Synchronization of Vlultiple Agents in
Rule-Based Development Environments
-- Thesis Proposal --

Naser S. Barghouti!

Department of Computer Science
Columbia University
New York, NY 10027

= Technical Report CUCS-504-89

8 December 1989

Abstract

The Ruie-Based Development Environment {RBDE) is a rccendy-Jeveloped approach for providing intelligent
assistance (o developers working on a large-scaie softwarc project. RBDEs model the development process in terms
of ruics, and then caact this mede! by automaucally firing rules at the appropriaic ime. The RBDE approach has
becn used to deveiop single-user environments, but support for muluipic developers cooperating on the same project
is sull not available because of the lack of mechunisms that can synchronize the efforts of multiple developers, who
concurrendy select commands, causing the firing of muliiple rules (cither directly or via chaining) that concurrendy
- access shared daa. Contlicts between differcnt rules and concurrent xccess o shared data may cause the violation
of consistcncy in the project databasc, and thus necessiate the synchronizadon of concurrent activides. The
conjecture of this proposal is that an RBDE can provide the rcquired synchronization if it is provided with
knowledge about what it means for the datw of a specific project Lo be in a consistent state, and about the semantics
of operations that developers perform on the data. The rescarch that this paper proposes will formulate a framework
for specifying consistency of data in an RBDE, and lormulatc a mechanism for synchronizing the actions of
concurrent rules fired on behalf of muitple developers cooperaung on a common or different tasks.

Copyright © 1989 Nascr S. Barghouti

t o A . . .

*Barghouti is supported tn part by CTR. Research an Programmung Systems 1s supported by Natonal Science Foundaton
grants CCR-3858029 and CCR-3802741, by srans from ATET. Couicorn, IBM. Siemens. Sun and Xevox, by the Center for
Advancet Technologr and v the Center for Tewvommunications Rowwan

Table of Contents
1. Introduction
1.1. The Problem
1.2. Importance of Solving This Probiem
1.3. Approach to a Solution
1.4. Requirements on the Solution
2. Definition of the Model
2.1. Background: The RBDE Model
2.2. A More Specific Statement of the Problem
3. The Proposed Research
3.1. Conflict Resolution
3.1.1. Problem Formulation
3.1.2. Related Work
3.1.3. Proposed A pproach to the solution
3.2. Knowledge-Based Consistency
3.2.1. Problem Formulation
3.2.2. Related Work
3.2.3. Approach to a soiution
3.3. Concurrency Control
= 33.1. Problem Formulation
33.2. Related Work
3.33. Approach to a Solution
J.4. Contributions of the Proposed Research
3.5. Measuring the Success of the Solution
4. MARVEL '
5. Plan of Action
6. Proposed Outline of the Thesis
References

List of Figures
Figure 2-1: The Muiti-Agent problem in RBDEs
Figure 3-1: Example of conflict resolution problem
Figure 3-2: Muitilevel transaction

Taesis Preoosal

V-RVelVells SN le NN- e SR VI IV FYR OVIN NV I Wy

bk ok pmd ot b e pd ek psd et
[o W+ W~ - NV VIR NN R N

[Y]
(=

[==30 WV]}

1. Introduction

1.1. The Problem

Rule-based development cnvironments (RBDEs) providce intelligent assistance to developers of large-
scaie projects by médeling the development process of a project in terms of rules, and enactng that
Existing RBDEs, howcver, are cither single-user environments or support minimal

process model.
synchronization mechanisms such as locking the entire databasc= whenever a developer is accessing it.

They do not support the needs of multiple developers working concurrently on related subtasks of the
same project. These needs include maintaining the project database in a consistent state, but at the same
ime not obstructing the need for multiple developers to cooperate by sharing data among them. More
specifically, existing RBDEs lack appropriate mechanisms for providing them with:
1. A specification of what is meant exactly by mainuining the data of a particular project in a
consistent state.

. A definition of what level of concurrent access to the shared project database should be
allowed between different developers? Specifically, should the RBDE wlcerate any incon-
sistency in the databasc in order o allow multiple developers cooperating on a common [asx
more concurrent access (o shared data than developers working on disjoint tasks?

~

[

. A method of synchronizing concurrent actions triggered by muitiple developers that would
use the specificanon of both consistency and concurrency in order to maintain whatever
consisicncy is desired in the panicular project and stil be able to allow cooperagon among
developers.

(V3]

A more precise statement of the problem in terms of the assumed RBDE model is made in the next

sccuon.

1.2. Importance of Solving This Problem

RBDEs modcl the development process ol a project, such as developing a sofiware system, in terms of
a sct of rules that, when fired automatically (to cnact the process model), perform some of the develop-
ment and data management tasks that would otherwise be done manually by the developers or not done at
‘all. This idca of intcgrating rule-bascd process modeling with database capabilitics within the framework
of a development environment has gained populurity recentiv. [n fact at the Fifth Intenational Workshop
on Software Specification and Design (ISPW-3). about hall of the position papers were concemed with
rulc-pased process modeling (Perry 83). Thus. it scems that pursuing the RBDE approach to support
“real” large-scale projects is a worthwhilc cffon.

These "real” projects typically involve many developers, a complicated process model that may require
hundreds of rules to describe it, and a signilicant amount of hivhiy structured data that is stored in a
shared project database. Existing RBDEs. howcver, do not scale up to ail of these requirements.
Rescarch in Al has already produced rule-bascd systems that consist of thousands of rules, and it seems
that the problem of supporting a large amount ol data is also being solved. The proposcd rescarch aims at

2l s B s , . . ces \ viar & t >
i wed hat e RBDE stores all the data ~elonging 1o s sroject:in g Jatabaze. We Jo not assume 4ny particylar 2a@oase

et tal et g2a Ty e Rty aeviaeegs e 2ie
TROLRL TUL O5€ UT ST LN A0 Z2neTiC senise.

8 December 1989

(B9

providing the mechanisms neccssary for RBDEs 1o scale up o support multiple developers by providing
them with a synchronization mechanism. which aims at maintaining the consistency of data while provid-
ing the highest possible level of concurrent access to this dats. Such a mechanism would enable RBDEs
to support the consistency maintenance nceds of muitiple developers without obstructing their coopera-
tion. and thus make the RBDE modcl a morc powerful one in terms of providing intelligent assistance in

the development process of large-scale projects.

1.3. Approach to a Solution
Synchronization in an RBDE docs not involvce only the human developers but also rules that automati-

cally perform operadons on their behaif, since those rules also access the shared database. The term
agen is used in this proposal 1o refer to both human developers and rules that are tired automatically by
the RBDE on their behalf. What is lacking, then, in cxisting RBDEs is the ability to synchronize concur-
rent accesses by multiple agents to shared data while sull providing an environment that supports

cocperation among its users (called cooperative environment hereafter).

Synchronization of multiple agents involves: (1) conllict resolution in order to guarantee that rules that
directy conilict with cach other arc not allowed to be fired concurrently on behalf of the same or different
developers: and (2) concurrency control in order o ensurc that consistency of data is not violated because
Of concurrent access 10 ihe samc data items. An RBDE may be abic to support the required synchroniza-
tion if it is provided with knowlcdge about what it mcans for the data of a specific project to be in 2
consisicnt state, and about the scmantics of operations performed by agents on the database. These two
pieces ol information arc different {or diffcrent projects and thus they have to be provided to the RBDE
rather ihan built into it. Given this knowledge, an RBDE can actively pamicipate in both automating
some tasks and maintaining consistency in the scasc that it could monitor the activities of multiple
devciopers and be abie to automatically perform some operations, which would cither retain consistency
of the dala in case of violation or automaticaily perform some task. in respense to changes made (o the
data. A passive environment, altcrnatively, would provide only an intertace to the data and to the toois

uscd by the developers.

The rescarch that this paper proposcs will use the following approach to formulate a solution to the

problem:

1. In order 1o solve the conflict resolution problem. the tasks performed by both the developers
and the RBDE on their behalf have to be cncapsulated in logical units, which resemble
transactions in database systcms. The similartics and diffcrences between the logical units
used here and transactions arc clarificd later.

2.In order o0 solve thc consistency specilication problem. there is a need (o design a
framework in which it is possible to: (1) deline exactly what is meant by maintaining a
specilic project in a consistent state: and (2) speciiy allowable levels of concurrency be-
tween different developers” transactions.

