Marvel 2.5
User Manual

Mara W. Cohen
Michael H. Sokolsky
Naser S. Barghouti

Columbia University

TR CUCS-498-89

March 14, 1990

©1990, M. Cohen, M. Sokolsky, N. Barghouti
All Rights Reserved

Programming Systems research is supported by National Science Foundation grants
CCR-8858029 and CCR-8802741, by grants from AT&T, Citicorp, DEC, IBM, Siemens,
Sun and Xerox, by the Center for Advanced Technology and by the Center for
Telecommunications Research. Sokolsky is supported in part by C.A.T. Barghouti is
supported in part by C.T.R.

Contents

1 Introduction

1.1 Who Would Use This Manual
1.2 Typographical Conventions
1.3 About MARVEL
14 About ThisManual
1.5 Some Useful Terminology
1.6 Preparing to Run MARVEL
1.6.1 Unloading the Distribution Tape
1.6.2 MARVEL Environment Variables.
1.6.3 The .marvelrcFile

2 A Tutorial
21 Tools . . . v o e e e,
2.1.1 How to Tell MARVEL About Structure and Behavior

2.1.2 Behavior of the Tools Used to Develop the Example Project

2.2 The Structureof MARVEL
2.3 Creating a MARVEL Objecthase
24 TheWindows
2.5 Designing the Objectbase
2.6 EditinganObject oo
2.7 Forwardchaining Lo
2.8 Backwardchaining

3 Advanced Tutorial

4 User Interfaces

4.1 Command Line Interface
4.2 Graphics Interface oo oo
4.2.1 Left Button In [dleState

O W W [QV] — —_ —

(a1}

4.2.2 Right Button In Idle State
123 In Command States

5 The Marvel Objectbase

51 Classes . v v v v v v v e e e e e e e
5.2 Objects. . . .o v v it e
5.3 Attributes e e e e e e e e

Browsing through the objectbase

B.1 Browse . . . v v v i v i e e e e e
6.2 Change. . . « v v v v v v i e e
6.3 Print . . . v i e e e
6.4 Set Commandso

Objectbase Manipulation Commands

71 Add . ..
72 Link e
7.3 COPY « v v v e e e e e e
T4 Move. e
T5 JoiR . o o e e e
76 Rename,
7.7 Delete o e

Changing Strategies

8.1 Loading Strategies
8.2 Merging Strategies,
8.3 Unloading Strategies

Advanced Features

9.1 Envelopes for Tool Invocation
9.2 Savepoints
93 Execute e

........

........

........

........

........

........

........

........

........

........

[S¥3
(3]

24
24
24
24

26
26
26
27
28

30
30
30
30
31
31
32
32

33
33
33
34

9.4 Objectbase Locking 36
10 Hardware Requirements 37
11 Unimplemented Features and Bugs 38
12 Marvel Strategy Language 40

12.1 Lexical Analysis 40

12.1.1 Keywords, 40
12.1.2 Numbers and Identifiers 41
12.1.3 Other Symbols 42

122 The Grammar 42

12.3 Imports and Exports 42

12.4 Class Definitions 42

12.4.1 Inheritance and Specialization 13

12.4.2 Attributes L 43

125 Relations. e 44
126 Rules L 45
12.6.1 Preconditions 45

12.6.2 Activities e 46

12.6.3 Postconditions., 46

12.6.4 Expressions e e 47

13 Manual Pages 48

S 0 Y 1 49

13.2 change ¢ . . . e e e 31

13.3 execute. oL e e e e e e e 33

134 help 0 L e e 54

13.5 Hok o o o e e e e e e e e e 55

13.6 load e e e e e e e 57

13.7 marvel 39

m

13.8 METEE - « v o v o v v oo s m e e e
13.9 PIIDE © o v oo e e e e e e e e 62
13.10PIOMPE « « o o o v v e v e e e e e e 64
1300QUIE v v v e e e e e e e e e e e 65
13.12readob & . v e 67
I13.13SAVE v o v o e 68
13.1dset . . . v e 69
13.15unlinK . . .t e e e e e e e e e e e e e e e e e e 71
13.16unload e 73
13.1TUSAEE « « « v v v e e e e e 75
13187 o e e e e e e e e e e e e e 76
CMarvel Strategy Files 77
A.l cmarvelchainingloado oo oo oL 17
A2 datamodelload Lo 78
A3 editdoad e 83
A4 compiledoado 36
A.5 archiveload 88
A6 buildload e 91
AT debugload L 94
A8 resdoad e 96
C/MARVEL Envelopes 98
B.l allarch. o o e 98
B.2 allbuild e 99
B3 analyze. e 100
B4 archive e e e 102
B5 build e 104
B6 buildall. e 107
B.7 checkdn 108

iv

B8 checkouto 109

B9 compile ... 110
BlO0debug 112
Blleditor 113
Bl2execute. 114
B3 Lstarchive. 115
Bldrelease 116
BldviewAerr. 117
Bl6viewCerr 118
BiTviewer 119

List of Figures

I Generating a MARVEL Environment. _ 4
2 A MARVEL Objectbase 6
3 The Data Model C/Marvel _ 12
4 Layout of the Marvel Screen _ 14
5 TheStatus Window. 15

vi

1 INTRODUCTION 1

1 Introduction

This manual is about MARVEL, a knowledge-based software development environ-
ment. Several papers present the idea and the architecture of MARVEL [4, 2, 1, 3];
this manual concentrates on teaching the user how to use the system. The manual
consists of several parts, including: a tutorial which walks the user through an ex-
ample, a reference section that documents each built-in feature of MARVEL, and an
appendix that provides a guide to the source code, and copies of the strategies and
envelopes used as examples in this manual.

1.1 Who Would Use This Manual

There are basically two types of people for whom this manual might be useful. The
first are students who want to learn the C programming language and know nothing
about UNIX. This manual will provide these students with an environment in which
to learn C without having to also spend time learning about UNIX. The second group
of people who might find this manual useful are those who are interested in MARVEL
for research purposes.

1.2 Typographical Conventions

In order to make this manual more readable there are certain typographical conven-
tions that you will notice and should understand. First, you probably have already
noticed that every time the word MARVEL appears it has a special font; this is be-
cause it is the name of the program that you are using. Any commands, rules, or
prompts that MARVEL shows you are in

boldface font and set off from the rest of the print,

so that you can easily identify them. Anything that you will be typing in response
to a prompt is in

italics and set-off from the rest of the print

so that it is different from the MARVEL prompts and identifiable. The programs that
you write are in a

typevwritten type of script

so that you will notice them as well. Anything between angled brackets, <>, is the
generic name for that thing which is different from the specific name. For example,
any object would be shown as < objectname >.

1 INTRODUCTION 2

1.3 About MARVEL

The idea of MARVEL was conceived at the Software Engineering Institute of Carnegie
Mellon University by Peter H. Feiler and Gail E. Kaiser in the summer of 1986. A
"proof-of-concept” implementation was done at the SEI at that time by Popovich.
The first large-scale implementation of MARVEL started at Columbia University in
the fall of 1986. During the summer of 1987, the project was a joint one with Siemens
Research and Technology Laboratory. This implementation, as well as the SEI im-
plementation, was built on top of a multiuser programming environment for C called
Smile[5] and was completed in September 1987. The second large-scale implemen-
tation, which this manual presents, began in September 1987 and was completed in
February 1990.

The current implementation is completely standalone with a persistent object
manager replacing Smile. In no way should this object manager be confused with a
generalized ob jectbase facility, as we recognize the lack of key concepts such as concur-
rency control. But it is appropriate to explore the automatic environment generation
facilities of MARVEL in a real, usable system. MARVEL consists of two executable
programs, the kernel and a separate strategy loader. The strategy loader operates in
a separate process to facilitate basic fault tolerance when changing environments and
debugging strategies, for only a very small performance penalty which the authors
feel is acceptable for the current experimental state of the system.

The basic idea of MARVEL is to automatically generate an environment to support
the specific needs of people working on a software project. MARVEL provides facilities
to generate such an environment in two phases. First, a person called the MARVEL
administrator writes a description of a software project. The description

e specifies the organization of the objectbase containing the components of the
project in terms of classes and attributes. For example, a C program may
consist of modules (each of which may contain macros, types, variables and
functions), documentation, and test suites. In the literature referenced above,
this is technically called the data model;

e models the software development process for that particular project in terms of
rules with preconditions and postconditions. For example, an editor (rule) can
have a precondition that the specified module be assigned to the current pro-
grammer, and a postcondition (result of the editor) be that the module’s status
is not-checked, implying it is necessary to invoke a type checker. These precon-
ditions and postconditions form rules for the operation of the environment, this
is technically the process model;

e provides mappings in the rules to envelopes, which in turn can call arbitrary

COTS (commercial off the shelf) tools or local tools.

1 INTRODUCTION 3

Second, a person called the userstarts up MARVEL and loads an appropriate sub-
set of the description to create MARVEL’s kernel. The kernel incorporates the descrip-
tion, tailoring its behavior according to the model of the software process depicted
in the description. The kernel includes an objectbase manager that understands the
organization part of the description, and tailors its model of the data according to it.
The result is a tailored MARVEL that the user can use to develop the target software
system which is called the MARVEL environment.

Figure 1 depicts the generation of a MARVEL environment. MARVEL’s kernel
supplies the meta-knowledge shared by all MARVEL environments, in particular how
to construct and maintain the objectbase and how to do controlled automation. In the
following sections, we guide you through an example in which you generate your own
programming environment that behaves according to the descriptions you provide
MARVEL.

MARVEL has two types of interfaces: a command line interface, and one using
X11-windows (version 3 or 4). Chapter 4 explains how to use MARVEL with each
of these interfaces. The tutorial presumes that the reader is using the X-windows
interface. However, both interfaces have equivalent power, thus the same objects
could be created in the line interface.

1.4 About This Manual

Much of the information in this manual is presented in the format of a tutorial
of MARVEL. The tutorial is included with the distribution system. Then there
are a number of sections on advanced topics, and a reference section that contains
manual pages for all the built in marvel commands. Finally, there are appendices
that document all the strategies used in the tutorial, and provide a software map for
MARVEL.

Please note that MARVEL is provided essentially free and “as is”. This means that
the authors are not responsible for providing any particular support or enhancements.
At this point, this is just not feasible with only two full time people working on the
system. We appreciate any feedback, but caution users not to expect fast response,
if any response.

1.5 Some Useful Terminology

This manual will be using common computer science terminology with which you may
not be acquainted but which you will find useful. The development of the objectbase
is akin to the growth of a tree. The object that is highest in the class structure is
called the root. In Figure 2 the root is the object labeled top. The root is represented
at the top of the tree and the rest of the tree grows down from it. In this manual,

1 INTRODUCTION

MARVEL
ADMINISTRATOR

Figure 1: Generating a MARVEL Environment

I INTRODUCTION 3

objects can be composite objects; any object that has other objects descending from
it is called a parent and those descendants are called children. Again observe Figure
2, the root top is a parent of both proj and proj2. Proj is in turn a parent to prog.
Looking at this another way: prog is a child of proj and proj is a child of top.
When you look at the representation of your objectbase as it grows you will notice
that it does resemble an upside-down tree. A MARVEL objectbase can contain any
number of trees, thus making a forest, just as many trees do in nature. However, the
entire objectbase can be viewed as a directed graph, as well, because directed links
between arbitrary objects are supported.

1.6 Preparing to Run MARVEL

This section includes a few things that need to be known in order to successfully run
MARVEL.

1.6.1 Unloading the Distribution Tape

Skip this section if MARVEL has already been installed on your system.

1. Select a user id. If you unload the tape as root, all the files will probably be
owned by a user not on your system. Otherwise, the user who unloads the tape
will own all the files;

(8]

Find an appropriate tape drive. The Sun tapes were made on a standard Sun
drive on a sun4. The IBM tapes were made on a IBM 6157-002. The DEC
tapes were made on a TK30;

3. cd to a directory under which you desire to have the MARVEL release reside.
There must not exist a directory or file called marvel there;

4. Insert the distribution tape into the tape drive;

5. Unload the tape with tar:

tar xf <raw device of tape>

6. Remove the tape;

1.6.2 MARVEL Environment Variables

There are several environment variables which need to be set before attempting to
run MARVEL:

1 INTRODUCTION 6

Figure 2: A MaRvEL Objectbase

1 INTRODUCTION

-]

MARVEL_HELP DIR A directory where MARVEL looks for manual pages. At
this point, this can not be a list of directories. The default is

/proj/marvel/help

MARVEL_DB_ROOT The name of the “top level” class in the data model. The
default is the for the C/Marvel environment, namely GROUP.

MARVEL_LOADER The path to the loader program. The default is
/proj/marvel/bin/loader

MARVEL_HELP_EDITOR A path to a text filter for displaying manual pages.
The default is

/usr/ucb/more

MARVEL will complain and not start up if it can’t find any of the information
described above. It is most convenient if these all be set up in each user’s home
directory.

1.6.3 The .marvelrc File

Each user can have a file called .marvelrc in their home directory. This file should
contain MARVEL commands, and they will be executed upon startup. This startup
file is a good location to put set commands for setting MARVEL variables, and other
common initialization tasks.

2 A TUTORIAL 8

2 A Tutorial

This section is an interactive tutorial of MARVEL . Many of the features of the system
are shown here through a simple example. This step by step tutorial will take you
through the creation of a simple C program. It is most helpful to run MARVEL as
suggested before attempting to use it on your own work. The tutorial should not take
long to follow through. This tutorial presumes that you will be using the X-windows
interface; there exists a command line interface that is explained in Chapter 4.

