Techni ques for Buil ding
Hi ghly Avail abl e
Distributed File Systens

Carl D. Tait
13 March 1990

CUCS- 497- 89

Col unbi a University
Departnent of Conputer Science
New Yor k, NY 10027

ABSTRACT

Thi s paper anal yzes recent research in the field of distributed file
systens, with a particular enphasis on the problem of high avail-
ability. Several of the techniques involved in building such a system
are discussed individually: namng, replication, nultiple versions,
cachi ng, stashing, and | ogging. These technigues range from exten-
sions of ideas used in centralized file systens, through new notions
already in use, to radical ideas that have not yet been inpl enented.

A number of working and proposed systens are described in conjunction
with the analysis of each technique. The paper concludes that a | ow
degree of replication, a liberal use of client and server caching, and
optimstic behavior in the face of network failure are all necessary
to ensure high availability.

| NTRODUCTI ON

At the heart of every operating systemis its file system the
software that allows users to store and retrieve permanent data. In
centralized operating syst ens, file systens are usual |y
straightforward to inplenent. One sinmply keeps track of which disk
bl ocks are free, which blocks belong to each file, which user owns
each file, and who my access a specified file. Sonme sort of
directory structure is wusually supported so that files may be
organi zed hierarchically. File systens based on this approach are

used by everything from M5-DOS to UNI X with unqualified success.

In a distributed operating system however, the design and
i mplementation of a good file system are singularly difficult
problens. Even the description "good" is not well-defined. There are
nunerous trade-offs to consider, and predictably, designers have cone

up with a nunber of radically different distributed file systens.

In a centralized environnent, the nodel is sinple: a single
computer with a nunber of disk drives attached to it. But a
distributed system involves rmultiple machines conmunicating via sone
sort of network, with disk drives connected to sone or all of these

machi nes; a nunber of systens support di skl ess workstations.

Ideally, a user should not need to know where any particular file
is stored. The file system should be able to locate a given file and
make it available to a user. This feature, transparency, is the
primary difference between network and distributed file systems. 1In a

network system the user is aware of the multiple nmachines in the

environment, and is responsible for knowi ng which files are stored on
whi ch nachi nes. At best, subtrees of files from other nachi nes can be
mounted | ocally, but machine-to-machine nmovement of files will still
be visible. Mul tiple nachines are available for use, which may well
provide nore power, but nuch of the responsibility for nanaging this
power falls on the user. A distributed systemrelieves the user of a

|arge part of this burden: file access is machine-transparent.

One inportant goal of a distributed file system is high
availability. Failure (or even schedul ed maintenance) of a single
machine or a single disk drive should not nornally cause a file to
become unavailable. As the world becomes increasingly dependent upon
computers, high availability will become an increasingly inportant

desi gn objective.

In a centralized system "mrrored disks" - drives with separate
controllers that contain precisely the sanme data - are sonetinmes used
to ensure availability of data. But with disk drives becomn ng
extrenely reliable, this nethod is too expensive for the typical
office worker or scientist. One must purchase twice as many drives

and controllers as are actually needed.

A sinmilar problemdogs many distributed file systens. Replication
- mintaining copies of each file on a nunber of machines - is a
natural technique for increasing availability [Al sberg 76]. If one
particular machine is down, a copy of the file can wusually be
retrieved from sone other nachine. Most of the time, however, the

primary copy wll be available, so the remmining copies wll be

| argely unused. It is therefore unappealing for file system
operations to expend a large ampunt of tine or other resources in
managi ng replicas of files. How, then, does one go about building a

highly available distributed file systenf

Every file system nust have sonme schene for mapping character-
string file nanes to the files they represent, so this paper begins
with a discussion of nam ng. This is followed by a consideration of
various replication schenes. Absolute consistency of replicas is not
al wvays necessary - for exanple, a slightly outdated version of a text
editor mght well be acceptable - so systens that support nmnultiple
versions of files are exam ned next. Caching, stashing, and |ogging -
three techniques that can be used to increase availability - are then

di scussed at length, followed by a series of conclusions.

NAM NG

File nane resolution is an inmportant part of any distributed file
system The central concern of a naming schenme is to establish a
uni que, distribution-transparent nanme for each file. When a client
provides such a file name, the system should be able to locate the

file easily.