. Develop a synchronization mcchanism that uses this framework 1o achieve a reasonable
compromise between two conflicting woals:

a. Maximizing concurrency of access by muitiple ayents Lo Lthe shared project database,
and thus maximizing the number ol operations that can proceed concurrendy. This
has the effect of minimizing the environment's response lime (¢ user commands. and

tus improviny the overall productivity of cooperating Jevelopess.

(99)

Tho s Prorosal S Decemper 1989

b. Mainuining the projcct database in a consistent statc as specified in the consistency
framework, thus reducing the time wasted on (ixing up inconsistent data. and
thereby facilitating the successfui complction of the development task.

1.4. Requirements on the Solution

The synchronization mechanism should allow multiple devclopers to share knowledge among them-
selves, 10 cooperate on a common task. and to be adle to control the progress of their tasks without much
cbstruction’, Specifically, the concurrency control requirements in an RBDE model include:

» Supporting both long-lived database opcrations that last for an arbitrarily long period of time
(e.g., editing a source file in a sofiware project). as well as short database operations that are
similar to operations in traditional databascs.

» Supporting a spectrum of allowable interaction between multiple agents, ranging from syner-
gistic cooperation among them to their isolation from cach other, depending on the project
specification. For example, if multiple dcvclopers arc working on the same part of a project,
they should be able to look at each other’s modifications, even if these modifications are not

__ complete, rather than having to wait until the modifications arc committed. Looking at par-

= tal modifications might help devclopers discover inconsistencics early on rather than at the

end when they have 0 integrate their work. At the same time, these cooperating developers
should not be allowed to modify the same object at the samc time in contlicting ways if that
violates the consistency of data required in the panticular project.

 Supponting interactive uscr conurol over transactions. which means that the users make up the
operations of the transaction as they go rather than programming all operations that they want
to pertorm in batch transactions before hand.

The remainder of this proposal is structurcd as follows. Scction 2 describes the rule-based development
environment model assumed in the proposed thesis, and presents a staement of the problem in terms of
the modcl. Scction 3 presents the approach that will be followed to solve the problem and describes how
the success of the solution can be measurcd. Scction 4 prescents MARVEL, the development environment
kernel that will serve as the experimental framework for the proposcd work. Section 3 descripes the steps
that will be followed to formulate a solution to the problem. and a tentative schedule for achieving these
steps. Scction 6 outines the organization of the proposcd disscriation.

2. Definition of the Model
This scction describes the development modcl assumed in the proposed research, and more precise
statement of the problem. We state what is assumed as a given and what is part of the problem.

2.1. Background: The RBDE Model

Some of the most well-known development cnvironments arc rule-based. For example, the Common-
Lisp Framework (CLF)[CLF Projcct 38| supports rule-based process modeling through what it calls
consistency and automation rules {Cofien 86]. Refine [Smith ¢t al. 854, an automatic transformation sys-
tem for the purpose of program synthesis. also provides a limited form of controlled automaton in the

*Tt should Se noted that we are assuming 1 cocperauve envirorment N aaich the developers do not compete for resources with

200 el

Thenis Proposal

style of CLF. Darwin [Minsky and Rozcnshicin 88} is a rulc-bascd sysiem implemented in Prolog that
restricts what programmers can do by trealing rules as constraints, and automates checking and enforce-
ment of these constraints. Grapple {Huff and Lesser 88 is a sysiem that uses rules o do planning and
plan recognition in order to enact and monitor the process model. Marve! [Kaiser et al. 88a] enacts the
process model by providing controlled automation via forward and backward chaining among rules.

We assume a general RBDE modc!, which includes all of the systems mentioned above, that enacts a
modecl of the development process of a particular projcct by automatically firing rules that encapsulate
operations on the projcct database. These rulcs are not built-in but arc specified to the RBDE and can be
changed dynamically during a scssion. The commands that a developer can select from in an RBDE
either correspond (o rules or are provided by the environment uas built-in commands, such as adding and
deleting objects. Each rule has a condirion (also called the lejt hand side or precondition) that must be
satisfied before the second part. which is the development activity the rule encapsulates, is executed on

_ the database. The activity is modeled as a black box whosc inputs and outputs are known, but in order 0

_know which output it will produce, the biack box has to be invoked. The third part is a set of murually
exclusive acrions (also called the right hand side or postconditions), which change values in the database.
Which action 1o assert depends on the results of the rulc’s activity.

[f the actions of a rulc change the objects in the databasc in such 2 way that the condition of other rules
become satisiicd, those rules arc fircd automatically. This behavior is termed forward chaining and it is
the model that production systcms implement. Alieratively. i a condition of a rule is not satisfied,
backward chaining is performed 10 satisfy it. The backward chaining medel (also called backtracking) is
implemented in thcorem provers, constraint systems, and some production sysiems. Forward and back-
ward chaining are two mechanisms lor cnacting the process model.

RBDEs in general provide cither a forward chaining medel or a backward chaining model or both in
order to do one or more of the following:

I. Maintain consistency as delined by the conditions and actions of rules. Thus, no operation
will be performed until its condition is satisiicd: and it" an opcration is performed, all im-
plications (in terms of performing other operations) are taken care of.

2. Automate the performance ol some operations thal would otherwise be performed mangally
by devclopers. Thus, by rcquesting one database operation, scveral other operations might
be performed automatically by the RBDE on behall of the developer who requested the first
operation.

3. Monitor the development process and collect information about any violations of it. The
RBDE might only wam developers about these violations rather than enforcing the model.
Some existing RBDEs distinguish between automation rules and consistency rules (CLF), some provide
only consistency rules {Darwin), whilc others provide only automation rules (Marvel). In this proposal,
we assumce a general model in which: (1) both forward and backward chaining are supporied: and (2)

rules may serve cither the purposc of aglomation or consisiency maintenance.

ol Do § Decembper 1689

Q¥

(w]

oY

(]

2.2. A More Specific Statement of the Problem
When multiple developers cooperate on a project within an RBDE. they share a common database that

contains all the objects of the project. These developers stan concurrent sessions in order to complete
their specific tasks. During their scssions, the devclopers concurrcnily request operations that access
objects in the shared project database. Thesc concurrent operations might violate the consistency of the
objects they access if they concurrently change cither the same attribute or dependent aaributes of the
same object in conflicting ways.

(] ® Shared Database
O e
YIS
- acces
O O
O ‘ ()
O 0 OC O A O
Agentl Agent2 Agend3

Figure 2-1: The Multi-Agent probicm in RBDEs

Since most operations correspond o rules and since chaining might lead o firng other rules that
pertorm more condlicting operations on the database, more inconsisiencics might be introduced in the
database. More generally, the overall behavior of cooperating developers in an RBDE can be modeled as
multiple sets of rules, where multiple rulcs from cach sct arc fircd concurrently (0 perform cperations on
the shared project database. This situation is depicted in figure 2-1. Bascd on this, the synchronization
problem that the proposed research aims (o solve can be divided into three subproblems:

* The conflict resolution problem: deciding whether or not two or more rules can logic;lly be
fired within concurrent chaining cycles (i.c., making surc that the conditions and actions of
thesc rules do not negate cach other).

* The consistency specification problem: specifying what kind of consistency has to be main-
lained in the database of the particular project. and what kind of concurrency is allowable
between developers' tasks?

* The concurrency control problem: given that scveral rules have been fired concurrently aﬁej
passing the conflict resolution _phase, how can we make surc that their access to dara is
consistent with the specificadon of the project.

We now precisely formulate cach of these subproblems. describe the related work that has been done t0
provide panial solutions to cach subproblecm, and prescnt proposed approach 1o solving it.

Trelis Propesal 3 Cecamber 1989

3. The Proposed Research

The proposed research addresses three problems associated with synchronizing multiple concurrent
agents in an RBDE: (1) the conilict resolution problcm, which involves choosing which rules w fire
automatically in response to changes in the project databasc: (2) the knowledge-based consistency
problem, which involves formulating a specification framework in which it is possible to provide an
RBEE with the data consistency desired for, and the lcvel of inconsistency that can be tolerated by, a
specific project.: and (3) the concurrency control problem, which requires finding a mechanism that
enables the RBDE 10 prevent concurrent access to data if that access violates the data consistency defined
for the particular project. In this scction, we formulate cach problem, present related work that addresses

it. and describe the proposed approach 1o solving it.