2.1 Tools

The following example uses MARVEL to help with the development process using the
C programming language for developing a system. In order for MARVEL to help youin
the development process, it has to understand how you want to structure your project
and how the tools behave. Knowing the structure enables MARVEL to organize the
components of the project and do all the book-keeping that is necessary. The behavior
of the tools and how they affect the various components provides MARVEL with the
knowledge of when to use these tools and when they cannot be used. The tutorial
will use Cmarvel, a MARVEL environment that comes with the distribution tape.

2.1.1 How to Tell MARVEL About Structure and Behavior

Having decided on the structure of the project (data model) and the tools (process
model) you will use in developing it, you now need to tell MARVEL about them:.
Unfortunately, MARVEL does not read the user’s mind nor does it understand natural
language. To solve this problem, we have developed an object-oriented language called
MARVEL Strategy Language (MSL), in which descriptions are written. The syntax
and semantics of MSL are described in C'hapter 12 of this manual.

The first step in using MARVEL is to write a description of the project environment.
The details of this can be found in the MSL manual. This is beyond the scope of this
manual, we will use a MARVEL environment called C/Marvel that has been developed
to test MARVEL and comes with the release. We briefly explain the description of the
example project with which this tutorial deals. The description is modularized into
units called strategies where each strategy gives a subset of the complete description.
Several strategies can be merged to produce the desired structure and behavior.

The MSL definitions that comprise C/Marvel are provided in Appendix A. The
strategy cmarvel chainingis a “root” strategy, in that all it does is “import” enough
other strategies to create an environment. The strategy data model describes the

data model of Cmarvel, and the remainder of the strategies describe the rules and
tools available with C/Marvel.

2 ATUTORIAL 9

The classes are connected together hierarchically through the attributes that are
of type set_of (called set attributes hereafter). For example, the PROJECT class has
an attribute called modules which is defined to be of type set_of MODULE. This
means that each object of type PROJECT will contain a set of modules. Similarly,
each object of type MODULE contains a set of procedures. (For more information
on this see Chapter 2.2.) There are several links of varying types in order to establish
non-hierarchical connections.

Describing tools and their behavior is slightly more complicated since we need to
first describe the tool in terms of the operations that it can perform (some tools can
be used to perform several operations). These operations are called activities. We
also need to describe the behavior of the tool in terms of the precondition of invoking
it and the several alternative results (called postconditions hereafter) of invoking it.
Finally, we need to specify how to obtain the input of the tool from the repository
which contains the components of the project, and how to map the outputs of the
tool into the repository. This is done with tool envelopes, which are in Appendix B.

We mentioned that strategies can import other strategies. This means that the
basic structure of the environment can be defined in one strategy, and then several
other strategies which define various kinds of behavior can all share this structure.
Such importing can (and should) be recursive. Marvel does not currently support
circular definitions of imports.

We now describe how to set up the project and start using the C/Marvel envi-
ronment to obtain the assistance that you need. Later on in the manual we describe
how to alter the behavior of MARVEL dynamically by switching strategies.

2.1.2 Behavior of the Tools Used to Develop the Example Project

The easiest way to describe the behavior of a tool is to specify when the tool can be’
invoked (i.e. the condition that must hold for the tool to be applicable), what the
tool expects as inputs, and what changes the tool affects on the components of the
project, if any. Let us assume that the tools that you will be using in this example
behave as follows:

arch_proj This tools archives the project after making sure that all the libraries are
archived.
arch.mod This tool runs the archiver if all the C files are analyzed.

arch_lib This tool archives all the libraries if all the modules are archived.

analyze This tool is used to analyze the code of a procedure. It is invoked only if
the procedure has been edited since the last time it was analyzed. In the case
of a successful analysis, the procedure is marked as Analyzed; otherwise, it is

2 A TUTORIAL 10

marked as NotAnalyzed to indicate that it needs to be modified (by using the
editor). Furthermore, the module in which the procedure exists is marked as
NotCompiled in the case of a successful analysis.

build_all This tool calE the routine that builds all the programs in a project.

build This tool links ali the components of the program and produces the executable.
It can be invoked only if all the cfiles of the program have been compiled. If
the building is successful, the project is marked Built; otherwise, it is marked
as NotBuilt.

compile This tool is used to compile a module. It can be invoked only if all the
procedures in the module have been analyzed and if at least one of these pro-
cedures has been modified since the last successful compilation of the module.
If the compilation is successful, the module is marked as ModIsComp.

deposit This tool is used to lock files. A file is deposited so that a back-up copy of
the file is created and, therefore, if a file is lost this back-up will remain and a
copy will still exist.

debug This tool is used to debug and execute PROGRAM type objects. It requires
the PROGRAM to have the builtstatus equal to BUILT or the debug.status

equal to NeedsDebugging in order to fire..
exec_prog This tools executes the executable files.

edit This tool is used to modify the code of a procedure. It can only be invoked
when the user desires; it expects the name of the object to be edited. It will not
work unless the file to be edited is reserved by the user. Edit is an overloaded
rule which differentiates between various usages of the same symbol.

list_arch This tool lists the contents of an archive file.

reserve This tool is used to unlock files that have been deposited. A file is reserved
by you so that only you can alter. When you are finished with this file you
deposit it and other people can then use and alter it.

release Currently, this tools is non-functional.
ViewCerr This tools displays all the compilation errors.
ViewAerr This tools displays the analysis of the errors.

view This tools displays the text of the object.

2 A TUTORIAL 11

2.2 The Structure of M ARVEL

This section describes the class hierarchy of MARVEL using the data model of the
C/Marvel environment. This hierarchy is very important because, as you shall see,
all the work that you do depends upon how the objects you create relate to each other
and how the attributes that relate to these objects allow you to do certain things.
Figure 3 will help you follow the discussion in this section.

The highest class on the hierarchy is called GROUP; this is the “root” of the
“tree”. Since you can create a forest, there can be more than one object of the class
GROUP. GROUP has children which are classified as projects. These projects
in the class PROJECT are actually called a set_of PROJECT (which is how all the
classes are defined) and describes the structure of a software project. It contains the
following subsets: libraries, bin, programs, doc, and incs. The libraries, class
LIB, is a share archive type library and consists of modules. The class PROGRAM
is different from PROJECT even though it does parent some of the same objects.
The difference is that PROGRAM is a single executable unit while PROJECT is a
collection of entities. The children of PROGRAM are: docs, cfile, modules, incs,
and ofiles. A MODULE is basically just a unit for organizing cfile and hfiles. A
CFILE is used to contain a C program and allows for the recording of pertinent
information like the state of compilation and analysis. The HFILEs are the include
files in a C program. The class DOC represents a set of DOCUMENTSs and they are
exactly what they sound like, files to text which is documentation for the project on
which you are working. Sets of HFILEs are represented by the INC class. Finally,
BIN represents the place where binaries for PROGRANMs are kept.

You have seen two diagrams that look very similar, Figure 2 and Figure 3. The
first one is an objectbase which is your model of your project. The second, the data
model, show you have the various classes fit together in the hierarchical structure.
Of course, there will be much similarity between your objectbase and the data model
since the objectbase is based upon the structure of the data model. Therefore, the
data model is the template for the design of the objectbase.

2.3 Creating a MARVEL Objectbase

As we have stated before, this tutorial is written presuming that you are using the
X-windows interface. How X-windows works is not discussed in this manual; we sug-
gest that you feel comfortable with the X-windows before you begin using MARVEL.
MARVEL assumes you have the window system started, and that you are working in
a text window.

Before you even begin MARVEL you must create a place for yourself to work. This
is extremely simple. First go to some appropriate place, like a directory that you
have created to hold all of your MARVEL work. Then type

2 A TUTORIAL ' 12

Figure 3: The Data Model C/Marvel

2 ATUTORIAL 13

make_db new.

Make_db is a script that creates the directory in which you will be working and
the directory in which your data will be stored. New is the directory in which the
our example will be run and that we call a MARVEL database. After make_db has
finished it reminds you to copy in your strategies and envelopes. Now type

get_.cmarvel new

which is a script that copies in the appropriate strategies and envelopes.

Start MARVEL by typing
marvel -w.
If you have an objectbase but are not in its directory then you will be queried with
objectbase name (q to exit)?

To which you respond with the name of the appropriate objectbase. In our case this
is new.

If you start MARVEL when you are in an objectbase then you will not be asked
which objectbase you wish to use; N ARVEL presumes that you will use that object-
base. However, if you are not in an objectbase then you will be queried.

2.4 The Windows

There are two windows that you will be using. The one from which MARVEL is called
is the start-up window. In this window many of the status checks are written. The
importance of these checks and how you interact with them is explained throughout
the tutorial. From this window the second window, the MARVEL window, pops up.
This section explains about the MARVEL window. You will use the mouse to move
around the MARVEL window. The chapter on user interfaces describes in detail all of
the uses that the mouse has; here let us which both imply that you place the mouse
pointer on the particular object or command and press a button.

The MARVEL window should appear (see Fig. 4). As you can see, the window is
divided into five parts. The status window (see Fig. 5) tells you the current version of
MARVEL that you are using, the current command that you are using, and the current
object. The section labeled display window contains the diagram of the relation-
ships between the nodes of the forest that you are going to build. The section labeled
text window will prompt you with questions and keep you notified about the status

2 A TUTORIAL 14

status window

display window 4 kernel

text window loaded

Figure 4: Layout of the Marvel Screen

of what you are doing. The kernel commands list the built-in commands (which
are explained in Chapters 6, 7, and 2.7) and the section labeled loaded commands
contains strategies for C/MARVEL. If you are starting out without ever having done
anything on MARVEL before then there should be no rules. This is because you have
not loaded a subset of a MARVEL environment.

To load a set of strategies from C/MARVEL choose the load box. The text window
will prompt you

Enter strategy name:
Type in
cmarvel_chaining

When load is finished the loaded commands should be offering you a choice of op-
tions like those revieW.ed in Chapter 8.1 and you can begin designing your objectbase.

2 ATUTORIAL 15

Marvel current current

2.5 command object

Figure 5: The Status Window

2.5 Designing the Objectbase

Now you want to begin your sample C program. This section will take you through
a step-by-step explanation of building a small objectbase. To start your tree follow
these steps:

[SV)

(9]

e

. click on add

(You can use any of the buttons on the mouse during this entire process.)

. choose the option horiz

. look at the text window and to

Enter <instance>:
reply
top

(the pointer can be anywhere in the MARVEL window for you to write in the
text window)

You will be prompted with:
Add instance top? [pick yes or no]

and you pick the yes option on the menu. (You have just created the root of
your tree and you will now begin creating the rest of the tree.)

again choose the add option
this time choose the option hier
to the prompt
Enter <attribute><instance>:
you reply

projects proj

2 A TUTORIAL 16

8.

10.

I1.

13.

14.

15.
16.
17.

On the text window you will be asked
Add instance proj to class PROJECT? [pick yes or no)

and you choose the yes option on the menu. (Notice that not only are the two
objects present on the display window but a line connecting the two is also
there. This line represents the hierarchical relationship.)

. In order to continue adding objects you must move down this hierarchy, so click

on the chahgg box
On the text window you will be asked
Pick an object to change to.
and you move your pointer to click on the object proj.
once again choose add
and again hier
this time reply
programs prog

and respond yes. You have added at the bottom of your tree an object of the

class PROGRAMS

do not forget to move down the hierarchy as we did before in steps 9 and 10,
otherwise you will not be able to add the next object; however, this time click
on prog since you want to add a level below it

once more choose add
again pick hier
this time reply

cfiles main.c

and respond yes

(for more information on add see Section 7.1) The name of this last object should
look somewhat familiar. You have just created the object in which you will write
your C program.

2 A TUTORIAL 17

2.6 Editing an Object

Before the object can be edited you need to use the reserve tool. This will prevent
anyone else from tampering with the file while you are editing it. To reserve the file
main.c you must use the start-up window. The best way to do this is to situate
this window and the MARVEL window so that you can see both at the same time.
In the kernel commands choose the option to edit. The text window will query
with:

Enter rule arguments:
and you respond
main.c

or you can pick main.c by clicking on it with the mouse. You will then see in the
text window that the precondition to edit is not satisfied and some chaining will
occur (see Sections 2.7 and 2.8 for more information about chaining). Now an edit
window should appear with your file waiting to be edited. The editor that you use
will depend upon to what your EDITOR shell variable is set. If this is not defined
then your editor will be vi. This manual does not explain anything about how to use
any type of editor, it presumes that you have a favorite one that you use and with
which you feel comfortable.

The editor that is specified in the editor envelope will be invoked. At this point,
you can add the code of the procedure or modify it if already contains code (if this
not the first time that you edit this procedure). Since we are more concerned with
learning about MARVEL than with programming write a simple C program, such as:

main()
{printf(‘‘hello world\n’’);}

Now save this program. When you exit the editor MARVEL automatically prepares
you for the next step.

Writing a program without seeing if it actually works seems somewhat silly, so
now compile your program. To do this click on the compile box in the list of loaded
commands. Choose the option of compile. The text window will prompt you
with:

Enter rule arguments:

and type

2 A TUTORIAL 18

main.c

You can watch as MARVEL does it’s chaining. First it checks to make sure that the
precondition for the analyze rule is satisfied, then it shows the options it finds for
forward chaining and whether or not they are satisfied. MARVEL should choose the
compile option and forward chain to that and then continue on to the build rule.
Finally, you will see:

Execution cycle completed.
In the start-up window the results should appear:
hello world

The next section explains the concept of chaining and how it relates to MARVEL.

