
1. Except for the S-atoms, there are no two atoms of 4 (P) which have the same predicate symbol.

2. There are at least two S-atoms in A (P), and the S-atoms in A (P) have pairwise disjoint variables, and none of

them has repeated variables.

3. Each extensional predicate atom in A(P) has a variable which is not in R (P), and cach variable in R (P)

appcars in some ¢xtensional predicale atom.
4. The graph G (P) has a distinguished variable in each one of its connected components.

It is easy to verify that path systems and the other sirups that have been discussed in this section are propagating.

Theorem 4: A propagating sirup is not sharable.
Proof: Let P be a propagating sirup, and r be its recursive rule. Assume that {P, v--nPg} is a load-sharing scheme

for P. Denote by §; the output of P;. By nontriviality, there is an input /, for which each §; is a proper subset of S.

r

Assume thal there are m atoms in the set Q(S—S,»), and denote them {S{c,)....,S(¢.)}. Next we show how to con-

=]
struct another input, /', for which we shall later show that completencss cannot be satisfied.

The input [’, is oblained algorithmically as follows. First /' is initialized to /, then the sets of atoms
H,,..H,_, are added. Next we explain how to obtain /{, and then how to obuain #; ., from /1, for i=2,...m-2.
Construction of H,: The set H, is constructed in such a way that $(¢,) and S (¢,) derive a ncw ground atom, § (dy).
It consists of the exicnsional predicate ground atoms in the following instantiation, py. of r. In p, the variables of
some S-atom, §', in the body of r are substituted 10 obtain S(Z,), and the variables of all other S-atoms in the body
are substituted such that all these atoms instantiated 10 S(¢,). By requirement 2 in the definition of a propagating
sirup, such a substitution is possible, regardless of ¢, and ,. Denote by z|,....z, the uninstantiated, as of yet, vari-
ables in the body or r. The instantiation p, is completcd by instantiating z, to e}, for j=1,....t, such that: each e; is
different than every other e}, and each e,' is not in /” constructed thus far. For the instantiation p, denote the atom at
the head of r by S (d,).

Construction of H; for 2<i<m-1: H, is constructed such that §(¢;,;) and S(E,v_l) derive a new ground atom,

S(d;). The construction is similar 1o the construction of //,, excepl that S(Z,,,) and S(d,_,) are used instcad of

i

21

$(¢1) and S (c,), respectively. Also, the instantiation is denoted by p,, and is completed by instantiating each z, 1o

e; for j=1,....t. The e}’s arc distinct constants, which do not exist in /” constructed so far.

This completes the construction of /. The atoms in the set D = {S (31)»----5(2»;-1)} are in the output S of P,
given the input /°. The reason for this is that S (¢,),....S(C») are in the output of P given /, and / has been extended
to I’. such that from S(c),...,S(C,,) the sct D can be derived. We shall show that the load sharing scheme cannot
satisfy the completeness condition for /. Particularly, we shall show that the whole set D cannot be derived. The
heart of the proof is the following lemma.

Lemma I: For the input /’, the atom S(d,) is in some output §;, only if, for the input /, §(c,) and §(c>) are both in
the output §,.

Proof: First we will prove that §(c,) and S(c,) are in the output §;, if P, is given the input /’, and then we will
prove that they are in S, if P, is given the input /. We shall refer to the constants which are in the atoms of /” but
are not in the atoms of / (i.e., the ¢} ’s) as "new constants’.

Assume that S(d,) is in §;, for the input /”. By requirement 4 in the "propagating” definition, the graph G (P) has at
least one distinguished variable which does not appear in any S-atom. Such a variable, by construction of H, is
instantiated 10 a new constant. Therefore, one of the constants in d; is new. Note that in /’ there are no new con-
stants in the B-atoms, since the B-atoms are the same in / and /”. Thercfore, 5(3,) is obtained in §; by an instantia-
tion of the recursive rule.

In the proof of this lemma we shall use three claims.

Claim 1: Let n be an instantiation of , such that the instantiated rule is represented in some derivation tree, given
the input /’. Suppose that S(Zk) is in the head of the instantiated rule. Then if p, instantiates a variable of R (P), say
¥, to the conslant ¢, then 1| also instantiates y to c.