3.1. Conflict Resolution

_3.1.1. Problem Formulation

Assume that two developers Bob and Mary arc working on a common task within the context of an
RBDE. The objects* that Bob and Mary need to access in order to complete their task are stored in a
shared databasc. All the commands that access the databasc (c.g.. read, write, edit. compile, format, etc.)
arc implemented in terms of rulcs as described in sceuon 2. Each command that either Bob or Mary

sciccts causes a chain of rules, each of which may access objects in the database.

The problem is that when Bob and Mary rcquest commands concurrendy, Bob's command might trig-
ger a chain of rules. one or more of which might contlict with on of the rules on the in-progress chain that
Mary’s command has triggered. Aliernatively, the conilict might have occurred even in a single-user
context if, for cxample. Bob had requested two commands concurready (e.2.. Bob is executing two com-
mands in two different windows concurrendy). This problem ariscs when the RBDE allows multple
rules chains to execute concurrently. The trivial solution of simply scrializing chaining cycles is not
satisfactory since chaining might invoke long-lived operations.

Let us illustrate the problem by pursuing the cxample above. Assume that Bob requested a2 command
¢/ at time ¢/, which triggered the forward chaining cycle shown in figure 3-1. Before the chaining
resulting from ¢/ is finished, Mary requests a command ¢2, which corresponds to the rule r2, at time 2.
The condition of 2 is not satisficd, which causcs a backward chaining cycle in order to satisfy it. The
conditions and actions of the rulcs involved in both chains arc shown in figure 3-1. From the definition of
the rules. it should be noted that the condition of rule 7+ is ncgated by the actions of 73.

Now assume that the opcratons involved in both chaining cycles occur in the order depicted in the
figure. If the RSDE allowed r5 to be cxecuted. it would invalidate the backward chaining cycle that
Mary’s command triggered. The two possible actiors o take in this situation are: (1) do not fire r5 and
thus cnd Bob's forward chaining cyelc: or (2) firc »3 and then invalidate Mary's chaining cycle by

“the levm ofrect is used in the generic sense here to mean a data tem. For exampie. the source code of 2 procedure can be
sloreC 25 an object 4s weil 35 2 chapwr :n the user’s manuai of 3 system. In the aext subsecuon we define dala opjects more

lormauy

T Frocosad § Decamber 1989

~4

r3: acdons: ~p
r4: condition: p

TIME
commandcl

command c¢2

®
@

G condition of r4 was
satistied at this point.

r3 causes conditior, of _
r4 1o be not true.

+ Forward chaining

(2

‘ Backward chaining.

Figure 3-1: Exampic of contlict resolution problem
backtracking (i.c., from the point when 74 was lired). The appropriate action to take, it seems, depends on
the specification of the automation model of the project.

3.1.2. Related Work

The conflict resolution problem has been addressed in Al rule-based systems, such as OPSS production
systcms |Forgy 81), which arc typically composcd ol a sct of rules that operate on a shared database of
facts called the working memory. Each rule has a condiuen pan. which is a partial description of working
mcmory: if the facts in the working memory satisly this descnption, the rule can be fired. The production
systcm interpreter exccules a cycle that has three phases: (1) a match phase in which the left hand sides
of all productions arc matched against the working memory . resultng 1 a sct of instantiations of produc-
tions that arc ready to be fired: (2) the contlict-resolution phasc in which one of the instantiauons is
choscn for cxecution: and (3) the act p}\:.bt.‘ in which the actions of the sclected production are executed.
resulting in changes o working memory. This cycle is repeated unul it guiesces. In a SOAR production
system (Laird 86], the conflict resolution siep is skipped and all the production instantiations selected in
the match step are exceuted. The proposed RBDE modcl in this puper 1s closer to the SOAR model in
uus respect

Thesis Areposal 3 Decemoer 16%9

The match step is the most time consuming stcp in the cycle since it involves searching the knowledge
base (the working memory and the rules) in order to find information relevant to solving a
problem [Gupta 36]. Maich algorithms attempt to decreasce the number of search operations in a match
siep by saving the results of cxccuting the previous rccognize-act cycle so that only the changes o
working memory need 10 be considercd for the foilowing cycle. The Rete algorithm (Forgy 82] is an
example of a state-saving match algorithm uscd in OPSS production systems. This solution, however, is
not appropriate {or our model because we assumc an cnvironment that is interactive, which means that the
devcloper might at any point suspend his session, consistency prescrving, which might require saving
checkpoints, and dynamic, which mcans that rules can be added and dcleted dynamically. These charac-
teristics would require either saving the state of the match nctwork. which consumes a very significant
amount of space, or reconfiguring the match network, which consumes a considerable amount of time.

Many researchers have attempiced to significantly speed up the exccution of production systems through

the use of parallelism. Both Gupta [Gupta 86] and Mirankcr [Miranker 86] have concluded in their

_respective theses that the specd up that can be cxpceted from parallclism is quite limited in the context of
" OPSs production systems that are implemented using the Rete algorithm.,

In the proposed rescarch, we address a different problem that sounds superficially similar. Multiple
devcelopers working to complete a project, concurrently perform their tasks, which are made up of sets of
opcrations, each of which is implemented by a rule, cuusing multipic rules to be fired concurrendy. Since
each rule has a precondition that nceds to be satisficd. the maich sieps for these rules might be performed
in parallel. Thus, parallelism in this casc is a given and not a mechanism to improving performance.
However, any proposed solution will require the usc of the best algorithm possible for synchronizing
parailel rule executions. It is thus of interest 10 look at the results of parallel preduction system im-

picmentations.

3.1.3. Proposed Approach to the solution

The approach that we proposc lo solve this problem is to use a concept similar (o transactions in
database systems. The transaction concept was developed in iraditional database research in order (0
solve the consisiency mainicnance problem in these databascs. There is a lack of knowledge in traditional
databasc systems about the application-specific semantics ol databasc operations, and a need to design
general mechanisms that cut across many potential applications. Thus, the best a DBMS can do is to
abstract all operations on a databasc 1o be cither a rezd operation or a wrile operation, irrespective of the
particular computaton. All computations arc then programmed as transactions that consist of 2 sequence
of rcad operations, write operations, and condilional statements. The DBMS can guarantee that the
databasc is always in a consistent statc with respect to reads and writes by executing transactions atomi-
cally: i.e., either all the operations in a transaction arc performed in order or none are.

In addition to being consistency (atomicity) units, transactions arc also logical units that group sets of
operations that comprise a logical tasK. It is in this sense that | proposc o use Lransactions o solve the
conllict resolution problem by grouping the sct of rules that are fired by the RBDE automatically in
response to a developer's command cither directly (i.c.. the rule corresponding to the command) or in-
direcdy (i.c.. through chaining) during a sessicn into logical umits, These units would be most similar to

. ~eramber 198
Tuacsis Propesal 3 Tecember 1989

interactive transactions, where the code of the transaction is made up as ruies are fired and their actions
arc asscrted. [n other words, 2ach chaining cycic that is triggered in response to a developer's command
is cncapsulated in a transaction.

Given that cach rule now occurs within a transaction. the match step of the rule should take ino
consideration not only the condition of the rule, but also how the actions of the rule might affect the truth
of cenditions of other rules that have alrcady been fired in other in-progress transactions (chaining units).

3.2. Knowledge-Based Consistency

3.2.1. Problem Formulation
Consistency of a database is maintained if cach data itcm in the database satisfies some consistency

constraints that depend on the application. The databasc is said 10 be in a consistent state if every data

item in it satisfies all the consistency constrainis. _[n RBDEs. somc inconsistency can be tolerated as a

price for expanding the set of allowable interleavings between concurrent transactions, thus increasing
~concurrency. The level of tolerable inconsistency dcpends on the opcrations in a paricular applicaton.

For example, if two programmers John and Mary arc working on coding related pans of the same
subsystem, their respective tasks might last for several days or weeks. It is important to have a notion of a
task that needs to be completed (i.c.. all the coding has to be tinished in order to reach a satisfactory state
of the project), but that task ccriainly docs not need to be atomic. If Mary is modifying 2 module that
somchow depends on a module in John's part. shc would usually rather be able to look at the parual
modifications done to John's module than have to wait untl the modifications are completed and made
available to others. The reason is that it might be that Mary wanied to look at John's module in order to
look up the type of a variable that she knows John has changed recendy, but that will most likely not be
changed by John in the luturc. In this case, Mary will not be concemed about John's part not being in a
"consistent” state belore she can access it.