2.7 Forward chaining

Forward chaining is based on the preconditions and postconditions of the rules that
run the program. The idea is that when a postcondition for a rule is satisfied the
precondition for the following rule has heen satisfied. In other words, the postcondi-
tion of the first rule is equal to the precondition of the second rule, and so on. This
postcondition-precondition equality continues ad infinitum until there are no rules
left to fire or a precondition is not satisfied.

When you quit the editor, the postcondition of the edit rule is asserted (the
following should appear in the text window):

Execution cycle completed.

This assertion satisfies the precondition of the analyze rule and the analyze rule fires
automatically. Thus, the analyze envelope will be executed and lint will be invoked
on the procedure that you have just edited. What happens afterwards depends on the
result of the analysis. If lint returns no errors, the analyzed attribute of the procedure
will be set to " Analyzed” and the edited attribute will be set to "NotEdited”. Chang-
ing the value of the analyzed attribute will cause the precondition of the compile rule
to be evaluated.

The precondition of the compile rule states that the activity will be invoked if
all the procedures that are members of the procs attribute of a module are analyzed.
Thus, when a procedure is analyzed, the precondition of the compile rule is evaluated
after binding the module variable (?m in the compile rule) to the module that contains
the procedure that was analyzed. If all the other procedures of this module have been
analyzed, then the module will be automatically compiled.

2 ATUTORIAL 19

2.8 Backward chaining

Forward chaining is applied to automatically invoke tools after their preconditions be-
come satisfied. Alternatively, backward chaining is used to invoke tools in attempting
to satisfy the precondition of a rule that the user invoked. MARVEL will inform you
if the precondition of the compile rule is not satisfied usually because the procedure
is not analyzed. It then tries to execute the analyze rule to satisfy that precondition,
but finds out that the procedure cannot be analyzed because it has not been edited.
At this point, MARVEL will terminate its backward chain because it cannot invoke
the editor automatically (because the editor has no precondition which indicates that
it can only be invoked by the user). Note that you could modify the edit rule to
contain such a precondition if desired. Then edit would automatically be invoked
upon detection of compiler or analysis errors.

We call cycles of chains execution cycles. A cycle can consist of either backward
or forward chains, not both.

3 ADVANCED TUTORIAL 20

3 Advanced Tutorial

This tutorial is for people who wish to learn a bit more about how the class structure
works. We presume that you have completed and understand the previous example
because we will build upon that knowledge and that example without reviewing it

4 TUser Interfaces

The command line interface for MARVEL does not use X-windows. It is based on
the user responding to a prompt and MARVEL responding to that command. The
difficulty with this interface is that it does not pictorially describe the hierarchy or
graph structure of the objectbase. The X-windows interface allows for graphics. With
a graphics interface a picture of the objectbase can be seen which is very helpful in
understanding exactly what you are doing and how objects relate to each other. The
graphics interface also allows for a MARVEL screen which helps to take the onus off
you, the user, because the commands and the rules for each command are present on
the screen and you do not have to remember all the commands and which rules apply
to which commands.

4.1 Command Line Interface

All of the commands that are discussed in this section are also available with the
graphics interface. The usages of these commands can be found in Chapter 13.
print This command prints information about the objectbase and the data process.

add This command adds an object to the objectbase. Given only a name, it will add
an object of the current class with the given name. Otherwise, it can add an
object hierarchically to a set attribute of the current object.

link This command is used for referring to things that are elsewhere in the objectbase
but not in the hierarchy.

unlink This command undoes the linking that is done by the link command.

change This command is used to browse the objectbase by changing from one in-
stance to another. This change can either be within the same class or across
classes, as with add.

execute This command is used to execute a MARVEL command script.

4 USER INTERFACES 21

load This command uses a list of strategy names as an argument. It will first unload
all the currently loaded strategies and then load the listed strategies, merging
them recursively. MARVEL will automatically load the strategies that are im-
ported by the specified strategy. This command could change the behavior and
structure of the environment depending on the new strategies that are loaded.

merge This command is used to merge new strategies with the currently loaded
strategies. Unlike the case with the load command, the current strategies are
not unloaded.

unload This command will unload all the strategies listed in the argument. It will
also prompt the user if they want to unload all the strategies that use the
strategies listed.

copy This command is used by the superuser to copy an object, it’s children, and
it’s attributes from one place to some place else.

move This command moves an object from one parent object to another.

join This command is used to reshape the hierarchy without using copy or move.
rename This command is used to rename an object.

delete This command is used to delete an object.

marvelize This command is used to migrate existing software systems into MARVEL.

set This command is used to set M ARVEL environment variables that control brows-
ing in the objectbase. These variables can be preset by the user in their .mar-
vel_rc file which MARVEL automatically executes upon start-up.

prompt This command is used to change the MJARVEL prompt.

save This command is used to update the objectbase by saving all the new additions
made to it since the last save.

readob This command is used to read an objectbase into memory. It is primarily a
debugging command for experienced MARVEL users.

? This command is used to display the list of available commands. This list includes
all the built-in commands and all the commands that are currently loaded
entered as rules.

help This command is used to display help about the command or subject that the
user requested. Otherwise, it will display general help about MARVEL. If a
"?” is given, a list of commands and subjects about which help can be found is
given.

usage This command is used to find the usage of a MARVEL built-in command.

4 USER INTERFACES 22

quit This command is used to leave the system.

4.2 Graphics Interface

With the mouse and the menus using MARVEL is fairly simple. By placing the pointer
on the option (either a kernel command or a loaded command) that you wish
and pressing on any of mouse’s buttons, the option darkens and what ever you have
chosen should happen. We call this state the idle state because you are not within
a command. When you within a command we call that the command state. There
are shorter ways to do some of the options on the menu by using the buttons on the
mouse.

You will notice that MARVEL provides much information in the text window,
often too fast for you to follow. Do not be concerned. Immediately next to the
loaded commands in the text window is a scroll bar (the narrow column with
the arrows at the top and the bottom). By holding your finger on the button of the
mouse, placing the arrow on the white box in the column, and dragging the arrow
up and down the column the text window will scroll. Now you can read all the
information at your leisure. To locate a loaded command that does not seem to be
listed use the Up and Down box on the menu list.

4.2.1 Left Button In Idle State

When you press the left button the attributes of the object to which you are nearest
will scroll on the text window. You can be anywhere in the area of the object to
get this information. This is the shortcut for the browse command with the info
option.

4.2.2 Right Button In Idle State

By using the right button you can accomplish the same thing as the change option
on the menu, the current object will be changed. Again, so long as you are in the
area of the object the current object is altered.

4.2.3 In Command States

command state: browse In stead of choosing the pan option and then selecting
right or left, once you are in browse you can put the pointer to the right or
left of the object from which you want to pan, press the button and you will
receive the information you requested.

4 USER INTERFACES 23

command state: change When you select the change option click on the object
that you want to change to and the Current Object will change.

command state: execute You do not have to type the name of the file that you
wish to execute, simply click on the file you want and then press the return
key.

5 THE MARVEL OBJECTBASE 24

5 The Marvel Objectbase

This section describes some important details of how MARVEL objectbases work in
general, rather then referring to a specific environment such as C/Marvel. 1t should
provide a good background for understanding much of the rest of this manual. We
first discuss classes, then objects, then attributes.

The following discussion will be more clear if the user has the notion of object
oriented programming in mind.

5.1 Classes

Classes are templates that are used to define the various kinds of objects you might
want to deal with in your objectbase. These temnplates are used to define the structure
of the objectbase, via two methods: composite objects, or the hierarchy we have been
discussing thus far in the manual, and links or directed pointers to specific objects or
attributes of objects.

Classes contain attributes that are used as templates when in comes time to create
an object of a particular class.

Classes also define inheritance and subclassing amongst objects.

5.2 Objects

Objects are instantiations of classes. An object is the representation of an actual
entity, such as a file. This representation includes attributes that define states, hier-
archy and links. In MARVEL , an object has a file system component (which might
be the contents of some file) and a set of attributes.

5.3 Attributes

Attributes are used to describe objects. There are a wide variety of types of attributes,
including:

integer Normal definition of integers;

boolean Either true or false;

string Any combination of letters, numbers, dashes and underscores;

real Numbers with exponents, decimals, etc. They are treated as doubles;

5 THE MARVEL OBJECTBASE

1\
(V1)

enumerated A set of strings, where the value of the attribute is a member of the
set;

user A user on the system. Can be the distingushed string CurrentUser to repre-
sent the current user of the system;

time The time. Can be the distingushed time CurrentTime to represent the cre-
ation time of the object this attribute belongs to;

text A text file. Not currently fully supported;
binary A binary file. Not currently fully supported;

set A set. Currently, only sets of other objects are supported, rather then sets of
any attribute.

link A link to an other object, an other attribute, a set of objects, and so forth.
Can also be a set of links. Can also be a generic link to anything. The link
mechanism is very general.

6 BROWSING THROUGH THE OBJECTBASE 26

6 Browsing through the objectbase

This section is an overview of various ways that you can browse through the object-
base. Only the Xwindows interface allows you to do browsing, the command line
interface does not. Browsing is the idea of moving around your objectbase to gather
information about the various objects that you have created.

6.1 Browse

Browse, which is located between print and add in the menu, has four options:
zoomin, zoomout, pan, and info. These options allow you to change the graphic
display of your tree and gain information about the place in the hierarchy that any
of your objects occupies.

1. Zoomin will shrink the display of your objectbase by taking the object that
you choose making it the root. The tree is resized to fill the display window.

(V]

Zoomout will enlarge the display by one level of hierarchy, giving the current
root’s parent(s) as the new root(s). The tree is resized to fill the display
window.

3. Pan will examine the node of your choice. You will be queried:
Pan right or left?

the kernel commands will change to right and left and simply click on the
one you prefer; the object to the right or left of the one from which you are
panning are shown to you. The tree is resized to fill the display window.

4. Info will provide you with more information on the instance that you pick. You
will be provided with the object’s name, the owner attribute, the owner class,
the parent object,.and the type of the name.

5. Done exits browse and returns you to the original kernel menu.

6.2 Change

Change allows you to move around your tree and forest. Since many actions you do
effect the current object (which is always shown in the status window) being able
to alter the current object is obviously advantageous. Change provides the ability
to jump around rather than having to climb the tree object by object.

To use Change:

6 BROWSING THROUGH THE OBJECTBASE

o
-1

1. select the Change option

o

read the text window, it should read
Pick an object to change to.
3. select the object by clicking the pointer on it

4. if it is a valid object then the Current Object in the status window will be
changed

6.3 Print

The very first command on the MARVEL menu is print. By choosing print your
menu will offer you the following options:

all lists all the classes and their superclasses, attributes, objects and their attributes
for all the instances. All the appropriate statuses of each object are listed. In
addition, each child object is shown under it’s parent in an easy to read fashion.
This is done in a non-recursive manner.

class lists all the classes, their superclasses, and attributes currently in the data
model.

inst lists the current data model using the class heading, so that all objects of the
same class are grouped together. The status of each is listed along with the
attributes.

rules prints information about one or all the rules in the objectbase. Either a specific
rule name can be entered or by hitting the RETURN key all the rules will be
listed.

rels is not currently available
string will search the class list for a match to the given string.

current lists the current object, it’s place in the hierarchy (recursively) and it’s
attributes

graph is not currently available

6 BROWSING THROUGH THE OBJECTBASE 28

6.4 Set Commands

The set command allows you to change various aspects of MARVEL to make it easier
for you to work. For example, you can change the fonts of the commands to make
them easier to read. Once you select the set command a new menu will appear in
the kernel command menu. Unless it is otherwise noted, by simply choosing the
options, its value will be changed from True to False or vice versa.

BoldFont By changing the font type the font in the text and status windows are
altered.

SmallFont By changing the font type the font in the display window is altered.
NormFont By changing the font type the font in the menus is altered.

Verbose By changing Verbose to TRUE, you change the amount of information
provided by the other kernel and loaded commands. With Verbose being
TRUE, more information is provided: with Verbose set at FALSE only the
absolute minimum information is provided.

AllInfo By changing AllInfo to True all the values of the attributes of the instan-
tiated objects and attribute templates of classes of objects will be displayed.
When it is False only the names of the objects in question will be printed.

AllMatches By setting AllMatches to True and giving it an object ,name all the
objects of that name are printed in the text window.

AutoVal This should always be set to True because when it is set to False then
the screen will not be updated when new objects are added or removed. The
alterations will show only after a print.

DEBUG By setting DEBUG to True when an MSL strategy is loaded the loader
provides information about the strategies begin loaded.

Depth By changing Depth the depth to which the objectbase can be printed can
be altered; this requires a number to be given at the prompt.

RuleMode By setting to DWIM mode (Do What I Mean) or DWIT mode (Do What
[Tell you) the intelligence of the rule overloading can be changed. DWIT is the
default mode.

PrintLinks By setting PrintLinks to True, when in print the links between an
object’s attributes and other objects are shown.

Print BLinks By setting Print BLinks to True, when in print shows the objects
linked to a particular object

6 BROWSING THROUGH THE OBJECTBASE 29

DisplayLinks By choosing DisplayLinks and setting it to True the links will be
displayed in the display window; setting it to False removes these links from
the display

ShowAll This option will show you all the values for all the variables that exist in
set.

7 OBJECTBASE MANIPULATION COMMANDS 30

7 Objectbase Manipulation Commands

This section explains to you the various commands that allow you to manipulate the
objectbase. These manipulations includesuch things as adding objects, moving them,
and copying them. While these commands are found both in the Xwindows Interface
and the Command Line Interface, this section only explains the Xwindows Interface.