Proof: The variable y is not a node in G (P), by definition of the extensional graph. However, by requirement 3 in
the "propagating” definition, there is a node of G (P), say variable x, and there is an extensional predicate atom, A,
such that x and y are both arguments of A. By rcquirement 4, there is a path in G (P) from x to some distinguished
variable, say z. Denote the path p: z=z,,....z, =x. Note that z,, is distinguished, and both instantiations of r, p
and n, produce the head S(d,). Therefore, 1| instantiates z, o e,"l. Since there is an edge in G (P) between z,, and
z;, there is in 7 an exiensional predicate atom, C(...z;,,....2,...). Bascd on the way H; was defined, and based on

requirement 1, it is casy 1o see that in /' there is a unique C-ground atom which has the constant ¢;, in the position

| %)
t9

corresponding 10 z; . Furthermore, in that C-ground-atom, in the position corresponding 1o z;,, appears the constant
k N -
e, Thercfore 1, as p,, instantiates 2, 10 efz. The above argument can be continued inductively on the length of the

path p. to show that x is instantiated to ef: by n. The variables x and y are both arguments of the extensional predi-

caic atom A, and again by requirement 1 it is easy 10 see that p, and 1) instantiate y to the same constant. Tleygim ;-

Therefore, if for the input /*, the atom S(El) is in the output §;, then §(c,) and S (c,) must be in the output
S,. To complete the proof of Lemma 1, left to show is that S (¢,) and § (¢,) are in the outpul §, for the input /.
Claim 2: Letn be an instantiation of r, such that the instantiated rule is represented in some derivation tree, given
the input /”. Suppose that the extensional predicate atom C (f') is in the body of the instantiated rule. Assume that
C(f') has a new constant, i.e., C(f) belongs to somce /{;. Then the S-ground-atom in the hcad has a new constant.
Proof: By requirement 3 in "propagating” definition, the C -atom in the body of r has a variable, w, which is not in
R (P). By construction of H;, the variable w is instantiated by p; o some new constant, ¢j. Denote by p the path
from w to a distinguished variable, z, in G (P) (by requirement 4 there is such). Consider also the variable v, which
succeeds w on the path p. By definition of G (P), there is an extensional predicaic atom, D (...w,...,v...), and v does
not belong 1o R(P). By requirement 1, in [’ there is a unique D-ground-atom which has ej in the position
corresponding to w. Furthermore, that D-ground has a new symbol in the position corresponding to v. Therefore, 1
must subslitute a new constant for v. This argument can be continued inductively on the length of the path p, 0
show that the distinguished variable z is substituted for a new constant by N. Dlegim 2-
Claim 3: Let 1| be an instantiation of r, such that the instanuated rule is represented in some derivation tree, given
the input /”. Suppose that in the body of the instantiated rule there is an S-atom with a new constant. Then the S-
ground-atom in the head has a new constant.
Proof: The substitution 1 must replace some variablc of R (P) by a new constant. Assume that x is the variable of
the S-atom, which is replaced by a new constant. According to requirement 3 in "propagating” definition, the vari-

able x also appears in an extensional predicate atom in r. By Claim 2, the proof is complete. Ogigm 3-

To complete the proof of Lemma 1, consider a derivation tree, T, for §(c,), given the input I’. By Claims 2
and 3, it is casy to see that if any new constant appears in a derivation tree for §(C), then it is "propagated” up 0
S(Z,). Since in ¢, there do not exist any new constants, then a new constant docs not appear in the derivation tree
T. By the construction of the H,"s, and by requirement 3, it can be seen that cvery atom of /~/ has a new constant.

Thercfore, T is a derivation tree for S (¢,) given the input /. Similarly it can be shown that §(c,) can be derived

given theinput/. Ty, ;.

Now we shall show by induction on n, hat if $(d,) is in the output §;, given the input 7, then
§(€1)s....S (Casy) are in the output S, given 1. If so, then theorem 3 follows, because completeness cannot hold for
the input /. The reason is that there is no S; which contains the whole set {S(c;).....S (¢,,)} for the input /, and there-
fore, S (3,,,_,) cannot be derived, given [”.