Nanme resolution needs to proceed swiftly, so the natural tendency
is to make the table of name-to-file mappings widely available - at
| east as available as files - either through a name server or through
replication. But both of these approaches have a devastating effect
on scalability. A single name server is a performance bottl eneck and
a single failure point for the whole system while a replicated name
service introduces a new availability problem In addition, for
performance reasons, it should be possible for a file to migrate from
one file server to another in a manner that is transparent to the
user: server nanmes should not be enbedded in file nanes. Two proposed
nam ng schenmes are particularly noteworthy for how they address these

i ssues.

Wel ch and Qusterhout [Wel ch 86] describe a name |ookup nechani sm

known as prefix tables. This method is used in the Sprite system
[Nel son 88], which wll be discussed further in the section on
cachi ng. The distributed file system is seen as a single tree-

structured hierarchy by users, but is actually divided into severa
domai ns. Each domain is a portion of the tree relegated to a

particul ar server. A server may store nore than one domain. Each

client has a prefix table (typically inconplete) that nmaps file name

prefixes to the servers on which the associ ated domai ns reside.

An exanple: suppose that a domain on server C is rooted at
/ chopi n/ et udes. A client attenpting to | ocat e t he file
/ chopi n/ etudes/winter-wind wuld find an entry for the prefix
/chopin/etudes in its prefix table along with the information that
this domain is on server C. Even if a domain with root /chopin is
| ocated on server A the client will still know that its file is on
server C, since the longest applicable prefix in the table is always

used.

The prefix table nmethod does not require that server names be
included in file nanes. Furthermore, entries in a table are regarded
nerely as hints. If a file is not where a table says it is, shorter
prefixes are tried until the file is found. At each point, incorrect
table entries are updated to reflect the new information. This gets
around the wupdate problem when a domain noves from one server to
another: since table entries are just hints, they do not need to be
absolutely <correct at all tines. File novement is therefore

completely transparent to the user

Finally, prefix tables can wupdate thenselves by exchanging

information with other tables. |If a client has no prefixes at all for
afile (as will be the case initially), it broadcasts the file nanme to
all servers. Rel evant prefix/server mappings (with symbolic |inks

al ready expanded) are sent back to the requesting client by all

servers who have such mappings. |In this way, prefix table information

can be easily propagated around the network without the requirenent
that any two clients have precisely the sane table. And because
prefix tables contain only hints that need not be correct, this nethod

avoi ds creating either an availability or a consistency problem

A very different approach to namng is taken in the QuickSilver
system [Cabrera 87], which enploys the concept of wuser-centered
nam ng. Instead of all users having a single view of a global nane
space, each wuser has a logically distinct nane space in which
resolution is perforned. It is possible to think of a global nane
space in which files are identified by (user, local filenane) pairs,
but conceptually, each wuser has an individual tree of files.
Internally, QuickSilver associates a unique file identifier (UFID)

with each file in the system

The prinmary reason for this unusual scheme is a concern wth
scal ability. In a global namng system the |ookup required to
determine that a file does not exist may take time proportional to the
size of the network, which does not bode well for scalability.
However, any given user will have a relatively small nanme space that

can be searched exhaustively, if necessary, w thout severe detrinent.

Files are added to a user’'s nane space through the use of file
pointers called links, which my be either soft, synbolic, or hard. A
soft link points to a UFID in another user’'s nhane space. A client
establishing such a link is not charged for the space to store the
file. However, the file may be deleted by the user who owns it, so

there is no assurance that the file will be permanently accessible.

Synmbolic links are simlar, except that the link is made to another
user's local file name instead of to the UFID of that file. This is
useful for ensuring that one is always reading the latest version of a
file such as a conpiler or text editor. Finally, a hard link creates
a logical copy of a file, ensuring that it will be available unti

explicitly deleted by the user creating the link. A user nmaking such

alink is charged for the space that the file occupies.

An exanple will show how nanme resolution proceeds. Suppose user
Rachmani noff has established a soft link to wuser Chopin's file
[preludes/c-mnor (UFID = 1234), and a synbolic 1link to wuser
Paganini’s file /caprices/nunber?24. User Rachnmani noff’s |ocal nanes
for these files are /variations/chopin and /rhapsody/ pagani ni. When
the links are established, file |location hints are placed in

Rachmani nof f’ s user index. The hints are created by enploying a user-
locating service called the Wite Pages to locate users Chopin and
Pagani ni, and then searching their |ocal nane spaces for the desired
files. Since binding of a synbolic nanme to a file nmust take place on
every file access, the hint for the synmbolic link is less specific

than that for the soft |ink.