The problem thus is finding a framework for specifying which interleavings are allowable in a par-
ticular environment. The framework should specify the granularity at which different database operations

" can be interlcaved. This specification framework can then be uscd by a concurrency control algorithm (o

provide maximum concurrency while maintaining consistency.

32.2. Related Work

The idca of defining a framcwork [or specilying the consislency unit in databasc transactions was
proposcd by Lynch [Lynch 83], Garcia- Molina {Garcia-Molina 83. Garcia-Molina and Salem 87], and the
CAD group at MCC [Bancilhon ct al. 85]. Garcia-Molina’s semantic alomicity scheme statically divides
ransactions into atomic steps. and specilics compatibility scts that define the allowable interleavings with
respect (o those steps. Thus if transactions of type X arc compatible with transactions of types Y and Z,
then any two transactions T, of type Y. and T, of type Z. can arbitranly interleave their steps chi[h a
transaction T, of type X. There is thus no distinction between interleaving with respect 10 Y and inter-
Icaving with respect 1o Z.

Lynch obscrved that it might 5¢ morc appropriutc 10 have Jilicrent sets of interleavings (in the form of

T Decemeer 1989
iacsis 2roposal 3 Decemeer I

10

specific breakpoints) with respect 10 different transaction types [Lynch 83]. This observation seems 1o be
valid for RBDEs in which ac:ivities tend to be hicrarchical in nawre, for 2xamptle, software deveiopment
environments. Transactions in such systems can oficn be nestcd into levels, where at each level. trans-
acuons that have something in common. in tcrms of access to data itcms, are grouped. Level one groups
all the ransactions in the system whilc subsequent levels group transactions that are more strongly related
to cach other. A strong rcladon between (wo Lransactions might be that they orten necd to access the
same objects at the same time in a non-contlicting way. A sct of breakpoints (defining interleavings) is
then described for each level of the nesting where the higher order scts (for the higher levels) always
includes the lower order sets. This results in a total ordering of all scts of breakpoints. This means that
the breakpoints that specx'fy'imcrieavings at a level cannot be more restriciive than those that define

interleavings at a higher level.

Let us illustrate this concept by an example {rom the soltware development domain. Lat us suppose
that Bob, John and Mary are cooperatively developing a software project [n their development effort,
they need o modify objects (code and documentation) as well as get information about the current status
of devclopment (e.g., the latest cross-refcrence information between procedures in two modules A and B).
Let us suppose that Mary starts two transactions (in two different windows. for example) Ty, and
T\fary2 10 modify a procedurc in module A. and get cross-reference information, respectively: Bob starts a
transaction Tgos 10 update 2 procedurc in module B: John starts two transactions Tj,pq; o0 modify

module A, and T, ., (0 get cross-rererence informalion.

Level] T\r{aryl Bary2 T30b1 Tionnt Trohn2 More
Allowable
/ \ Interleavings
Lavel 2 Tytary1 Tsob1 Tiohal Tvtary2 Trohn2
Level 3 T\'{ml TJohnl TBObl TMZI’YZ TIohnZ
Level 4 'Ij\{aryl T}ohnl TBobl TMaryZ TXohnZ v

Figure 3-2: Mululevel trunsaction
A nested transaction system can beesct up as shown in fizure 3-2. The top level includes all trans-

actions. Level 2 groups all modification ransactions (Tyy,. - Tgopt ad Tyonn;) t0gether and all cross-

refcrence transactions (Twm, and Tj,p,0) together. Level 3 separates the transactions according o

which modulcs they aifect: for exampic. it separates (ne transactions that modify module A (Tyyy and

T;onnt ! 'Tom those modifying medule B (Tgyp). Level tour contains all the singleton transacuons.

Thesis >roposal

Then, the scts of breakpoints arc specified by describing the transaction segments between the break-
points. For example. the top lcvel sct might specify that no intericaving is allowed; the second-level set
might specify that all modification transactions might intcricave at some granularity, and that cross-
reference transactions might similarly intericave, but that modification and cross-reference transactions
cannot interlcave (1o guarantee that cross-reference information docs not change while the transaction is

in progress).

Using the scts of breakpoints, the concurrency control mechanism can provide as much concurrency as
defined by the multilevel atomicity schemc. Thus, the mcchanism in our example might allow trans-
actions Ty, and Ty 0 interlcave their steps while modifying module A (i.e.. allow some level of
cooperalion so as not to block out module A for a long time by one of them), but it will not allow Ty,
and Tj,;,, 0 interleave their operations. ’

Both Garcia-Molina’s and Lynch's schemes assume that the body of each transaction is known, and
thus they can swatcally define the breakpoints and ailowed interlcavings. However, as was noted in the
Statement of the problem, developers operate on the project database interactively. Thus, their long
transactions will not be programmed (i.c., it will not bc known what operations might be executed in
them). Also, the resuits of databasc operations arc nondetcrministic, which necessitates having multipie,
possibly murtually exclusive, actions in the rules that implement the operations. Given the interactive
nature of devclopers’ sessions and the nondcterminism ol dalabasc operations, the assumpuions made
above become inappropriate. Specilically, it would be impossiblc to classify transactions apriori into
dirferent types and then specify the interlcavings between these types. Thus, we need to develop a
framework that builds on the scmantics-bascd consistency work, but that takes into consideraton the

interacdve and open-cnded nature of transactions in RBDEs.

3.2.3. Approach to a solution

The approach 1o solve the problem of defining consisicney for a specific project is three-pronged: (1)
define the smallest consistency unit in RBDE tasks: (2) define developers tasks. that may last for several
scssions, in terms of transactions: (3) develop a framework for specilying consistency for 4 particular

project and allowable concurrency levels.

Defining the Smallest Consistency Unit: In an RBDE. cach rulc has a condition that ensures that the
database operation it implements happens in the correct context (i.c.. in a consistent state), and since the
acdons explicitly describe all the cffects of cach operation. cach rule, like an atomic transaction, trans-
forms the database from onc consistcnt statc to another. Thus. it might be reasonable to define the rule as
the smallest consistency unit. This unit might be too small for some projects, and thus the actual project-
specific consistency units will have to be specified in terms of a sct of rules.

Defining Tasks as Transactions: Each developer's task involve a non-deterministc sct of chaining
units, and can be modeled as a nested transaction made up of subtransactions which are the operations
performed during the session. Each operation is itscil a nested transaction that includes the subiran-
sactons represcnting the operations that arc performed duc to chaining. Each developer’s long trans-
action stans with a "begin task”, ends with a “end task™. and is interactive.

Knowledge-Based Consistency: Finaily. we need 1o develop a notion of a project-specific consistency

Thesis 2roposal 8 Decaember 1989

l"

unit that is more flexible than the traditional serializability-bascd atomicity unit. The desired consistency
can be specified in terms of breakpoints in the long transaction. where the unit of comsistency is the
operations between two breakpoints. Other transactions can look at the partial results of a long trans-
actions only at the breakpoints. Thus. the breakpoints specify points at which transactions can be inter-
leaved. In other words, they specify which transactions (or morc likely, what types of transactions) can
be intericaved at specific breakpoinis. Thus, different developers will be able to see the state of the the
same developers’ transactions at diffcrent breakpoints. This results in a flexible specification of concur-
rency levels between different kinds of tasks.

3.3. Concurrency Control

33.1. Problem Formulation
As ouuined in section 1, one of the problems associated with synchronization of multiple agents is

concurrency control, which stems (rom having a shared project database. The reason for storing objects

-belonging to a project in a databasc in the first placc is that RBDEs. like other development environment
models, utilize database technology to uniformly manage data (c.g.. design documents, circuit layouts,
source files, erc.) manipulatcd by cooperating developers. Ullizing dawabase technology in development
environments is desirable for scveral rcasons including data integration, data integrity, convenience of
access, and data independence [Bemstein 87, Diurich et al. 87, Nestor 86, Rowe and Wensel 89].

Civen the nested transaction model developed above to represent developers' long transactions, the
problem then becomes how to control the concurrent access to the shared database by operations within

the devclopers’ concurrent nested transactions.

33.2. Related Work
It might occur to the reader that an appropriale concurrency control mechanism to use is Moss's nested

transactions mechanism [Moss 85]. This mcchanism, howcver, like all other concurrency conurol

mcchanisms devcloped for traditional databascs would require that the developers® long transactions be
atomic and scrializable. Serializablc cxccutions of transactions with respect to reads and updates on the
‘databasc are enforced in conventional concurrency control mechanisms because of: (1) the lack of seman-
tic information about the databasc operations, and (2) the desire (o design general-purpose mechanisms
that do not depend on application-specific information [Bemnstcin and Goodman 81]. But there is nothing
that makes a non-serializable schedule inherently inconsistent. And although scrializability is acceptable
in traditional applications, which involve transactions that last for a short period of time and that are
programmed (i.e., the code that the transaction cxccutes is known before the transaction stars). it is 100

restrictive for advanced applicatons. such as multi-agent RBDEs.