7.1 Add

The add command allows you to add objects. There are two ways to add instances
to the objectbase, either hierarchically or horizontally. Adding hierarchically means
that you are adding more instances of classes one level below the one in which you are
currently working. Adding horizontally implies that you are inserting more instances
of the current class. Consider the objectbase like a forest; when you add hierarchically
you are extending the trunk and when you add horizontally you are growing a branch.

7.2 Link

The link command allows you to connect objects that are not connected in the
hierarchy, but that you realize will need to use each other. For example, in a C
program the “include” files. There are four types of links: generic, typed, single,
and multiple. Generic links link any object or attribute to any object or attribute.
Typed links link a specific type of object or attribute to a matching type of object
or attribute. Single links link one object or attribute to only one other object
or attribute. Multiple links link an object or attribute to numerous objects or
attributes; this is the default.

7.3 Copy

Copy, the eighth box from the top, allows you to copy on object, it’s children, and it’s
attributes from one place to some place else. By clicking on copy you are prompted
in the text window with

Pick an object to copy, or pick done.

Should you decide that you do not want to copy anything you can escape from this
command with the option done. To choose an object to copy click on it and you will
then be prompted with

Pick an object to copy to, or pick done.

7 OBJECTBASE MANIPULATION COMMANDS 31

Here you choose the object that will be the parent to the object that you are copving.
When you click on the parent object there will be a brief pause while the system
savepoints the objectbase and then does the copying and finally in the text window
you will see that the calculating is done. At the completion of the calculating the new
version of the objectbase is shown on the screen with the appropriate tree structure.
When you have finished all of the copying that you have to do then choose the done
option in the kernel commands.

Remember that the object that you copy must be lower on the hierarchy than the
object that will its parent(s). This relates back to the idea that you are copying the
attributes as well as the object and so the attributes must fit where the object will
be placed.

7.4 Move

Move, which is found directly below copy, is very similar to copy. Again you must
choose an object, this time to move, and a parent object to which to move this child
object. MARVEL will then unlink the object and all of its children and link it with
its children to the chosen destination. When you are done moving should there be
more than two objects of the same name which are of the same depth and children
of the same parent; however, you will see that the name one of them will be slightly
altered so that you and the system can tell the difference. Again, the parent object
must be higher on the hierarchy than the object which you are moving.

The first prompt to appear in the text window after choosing the move option
is

Pick an object to move, or pick done.

Simply, click the mouse pointer on the object that you wish to move. You will then
be prompted with

Pick an object to move to, or pick done.

Again, click on the object to which you wish to move. When you have finished all
the moving that you wish to click on the done option and you will exit.

7.5 Join

This command directly below move also reshapes your hierarchy. When you join
two objects they must be of the same class. If they are not then you will be notified
with a message saying that the joining has failed. The source object, the one that

7 OBJECTBASE MANIPULATION COMMANDS 32

is being joined to other objects, will disappear and it’s children will become part of
the destination object. If you join two objects and some or all of their children have
the same name then the set being moved, that is one set of children will be renamed.
For example: if you have two children of different parents both named fred and you
decide to join the parents then one of the children will become fred0 and the other
will remain fred.

7.6 Rename

This command permits you to rename your objects. Simply choose the option and in
the text window will appear the statement:

Pick an object to rename, or pick done.

Place the mouse pointer on the object that you wish renamed and click. In response
to the request in the text window

Enter new name for < objectname >:

tyvpe

o

main.c.

The change will be made and you can continue altering names or exit by choosing
done.

7.7 Delete

This command allows you to delete an object. You should only delete children that
are not parents. If you delete parents then you will also recursively delete the children
of that parent. Again, delete is fairly simple to use. Choose the delete option and

Pick an object to delete, or pick done.

Click on the object that you want to delete and the text window will query you as
to whether or not you really want to delete this object. This second chance offers
the option of canceling your delete before something important disappears. When
you have finished all your deletions choose the done option and you will have exited
delete.

8 CHANGING STRATEGIES 33
8 Changing Strategies

This chapter explains the various ways in which the user can change the strategies
that they are using. Without the mechanism of the strategies MARVEL would be
useful for only one specific environment; the ability to change strategies provides
MARVEL with a more generic use.

8.1 Loading Strategies

MARVEL’s behavior can be changed by loading a new set of strategies that redefine
the existing rules, and/or add new rules, or delete old rules. These strategies are
either written by the local MARVEL administrator or provided as examples with the
distribution tape. When you load a strategy there are three important things to
remember:

0

1. The new strategies are loaded without regard to the current strategies.

2. Load recursively loads all the strategies that it imports, meaning that an entire
environment call be loaded by loading the head strategy that imports all the
needed strategies.

3. Load saves all the current strategies in a temporary file in the data directory
of the current object.

Load is rather straight forward. Click on the load box. In the text window you
will be prompted with

Enter strategy name:

You respond with the name of the strategy that you will be using, ask your supervisor
if you are unsure. For our example we loaded cmarvel_chaining.

8.2 Merging Stfategies

MARVEL also provides a merge command to merge a strategy in with the existing
strategies. It is very similar to load except that it merges the strategy with the
current set of strategies, rather than saving the current strategies and entering a
whole new set. In that case MARVEL will notice the strategy was already loaded,
and unload it before merging in the new version. Merge, like load is recursive and,
so, will import all the strategies it needs. Merge becomes useful when you want to
add a specific rule to your current strategies.

8 CHANGING STRATEGIES 34

8.3 Unloading Strategies

Unload removes the strategies that you request. When you unload a strategy re-
member that the strategies that use the one which you are unloading are unloaded
as well. You will be queried as to whether or not you really want to unload all of
the strategies which MARVEL determines need to be unloaded in order to properly
unload the strategy originally specified.

9 ADVANCED FEATURES 35

9 Advanced Features

This section contains a variety of features not covered in the tutorial you have now
presumably read. These features include envelopes, savepointing, hardware platforms
required, and a list of unsupported features and bugs.

9.1 Envelopes for Tool Invocation

MARVEL is a kernel that can be instantiated with the specific information applicable
to a project. It does not provide a set of tools, but instead allows the user to use
any tools available on Unix. These tools do not know anything about the structure
and organization of the objectbase in which the project components are stored. En-
velopes serve as an intermediary that map the inputs and outputs of tools to/from
the objectbase. Let us take the compiler as an example. We assume that we are using
the C compiler cc and that the C program that needs to be compiled is stored in a
MARVEL objectbase similar to the one we have described. It is clear that there is a
need for an envelope to call cc with all the appropriate arguments, and possibly do
some postprocessing on the results. Finally, the envelope must inform MARVEL of
the results of the compilation.

Envelopes can be written in you favorite Unix shell programming language (such
as /bin/ksh or /bin/csh), or they can be local or COTS (Commercial Off The Shelf)
tools. Thus, the envelope mechanism of MARVEL is quite simple, yet very powerful.
Envelopes get information from MARVEL via the parameters specified in a rule. They
return information via return codes. A zero return code activates the rule’s first
postcondition, a one the rule’s second postcondition, and so forth. Thus MARVEL’s
behavior can be controlled relative to the success or failure of an envelope.

9.2 Savepoints

MARVEL creates backup versions of the objectbase and the current set of loaded
rules at appropriate points during a session. All the information MARVEL creates
is in somewhat readable ascii files. This information is a merged conglomeration of
the contents of the strategies and objectbase, thus is in a different format then the
strategy files dealt with in the tutorial. All the files in question are created in the
data directory of the current objectbase root. The working versions of the files are
called objectbase and strategy. The objectbase file contains all the instances MARVEL
knows about for the objectbase in question. The strategy file contains all the rules,
relations and class definitions for the currently loaded set of strategies.

During a MARVEL session, these files are saved into temporary versions (check-
pointed) at appropriate points. These points include:

9 ADVANCED FEATURES 36

After every add (objectbase),

At the beginning of every load, merge, or unload command (strategy),

At the end of every load, merge, or unload command (strategy),

e After a save command (objectbase), and

At quit time, if the user does not specify elsewise (objectbase and strategy).

The temporary objectbase files are called 0bj.<process_id>_<seq>, and the tem-
porary strategy files are called str.<process_id>_<seg>, and for those at the end of
load, merge or unload commands str.<process.id>_<seg>_new. <processid> is the
process id of MARVEL, and <seq> in a sequence number assigned in MARVEL to
assure uniqueness of files.

In the case of a system crash, appropriate copies (the newest ones, for example)
of these backup files can be moved to objectbase and strategy in order to avoid loss
of work. This must be done with appropriate Unix commands before restarting
MARVEL. '

Savepointing is done frequently in MARVEL due to the current nature of the
system. It is an academic system, and is not of "production quality”, per se. This
savepointing is very fast, and users should not find it bothersome.

9.3 Execute

This command executes a MARVEL script file. A script file consists of the first fifteen
bytes being: #!marvel script and the rest being any combination of commands.
The changes that have occurred after the execution will not be visible on the MARVEL
screen until a print all has been activated.

9.4 Objectbase Locking

The objectbase being used in a MARVEL session is locked, to prevent other users to
access and potentially corrupt it. Since this version of MARVEL is single user, this is
the appropriate thing to do. Locks are removed upon exiting, and in general in the
rare case of a coredump. Certain signals are difficult to catch, and if the database
remains locked, the mechanism must be broken. The lock is created by writing the
user’s name in the .marvel_id file in the objectbase directory. Removing this name
will unlock the objectbase. This should never be done while MARVEL is running, as
Unix would be happy to allow two people to overwrite each other, and MARVEL does
not protect against it.

10 HARDWARE REQUIREMENTS 37

10 Hardware Requirements

MARVEL runs on Sun3’s and Sund’s running SunOS 4.0, IBM RT’s running AIX 2.2.1,
and various Dec machines running Ultrix (v. 3.1). It has been most extensively tested
on the Suns to this point, but we will be working with it on the RT’s soon. It runs
best on machines with at least eight megabytes of main memory. The entire system
requires somewhere in the vicinity of 25 megabytes of disk storage to start with. To
run the X windows interface, a display terminal that runs the X-11 version 3 or 4
server is required. Such a terminal need not be on the machine on which MARVEL is
executing.

11

11

UNIMPLEMENTED FEATURES AND BUGS 38

Unimplemented Features and Bugs

The following list contains a variety of things that are currently either not imple-
mented, or don’t work properly. This list is incomplete and your additions would be
appreciated; however, updates and corrects will not happen immediately.

1.
2.

10.

11.

12.
13.

This bug list is incomplete.

On the RT’s with a 5081 monitor, the menus come out with a very light yellow
color, for some unclear reason. To get around this, assuming you are using
aixwm, set the background color (with the set option on the main menu) to
something like light blue. Note that this is different then the xsetroot -solid
command.

MARVEL will sometimes coredump and leave the objectbase locked upon startup
if it can not find fonts for X-11, or has some other connection problem. To
restart, remove the .marvel_id file in the objectbase in question, and make a
new one.

. If the loader finds a syntax error, it is not always so graceful in exiting. This

does not effect the MARVEL process, so ignore messages such as:
Loader: internal memory error. Bye.

Relations are not implemented. Do not use them.

The tree option of the print command does not do much.

MSL does not do as much semantic checking as it could/should during compi-
lation of strategies.

. The merge command is buggy, and the unload command is very buggy.

. Comparison of links might not work in the evaluator.

If DISPLAY _BLINKS is set, erroneous links (if any links exist) are displayed
when anything but the full objectbase is in the display window.

The output of usage is different than the manual pages. Trust the manual pages
first.

A few of the rules in C/Marvel do not do much.

Any environments included in the release except C/Marvel were developed with
earlier versions of MARVEL, and are thus probably incompatible. The changes
include minor grammar revisions, and changes in the internal storage format
for the objectbase and rules currently loaded. We have just not had the time
to update them.

11 UNIMPLEMENTED FEATURES AND BUGS 39

14. This manual is not complete, the target finishing date is May, 1990. Thus it
might not be as accurate as it should be.

We would be overjoyed to get bug reports, but please do not expect updates in
particular.

12 MARVEL STRATEGY LANGUAGE 40

12 Marvel Strategy Language

This section describes the Marvel Strategy Language, or MSL. MSL is used to write
formal descriptions of MARVEL environments. We have included an entire MARVEL
environment, CMarvel, in fact, in Appendix A of this manual. Most all of the features
of MSL are exploited in that example, you should check it for examples throughout
this section.

MSL is compiled into MARVEL by invoking either the load or merge command.
This is in actuality a separate process operating, then communicating the results
back to MARVEL via a condensed ascii format. There is minimal syntax checking,
the line in which the syntax error was found is specified, and the file from which it
came. Parsing in a given file of MSL constructs stops after the first syntax error.
Semantic errors are similarly noted, however some semantic errors are not caught
until the evaluator sees them while executing a rule. Should you see an unfamiliar
and unfriendly message appear from the evaluator, it is probably because of such a
semantic error in a MSL rule definition (of course, you might have found a new bug

).

You can only load or merge one file of MSL definitions at a time, but that file
can import others, in a recursive fashion. In fact, the parser will complain if you try
to load a rule before defining all the things that the rule uses.

MSL is parsed by a bottom up, reentrant parser designed with the tools Yacc
and Lex. Lex is only used for tokenizing. The parser makes one partial pass through
it’s input to determine the parsing order of imported MSL definition files, and a
second pass to actually parse the definitions. MSL definition files must end with the
suffix .load. Related MARVEL commands load and merge add on this suffix when
searching for files.