When Rachmani noff attenpts to access /variations/chopin, the hint
is followed to reach the last known location of the file with UFID
1234. If this highly specific hint is wong, QuickSilver next
searches the disk index of the disk where file 1234 used to be |ocated
to see if it has noved sonewhere else on the sane disk. Next, other

disks at that server site are exam ned. As a last resort, all server

sites that store files belonging to Chopin - the owner of file 1234 -
are searched. (The White Pages service provides a list of these sites
if necessary.) In effect, QuickSilver works from specific hints to
general ones, just as the prefix table nmethod tries long prefixes

bef ore shorter ones.

One of QuickSilver's strong points is that a wuser can be
physically relocated w thout a change in user-centered Vview
Forwarding information can be left behind in the Wite Pages to make
the nove transparent. Since this information is just a hint, it is
di scarded after sone period of tine. After the hint is discarded,
other wusers’ soft and synmbolic links to the relocated user’'s files
becone invalid, and attenpts to access files through these links wll

fail. New links nmust be established explicitly.

User-centered nanming is an interesting concept, and one that is

particularly useful when scalability and user relocation are

concer ned. Most systenms, however, <continue to follow the UN X
tradition and assune a uniform hierarchical view for all users.
Future systenms wll wundoubtedly continue to use hints, which are
unquestionably helpful in any naming schene. Incorrect hints can

sinply be discarded, or if desired, updated.

It is certainly possible to inmagine situations where resol ution of
a name with N hierarchical conponents would require N conputers to be
up: every conponent mght require a different machine for resol ution.
So naming is indeed tied to availability: if the nane cannot be

resol ved due to unavailable information, the file cannot be accessed,

even if it is on a machine that is up.

10

REPLI CATI ON

Replication is one of the nobst inportant issues involved in the
design of a distributed file system Wthout replication, high
availability is unattainable: if the server responsible for the single
copy of a file crashes, the file becones unavail abl e. Mai nt ai ni ng
multiple copies of a file is inherently costly, however. Not only is
nore disk space required, but conplex software is needed to keep
replicas consistent. In addition, network traffic wll al npst
certainly beconme heavier. Different systens have adopted widely
varying solutions for balancing the trade-off between sinple replica

managenent and high availability.

Perhaps the knottiest problemthat arises in a replication schene
is that of detecting and handling inconsistent copies of a file. |If a
file is nodified while a server containing one of its replicas is
unavail able, how is that server’'s copy made consistent with the
current version when the replica becones accessible again? An uglier
version of the problem arises when servers are separated due to
network partition. In that case, different replicas nmay be updated
differently, resulting in di ver gent ver si ons t hat nay be
irreconcil able when the network is reconnected. Directories are even
nore problematic. Losing file updates may be tolerable under some
circunstances, but losing directory updates can cause the |oss of

entire files.

Conceptually, the sinplest form of replication is that perforned

on a file-by-file basis, as is done in the Roe system[Ellis 83]. Roe

11

is designed to provide a single logical view of a heterogeneous | ocal -
area network. A Roefile is really a set of replicas, but the user

sees only one logical entity.

In order to access a Roefile, the user issues a request to a
Transacti on Coordi nator, which usually runs as a process on the user’s
machi ne. The coordinator treats the file access as an atomc
transaction involving the set of replicas that the given Roefile
conprises. The coordinator is also responsible for preserving enough

information to recover in case of failure.

To translate the user’s nanme for the Roefile into a set of file
identifiers, the Transaction Coordinator makes use of the d oba
Directory Subsystem This subsystem mekes the required nane
translation, and obtains files from local file servers via each
server’'s Local Representati ve. Because the network contains
het er ogeneous machi nes, these representatives are needed to nmaintain a
uniform view of files for the directory subsystem across different

| ocal servers.

One of Roe’s main goals is to enforce a high |evel of consistency
anong replicas. The Weighted Voting algorithm that the authors use
nmeets their criteria nicely. Tradi tional quorum based voting schenes
using N replicas require that, if R copies are |located for each read,
at least N- R + 1 copies nust be witten on each wite. This ensures
that each read will see an up-to-date copy of the file. |If fewer than
R copies are available at read tine, the file is considered

i naccessi bl e.