Lemma 1 provides the basis for the induction on n. The inductive step is very similar to the proof of Lemma 1, and
argues as follows. [fS(E,,) isin §; for the input I, then by Claim 1, both S(&,,_l) and S (C,,;) are in §,. By Claims 2
and 3, S(c,4) is in §; for the input /. By the inductive assumption, S(c,),....S(c,) are in S, for the input /.

D’Theorzm 3

Let us observe that the first two requirements of the "propagating” definition are not, by themselves, sufficient for
nonexistence of a load-sharing-scheme. They arc sausfied in the following sirup, although, as shown in subsection

4.3, it does have a load sharing scheme.

S(X,y):_ S(X,Zl), A (Z 1 ~22)S(32*)’)

S(xy)-B(x,y).

Next we observe that there exist also programs with constants that do not have a load sharing scheme. For
cxample, the following program, that is a simple variaton of path systems, docs not do so (thc proof is as in

Theorem 4):

S(5.x):— S(5,y).5(5.2),H (x,y,2)

S(.x)-B(x)
6. EXTENSION TO PARALLELIZATION BY BOTTOM-UP ALGORITHMS

The purpose of this section is to extend the previous resulls 10 bottom-up algorithms for the evaluation of
logic programs. The algorithms do not necessarily evaluate a restricted version of the original program. In other
words, consider the nonsharable program path systems. [s it possible (o purely parallelize the work of cvaluating it?
Although independent evaluation of restricted versions does nol work, it is conceivable that some other purely paral-
lel method docs work. For example, maybe if we allow a larger class of evaluable predicates (e.g. log, sine) in a
restricted version, then path sysiems would be sharable. To determine whether path-systems and other nonsharable

programs can be purcly parallelized, we define an algorithmic load sharing scheme of a program as a set of

algorithms, each working independently of the others. Furthermore, we distinguish between bottom-up algorithmic
load sharing schemes, and other ones. When considering sharability in this broader context, namely, algorithmic-
sharability, we show that path systems is top-down algorithmically-sharable, but not bottom-up algorithmically-
sharable. In other words, path-systems cannot be evaluated in parallcl by multiplc bottom-up algorithms that do not

need to communicate, such that each algorithm computes less.

Let P be a Datalog program. For an input / 1o P, a partial computation of P, denoted ¢ (/), is a sequence of
ground atoms. The predicate symbols in ¢ (/) are taken from P, and the sequence ¢ (/) salisfies the following two
conditions. First, cach extensional predicale atom in ¢ (/) must be in /. Second, cvery intentional predicate atom, a,
in ¢ (/), is in O(P,1), and is preceded by all atoms of some derivation tree of a. The sequence ¢ (/) corresponds o
the order in which the output of P is evaluated, and is called a "partial” computation, since not all ground atoms of

O(P,J)havetobeinc (/).

An algorithm, A, for partial computation of P is a function which maps each input, /, into a partial computa-
tion of P, denoted A (/). The algorithm A does not communicate with other algorithms for producing A (/), since it

is required to produce all the atoms of some derivation tree of a, before being able to produce a.

LetD ={A,,..., A} be asetof algorithms for partial computation of P. The set D is complete for an input,
1, if for each ground-aom, a € O (P./), there is an algorithm A, € D, such that a € A (/). Algorithm A, € D com-

putes less for some input /, if there is some atom b € O (P,[), which is not in A;(/).

Input / is a time-saving input for the set of algorithms D, if each algorithm computes less for /. The set D is
an algorithmic load sharing scheme for P, if it is complete for every input, and has at least one time-saving input. It
is easy 1o see that this generalizes the definition of load sharing by restricted versions (given in section 3), based on
the following proposition.

Proposition 2: Assume that a program P has a load sharing scheme consisting of the set D = (Py,...,P,} of res-
tricted versions. Then P has an algorithmic load sharing scheme, D" = {4,.....A,}.