This is an advanced part of the manual. We present MSL only briefly here, some
intuition is going to be necessary to complete the picture. If you have not read
about MARVEL previously, you might not get the entire picture. Such reading is
recommended.

We first discuss the lexical issues, and then give all the grammar rules the parser
recognizes. The discussion will make use of forms that lex and yacc understand.
Anyone who understands simple regular expressions and BNF style rules should be
able to figure them out.

12.1 Lexical Analysis
12.1.1 Keywords

The following keywords are reserved by MSL:

12 MARVEL STRATEGY LANGUAGE 11

not exists forall notexists
notforall suchthat rules relations
end_relation strategy objectbase imports
exports and or string
integer boolean real set_of

seq.of single user CurrentTime
CurrentUser time link any_att
any_inst text binary enumerated
member add remove true

false superclass end_objectbase end

12.1.2 Numbers and Identifiers

Note that things in quotes are literal characters, — indicates options, + indicates
1 or more of the specified characters , and * indicates 0 or more of the specified
characters. Items in parenthesis indicates groupings, and items in curly brackets
indicate a predefined character class (see section a above).

Thus, the following definitions are used for numbers and identifiers:

DIGIT [0-9]
LETTER [a-zA-2Z]
LETTERS {LETTER}+
SPACES [\t]

IDSTRING {LETTER}({LETTERS}|{DIGIT}+|_)=*
COMMENT #.*

The following fairly g.eneral forms of integers, real numbers and identifiers are then
specified:

v {DIGIT}+ |

{DIGIT}+ -- IVAL in grammar

("-"{DIGIT}*|{DIGIT}*)"."({DIGIT}+) |

("-"{DIGIT}*|{DIGIT}*)"."({DIGIT}+)(Ele|E"~"|e"-"){DIGIT}
' -- RVAL in grammar

w2 {IDSTRING} -~ VARIABLE in grammar

"7 {IDSTRING}"."{IDSTRING} -- BVAR in grammar

w2 {IDSTRING}":"{IDSTRING} -- PARAM in grammar

{IDSTRING}("/"{IDSTRING})+ =-- PATH in grammar

{IDSTRING} -- ID in grammar

12 MARVEL STRATEGY LANGUAGE 42

12.1.3 Other Symbols

These special symbols are used by MSL:

(Y {YQ01:5,

= -- EQ
<> -- NEQ
<= -- GEQ
>= -- LEQ
:: =-- D_COLON .

12.2 The Grammar

The non-terminal start must start each file of MSL definitions. This section is orga-
nized by logical parts of the input.

start: STRATEGY_kw ID imp_exp objbase rel_section rule_section

12.3 Imports and Exports
imp_exp: IMPORTS_kw imp_name_list ’;’ EXPORTS_kw exp_name_list ’;’
imp_name_list: /* nothing */
| ID
| imp_name_list ’,’ ID
exp_name_list: /* nothing */

| ID
| exp_name_list ’,’ ID

12.4 Class Definitions

objbase: /* nothing */
| OBJECTBASE_kw classes ENDOBJBASE_kw

classes: class
| classes class

class: ID D_COLON superclasses attributes END_kw

12 MARVEL STRATEGY LANGUAGE

12.4.1 Inheritance and Specialization

superclasses: SUPERCLASS_kw °’;°
| SUPERCLASS_kw super_name_list ’;’

L

super_name_list: ID
| super_name_list ’,’ ID

12.4.2 Attributes

attributes: attrib
| attributes attrib

attrib: ID ’:’ noninitable_type ’;’
| ID ’: autoinitable_type ’;’
| ID ’:’ initable_type ’;’

| ID ’:’ initable_type init_val ’;’
autoinitable_type: USER_kw
| TIME_kw

initable_type: STRING_kw
| INTEGER_kw
| REAL_kw
| BOOLEAN_kw
| enumerated_type

noninitable_type: file_type
| complex_type
| link_type

enumerated_type: ’(’ et_name_list ’)’

file_type: TEXT_kw
| BINARY_ kw

complex_type: SETOF_kw initable_type
| SEQOF_kw initable_type
| SETOF_kw file_type
| SEQOF_kw file_type
| SETOF _kw ID
| SEQOF_kw ID

12 MARVEL STRATEGY LANGUAGE 14

link_type: LINK_kw
| LINK_kw link_t
| LINK_kw SINGLE kw
| LINK_kw link_t SINGLE_ kw

link_t: INTEGER _kw
| INTEGER_ kw
| REAL_kw
| BOOLEAN_kw
| ENUMERATED_kw
| USER_kw
| TIME_kw
| STRING_kw
| TEXT_kw
| BINARY_kw
| LINK_kw
| ID_kw.
| SETOF._kw ID
| ANYATTRIBUTE_kw
| ANYINSTANCE_kw

et_name_list: ID
| et_name_list ’,’ ID

init_val: /* nothing */
| EQ_tok ID
| EQ_tok PATH
| EQ_tok TRUE_tok
| EQ_tok FALSE_tok
| EQ_tok IVAL

| EQ_tok RVAL

12.5 Relations

Note that relations are not really supported in MARVEL currently. Typed links are
available, however.

rel_section: /* nothing */
| RELATIONS_kw relations

12 MARVEL STRATEGY LANGUAGE 45

relations: rel
| relations rel

rel: ID ’:’ rel_decl rel_fields ENDRELATION kw
rel_decl: ID type init_val ’;°

rel_fields: rel_decl
| rel_fields rel_decl

12.6 Rules

rule_section: /* nothing */
| RULES_kw rules

rules: rule
| rules rule

rule: ID ’[’ parameters ']’ ’: bindings ’:’ precond actions mult_posts
parameters: /* nothing */

| PARAM:
| parameters ’,’ PARAM

12.6.1 Preconditions

bindings: /* nothing */
| binding
| »(’ AND_kw binding_list binding ’)’

binding: *(" binding_op ID VARIABLE SUCHTHAT _kw precond ’)’

binding_list: binding
| binding_list binding

binding_op: EXISTS_ kw
| FORALL_kw
| NOTEXISTS_kw
| NOTFORALL_kw

precond: /* nothing =/

12 MARVEL STRATEGY LANGUAGE 46

| logical_expr

logical_expr_list: logical_expr
| logical_expr_list logical_expr

logical_expr: ’(’ AND_kw logical_expr_list logical_expr ’)?
| *(’ OR_kw logical_expr_list logical_expr)
| _»(* NOT_kw logical_expr ’)’
| »(’ expression ’)’
| »(* set_expr ')’

12.6.2 Activities

actions: {1 2}
| '{’ actionlist '}’

actionlist: action
| actionlist action

action: ID ID
| ID ID act_var_list

act_var_list: VARIABLE
| act_var_list VARIABLE

12.6.3 Postconditions

mult_posts: ’;’
| mult_post_list

mult_post_list: post ’;’
| mult_post_list post ’;’

post: post_l_expr
| »(’ AND_kw post_l_expr_list post_l_expr ')’

post_l_expr_list: post_l_expr
| post_l_expr_list post_l_expr

post_1_expr: ’(’ expression ’)’

12 MARVEL STRATEGY LANGUAGE 47

12.6.4 Expressions

The following rules for simple expressions are used for preconditions and postcondi-
tions.

expression: BVAR string_exp_op string_expr
| BVAR exp_op IVAL
| BVAR exp_op RVAL

set_expr: D[ID ’,” ID ']
| set_op [’ BVAR VARIABLE ’]’

string_expr: BVAR
| ID

exp_op: string_exp_op
TRUE_tok

| FALSE_tok

| GT_tok

| LT_tok

| GEQ_tok

| LEQ_tok

string_exp_op: EQ_tok
| NEQ_tok

set_op: MEMBER _kw
| ADD_kw
| REMOVE_kw

13 MANUAL PAGES 43

13 Manual Pages

This section contains manual pages for all MARVEL kernel commands. The descrip-
tions of the commands are designed to help you use the commands, rather than
explain how they work. The explanations include the usage for both graphics inter-
face and command line interface. These man pages are also located in MARVEL and
can be accessed by using the help command.

Note that these are all the manual pages that come with the release system, local
sites can add others which may not appear in this manual.

13 MANUAL PAGES

13.1 add
Marvel Help System Built in command Add
NAME:

add -- add an object to the objectbase
USAGE:
COMMAND LINE:

add <object>
Horizontally add <object> within the current class.
Note that all but the top level class can have duplicate
instances.

add -a <attribute> <object>
Vertically add <instance> downward to the specified
<attribute> of the current instance.

GRAPHICS:

1.click on add

2.click on either horiz or hier

3.select the instance by typing in the attribute and the
object name

4.confirm the addition by clicking on the yes box, or deny the
addition by clicking on the no box.

DESCRIPTION:
Add adds a new object the objectbase.

Marvel maintains a concept of a current object. When adding

49

an object, it is always relative to the system’s current object.

This enforces the structure of the system, as imposed by the
current data model. The current object can be changed with the
change command.

There are two basic ways to add an object within the Marvel

system. These are horizontally and vertically (hierarchically).

A Marvel objectbase is a directed graph, with an embedded

13 MANUAL PAGES 50

hierarchy. Thus horizontal movement within the tree moves the
current focus from one instance of a class to another. Vertical
movement within the tree follows attributes of instantiated
objects to an object of a different class. So you can view these
movements as either in a downvard direction or an upward direction.
Often upward movements are looked at as movements towards more
managerial objects, such as MODULES or PROJECTS, but this depends
entirely upon how the current data model has been defined by the
system administrator of Marvel.

EXAMPLES:
COMMAND LINE:
add new
Adds an object called new to the current class.
add -a modules NEW

Adds an instance called NEW and makes it a member of
the modules attribute of the current object.

GRAPHICS:
1.click on add
2.click on horiz
3.type in "new"
4.click on yes

SEE ALSQ:

change

13 MANUAL PAGES 51

13.2 change

Marvel Help System Built in command Change
NAME:
change -- change to a different object in

the objectbase
USAGE:
COMMAND LINE:

change
print a detailed description of the current object.

change <object>
Horizontally change to <object>, within the current
class. Note that this can be ambiguous, and is thus
not especially recommended. It is provided for
convenience.

change -c <class> <object>
Vertically change to <object>, within the class <class>.
This command is very useful for upwards changes,
especially to the root of a tree. But note that it can
be ambiguous, and is thus not especially recommended
except as just described.

change -a <attribute> <object>
Vertically change downward to <object>, found by the
specified <attribute> of the current object.

GRAPHICS:

1.click on change
2.select the object by clicking on it or typing its name

DESCRIPTION:
Change is used to change the system’s current object. The
current object is important because it is used to decide

what will be added in an add command.

A Marvel objectbase is a directed graph, with an embedded

Ut
o

13 MANUAL PAGES

hierarchy. Thus horizontal movement within the tree moves

the current focus from one instance of a class to another.
Vertical movement within the tree follows attributes of
instantiated objects to an object of a different class.

So you can view these movements can be either in a downward
direction or an upward direction. Often upward movements are
looked at as movements towards more managerial objects, such

as MODULES or PROJECTS, but this depends entirely upon how the
current data model has been defined by the system administrator
of Marvel. '

Since a Marvel data model can contain objects with the same
names, it is possible for some change commands other then
those specifying an attribute of an instantiated object

to be ambiguous. Such changes are allowed for ease of
navigation through the database, but should be used with
caution.

Change, without any parameters, will print where in the
data model you currently are. Such a remainder can also
be achieved with the verbose option set, which causes the
prompt to be a terse description of the current location
(see set).
EXAMPLES:

COMMAND LINE:

change -c projects PROJ

GRAPHICS:

1.click on change
2.click on proj

SEE ALSO:

add, set.

13 MANUAL PAGES

13.3 execute

Marvel Help System Built in command Execute
NAME:
execute -- exscute a Marvel script
USAGE:
exacute <file>
DESCRIPTION:
The execute command is used to execute a Marvel command
script. To create such a script, put any combination of

commands in a readable file. The first 15 bytes of the
file must be:

#!marvel script
After that, any commands can appear.

Regardless of the interface, Marvel command scripts are
executed as if in the line interface. Thus all parameters
to commands must appear. Any further input required will
be queried for exactly as in the line interface.

CAVEATS:

In the graphics interface, the screen will not get redrawn
before the script is finished, thus any changes to the
Marvel objectbase will not visible until a "print all"
command is issued.

13 MANUAL PAGES 34

13.4 help

Marvel Help System Built in command Help

NAME:

help -- get help

USAGE:

help command
help subject
help ?

DESCRIPTION:

SEE

Specifying a command will give you help for that command.
The full name to the command must be given.

Specifying a subject will give you help for that subject.
This tends to be documentary, rather then for answering
specific questions.

Specifying a *?’ will give you a list of topics for which
help is currently available. These topics include all
built in commands, help for rules, as provided by your local
system administrator, and general subjects of help.

ALSO:

Marvel Tutorial, by Mara W. Cohen, Naser S. Barghouti and
Michael H. Sokolsky.

Marvel literature.

13 MANUAL PAGES

(W1}
(&1}

13.5 link

Marvel Help System Built in command Link

NAME:

Link ~- link to an instance or attribute of an instancs.

USAGE:
COMMAND LINE:

link <source-att> <dest-class> <dest-inst>
link -a <source-att> <dest-class> <dest-inst> <dest-att>

GRAPHICS:

1.click on link
2.click on
a.instance
i.click on the destination instance or type its name and press
return
b.attribute
i.click on the destination instance or type its name and press
return
ii.click on the destination attribute listed in the command menu

DESCRIPTION:

The link command is used to define a graphical link from
the current instance to the destination instance, or
optionally, to an attribute of the destination instance.
The destination instance may be the current (source)
instance. The source attribute must of type "LINK". Only
one link is allowed directly from the source attribute to
the destination instance, although there may also be links
to as many unique destination attributes within that
instance as required.