12

In weighted voting, each replica has both a tinmestanp and a voting
strength associated with it. Quorum si ze is based not on the nunber
of replicas, but on the nunber of votes. Hi ghly reliable servers can
be given many votes, which usually reduces the nunber of copies that
must be read or witten to forma quorum The sanme principle applies:
if there is a total of V votes, and a read quorum consists of R votes,
then the total voting strength of copies witten nust be at least V -
R + 1. Under this schene, any quorumis guaranteed to contain an up-
to-date replica of the given file. Furthernmore, it is not necessary
to worry about outdated copies, since only the replica with the nost
recent tinestanp is read. VWen a file is witten, all of its
avail able replicas are given a new tinmestanp that is greater than the

maxi mum of the old tinestanps of those replicas.

Replicating directory information is somewhat harder. Wth
individual files, Roe sinmply locks the file wuntil the update is
conpl et e. But locking a directory for any period of time is clearly
undesirable from the point of view of other users. | nst ead, Roe uses
a callback scheme that requires users to register with directories
that they want to access. Wen nodifying a directory, a user attenpts
to update all replicas of that directory. If that is inpossible, at
| east an appropriate wite quorum nmust be gathered before witing, as
with standard files. If sone copies of the directory cannot be
updated, all registered users are inforned that they nay no |onger be
using a current copy. Since a sufficient quorum was gathered before
witing, however, it is easy for each user to obtain the npbst recent

version of the directory when this occurs.

13

Anot her system that perforns replication on a file-by-file basis
is RNFS [Marzullo 88]. This system has high availability as a primary
goal, unlike Roe, and can theoretically be inplenented on top of any
network file service. The authors chose Sun’'s NFS (Network File
System) [Sandberg 85, Kleinman 86] for several reasons, not the | east

of which was that it was readily available to them

NFS has a statel ess protocol: the server preserves no information
bet ween requests, so all relevant paraneters nust be included on each
call. In addition, NFS read and wite (but not control) operations
are idenpotent: calling a function arbitrarily many tines with the
sane paranmeters has no nore effect than calling it only once. RNFS
clients can therefore recover from crashed servers sinply by issuing

their requests repeatedly until a response is received.

The high availability promsed by RNFS is intended to be
transparent to clients - the network file functions should not change
vi si bly. To this end, RNFS interposes an agent process between a
client and the actual file servers. Files are indeed replicated, but
it is the agent’s task to hide the replication details from the

client.

The scheme used to ensure consistency is an extrenme one that is
optimal for reads: read one, wite all (a quorum based scheme with R =
1). Wien a server becones unavail able, the agent makes a note of that
fact in the replicated file-list. [If a subsequent wite is issued to
a replica on a failed server, that copy is marked as invalid in the

replicated file-list. When the server conmes back up, it acquires

14

exclusive access to the file, and replaces its bad replica with a
valid one. If no wites were issued to a file while it was

unavai |l abl e, no replacenent is necessary.

O course agents themselves may fail, and special care nust be
taken in this case. To begin with, the replicated file-list nust
itself be replicated on all servers in a formcalled the stable file-
list. A recovering agent wuses this file-list to verify that all
supposedly valid copies of a file are identical, since an agent my

have crashed in the mddle of a wite.

In order to prevent the entire system from being inaccessible
during an agent failure, agents thenselves are replicated. Cients
may direct their requests to any agent they choose. |If an agent goes
down, the client just starts using a different one. A token-passing
mechanismis used to ensure that two agents never attenpt to wite to
the same file sinmultaneously: an agent nust hold the token in order

to wite to the file.

Unfortunately, there is a substantial performance penalty caused
by interposing agents between clients and servers, and by witing
multiple copies of a file. The systenmis designers believe that they
can fine-tune RNFS so that it is "no nore than 1.5 to 2 tinmes slower
than NFS." Prelimnary tests indicate that <client caching wll

mar kedl y i nprove perfornmance.

After observing the performance penalty that RNFS pays for
availability, it is not hard to see why comrercially avail able systens

such as NFS and AT&T's RFS (Rempbte File Sharing) [Rifkin 86] do not

15

have high-availability files as a design objective. Their primry
goal is to make renote file access convenient and (relatively)
transparent. If the server for a desired file is down, the file is
sinply inaccessible - replication is not supported. And if a file
needs to be noved to a server that is closer to the client for

per f ormance reasons, the nove will not be transparent to the user.