Even in the simplified casc of programmed long transactions, the performance of such an algorithm
would not be acceptable because the operations ol the transactions might take an arbitrarily long time ©
complete. Some of these long transactions need 10 access the partial resuits of concurrent transactions in
order to achicve cooperation among designs. Thus, isoluting long transactions not only constrains concur-
rency, but it also prevents desired cooperation among developers and prevents transformation of the
project database 10 a new consistent siate i that ransiormuation requires concernted actions by muitipie
deveiceers.

r~o Qs
Thesis 2roposal 8 Cecember 1989

The concurrency conuol requirements for development environments inciude supporting long trans-
acuons, cooperative (transactions, user control. and complex objects {Bancilhon et al. 85, Barghouti
89, Yeh et al. 87]. Rescarchers have recendy addressed these rcquirecments and have designed several
unconvenuonal concurrency control mechanisms. The problem with thesc mechanisms is that most of
them only address one requirement, and that none of thcm compictcly define the semantics of database
operations and the user tasks in which these opcrations occur. It is important, however, to understand
thesc mechanisms because a morc satisfactory solution to the concurrency control problem will definitely
build on many of the concepts and ideas they cxplore.

Semantics-Based Consistency: One of Lhe kcy idcas that the proposed research will rely on is that of
utilizing applicadon-specific semantics of databasc opcrations and uscr tasks in order to increase concur-
rency. This idea has been explored in two main approaches that have been pursued to support long
transactions (LTs): (1) extending scrializability-bascd mcchanisms while still maintaining serializable
schedules: and (2) relaxing scrializability of schedulcs containing LTs. The first approach makes use of
any additional information that can be extracted about transactions, and uses that information with one of

<the traditional techniques, while maintaining the same ‘traditional scheme in case the additional infor-
mation is not available. Mechanisms such as altruistic locking [Salem et al. 87], commutatvity-based
concurrency control [Weihl 88], and snapshot validation (Pradc! et al. 86] are examples of the extension
approach. The probiem with this approach is that il assumcs the availability of specific semantic infor-
mation to- extract, such as information about access patterns of transactions. which might not be ap-
propriate for all applications. Another problem is that they assume programmed transactions and do static
analysis using the semantic information. The solution we desire cannot assume either of these two things.

In addition to long transactions, it is important to address the issue of cooperation among concurrent
agents in the proposed rescarch because cven in a relatively small project in which developers work
independendy most of the time on the parts ol the project they are responsible for, they need to interact at
various points to integrate their work. In a larger project, which involves a large group of developers
divided into several groups, cach rcsponsible for a pan of the development task, members of each group
usually cooperate 0 complcte the part they are responsible for. In this case. there is a need 10 suppont
-cooperation among members of the same group. as well as coordination betwcen multiple groups. Thus.
isolating long transactions that encapsulate individual developers’ tasks not only constrains concurrency.,
but it also prevents desired cooperation among developers and prevents transformation of the project
database 1o a new consistent state if that transformation requires conceried actions by multipie developers.
There arc scveral mechanisms and concepts that were developed 1o address the issue of cooperation
among concurrent transactions. We present these concepts and mechanisms and explain why they do or
do not help us in formulating our approach to a complete solution.

Dynamic Restructuring: Onc concept that has been proposed is that of dynamically restructuring
transactions as more information about the usuge of rcsources becomes available. The concept was
proposed by Pu er. al [Pu et al. 88| and uscd in a mcchanism called commit-serializability, which, in
addition to supporting long Lransactions. supports uscr control over transactions by allowing users to split
and join their transaczions dynamically in order 1o resiructure the in-progress transactions as new infor-

mat:ion becomes available.

Tacuis Preposal 8 December 1989

Coordinated Access: Another approach that has been uscd 1o coordinate access 10 shared data (in the
form of individual files) is the reserve/deposit mechanism [Tichy 85], which has been extended to work
on collections of files by providing a two-level databasc hicrarchy consisting of a public shared database
and private databases for each developer [Loric and Plouffc 83. Kaw. and Weiss 84, Kaiser and Feiler 871.
Other mechanisms provide a multilevel databasc hicrarchy capable of providing more
concurrency [Kaiser and Perry 87, Honda 88].

User Groups: The concept of coordinaicd access, however, only addresses the issue of accessing the
database from the viewpoint of data in the sense that it docs not associate collections of data with specific
devclopers. In order to do that two new facililics were introduced to be used by concurrency control
mechanisms. These arc the concepts of groups [Abbadi and Toucg 88, Skarra and Zdonik 89), and
notification [Yeh et al. 87, Leblang and Chase. Jr. 87]. Scveral mechanisms use these concepts to imple-
ment concurrency conurol policies that support synergistic cooperation among multiple
developers (Klahold et al. 85, Bancilhon ct al. 85. Kgiscr 90].

. The third requirement that has also becn rcccnIly addressed by some researchers is that of complex
6bjects. In advanced database applications, dawa is often defined in multiple levels of granularity. For
example, a data object that represents a program in a software project might consist of modules, each of
which contains procedures and documcntation. If a uscr wants 10 gain-exclusive access to the whole
pregram (perhaps to build the exccutabie of the program). he has to make sure that every subobject is
made unavailable to other users. In this casc, it is convenicnt to be able to lock the entire nested object in
one operation rather than requiring a scparatc operation for cach subobject. This, however, should not
prevent the user {rom locking a subobject exclusiveiy without having to lock the whole complex object.
There is thus a need for a concurrency control mechanism that operates on complex objects.

To suppornt compiex objects, the hicrarchical datz model of advanced applications has to be incor-
porated into the concurrency control mechanism. The Orion object-oriented database system incorporates
such a muitiple granularity data model into scrializability-bascd 2PL protocols [Kim et al. 38, Garza and
Kim 88]. Another approach is to modcl hicrarchical access to dala as a nested object system [Martin 87].
Each object in the system cxists at a particular level of data abstraction. Operations are specified for

“objects at all levels where operations at level £ arc spcciﬁcd in tcrms of operations at level i-/.

The mechanisms presented above follow the trend of using more semantics that is now available in
order to improve concurrency. The scmantics uscd includes information about interleavings between
transactions, about the division of tasks among Lcams ol developers, about the structure of complex
objects, and the access patierns of transactions. In a multi-ugent RBDEs, all these kinds of information
arc available and can thus be uscd to intcgraic the mechanisms for supporting LTs with those supporting
synergistic cooperation and complex objects. What is missing in the above mechanisms is the ability to
define the exact semantics of databasc operations: i.c.. what cach operation changes in the database and

what arc the implicaions of thosc ¢hanges. [this information were available in the form of the

knowledge-based consistency framework as proposcd in the previous subsection, it can be used to provide
more flexible concurrency control mechanisms.

8 Decempber 1989

Thesiy Proposal

3.3.3. Approach to a Solution

The approach 10 solving this problem builds on the solution that was suggested by the CAD group at
MCC [Bancilhon et al. 85], which allows the operations ol developers’ long transactions (o be inter-
lcaved. The mcchanism that the CAD group proposcd is (o treat all the operations that are pertormed
within the long transactions of devclopers in the same team as if thcy were requested by the same trans-
acuon. Thus, the mechanism would only insist that the leal operations (not the nested transactions) be
scralizable. This mechanism cannot be uscd “as is”. however, in a multi-agent RBDE because of inter-

active and open-cnded naturc of developers' scssions and operations.

An appropriate mechanism would have to lake into account the consistency framework as described
above, as well the notion of teams (or groups) of developers working on the same task. The idea would
be that the mechanism would provide more concurrency for members of the same team at the expense of
sacrificing some consistency as long as the sources of the inconsistencics are known to the system. This
would enable developers to query the systcm about remaining inconsistencies and remove them.