This command will fail if any of the following are true:

1. Any of the items specified by the parameters are not
found in the objectbasse.

13 MANUAL PAGES

2. The source attribute specified is not a

3. The link already exists.

SEE ALSO:

unlink, set

LINK attribute.

13 MANUAL PAGES

13.6 load

Marvel Help System Built in command Load

NAME:
load -- load a strategy
USAGE:
COMMAND LINE:
load <strategy_name>
GRAPHICS:

1.click on load
2.type the strategy name and hit return

DESCRIPTION:

Load loads the strategy <strategy_name>.load, which
was written either in the MSL structure editor,

or by your favorite text editor with great care.

It is expected that any necessary path information
will be supplied with the argument.

Load does not take the current set of strategies

which are loaded into consideration. It just reloads
regardless of the situation. Load is recursive,

in that it loads the strategy specified, and all
strategies (recursively) which that strategy imports.
Thus, one head strategy can load a complete environment.

Load calls a separate program to do the loading. This
provides fault tolerance within Marvel. If anything
fails during the load, such as an imported strategy not
being found, the command will have no effect, the user
can find (or fix) the strategies in question, and start
again.

In reality, load loads the top level strategy, and
merges all imported strategies with that one. Thus,
a uniform objectbase and collection of rules is

13 MANUAL PAGES

created.

Before beginning to do any vork, load saves all the
current strategies in a temporary file in the data
directory of the current root directory. The file

is called str.<pid>_<seq>. Pid is the process id of
Marvel, and seq is a non-negative integer. Upon
successful completion of ths load, another file, with
the same name but _new appended to the end is created.
These files can be used to restore Marvel to a pravious
state after a crash.

A Unix environment variable called MARVEL_LOADER must
be set prior to starting up Marvel. The system will
not startup unless this variable points to a valid
executable program.

EXAMPLES:
COMMAND LINE:
load strategy/cmarvel_chaining
loads the strategy called cmarvel_chaining in a directory
called strategies under the current marvel objectbass.
chaining, and the strategies it imports, will
entirely comprise the environment, regardless of
what vas present at the onset of the command.

GRAPHICS:

1.click on load
2.type in cmarvel_chaining

SEE ALSO:

merge, unload.

13 MANUAL PAGES

13.7 marvel

Marvel Help System Subject: Marvel
NAME:

marvel
USAGE:

marvel [objectbase]

DESCRIPTION:

Marvel is a knowledge based software development environment.

A marvel objectbase is a persistent object structure which
maps to the file system, and a set of extensible rules which
have been loaded into Marvel to create an environment.

SEE ALSO:
Marvel Tutorial, by Mara W. Cohen, Naser S. Barghouti and

Michael H. Sokolsky.
Marvel literature.

39

13 MANUAL PAGES 60

13.8 merge
Marvel Help System Built in command Merge
NAME:
merge -- merge a strategy into the system
USAGE:

COMMAND LINE:
merge <strategy name>
GRAPHICS:

1.click on merge
2.type in the strategy name

DESCRIPTION:

Merge merges the strategy found in <strategy>.load into
the current set of strategies. Merge is very similar
to load, except that it uses the current state of
Marvel to start with, and merges everything into that
state.

If Merge is told to merge a strategy which is already

in the system, it will query the user to unload that
strategy. If the user says no, the merge fails. Other-
wise, that strategy is unloaded, and the new copy is
merged back in. This is very useful for making changes

to a strategy, because you do not need to explicitly unload
the strategy before reloading it.

It is important that merge, like lcad, is recursive in
it’s loading of imports. This includes imports of
already loaded strategies. An important factor here

is that the only strategy which merge will unload is the
one which is already in the system at the top level.
Users are warned to be careful vhen changing multiple
strategies at once. There are arguments for this, and
for unloading all imported strategies which are not
appropriate discussion for this manual page.

13 MANUAL PAGES 61

The load manual page contains further descriptions of

the workings of load, all the implementation details

there apply to mergse.

EXAMPLES:
COMMAND LINE:

merge strategies/cmarvel_chaining
merges the strategy called chaining in a directory called
strategies under the current marvel objectbase. The
resultant environment is a combination of this new strat-
egy, and what used to exist.

GRAPHICS:

1.click on merge
2.type in cmarvel_chaining and hit return

SEE ALSO:

load, unload.

13 MANUAL PAGES 62

13.9 print

-
Marvel Help System Built in command Print
NAME:
print -- print information about the objectbase -
and rules.
USAGE:

COMMAND LINE:

print -r <rule_name>
print -R <relation_name>

or

print -a .
print -¢

print -i

print <class>
print <class> <instance> <attribute> <instance>
print <class> <instance> <attribute> <instance> <attribute>

GRAPHICS:

1.click on print
2.click on

a.all
.class
.inst
.rules
.rels
.string
.current
.graph

o oHhoo A OO

DESCRIPTION:

Print is used to get information about the current
instantiation of Marvel, and to browse the Marvel object-
base.

13 MANUAL PAGES 63

Print -r, in the Command Line, and the option all, in

the Graphics, prints all the rules currently in the system. A
terse description is given. Print -r <rule_name> prints a
detailed description of <rule_name>, shoving preconditions
required for the rule to be executed and postconditions set
upon success or failure of the rule. Furthermore, descriptions
of where the rule will chain to (either forwards or backwards)
are shown for preconditions and postconditioms.

Print -R ,in the Command Line, and the option rels, in the Graphics,
prints all the relations currently in the system. (It does not
currently work in the Graphics.) By specifying <relation_name>
prints out information for that specific relation.

The remainder of the options to print control printing of
information relating to the objectbase. What gets printed
depends highly upon the print control variables allmatches,
allinfo and depth. See set for a complete description of
the functionality of these variables.

With no arguments, print, in the Command Line, and current, in the
Graphics, prints the current instance, and any hierarchical
information which can be derived from the data model.

Print -a, in the Command Line, and the option all, in the Graphics,
prints useful information about the entire data model. For each
class, attributes, and instances with attribute values are printed.

Print -c, in the Command Line, and the option class, in the Graphics,
prints information about a specified class. Included are all the
attributes and instances of the specified class, as in print -a.

Print -i, in the Command Line, and the option inst, in the Graphics,
prints a listing of instances of classes. This option is especially
helpful when allinfo is FALSE (see set), as a terse list of the
contents of the objectbase is output.

The remainder of the options describe either a particular
c¢lass, instance, or attribute, respectively. Anything can
be specified because of the recursive capability described
in the usage. This facility allows full browsing capability.

SEE ALSO:

set.

13 MANUAL PAGES 64

13.10 prompt

Marvel Help System Built in command Prompt
NAME:
prompt -- change the system prompt.
USAGE:
COMMAND LINE:
prompt <new_prompt>
GRAPHICS:

This does not exist in the Graphics interface because prompts
are not used.

DESCRIPTION:

The prompt command is used to change the system prompt
from "marvel:" to something else.

If verbose (see set) is TRUE, the prompt is set every time
a change command is issued, thus this command will have
limited purpose.

EXAMPLE:

prompt marvel_is_great:

sets the marvel command prompt to the string
"marvel _is_great:"

SEE ALSO:

set.

13 MANUAL PAGES

13.11 quit

Marvel Help System
NAME:
quit -- quit Marvel
USAGE:
COMMAND LINE:

quit
quit -s

GRAPHICS:

1.click on quit
2.click on
a.savae
b.no save
c.cancel

DESCRIPTION:

Quit is the proper method of leaving a session with Marvel.

Quit queries the user to save the current state of the
system, this includes the objectbase and the environment.
In general, this question should be answered with a "y",

Built in command

Quit

in order to continue with Marvel at a later point.

In the Command Line interface, -s can be specified in order
to quit and save, without being queried about really quitting.

In the Graphics interface, the save option saves the data model
when you quit, the no save option does not save the data model
vhen you quit, and the cancel option lets you return to Marvel

without quitting.
SEE ALSO:

save.

13

MANUAL PAGES

66

13 MANUAL PAGES

13.12 readob

Marvel Help System Built in command Readob
NAME:
readob -- reread the objectbase.
USAGE:
COMMAND LINE:
readob
GRAPHICS:
This command does not work in the graphics interface.
DESCRIPTION:
readob is used to read in the objectbase when an initial
read has failed due to a class definition not baing
present in the current environment.
The unwary user should be aware that this command can
have dangerous implications, and therefore should not be
used indiscriminately.

SEE ALSO:

save

67

13 MANUAL PAGES

13.13 save
Marvel Help System Built in command Save
NAME:
save -- write out the objectbase or strategies.
USAGE:

COMMAND LINE:

save [-o] [-s]

GRAPHICS:

1.click on save
2.click on
a.save - to save the objectbase
b.cancel - to exit the save command without saving

DESCRIPTION:

SEE

Save saves the current state of the objectbase. It is
recommended that save be executed frequently, to assure
a consistent database.

Save -s saves the current environment description. This
is generally not necessary, as it is done automatically
at quit time without user intervention. After loading,
unloading and merging a number of strategies, however,
it is prudent to issue save -s before continuing on with
a lot more work within that new environment.

-0 is the default, but must be specified with -s to
save both the objectbase and environment at the same time.

ALSO:

quit.

63

13 MANUAL PAGES

13.14 set
Marvel Help System Built in command Set
NAME:
set -- set certain system parameters.
USAGE:

COMMAND LINE:

set [allmatches] [allinfol] [verbose]
(depth <number>] [lines <number>]
(DEBUG] [PARSE_DEBUG]

GRAPHICS:

1.click on set
2.click on the variable that you wish to change
3.if you choose
a.DisplayLinks - the links will be shown and nothing will be
changed
b.ShowAll - the values of the variables will be listed in the
Text window

DESCRIPTION:

Set sets up various characteristerics for Marvel to use.
Without any arguments, set prints all the Marvel variables,
and their current value. As many variables as is desired
can be set in one single Marvel command. Set echo’s out the
new values of variables that are set. For those variables
which do not require a <number> parameter, set reverses
the sense of the variable, which can be either TRUE or
FALSE. The default for all these variables is FALSE.

Allmatches is used when printing the objectbase. When a
user prints an instance of a class, it’s name need not be
unique for that class. If allmatches is TRUE, the system
will print all matches of an instance, rather then just the
default of the first match.

69

13 MANUAL PAGES

Allinfo is used when printing the objectbase. If allinfo is
TRUE, all values of attributes of instantiated objects will
be displayed, as well as all template attributes of classes
of objects. Otherwise, just the names of the objects in
question will be printed.

Verbose is used to control a few friendly aspects of Marvel.
With verbose set to TRUE, the marvel prompt will always re-
flect Marvel’s current location within the objectbase.

Also, users will be prompted with a query when adding
instances to be certain that is what they desire to do.
Verbose is highly recommended for beginners.

Depth is used when printing the objectbase. When
appropriate, the objectbase can be printed recursively to
a depth specified by depth. If depth is a large number,
the entire objectbase below a specified instance will be
recursively printed. The default value of depth is 0.

Lines is used when printing the objectbase. It should be set
to the number of lines in the display terminal, as it controls
page at a time output. The default value of lines is 24.

SEE ALSO:

print

13

MANUAL PAGES

13.15 unlink

Marvel Help System Built in command Unlink
NAME:
Unlink -- remove a link created previously using LINK.
USAGE:
COMMAND LINE:

unlink <source-att> <dest-class> <dest-inst>
unlink -a <source-att> <dest-class> <dest-inst> <dest-att>

GRAPHICS:
1.c¢lick on unlink
2.click on
a.instance
i.click on the destination instance or type its name and
hit return
b.attributae
i.click on the destination attribute or type its name and
hit return
ii.click on the attribute in the command menu

DESCRIPTION:
The unlink command is used to permanently remove a
graphical link which exists from the current instance to
the destination instance or attribute. The destination
instance may be the current (source) instance. The source
attribute must of type "LINK".
Unlink will fail if either of the following are true:

1) The specified source attribute is not a LINK attribute.

2) The link does not exist.

SEE ALSO:

13

MANUAL PAGES

link, set

=1

3]

13 MANUAL PAGES

13.16 unload

Marvel Help System Built in command
NAME:
unload -- unload a strategy
USAGE:
COMMAND LINE:
unload <strategy name>
GRAPHICS:
1.click on unload
2.type in the strategy name

3.respond yes to the query

DESCRIPTION:

Unload

Unload unloads <strategy name>. In order to keep the
system consistent, it checks all the other strategies

recursively to see if this strategy is used. If so,
those strategies are also unloaded. After a list of
strategies to be unloaded, the user is queried with
this list, just in case the magnitude of the unload was
not desired.

The load manual page contains further descriptions of
the workings of load, all the implementation details
there apply to unload.

EXAMPLES:

COMMAND LINE:

unload strategies/chaining

unloads the strategy called chaining in a directory

called strategies under the current marvel objectbase.

All other strategies which import chaining will get
unloaded also.

13 MANUAL PAGES

SEE ALSO:

load, merge.

13 MANUAL PAGES

13.17 usage

Marvel Help System Built in command

NAME:
usage'-f find the usage of a command
USAGE:
COMMAND LINE:

usage command
usage *

GRAPHICS:

l.click on usage
2.click on
a.all
b.command
i.click on a command

DESCRIPTION:

The usage command is used to find out how to use a marvel
built in command. Currently, there are no exactly similar

Usage

facilities for rules. To determine how to use a rule,

type

"print -r <rule named>"

Specifying command will print usage for that command.
Specifying ’*’ will print usage for all the commands

currently in the system.
SEE ALSO:

help, print.