Proof: Define algorithm A; to work as follows. For cach input / it first outputs all the atoms of / in some arbitrary
order, then it cvaluates P;, outputting the intentional fact as they are computed. It is easy 1o see that D’ = {A,,....A,}
is a load-sharing-scheme for the program P, as follows. Completeness is obviously satisfied, since D is a load shar-
ing scheme. Additionally, each algorithm A; computcs less for any input which satisfics the nontriviality condition

for D. Since there is at least one such input for D, the set D" has a time-saving input. []

t
w

A program which has an algorithmic load sharing scheme, is called algorithmically sharable. Now obscrve
that a program may be algorithmically sharable, although it is not sharable. For example, consider the following

scheme for evaluating path systems:

S(x):-Bx)

S()=Hxy:).50)5¢)

Suppose that two processors work top-down, using, say, the Prolog method. Processor one assumes responsibility
for producing the S (x) tuples in which x is a constant in the database, and is odd, and Processor two assumes respo-
sibility for producing the § (x) tuples in which x is in the database, and is even. Each processor works independently,
and attempts to "prove”, onc by one, the facts in its responsibility domain. For proof, the rules are considered in a
top-to-bottom order, and the atoms in the body of cach rule are considered in a left-to-right order. If a processor
discovers in the course of proving a fact in its responsibilily domain, that it has to prove a fact, £, then it does so
regardless of whether or not fis in its responsibility domain. So, for example, if in the course of attempting to prove
§(3) processor one has the subgoal §(2), then it proves it, even though §(2) is the other processor’s responsibility.
It is easy 10 see that this scheme is complete and has a time-saving input (¢.g., an input in which the relation # does
not contain any triple having both, an odd and an ¢ven constant).

NowletD ={A,,..., A,)} be a set of algorithms for partial computation of P, and let /4 be an input 10 P. We
say that A, bottom-up-evaluates I, if for each fact b that is not in A, /), and for each set of input atoms, Z, the fol-
towing requirement is satisficd:

(noncontribution) If for the tnput /¢ w Z there is no derivation tree of b, which contains an atom of Z, then
be A(lou7).

The noncontribution requircment simply says that if the atom b is not in A,(/), and if the set Z does not "con-
tribute” to the derivation of b (i.e., there is no derivation tree which contains an atom Z), then b is also not in

A,(l9Z). The naive and semi-naive evaluation methods clearly satisfy this requirement.

Note that a top-down, a la Prolog, type of algorithm does not satisfy the noncontribution requirement, since Z
may "trigger” the derivation of an atom without actually contributing to this derivation. For cxample, supposc that /
is an input 1o path sysiems, in which the relation /1 does not contain any triple having both, an odd and an cven con-
stant. Furthermore, suppose that S(2) is in the output. Then processor 1 will derive S(2) for /1 (H(1,2,3)}

although {H (1,2,3)] is not in the derivation tree of §(2).

26

An algorithmic load sharing scheme, D, is botiom-up if every input is botlom-up evaluated by each algorithm

in D. A program is bottom-up algorithmically-sharable if it has a bottom-up algorithmic load sharing scheme.

Theorem 5: The sirup path systems is not bottom-up algorithmically-sharable.

Proof: Denote the sirup path systems by P. Assumc by way of contradiction that D = {4.,....A.} is a bottom-up
algorithmic load sharing scheme for P. Consider a time-saving input, /9. Obscrve that § is the only intentional
predicate in P. Thus for each A;. since it compules less for /g, there is at lcast one S(c,) in O (P,l), which is not in
A;(/o). Inother words, there is not any A;(/) which coniains all S (¢,)’s. Let

C={5@)! S(c)e O(P,1y), and for some A, Sy e Ai(ly)} .