One remaining problem is the intcgration of the conflict resolution mechanism and the concurrency
~control mechanism. One approach that shows somc promisc at this point is the use of an attribute
grammar o represent the rule nciwork, where the conditions and actions of the rules are coded as at-
tricutes to the nodes representing the rules in the grammar. Concurrency control can then be integrated
with the change propagation aigorithm that controls the re-cvaluation of atribates (i.e., preconditions and
postconditions) in the auributed graph. A big advantage of pursuing this approach is the existence of
multi-agent change propagation algorithms for auribute grammars (Joscphine Micallef's thesis). Another
advantage is that the algorithm (or at lcast simpiificd version ot it) has already been implemented in the
Mercury system here at Columbia, and it might be possible (o usc the ideas in Mercury.

3.4. Contributions of the Proposed Research
The main contributions of the proposcd rescarch will be: (1) to provide a framework for specifying
consistency in a project databasc underlying an RBDE: and (2) to provide an efficient synchronizaton
mcchanism for multi-agent RBDEs that uses the framcwork 10 ailow the highest level of concurrency
" whilc maintaining the specified consistency. Wc expect 1o be able to demonstrate the feasibility of such a
concurrency control framework by implementing it in an cxisting RBDE called MARVEL, which is

described in the next scction. Additional contributions include the formalization of the concurrency

control problem in the context of RBDEs. This formalization will be useful for object-oriented databases.
all of which lack a flexible concurrency control mechanism. The deliverables that are to be completed in
the proposed work are:
1. A framework for specifying consisiency in a multi-agent RBDE in terms of interleavings
between transactions that cncapsulate developers” tasks.
. A corresponding concurrency control algorithm that suppons cooperative, long and inter-
active Lransactions. -

tJ

3. A synchronization mechanism that integrates the concurrency control mechanism with a
contlict resolution mechanism.

4. A sctof analytical metrics to measure the relative preductivity of multiple agents.

>) « 19
Thess Propesal % December 1989

16
5. Implementing the synchronization mechanism in MARVEL.

3.5. Measuring the Success of the Solution

The purpose of developing a flexible synchronizalion mechanism is 10 be able 0 maximize concurrent
access to data so that concurrent developers will not need to be delayed (by being locked out) longer than
necessary beforc accessing data. The purposc is 10 improve the productvity of developers working
concurrendy on the same project. Two problems that should be addressed in the thesis are: (1) how o
model the relative productivity of developers. and (2) how 1o measure this relative productivity.

In order to solve these problems, we need to develop mctrics for analyzing the relative productivity. At
this time, the approach of doing this is not clear.

4. MARVEL .
A software development environment kernel, MARVEL, that combines ideas from rule-based systems

iand object-oriented databases has becn implemented here at Columbia. Currendy, MARVEL is a single
user system. A multi-agent impicmentation of MARVEL using the algorithm that is proposed as part of
this thesis would provide a proof-of-concept implementation of the solution. In the rest of this section,
MARVEL is described, and some idcas about how o provide it with a multi-agent capability are oudined.

MARVEL is a kemel for software development environments bascd on rule-based process modeling and
controlled automation {Kaiscr ¢t al. 88b. Kaiscr ct al. 88a). The kcmel is wilored by specifications writ-
ten by designatcd MARVEL administrators in an objcct-oricnted language called MARVEL Strategy Lan-
guage (MSL). MSL specifications arc divided into moduics called siruregies that describe the organiza-
tion of data in the panticular projcct, as well as the process of development of the project. Organization is
described in terms of object classcs, where cach object in the database is an instance of one of the
specified classes. Multiple inheritance and complex cbjects are supported in MARVEL. The process
modc! is described in terms of rules.

MARVEL administrators typically devclop a library of stratcgics that are appropriate for the particular

~projcct. which arc then loaded on rcquest by into the MARVEL kemel by end-users (i.e.. developers

working on a project), who nced not be dircctly involved in writing strategies. In fact there is no need for
dcvelopers to be aware that the cnvironment is driven by rules.

The definition of classes in the stratcgics that arc loaded by MARVEL describe the organization of the
database in which MARVEL storcs all the objects that arc created in the lifetime of the project. Each
object is an instance of a particular class which defines the auributes associated with the object. The
values of the object's auributes arc manipulated by the rulcs detined in the stratcgies. MARVEL's rule
model is similar to the general model described in section 2. It supports both forward and backward
chaining. MARVEL's rules, howcver, gre automation rules and not consistency maintenance rules.

The most significant limitation of MARVEL's current implementation is its lack of support for multiple
uscrs working on the same project. Whenever a uscr starts a MARVEL session on a project database. the
whole database is 'ecked so that other users will not be abic to invoke MARVEL on it. Within the samc
MARYVEL session. multicic activitics cannet be performed concurrently cven on behalfl of the same user.

3 Decemoper 1989

[n order to use MARVEL as a framework for implementing the rescarch in the proposed thesis, we need to
transform MARVEL into a multi-agent system by implementing the proposed synchronization mechanism.

Y

Thests Proposal 5

v
&

mper 1989

(£

3. Plan of Action
This scction describes the steps that will completed in pursuit of the deliverables described in section 3.

The zoal of achieving the contributions can be decomposcd into three subgoals: (1) completing the design
of a generalized mechanism for synchronizing mullipic agents in an RBDE: (2) implcmenting the
mechanism in MARVEL: and (3) developing mctrics lor mcasuring diffcrence in productivity as a result of
applying the synchronization mechanism,

To achicve the first subgoal, the following steps need Lo be taken:

1. Design and implement a parallc! match network for rulc cxccution. As mentioned in section
3, this might be based on autributc grammars.

. Design and implement a framework to specify interlcavings between sets of rules, taking
into account forward and backward chaining.

(0]

. Design a concurrency control mechanism along the lines described in section 3

LI

. Integrate the concurrency control mechanism with the match network.

+

To achieve the second subgoal. the following nceds to be done:
1. Analyze the diffcrences between MARVEL and other RBDEs as far as concurrency control
rcquirements arc concemed.

2. Taking these differences into account. desiun o MARVEL-specific version of the interleav-
ings spccification [ramework for RBDEs.

. Implement the concurrency control algorithm in MARVEL.

)

fes

. [f time and other logistics pcrmit. apply the algorithm to the CLF environment.

6. Proposed Outline of the Thesis
The plan of action provided in the previous scction should give an insight into the organization of the
disscrtation. The tentative organization is as follows:
[. [ntroduction: siating the probicm and contexi.

2. Related Work)
a. Concurrency Control in Advanced Databusc Appiications: much of it would be from

my arca paper [Barghouti 89].

b. Parallc! Rule-Based Systems: basically Gupta’s thesis [Gupta 86], Miran?ce_r's
thesis [Miranker 86], van Bicma's thesis [van Bicma ar], and backward chaining
rulc-based systems, as well as a quick look at expert databascs and concurrent

Prolog.
¢. Distributed Anificial Intelligence.
3. Conflict Resolution
a. Transaction Model

b. Categorization of Conllicts
4. Knowledge-Based Consistency -
a. Semanucs-Bused Atomicity
b. Framework for Specifying Intericavings Amoeng Transactions

c. Specifving Consistency in Interactive Trarsacuons

Thesis Proposal

5. Concurrency Control in RBDEs
a. General Concurrency Control Requircments

b. Long Transactions

c. Cooperative Transactions
d. Interactive Transactions
e. Complex Objccts

6. MARVEL
a. Single-User Modcl

b. Objectbase and Object Management System
c. Controlled Automation
d. Multi-agent MARVEL

7. Conclusions and Fuwurc Work

Theois 2roresal

References

[Abbadi and Toueg 38]

Abbadi, A., and Toucg, S.

The Group paradigm for Concurrency Control Protocols.

In Proceedings of the ACM SIGMOD International Conference on the Management of
Data, pages 126-134. ACM Press. Chicago, IL, June, 1988.

(Bancilhon et al. 85]

[Barghouti 89)

~ [Bemstein 87)

Bancilhon. F., Kim, W., and Konh, H.

A Model of CAD Transactions.
In Proceedings of the 11th Internarional Conference on Very Large Data Bases, pages

25-33. Morgan Kaufmann, Stockholm, August, 1985.

Barghouti, N. S.
Concurrency Conirol in Advanced Database Applications.
Technical Report CUCS—25-89, Columbia University Department of Computer

Science, New York, NY, March, 1989.

Bemstein, P,
Database Sysicm Support for Soltware Engincering -- An Extended Abstract.

In Proceedings of the 9th International C onference on Software Engineering, pages
166-178. Monterey, CA, March, 1987.