-~

Qv

13 MANUAL PAGES

13.18 7

Marvel Help System Built in command 7

NAME:

USAGE:

COMMAND LINE:

GRAPHICS:
1.click on ?

DESCRIPTION:

The ? command prints a list of available commands and rules
at the current time.

SEE ALSO:

help.

A CMARVEL STRATEGY FILES T

A CMarvel Strategy Files

This section contains all the strategy files for the C/MARVEL environment discussed
in this manual. There is one file of objectbase class definitions, a file for each of the
major categories of tools supported by C/MARVEL, and a root file that imports all
the others (see 8). Appendix B contains the envelopes used by the rules following.

A.1 cmarvel_chaining.load

Marvel Software Development Environment

Copyright 1990
The Trustees of Columbia University
in the City of New York
All Rights Reserved

LR I L

This file contains MSL commands to build an environment for developing
C programs using a maximal amount of chaining amongst the rules. 1In

addition, all the rules available in cmarvel are contained here. If

a user only needed a subset of these rules, an master file similar to
this one could be created that contains just the appropriate subset.

strategy cmarvel_chaining

Import all the addition data and process models needed to build up the
environment. Order is important here.

imports data_model, build, archive, compile, debug, edit, rcs;
exports all;

A CMARVEL STRATEGY FILES

A.2 data_model.load

Marvel Software Development Environment

Copyright 1990
The Trustees of Columbia University
in the City of New York
All Rights Reserved

® % % B % % B B

strategy data_model

This strategy contains all the class definitions needed for a typical
C environment. The class definitions are imported by all other
strategies that define various aspects of the process model for
C/Marvel.

* % %

*

Interface with other strategies. Since this is a basic data model that
all other strategies import, we don’t specify anything.

*

imports none;
exports all;

Class definitions
objectbase

GROUP is the top-level class. An instance of GROUP contains several
% projects. The fact that it is top level is set in the user’s

environment as part of the startup of Marvel. So a Marvel objectbase
can contain several group objects.

GROUP :: superclass ENTITY;
name : string;
status : (Active,NotActive) = Active;
projects : set_of PROJECT;

end

PROJECT is an entity that defines much of the structurs of a typical
software project. PROJECTs can contain libraries, binaries, programs
documents and includes in this example.

=1

(V4]

A CMARVEL STRATEGY FILES

PROJECT :: superclass ENTITY;
name : string;
status : (Release,Maintenance,Development) = Development;
archive_status : (Archived,NotArchived) = NotArchived;
build_status : (Allbuilt,NotBuilt) = NotBuilt;
librariss : set_of LIB;
bin : set_of BIN;
programs : set_of PROGRAM;
doc : set_of DOC;
incs : set_of INC;

end

PROGRAM is important to distinguish from PROJECT. A PROGRAM is a single

executable unit, whereas a PROJECT is a collection of PROGRAMs, and other
entities. PROGRAMs thus contains things like documents, cfiles, modules,

if it is large, and include files.

PROGRAM :: superclass ENTITY;
name : string;
build_status : (Built,NotBuilt,Error) = NotBuilt;
debug_status : (OK,NeedsDebugging) = 0K;
docs : set_of DOC;
cfiles : set_of CFILE;
modules : set_of MODULE;
lany_att : link any_att;
lany_inst : link any_inst;
lset_of_cfile : link set_of CFILE;
lcfile : link CFILE;
ltime : link time;
lsingle_time : link time single;
main : link;
incs : set_of INC;
ofile : binary;
end

LIB is a shared archive type library. It consists of modules, which in

turn contain ¢ files. The ultimate representation of a library is a
.a file, that is, an archive format fils.

LIB :: superclass ENTITY;

A CMARVEL STRATEGY FILES 80

name : string;
status : (Uptodate,NotUptodate) = NotUptodate;
archive_status : (Archived,NotArchived) = NotArchived;
modules : set_of MODULE;
programs : link;
bfile : binary;

end

Typically, Libraries contain several organizational MODULEs, each of which
contain .¢ and possibly .h files.

MODULE :: superclass ENTITY;
name : string;
status : (Archived,NotArchived,Error) = NotArchived;
cfiles : set_of CFILE;
hfiles : set_of HFILE;
archive : link;
end

FILE is the generic class for anything that is represented as a unix
file. There are specializations (subtypes) for CFILE, HFILE and DOCFILE
in this system.

FILE :: superclass ENTITY;
name : string;
owner : user;
timestamp : time;
reservation_status : (Checked_out,Available,Error) = Available;
version : text;
contents : text;
end

Extra information is needed to record the state of compilation and
analysis (lint, in our case) for CFILEs.

CFILE :: superclass FILE;
compile_status : (Compiled,NotCompiled,Error) = Error;

A CMARVEL STRATEGY FILES 81

analyze_status : (Analyzed,NotAnalyzed,Error) = Error;
documentation : link;
end

For HFILEs, w3 only want to know if they have been modified recently,
vhich will cause a global recompilation.

HFILE :: superclass FILE;
recompile_mod : (Yes,No) = Yes;
end

For DOCFILEs, we only want to know if they have been reformatted recently,
so we can reformat the document.

DOCFILE :: superclass FILE;
reformat_doc : (Yes,No) = Yes;
end

DOC is a class that represents an entire set of documents, typically for
a PROJECT or PROGRAM. A DOC can contain individual documents, and files
of it’s own.

DOC :: superclass ENTITY;
name : string;
type : (Latex, Scribe, Nroff) = Latex;
files : set_of DOCFILE;
documents : set_of DOCUMENT;
end

DOCUMENT represents a complete individual document, such as a user’s manual
or technical report.

DOCUMENT :: superclass ENTITY;
name : string;

[0 4]
SV

A CMARVEL STRATEGY FILES

files : set_of DOCFILE;
formated_copy : binary;
end

INC represents a set of include (.h) files.

INC :: superclass ENTITY;
name : string;
hfiles : set_of HFILE;
end

BIN represents a place where binaries for PROGRAMs (parts of a PROJECT) are
kept.

BIN :: superclass ENTITY;
name : string;
exescutable : binary;
program : link;
project : link;
archive : link;

end

end_objectbase

A CMARVEL STRATEGY FILES 83

A.3 edit.load

% % % B B I % ®

strategy edit

Marvel Software Development Environment

Copyright 1990
The Trustees of Columbia University
in the City of New York
All Rights Reserved

This strategy defines the editor tool and a viewer tool that can display

either the contents
particular C file.

of a text file or the errors associated with a

The rules for editing are overloaded, they set

appropriate attributes depending upon the type of object being edited.

imports data_model, rcs;

exports all;

objectbase

EDITOR :: superclass TOOL;
edit : string = editor;
multi_edit : string = multi_editor;

end

VIEWER :: superclass TOOL;

viewer : string =

viewCerr : string

viewAerr : string
end

end_objectbase

rules

viewer;
= viewCerr;
= viewlAerr;

this edit rule is for editing document files.

edit[?f:DOCFILE]:

if the file has

been reserved, you can go ahead and edit it

A CMARVEL STRATEGY FILES 34

(7f.reservation_status = Checked_out)
{ EDITOR edit ?f }

(and (?f.reformat_doc = Yes)(?f.timestamp = CurrentTime));

this edit rule is for editing include files.
edit(?f:HFILE]:
if the file has been reserved, you can go ahead and edit it

Chacked_out)

(?f.reservation_status

{ EDITOR edit ?f }

(and (?f.recompile_mod = Yes)(?f.timestamp = CurrentTime));

this edit rule is for editing c¢ files. Note that all these rules have the
same activities, but different postconditions. If there were special
editors, they could be invoked by calling edit rules with different
activities.

® % B X

edit[?f:CFILE]:
if the file has been reserved, you can go ahead and edit it

(?f.reservation_status = Checked_out)

{ EDITOR edit 7f }

1]

(and (?f.compile_status = NotCompiled)
(?f.analyze_status = NotAnalyzed)
(?f.timestamp = CurrentTims));

#edit[?f:CFILE, ?7q:CFILE]:
t 4

* # if the file has been reserved, you can go ahead and edit it
J

A CMARVEL STRATEGY FILES

(?f.reservation_status = Checked_out)
{ EDITOR multi_edit ?f ?q}

(and (?f.compile_status = NotCompiled)
(7f.analyze_status = NotAnalyzed));

% % BN B X % B

this rule just views any kind of file with a pager, like more or less.

view[?f:FILE]:

{ VIEWER viewer 7f }
The following rules view output from the compiler and analyzer.

viewCerr[?f:CFILE]:

{ VIEWER viewCerr ?f }

viewAerr [?f:CFILE]:

{ VIEWER viewAerr 7f }

A CMARVEL STRATEGY FILES 36

A.4 compile.load

* W OB W H KR

strategy compile

Marvel Software Development Environment

Copyright 1990

The Trustees of Columbia University
in the City of New York

All Rights Reserved

This strategy contains rules to compile and analyze CFILE type objects.

Compilation is done with cc,

and analyzis with lint. In our example,

a file must successfully be analyzed before it is compiled.

imports data_model;
exports all;

objectbase

COMPILER :: superclass TOOL;
compile : string = compile;
end

ANALYZER :: superclass TOOL;
analyze : string = analyze;
end

end_objectbase

rules

compile [?f:CFILE]:

if the C file has been analyzed successfuly but not yet compiled,
you can compile it. The compilation changes the status of the C

A CMARVEL STRATEGY FILES

file to either compiled or error.

(and (?f.analyzZe_status
(?f.compile_status

{ COMPILER compile

(7f.compile_status
(7f.compile_status

analyze[?f:CFILE]:

(7f.analyze_status
{ ANALYZER analyze

(7f.analyze_status
(?f.analyze_status

Analyzed)
NotCompiled))

7f }

Compiled);
Error);

NotAnalyzed)

un

7f }

Analyzed);
= Error);

87

A CMARVEL STRATEGY FILES 33

A.5 archive.load

Marvel Software Development Environment

Copyright 1990
The Trustees of Columbia University
in the City of New York
All Rights Reserved

E IR SR I N R R

This strategy contains the definition of the archiver tool that can
call either a script to archive a whole project, or a script to
archive a module.

strategy archive

All ve need for this part of the process model to be loaded
is the data model.

imports data_model;

exports all;

objectbase

ARCHIVER :: superclass TOOL;
archive : string = archive;
list_archive : string = list_archive;

end

end_objectbasa

rules

arch_proj: archive all the libraries in this project. This rule in an

& inference rule (one with an empty activity) that causes
: arch_lib to be executed (via chaining) for all the libraries
in the PROJECT.

arch_proj[?proj:PROJECT]:

(forall LIB ?1 suchthat (member [?proj.libraries ?1]))

A CMARVEL STRATEGY FILES 89

(?1.archive_status = Archived)

{1}
(?proj.archive_status = Archived);
(?proj.archive_status = Error);

arch_lib: archive all the modules in each library. Again, this is an
inference rule that causes arch_mod to be executed to do the
3 real work.
arch_1ib[?1:LIB]:
(forall MODULE ?mod suchthat (member [?1.modules 7mod]))
{?mod.status = Archived)

{1}

(?1.archive_status = Archived);
(?l.archive_status = NotArchived):

arch_mod: This rule archives all the cfiles in a project, after they
have been analyzed and compiled.

arch_mod [?m:MODULE] :

(forall CFILE ?f suchthat (member [?m.cfiles ?f]))

(and (7f.analyze_status
(7f.compile_status

Analyzed)
Compiled))

{ ARCHIVER archive 7m }

Archived);
NotArchived);

(?m.status
(?m.status

A CMARVEL STRATEGY FILES

list_arch: this rule just 1ists the contents of an archive.

1ist_arch[?1:LIB]:

{ ARCHIVER list_archive 71 }

90

a\

A CMARVEL STRATEGY FILES 91

A.6 build.load

Marvel Software Development Environment

Copyright 1990
The Trustees of Columbia University
in the City of New York
All Rights Reserved

$ H B B X 8

strategy build

This strategy defines 2 tool objects, and three rules to access these

tool objects. The BUILD tool has two alternative operations: either

build_project, to build the entire project, or build_program that builds
one program of the project.

imports data_model;
exports all;

objectbase

RELEASE :: superclass TOOL;
release : string = release;
end

BUILD :: superclass TOOL;
build_program : string
build_project : string

end

build;
all_build;

end_objectbase

rules

release [?proj:PROJECT]:

if all programs that belong to the project have been built, the

A CMARVEL STRATEGY FILES 92

project can be released. Otherwise, the project is either still
in maintenance or development. The script that the RELEASE tool
oxecutes finds out which phase the project is in.

(forall PROGRAM ?p suchthat (and (member [?proj.programs ?pl)
(?proj.build_status = Allbuilt)))

(?p.build_status = Built)

call the release operation of the release tool with the project
as argument.