Denote C ={S(cy),....5(Cn)}. Letd,,....d,-, be m—1 consiants, none of which is in /¢. Denote I, = /o u /{ where
H={H(d,c\,c2).H({dy.d,c3).H(d3,d2,c5)sccc H(dr_y ,dm_3.Cm)}.
Obviously, cach S(d,) for i = 1,...,m—1isin O (P,I,). Observe that there cannot be a derivation tree for S(c,) in /,,
which has as a node a ground atom of #, say H . If there is such, then the father of £/, in the tree is some S (d;).
Then, S (d,) must have a brother in the derivation tree which is another member of H, say H, and therefore the
father of S(d,) in the derivation tree must be S(d,,,). Proceeding inductively it can be shown that the root of the
derivation tree for S{(c;) is some S(d,), obviously a contradiction. Therclore, since /4 is bottom-up-¢valuated by
each A, there is not any A (/) which contains the whole set C.
Now, we show by induction on i, that if S(d,) is in A,) for some A;, then S(c),....S(c; 1) are all in A(/,). For
the basis, note that each derivation tree for S (d;) must have §(c), S(c¢;), and H(d,,c,c>). as the sons of the rool.
Therefore, since A;(/,) is a partial computation of P, these sons must precede S(d) in A;(/). For the inductive siep
note that cach derivation tree for S(d;) must have S(d;_,), S(ci,,). and {/(d, . d;) .c;4), as the sons of the root.
Therefore, if S(d;) is in A;(/,), then S(d;_,), S$(c,.,) are both also in A, (/). Since $(d;_) is in A;(/,). by inductive
assumption, S (¢,),....5(¢;) are also there. This compleles the inductive proof. Then completeness of the load shar-
ing scheme for /, is violated for the following rcason. The atom S (d,_,) cannot be in any A (/,), because, as esla-
blished, there is not any A;(/,), which contains all S(c,)’s. []

Similarly, it can be shown that any propagating sirup is not bottom-up algorithmically-sharable.

7. CONCLUSION AND FUTURE WORK

In this paper we examined pure paralletization of daw intensive Datalog programs. The method proposed is
independent parallelization by restricted versions, where cach restricted version generates part of the output. It has
been shown that some important classes of programs (for example, most lincar oncs) can be parallelized this way,
Le., are sharable, while other classes cannot. Evaluation of the sharable programs discussed in this paper can be
spread among an arbitrary number of processors. Furthermore, the potential speedup of such a parallelization is
optimal, i.e., equal to the number of processors participating in the parallelization scheme. We have shown that the
class of propagating sirups are not sharable, and, moreover, they cannot be cvaluated in parallel by any sct of paral-
lel algorithms that work bottom-up, and do not incur a communication overhead.

Load sharing is applicable in conjunction with rewriting methods that propagate constants from the query,
such as Magic Sets ((BMSU BeR}). For example, consider thé following program called "same generation™
SG (x.x)—- H(x)

SG (x,y).— PARENT (x,xp), PARENT (y,yp), SG (xp,yp)

The source-to-source transformed program produced by Magic Scts in response to the query, SG (a,?), is the fol-
lowing:

MAGIC (xp).— MAGIC (x), PARENT (x,xp)

MAGIC (a)

SG (x,x):— H(x)

SG (x,y):— MAGIC (xp), PARENT (x.xp), PARENT (y.yp), SG (xp.¥p)

By appending the predicate i = x mod r 10 the exit rule, SG (x,x):~ /1 (x), of the transformed program, we obtain a
restricted version of a load sharing scheme.

It scems that load sharing is also applicable in conjunction with morc advanced sourcc-to-source program
transformation methods, such as Magic-Templates ([R1]). In response 1o a query to the cs/ program, the mcthod
may produce, depending on the choice of sips, the following program:

S (x,y):— MAGIC (x,y),UP (x,w),S (w,2), DOWN (z,y)
S(x,y):- MAGIC (x,y).FLAT (x.y)

MAGIC (w,z):- MAGIC (x,y),UP (x,w)

MAGIC (a,z)

In this case we can obain a restricted version of a load sharing scheme by appending the predicate (= x mod 7 10

the seed, MAGIC (a,z).

As far as future research is concerned. an obvious dircction is o extend the class of programs for which it can
be algorithmically determined, by examining the syntax of the program, whether or not the program has a load shar-
ing scheme. The scope of the investigation should be broadened to include programs with function symbols and
negation, such as those written in the language LDL (sce (TZ]). It should also be investigated whether constants in
a program increase the possibilities of pure-parallelization, as conjectured in [L], or the opposite occurs. Inspired by
the work in [D], we would also like to examine sharability of a program with respect to an input. Maybe for pro-
grams that arc not sharable, for some inputs that can be very efficiently identified, the bencfits of sharability are
achievable. We would also like to determine how to minimize communication among the processors when it cannot
be avoided. In other words, for parallelizing nonsharable programs communication is nccessary. How should this
communication be minimized? The study of pure parallelization proves helpful for answering this question, as
demonstrated in [CW, GST). Finally, we intend 1o study the enhancement of load sharing with some interesting

parallelization ideas that appeared in the literawre ([AJ, HAC, RSL, VKJ).