{(Bemstein and Goodman 81)

(CLF Project 88

{Cohen 86|

Bemstein, P.. and Goodman. N.
Concurrency Control in Distribuled Databasc Systems.
ACM Computing Surveys 13(2):185-221, June, 1981.

CLF Manual
University of Southem California, Information Sciences Institute, Marina Del Rey,

CA, 1988.

Cohen, D.
Automatic Compilation of Logical Spccilications into Efficient Programs.
In Proceedings of the 3th Nutivnal Conference on Ariigicial Intelligence. pages 20-25.

AAAI Philadciphia, PA, August, 1986.

) (Dittrich et al. 87] Diutrich, K., Gotthard. W., and Lockemann. P.

(Forgy 81]

(Forgy 82]

DAMOKLES -- The Databasc System for the UNIBASE Software Engineering En-

vironment.
IEEE Bulletin on Datubuse Engineering 10(1):37-47, March, 1987.

Forgy, C. L.

OPS5 User's Manual.
Technical Report CMU-CS-81-135, Camcgic-Mcllon University, 1981.

Forgy, C. L.
Rete: A Fast Algorithm for the Many Patterm/Many Object Pattern Maich Problem.

Araficial Intelligence 19, Scplember, 19%2.

[Garcia-Molina 83]

Theus Procesal

Hector Garcia-Molina.
Using Semantic Knowledge for Transaction Processing in a Distributed Database.

ACM Transactions on Dutubuse Sysiems 3(2):186-213, June, 1983.

3 Terzmeoer 1089

[(¥)

[Garcia-Molina and Salem 87)
Garcia-Molina, H., and Salem, K.

SAGAS.
In Dayal, U., and Traiger, [. (cditor), Proceedings of the ACM SIGMOD [987 Annual

Conjerence, pages 249-259. ACM Press, San Francisco, CA, May, 1987.
Special issue of SIGMOD Record, 16(3), December 1987.

{Garza and Kim 88]
Garza. J., and Kim, W.
Transaction Management in an Object-Oricnted Databasc System.
In Proceedings of the ACM SIGMOD International Conference on the Management of
Dura, pages 37-45. ACM Press, Chicago. IL. Junc, 1988.

[Gupta 86] Gupua, A.
Parallelism in Production Systems.
PhD thesis, Camegie Mellon University, Depaniment of Computer Science, March,
1986.
Technical Report CMU-CS-86-122.

< Honda 88] Honda. M.
Support for Parallc! Development in the Sun Network Software Environment.

In Proceedings oy the 2nd International Workshop on Computer-Aided Software
Engineering, pages 5-5 - 5-7. 1988.

[Huff and Lesscr 88
Huff. K. E., and Lcsser, V. R,
A Plan-based Intelligent Assistant that Supports the Software Development Process.
In Henderson, P. (cditor), Proceedings of the ACM SIGSOFTISIGPLAN Software En-
3ineering Symposium on Pracucal Sofrware Development Environments, pages
97-106. ACM Prcss, Boston. MA, Novemober, 1988.
Special issuc of SIGPLAN Notices, 24(2), February 1989 and of Software Engineering

Notes, 13(5), November [988.

{Kaiser 90| Kaiser, G. E.
A Flexible Transaction Modcl for Sofiware Engincering.
In Proceedings of the 6th Internationul Conference on Data Engineering. IEEE Com-
puter Socicty Press, Los Angeies, CA, February. 1990.

To appeuar.

[Kaiscr and Feiler 7]
Kaiser, G. E., and Feiler, P. H.
Intetligent Assistance without Anificial Intelligence.
In Proceedings of the 32nd IEEE Computer Society International Conference, pages
236-241. IEEE Compuler Socicty Press. San Francisco, CA, February, 1987.

[Kaiser and Perry 87]
Kaiser, G. E., and Perry, D. E. ‘
Workspaces and Experimental Databasces: Automated Support for Software Main-
ienance and Evolution. _
In Proceedings of the Conference on Sufnvare Muintenance. pages 108-114. Ausun.

TX. Scptember. 1987,

[Kaiserct al. 88a| Kaiser, G. E., Feiler, P. H., and Popovich. S. S. ‘
Intelligent Assistance for Software Development and Maintenancc.

[EEE Software 513):40-49, May, 1988,

B 3 December (98G

Thosis Proposal

hla]

(Kaiseret al. 88b] Kaiser, G. E.. Barghouti, N. S., Feiler. P. H.. and Schwanke, R. W.
Database Support for Knowicdge-Based Engincering Eavironments.
[EEE Experr 3(2):18-32, Summer, 1988.

[Kaz and Weiss 34]
Katz. R., and Weliss, S.
Design Transaction Management,
In Proceedings of the ACM [EEE 2 st Design Automation Conference, pages 692-693.
{EEE Computer Socicty Press, Albuguerque NM, June, 1984.

‘Kimetal. 88] Kim. W., Ballou, N., Chou, H.. and Garza. J.
Integrating an Object-Oricnted Programming System with a Database System.
In Proceedings of the 3rd International Conjerence on Object Oriented Programming
Svstems. Languages and Applicarions. pages 142-152. San Diego CA. September,
1988.

(Klahold et al. 85] Klahold, P..Schlageter, G., Unland, R.. and Wilkcs, W.
A Transaction Modct Suppornting Complex Applications in Integrated Information Sys-
tems. .
In Proceedings of the ACM SIGMOD International Conference on the Management of
= Data, pages 388-401. ACM Press. Austin, TX, May, 1985.
[Laird 86] Laird, J. E.
Soar User's Munual
Xerox PARC., 1986.
Fourth Edition.

fLcblang and Chase, Jr. 87)
Leblang, D. B., and Chasc, R. P., Jr.
Parallel Softwarc Configuration Management in a Nctwork Environment.

[EZE Software 4(6):28-35, November, 1987.

[Lorie and Plouffe 83
Lone, R.. and Ploulfc. W.
Complex Objects and Their Usc in Design Transactions.
In Proceedings of the Annual Meet:ng of Databuse Week: Sngineering Design
Applications, pages 113-121. I[EEE Computcr Socicty Press, San Jose CA, May,

1683.

[Lynch 83] Lynch, N. A, .
Muitilevel Atomicity — A New Correetness Criterion for Database Concurrency Con-

trol,
ACM Transactions on Datubase Systems 8(4):484-302, December, 1983.

[Manin 87| Manin, B.
Modcling Concurrent Activitics with Nested Objects.
In Proceedings of the 7th Internativnal Conference on Distributed Compuring Systems,
pages 432-439. |EEE Compulcr Socicty Press, West Bertin, September, 1987.

[Minsky and Rozenshtein 88|
Minsky. N. H.. and Rocnshicin, D.
A Softwarc Devclopment Environment for Law-Governed Sysiems.
In Henderson, P. (cdhor), Proceedingys of the ACM SIGSOFT:SIGPLAN Software En-
gineering Symposium on Practical Sofeware Development Environments, pages
63-75. ACM Press, Boston MA, November, 1988.
Special issuc of SIGPLAN Notices. 242). February 1989 and of Sofrware Engineering

Notes, 13(3). November 1988.

Thests Proposal R Decemper 1939

[Miranker 86] Miranker, D. P.
TREAT: A New and Efficient Match Algrithm for Al Production Systems.
PhD thesis, Columbia University Depantment of Computer Science, June, 1986.

{Moss 85] Moss, J. E. B.
Nested Transactions: An Approach to Reliuble Distributed Computing.

MIT Press, Cambridge, MA, 1985,

{Nestor 36] Nestor, J. R.
Toward a Persistent Object Base.
In Conradi, R.. Didriksen, T. M., and Wanvik, D. H. (editors), Lecture Notes in Com-
puter Science. Volume 244: Advanced Programming Environments, pages
372-394. Springer-Verlag, Berlin, 1986.

[Perry 89] Perry, D. (editor).
Sth International Software Process Workshop.
ACM Press, Kennebunkport, Me, 1989.
To appear.

[Pradel et al. 86] Pradel, U., Schlageter, G., and Unland, R.
= Redesign of Optimistic Mcthods: Improving Performance and Availability.
In Proceedings of the 2nd International Conference on Data Engineering, pages
466-473. IEEE Computer Socicty Press, Los Angeles, February, 1986.

(Puct al. 88] Pu, C., Kaiser, G.. and Huichinson. N.
Spiit Transactions for Open-Ended Activitics.
In Proceedings of the 14th [nternutional Conference on Very Large Databases, pages
26-37. Morgan Kaufmann, Los Angcles CA, August, 1988.