{ RELEASE release ?proj }

alternative postconditions :
(7proj.status = Release) ;

(?proj.status = Maintenance);
(?proj.status = Development);

build_all [?proj:PROJECT]: .
we still need the colon
call routine that will build all the programs in a project

{ BUILD build_project 7proj }

All1Built);
NotBuilt);

(?proj.build_status
(?proj.build_status

build(7p:PROGRAM] :

if all the C files of the program have been successfully
analyzed and compiled, then you can build the program

(and (forall PROJECT ?P suchthat (member [?P.programs ?p]))
(forall LIB ?1 suchthat (member [?P.libraries ?71]))
(forall MODULE ?m suchthat (member [?p.modules 7m]))
(forall CFILE ?c¢ suchthat (member [?p.cfiles ?cl)))

(and (?c.analyze_status = Analyzed)
(?c.compile_status = Compiled)
(?m.status = Archived)

A CMARVEL STRATEGY FILES

(71.archive_status = Archived))

{ BUILD build_program ?p }

(7p.build_status
(?p.build_status

Built);
NotBuilt);

93

A CMARVEL STRATEGY FILES 94

A.7 debug.load

#* 3 ¥ B N N BB

strategy debug

Marvel Software Development Environment

Copyright 1990

The Trustees of Columbia University

in the City of New York
All Rights Reserved

This strategy contains rules to debug and execute PROGRAM type objects.

imports data_model;
exports all;

objectbase

DEBUGGER :: superclass TOOL;
debug : string = debug;
exec : string = execute;

end

end_objectbase
rules
exec_prog[7p:PROGRAM] :

(?p.build_status = Built)

{ DEBUGGER exac ?p }

(?p.debug_status
(?p.debug_status

0K);

NeedsDebugging) ;

A CMARVEL STRATEGY FILES

deposit: deposit an object. This rule works on the same objects as the
* reserve rule.

deposit[?f:FILE]:
(and (?f.owner = CurrentUser) i
(?f.reservation_status = Checked_out))

{ RCS deposit ?f }

Available);
Checked_out);

(?f.reservation_status
(?f.reservation_status

97

B C/MARVEL ENVELOPES 98

B C/MARVEL Envelopes

This section contains all the envelopes for the CMARVEL environment discussed in
this manual. The following envelopes are all /bin/sh scripts. They appear alphabet-
ically.

B.1 all_.arch

#
Marvel Software Development Environment
#

Copyright 1989

The Trustees of Columbia University

in the City of New York

All Rights Reserved
#
all_arch envelope
#
usage: all_arch

echo all_arch $1 on ‘datef

If this envelope gets called, it is just a placeholder to assert a
postcondition.

return 0

B C/MARVEL ENVELOPES 99

B.2 all build

Marvel Software Development Environment

'

#

#

*

* Copyright 1989

The Trustees of Columbia University
3 ' in the City of New York
% All Rights Reserved

2

all_build envelope

#

usage: all_build

echo all_build $1 on ‘date’

4 If this envelope gets called, it is just a placeholder to assert a
postcondition.

return O

B C/MARVEL ENVELOPES 100

B.3 analyze

#!/bin/ksh

#

Marvel Software Development Environment
#

* Copyright 1989

The Trustees of Columbia University
in the City of New York

& All Rights Reserved

#

analyze envelope

#

usage: compile [CFILE]

#

cd $1
cfile=‘basename $1°

echo "$0 $cfile on ‘date‘"
echo '

log=1l_err

echo "$0 $1 on ‘date‘" > $log
acho >> $log

echo >> $log

we need to make the -I list

mod_or_prog=‘dirname $1°
mod_or_prog=‘dirname $mod_or_prog‘

ifiles=‘ls -d $mod_or_prog/hfiles/* $mod_or_prog/incs/*/hfiles/* 2>/dev/null’

idirs=
if ["x$ifiles" != "x"]
then
for f in $ifiles
do
idirs="$idirs -I$f"
done

fi

B C/MARVEL ENVELOPES

echo "lint $idirs $cfile" >> $log
lint $idirs $cfile >> $log 2>&1

for now

if [$7 -eq 0]

then
echo analysis successful, results available with viewAerr
echo analysis successful >> $log
exit 0

else
echo analysis failed, results available with viewlAerr
echo analysis failed >> $log
exit 1

fi

101

B C/MARVEL ENVELOPES 102

B.4 archive
#!/bin/ksh

*

Marvel Software Development Environment
#

Copyright 1989

] The Trustees of Columbia University
in the City of New York

All Rights Reserved

*

#

#

#

archive envelope

usage: archive [MODULE]

MT=‘arch‘;

attribute=‘dirname $1°
libdir=‘dirname $attribute’
arch=${1ibdir}/‘basename $libdir‘".a"

mod=‘basename $1°

echo "$0 $mod on ‘date‘"
echo

cd $1
ofiles=‘ls cfiles/*.c/*x.0 2>/dev/null’

echo running ar rv on $arch
ar rv $arch $ofiles

it [$7 -eq 0]

then
if [$MT != "mips"]
then
echo running ranlib on $arch
ranlib $arch
fi

if [$? -eq 0]
then

B C/MARVEL ENVELOPES 103

echo archive now available in ${arch}
exit O
fi
fi

echo archive failed
exit 1

B C/MARVEL ENVELOPES

104

B.5 build

#!/bin/ksh

#

* Marvel Software Development Environment
*

Copyright 1989

* The Trustees of Columbia University
in the City of New York

* All Rights Reserved

#

build envelope

#

usage: build <PROGRAM>

pgm=‘basename $1°
dir=‘dirname $1°

echo "$0 $pgm on ‘date‘”
echo

cd $1
echo working directory is ‘pwd’

first we need to find all the libraries
crude way of doing it here

proj_libs=‘ls ../../libraries/#/*.a 2>/dev/null’
local_libs=‘ls libraries/*/x.a *.a 2>/dev/null’
ofiles=‘ls cfiles/#*/*.0 2>/dev/null’

ifiles=‘1ls incs/*/hfiles/* 2>/dev/null’

if ["x$ofiles" = "x"]
then
echo "Nothing to build"
exit 1
fi

idirs=
if ["x$ifiles" I= "x"]
then

for £ in $ifiles

this will not be the world
mods in this program

hfiles in this program.
no support for global incs.

B C/MARVEL ENVELOPES

do
idirs="$idirs -I$f"
done
fi

echo doing the build ...

echo objects are: $ofiles

echo local libraries are: $local_libs
echo project libraries are: $proj_libs

cc -g $idirs $ofiles $local_libs $proj_libs -o $1/$pgm

this checks for existence, and to be sure it is the proper kind of
executabls.

MT=‘arch®

if ["x$MT" = “"xsun4”]

then
file $pgm | grep sparc > /dev/null
ans=§?

elif ["x$MT" = "xsun3"]

then
file $pgm | grep mc680 > /dev/null
ans=$?

elif ["x$MT" = "xmips"]

then
file $pgm | grep mipsel > /dev/null
ans=$?

elif ["x$MT" = "xibmrt"]

then
file $pgm | grep executable > /dev/null
ans=$?

else
ans=1

fi

if [$ans -eq 0]

then
acho build successful
exit O

else
echo build failed
exit 1

fi

B C/MARVEL ENVELOPES 107

B.6 buildall

Marvel Software Development Environment

Copyright 1989
The Trustees of Columbia University
in the City of New York
All Rights Reserved

buildall envelope

R B B R B BB BE R

echo buildall envelope
BIN=.

echo buildalling executables for projsct $1 .
#cc $1/%/%/code.o -o $BIN/prog

if [$7 -eq 0]
then
echo buildall failed
exit 0
else
echo executables now available in $BIN/prog
exit 1
fi

B C/MARVEL ENVELOPES 108

B.7 checkin

#!/bin/ksh

#

Marvel Software Development Environment
#

Copyright 1989

The Trustees of Columbia University
% in the City of New York

All Rights Reserved

$

deposit envelope

#

echo deposit envelope
object=‘basename $1°

read ans?"deposit $object [y or nl: "

if [$ans = "y"]
then
echo $object deposit
exit O
else
echo $object NOT deposited
exit 1
fi

B C/MARVEL ENVELOPES

B.8 check_out

#!/bin/ksh

#

Marvel Softvare Development Environment
#

s Copyright 1989

The Trustees of Columbia University
* in the City of New York

& All Rights Reserved

#

reserve envelope

#

echo reserve envelope
object=‘basename $1°

read ans?"reserve $object [y or nl: "

if [$ans = "y"]

then
echo $object reserved
exit O

else
echo $object NOT reserved
exit 1

fi

109

B C/MARVEL ENVELOPES 110

B.9 compile

#!/bin/ksh

¥

* Marvel Software Development Environment
#

Copyright 1989

The Trustees of Columbia University
% in the City of New York

* All Rights Reserved

#

compile envelope

*

usage: compile [CFILE]

#

cd $1
cfile=‘basename $1°

echo "$0 $cfile on ‘date‘"
echo

log=c_err

acho "$0 $1 on ‘date‘" > $log
echo >> $log
echo >> $log

we need to make the -I list

mod_or_prog=‘dirname $1°
mod_or_prog=‘dirname $mod_or_prog’

ifiles=‘ls -d $mod_or_prog/hfiles/* $mod_or_prog/incs/*/hfiles/* 2>/dev/null’

idirs=
if ["x$ifiles" != “x"
then
for £ in $ifiles
do
idirs="$idirs -I$£f"
done
fi

B C/MARVEL ENVELOPES

echo "cc -g -c¢ $idirs $cfile" >> $log
cc -g -c $idirs $cfile >> $log 2>&1

if [$? -eq 01

then
echo compile successful, results available with viewCerr
echo compile successful >> $log
exit O

else)
echo compile failed, results available with viewCerr
echo compile failed >> $log
exit 1

fi

111

B C/MARVEL ENVELOPES

B.10 debug

debug envelope

usage debug PROGRAM

ET IR R IR R IR R R R

pgm=‘basename $1°

echo $0 $pgm

find the source code
idirs=‘1ls -d $pgm/* 2>/dev/null’
ilist=

for nextdir in $idirs

do
if [-d $nextdir]
then
ilist="${ilist} -I${nextdir}"
fi
done

dbx $ilist $1/$pgm

if [$? -eq 0]

then
echo debug successful
exit O

else
echo debug failed
exit 1

fi

Marvel Software Development Environment

Copyright 1989
The Trustees of Columbia University
in the City of New York
All Rights Reserved

B C/MARVEL ENVELOPES

B.11 editor

Marvel Software Development Environment

Copyright 1989
The Trustees of Columbia University
in the City of New York
All Rights Reserved

editor envelope

L R R BEE N R N IR TS

file=‘basename $1°

echo editor $1 ...

echo
if ["x$EDITOR" = "x"
then
vi $1/8file
else

$EDITOR $1/$file
fi

there is only one exit code hers.
exit O

113

B C/MARVEL ENVELOPES 114

B.12 execute

Marvel Software Development Environment
Copyright 1989
The Trustees of Columbia University
in the City of New York
All Rights Reserved

execute envelope

usage execute PROGRAM

O H % B H W R BB KR

pgm="‘basename $1°
echo execute $pgm ...
$1/$pgm

if [$? -eq 0]

then
echo execute successful
exit O

else
echo execute failed
exit 1

fi

B C/MARVEL ENVELOPES

B.13 list_archive

#!/bin/ksh

8

L Marvel Software Development Environment
»

Copyright 1989

& The Trustees of Columbia University

in the City of New York

* All Rights Reserved

#

list_archive envelope
%
usage: list_archive [LIB]

lib=‘basename $1°
dir=‘dirname $1°¢

echo "$0 $1ib on ‘date‘"
echo

cd $dir
ar t $1ib/${1ib}.a

exit O

B C/MARVEL ENVELOPES 116

B.14 release

#

Marvel Software Development Environment
L

Copyright 1989

The Trustees of Columbia University
in the City of New York

All Rights Reserved

#

release envelope

#

echo $0 $1

for Release
#exit O

for Maintenance
#exit 1

for Development
exit 2

B C/MARVEL ENVELOPES 117

B.15 viewAerr

Marvel Software Development Environment

Copyright 1989
The Trustees of Columbia University
in the City of New York
All Rights Reserved

viewAerr envelope

%%%%3&3&%%%%

echo viewAerr $1 .
echo

less $1/1 _err

exit 0

B C/MARVEL ENVELOPES 118

B.16 viewCerr

Marvel Software Development Environment

Copyright 1989
The Trustees of Columbia University
in the City of New York
All Rights Reserved

viewCerr envelope

%%“%%%%%u%

echo viewCerr $1 ...
echo

less $1/c_erT

exit O

B C/MARVEL ENVELOPES

B.17 viewer

Marvel Software Development Environment

Copyright 1989
The Trustees of Columbia University
in the City of New York
All Rights Reserved

vievwer envelope

H H H B H KR B R

echo viewer $1 .
echo

file=‘basename $1°
less $1/8file
no postconditions to set

exit O

119

REFERENCES 120

References

[1] Naser S. Barghouti and Gail E. Kaiser. Implementation of a knowledge-based
programming environment. In 2Ist Annual Hawaii International Conference on
System Sciences, volume 11, pages 54-63, Kona HI, January 1988. IEEE Computer
Society.

[2] Peter H. Feiler and Gail E. Kaiser. Granularity issues in a knowledge-based pro-
gramming environment. Information and Software Technology, 29(10):531-539,
December 1987.

(3] Peter H. Feiler Gail E. Kaiser, Naser S. Barghouti and Robert W. Schwanke.
Database support for knowledge-based engineering environments. [EEE Ezpert,
3(2):18-32, Summer 1988.

[4] Gail E. Kaiser and Peter H. Feiler. An architecture for intelligent assistance in
software development. In 9th International Conference on Software Engineering,
pages 130-138, Monterey CA, March 1987. IEEE Computer Society.

[5] Gail E. Kaiser and Peter H. Feiler. Intelligent assistance without artificial intelli-
gence. In 32nd IEEE Computer Society International Conference, pages 236-241,
San Francisco CA, February 1987. [IEEE Computer Society Press.