Acknowledgement
The author thanks Nissim Francez and Oded Shmueli for helpful discussions and commens, and the referees for

numerous suggestions and comments that helped improve this paper significantly.

References

[AJ] R. Agrawal and H.V. Jagadish, "Direct Algorithms for Computing the Transitive Closure of Database
Relations”, Proc. 13th VLDB Conf.. pp. 255-266, 1987.

[AP] F. Afrati and C. H. Papadimitriou "The Parallci Complexity of Simple Chain Querics”, Proc. 6th ACM
Symp. on PODS, pp. 210-213, 1987.

[B] F. Bancilhon, "Naive Evaluation of Recursively Defined Relations ™ in On Knowledge Base Manage-
ment Systems - Integrating Database and Al Systems, Brodic and Mylopoulos, Eds., Springer-Verlag,
1985.

[Be} Bergsten et. al., "A Parallel Database Accelerator”, PARLE'89, Springer-Verlag Lecture Notes in CS

Series, no. 363, 1989.

[Bo] H. Boral et. al., "Prototyping Bubba, a Highly Parallcl Database System," [EEE Transactions on Daia
and Knowledge Engineering 2(1), 1990,

(BBDW]

(BMSU]

[BeR]

[BR]

[C]

[CK]

[CG]

[CW]

(D]

[DIY]

(DL]

[GST]

(HAC]

(Hi]

(K]

(L]

(MPS]

(MR]

D. Biuon, H. Boral, DJ. DeWitt and W.K. Wilkinson, “Parallel Algorithms for the Exccution of Rela-
tional Databasc Operations”, ACM TODS, 8(3), 1983.

F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman "Magic Scts and Other Strange Ways to Implement Logic
Programs”, Proc. 5th ACM Symp. on PODS, pp. 1-15, 1986.

C. Beeri and R. Ramakrishnan “The power of Magic™ Proc. 6th ACM Symp. on PODS. 1987.

F. Bancilhon and R. Ramakrishnan "An Amatcur’s Introduction to Recursive Query Processing™, Proc.
SIGMOD Conf. pp. 16-52, 1986.

S. A. Cook "An Observation on Time-Storage Trade-off” JCSS 9(3), pp. 308-316, 1974,

S. S. Cosmadakis and P. C. Kanellakis "Parallel Evaluation of Recursive Rule Querics”, Proc. Sth ACM
Symp. on PODS, pp. 280-293, 1986.

N. Carricro and D. Gelernter, "How to Write Parallel Programs: A Guide to the Perplexed,” ACM Com-
puting Surveys, 21(3). pp. 323-357, 1989.

S. Cohen and O. Wolfson, "Why a Single Parallelization Strategy is not Enough in Knowledge Bases,”
Proc. 8th ACM Symp. on PODS, pp. 200-216, 1989.

G. Dong, "On Distributed Processibility of Datalog Queries by Decomposing Databases”, Proc. of the
ACM-SIGMOD Conf., pp. 26-35, 1989.

D.M. Dias, B.R. Iyer, P.S. Yu, "On Coupling Many Small Systems for Transaction Processing”,
Research Report RC11722, IBM TJ. Watson Research Center.

D. DeGroot and G. Lindstrom eds. " Logic Programming - Functions Relations and Equations”, Pren-
tice Hall, 1986.

S. Ganguly, A. Silberschatz, S. Tsur, "A Framework for the Parallel Proccssing of Queries”,
Manuscript, Comp. Sci. Dept., Univ. of Texas at Austin, 1989.

M. W. Houtsma, P. M. G. Apers, and S. Ceri, "Parallel Computation of Transitive Closure Queries on
Fragmented Databases”, University of Twente, TR INF-88-56, Dec. 1988.