[Rowe and Wensel 89|
Rowe, L. A. and Wcnscl, S. (cditors).
1989 ACM SIGMOD Workshop on Software CAD Databases.

ACM Press, Napa, CA, 1989.

(Salem et al. 87] Salem, K., Garcia-Molina. H., and Alonso. R.
Altruistc Locking: A Strawcgy for Coping with Long Lived Transactions.
In Proceedings of the 2nd [nternativnal Workshop on High Performance Transaction
Systems , pages 19.1 - 19.24. Pacific Grove CA, Scpiember, 1987.
-{Skarra and Zdonik 89] .
Skarra, A. H.. and Zdenik, S. B.
Concurrcncy Control and Object-Orcnicd Databases.
Object-Oriented Concepts. Datubuses, and Applications.
ACM Press, New York, NY, 1989, pages 395421,

ISmith et al. 85] Smith D. R., Kotik, G. B.. and Westfold. S. J. _
Rescarch on Knowledge-Based Software Environments at Kestrel Institute.

IEEE Transactions on Sofowure Engineering SE-11(11):1278-1295, November, 1985.

{Tichy 85] Tichy, W. F.,
RCS — A System for Version Control.
Software — Pructicg und Experience 15(7).637-654. July, 1985.

fvan Biemaar] van Bicma. M.
The Constraint-Based Paradigm.
PhD thesis, Columbia University Depantment ol Computer Science, To appear.

Thowis Fremasal S December 1989

[Weiht 88| Weihl, W.
Commutalivity-Based Concurrency Control for Abstract Data Types (Prefiminary

Repon).

In Shriver, B. (cditor). Proceedings of the 215t Annual Hawaii [nternationai Con-
Jerence on System Sciences. pages 205-214. [EEE Computer Society Press, Kona.
HI, January, 1988.

(Yehetal 87) Yeh.S., Ellis, C.. Ege, A., and Korth, H.
Performance Analysis of Two Concurrency Control Schemas for Design Environments.

Technical Report STP-036-87, MCC. Austin. TX. June, 1987.

8§ Cocomber 1989

The s Prepesad

21

{Kaiser et al. 88b} Kaiser, G. E., Barghouti, N. S., Feiler. P. H., and Schwanke, R. W.
Database Support for Knowlcdge-Bascd Engincering Environments.
IEEE Experr 3(2):18-32, Summer, 1988.

[Katz and Weiss 84]
Katz, R., and Weiss. S.

Design Transaction Management.
In Proceedings of the ACM |EEE 215t Design Automation Conference, pages 692-693.

[EEE Compuler Sccicty Press. Albuguerque NM. June, 1984.

[Kimetal. 88] Kim, W., Ballou, N., Chou, H., and Garza, J.
Integrating an Object-Oricnted Programming System with a Database System.
In Proceedings of the 3rd International Congerence on Object Oriented Programming
Systems, Languages and Applications, pages 142-152. San Diego CA, September,

1988.

(Klahold et al. 85] Klahold, P..Schlageter, G., Uniand, R., and Wilkes, W.
A Transaction Modc! Supporting Complex Applications in Integrated Informaton Sys-

tems.

o In Proceedings of the ACM S IG;IOD International Conference on the Management of
- Data, pages 388401. ACM Press, Austin, TX. May, 1985.
[Laird 86] Laird. J. E.

Soar User’s Manual
Xerox PARC. 1986.
Fourth Edition.

[Leblang and Chase, Jr. 87]
Leblang, D. B., and Chasc. R. P.. Jr.
Parallei Softwarc Configuration Management in a Network Environment.

[EEE Sortware 4(6):28-35. November, 1987.

[Lore and Plouffec 83]
Lore. R.. and Plouffc, W.
Complex Objects and Their Usc in Design Transactions.
In Proceedings of the Annual Meeting of Database Week,; Engineering Design
Applications, pages 115-121. [EEE Computcr Socicty Press, San Jose CA, May,

1983.

[Lynch 83] Lynch, N. A.
Multlevel Atomicity — A New Correctness Criterion for Database Concurrency Con-

trol.
ACM Transactions on Database Systems 8(4):484-502, December, 1983.

[Marin 37] Marin, B.
Modeling Concurrent Activitics with Nested Objects.
In Proceedings of the 7th Internutional Conference on Distributed Compuring Systems.
pages 432439, [EEE Computer Socicty Press, West Berlin, September, 1987.

[Minsky and Rozenshtein 88]

Minsky, N. H., and Rozcnshicin, D.

A Software Development Environment for Law-Governed Systems.

In Henderson, P. (cditor). Proceedings of the ACM SIGSOFTISIGPLAN Software En-
gineering Symposium on Practical Softwure Development Eavironments, pages
63-75. ACM Press. Bosion MA, November, 1988.

Special issuc of SIGPLAN Notices, 242y, February 1989 and of Sofiware Engineering
Notes. 13(3), November 1983,

Thes:: >roposal 3 Cecemier 1989

(Miranker 86] Miranker, D. P.
TREAT: A New and Efficient March Algrithm for Al Production Systems.
PhD thesis, Columbia University Department of Computer Science. June, 1986.

[Moss 85] Moss, J. E. B.
Nested Transactions: An Approach 1o Reliuble Disiributed Computing.

MIT Press, Cambridge, MA, 1985.

{Nestor 86] Nestor, J. R.
Toward a Persistent Object Base.
In Conradi, R., Didriksen, T. M., and Wanvik, D. H. (editors), Lecture Notes in Com-
puter Science. Volume 244: Advanced Programming Environments, pages

372-394. Springer-Veriag, Berlin, 1986.

[Perry 89] Perry, D. (editor).
Sth International Software Process Workshop.
ACM Press, Kennebunkport, Mc, 1939,
To appear.

[Pradel ct al. 86] Pradel, U., Schilageter, G., and Unland. R.
= Redesign of Optimistic Mcthods: Improving Performance and Availability.
In Proceedings of the 2nd Internutional Conrerence on Dara Engineering, pages
466-473. |[EEE Computer Socicty Press, Los Angeles, February, 1986.

{Puct al. 38] Pu. C., Kaiscr, G.. and Hutchinson, N.
Spiit Transactions for Open-Ended Activities.
In Proceedings of the [4th [nternutionul Conference on Very Large Databases. pages
26-37. Morgan Kaufmann, Los Angeles CA, August, 1988.

IRowe and Wensel 89|
Rowe, L. A. and Wenscl. S. (cditors).
1989 ACM SIGMOD Workshop on Suptware CAD Databases.

ACM Press, Napa, CA, 1939.

[Salcm et al. 87| Salem, K., Garcia-Molina. H.. and Alonso, R.
Altruistic Locking: A Strategy (or Coping with Long Lived Transacuons.
In Proceedings of the 2nd International Workshop on High Performance Transaction
Svstems , pages 19.1 - 19.24, Pucilic Grove CA, Scpiember, 1987.

-[Skarra and Zdonik 89|
Skarra, A. H., and Zdonik, S. B.
Concurrency Control and Object-Orented Databascs.
Object-Oriented Concepts. Datubuases, und Applications.
ACM Press, New York, NY. 1989, pages 395421,

[Smithctal. 85] Smith D. R.. Kotik. G. B.. and Westloid. S. J. .
Rescarch on Knowledge-Based Soltware Environments at Kestrel Institute.

IEEE Transactions on Softwure Engineering SE-11(11):1278-1295, November, 1985,

[Tichy 85] Tichy. W. F.,
RCS — A System for Version Control.
Software — Practice und Experience 15¢7):637-634. July. 1985.
[van Biecmaar] van Bicma. M. -
The Constraint-Bused Puradiym.
PhD thesis, Columbia University Department ol Computer Science, To appear.

§ Decamber 1989

s Propesal

(Weihl 88] Weihl, W.
Commutativity-Based Concurrency Control for Abstract Data Types (Preliminary

Recpor).
21st Annual Hawaii [nternational Con-

In Shriver, B. (editor), Proceedings of the
ference on System Sciences, pages 203-214. [EEE Computer Society Press, Kona,

HI, January, 1988.

(Ych et al. 87] Yeh, S., Ellis, C., Ege. A., and Korth, H.
Performance Analysis of Two Concurrency Control Schemas for Design Environments.

Technical Report STP-036-87, MCC, Austin, TX, June, 1987 .

Taens Propesal 3 December 1689