D. Hilbert, "Mathematische Problems”, Bull. Amer. Math. Soc., (8), pp. 437479, 1901.

P. C. Kanellakis "Logic Programming and Parallel Complexity”, Proc. ICDT '86, International Confer-
ence on Database Theory, Springer-Verlag Lecwure Notes in CS Series, no. 243, pp. 1-30, 1986.

E. Lozinskii, private communication.

A. Marchetti-Spaccamela, A. Pelaggi, D. Sacca "Worst Case Complexity Analysis of Methods for
Logic Program Implementation” Proc. 6th ACM Symp. on PODS, pp. 294-301, 1987.

Y. Matijasevic and J. Robinson, "Reduction of an Arbitrary Diophantine Equation to onc in 13
unknowns”, Acta Arith., 27, pp. 521-553, 1975.

(MW]

[N]

(P

(R1]

(R2]

[RSL]

[S]

[Shm]

[(SMM]

(U1]

(U2]

(U3]

(UV]

[VEK]

[VG]

[VK]

(TZ]

30

D. Maier and D. S. Warren "Computing with Logic: Introduction to Logic Programming”, Benjamin-
Cummings Publishing Co., 1987.

J. F. Naughton "Compiling Separable Recursions,” Proc. of the ACM-SIGMOD Conf., pp. 312-319,
1988.

AJ. Pasik, "A Methodology for Programming Production Systems and its Implications on Parallelism”,
Ph.D. Thesis, Columbia University, 1989.

R. Ramakrishnan, "Magic Templates: A Spellbinding Approach 10 Logic Programs”, Proc. intl. Conf.
on Logic Programming, pp. 140-139, Aug. 1988.

R. Ramakrishnan, "Parallelism in Logic Programs”, Univ. of Wisconsin, Computer Sci. Dept, TR #892,
Nov. 89.

L. Raschid, T. Sellis, and C. C. Lin, "Exploiting Concurrency in a DBMS Implementation of production
Systems, Proc. International Symposium on Databases in Distributed and Parallel Systems, Austin TX,
Dec. 1989.

E. Y. Shapiro, "Concurrent Prolog, Collected Papers”, Vol 1 and 2, MIT Press, 1987.

O. Shmueli " Decidability and Expressiveness Aspects of Logic Queries,” Proc. 6th ACM Symp. on
PODS, pp. 237-249, 1987.

S.J. Swlfo, D.P. Miranker and R. Mills, "A simple processing scheme 1o extract and load balance impli-
cit parallelism in the concurrent match of production rules”, In proc. of the AFIPS symp. on fifth gen-
cration computing, AFIPS,1985.

J.D. Ullman, "Implementation of Logical Query Languages for Databascs”, ACM TODS 10(3), pp.
289-321, 1985.

J. D. Ullman "Database Theory: Past and Future", Proc. 6th ACM Symp. on PODS, pp. 1-10, 1987.

J.D. Ullman, "Principles of Database and Knowledge-Base Sysiems”, Vol. 2, Computer Scicnce Press,
1989.

J.D. Ullman and A. Van Gelder, "Parallel Complexity of Logic Programs”, Algorithmica 3, pp. 5-42,
1988.

M. H. Van Emden and R, A. Kowalski "The Scmantics of Predicate Logic as a Programming
Language”, JACM 23(4) pp. 733-742, 1976,

P. Valduriez and G. Gardarin, "Join and Scmijoin Algorithms for a Multiprocessor Database Machine”,
ACM TODS, 9(1), 1984.

P. Valduriez and S. Khoshafian, "Parallc] cvaluation of the Transitive Closure of a Database Relation”,
International Journal of Parallel Programming 17,1, Feb. 1988.

S. Tsur and C. Zaniolo, "LDL: A Logic Based Daw Language,” Proc. 12th VLDB Conf., pp. 33-41,
1986.

(WO]

[WS]

31

0. Wolfson and A. Ozeri, "A New Paradigm for Parallel and Distributed Rule-Processing”, Proceedings
of the ACM-SIGMOD 1990, International Confercnce on Management of Daua, Atlantic City, NJ, May
1990.

0. Wolfson and A. Silberschatz, "Distributed Processing of Logic Programs,” Proc. of the ACM-
SIGMOD Conf., pp. 329-336, 1988.