In the Andrew file system[Mrris 86], which will be discussed in

detail in a later section, replication is perfornmed on groups of files
known as vol unmes [Si debot ham 86]. A volune conprises a subtree of
files - typically, al | the files of a single user. Coda

[Sat yanarayanan 89], the newest file system for Andrew, uses version
vectors to detect inconsistent replicas. A version vector has one
conmponent for each site where a replica is stored. Wen a file is
witten and closed, the corresponding version vectors at the sites
where the file is witten are increnmented. Update counters within the
vectors serve as a kind of tinestanp that allow the system to detect
which replicas are the newest, and to deal wth inconsistency
accordi ngly. This is an optinistic approach: inconsistency is not
prevented, but it is always detected. By taking this position, Coda
makes the inplicit assunption that inconsistencies are relatively rare

occurrences.

Har dware and system software support for nulticast - the ability
to send a nessage to a designated set of receivers - helps nmake
replication in Coda efficient. Coda requires only about 10% | onger to

wite three copies of a file than to wite one.

16

Replication of volunmes nay be wasteful. It is likely that a user
wll need high availability for only a few of the files in a vol uneg,
so replicating all of them is unnecessary. Aggregating files into
larger units does tend to meke the overall organization sinpler,
however .

The LOCUS file system|[Popek 85] uses a conpronise between vol une
and single-file replication. There is a single tree-structured nane
space for all files in the system Filegroups can be nounted onto the
tree in a manner analogous to nounting file systens in UN X
Fil egroups correspond to the Andrew concept of volunes, but are

replicated differently.

At every site where a given filegroup is to be replicated, a
physical container called a pack is allocated for it. A pack can only
contain files from one filegroup, but it need not contain all the
files in the group. This allows individual files to have a high
degree of replication without requiring that all files in the group be

simlarly replicated.

Furthernore, packs may vary in size, since a pack needs only to be
| arge enough to hold the files replicated at that site. One pack is
designated as the primary copy, and all nmenbers of a filegroup nust be

in that pack.

For each filegroup, one site is chosen as the current
synchroni zation site (CSS). All requests to use a file in the group
are directed to the CSS. Shoul d the network becone partitioned, a CSS

will be created in each partition where the filegroup is used.

17

As its nane inplies, the CSS is responsible for ensuring
harnoni ous interaction between clients attenpting to use the sane
file. Tokens are used to synchronize reads and wites. There is also
a file offset token that guarantees the correct offset within a file

only to the client who holds the token.

A strong point of LOCUS is its ability to detect nutual
i nconsi stency anong replicas - even when sone of the replicas have
been renanmed [Parker 83]. Using version vectors along wth the
concept of a unique, inmutable origin point for each file - when and
where the file was created - LOCUS applies sinple graph analysis
techniques to determine if inconsistent copies of a file exist after a
network partition. |In conplex situations, timestanping approaches may
detect conflicts that do not actually exist, but the LOCUS nethod has

been proven not to suffer fromthis drawback

File-by-file replication is by far the nost commonly used schene.
Andrew and Coda group files into volumes for wease of replica
managenent, but this nethod requires all files within a volune to be
replicated at each storage site. LOCUS s pack-based replication is a
happy conprom se between the two extremes. Refer to the table at the
end of this paper for a sumary of the replication nethods used by

vari ous systens.

18

MULTI PLE VERSI ONS

The ability to maintain multiple versions of a file seens
desirable, especially in a software devel opment environment. Miltiple
versions can also serve as a watered-down form of replication in cases
where | oose consistency is acceptable. Traditionally, multiple
versions of text files have been nmanaged by prograns such as RCS
(Revision Control System [Tichy 82], which store the versions of a
file as sets of changes ("reverse deltas") appended to the current
ver si on. By applying a sequence of reverse deltas to the |atest
version, any previous version of the file can be reconstructed. Is it
within the proper scope of a file systemto perform versi on nanagenent
automatically, or at least on request? Though not the primary focus

of this paper, the question nerits a short discussion.

One of the primary goals of the Cedar file system[Schroeder
85] is automatic support of rmultiple versions. This system is
i ntended for use by progranming teans sharing a collection of files.
Rel ated files can be grouped into subsystens specified by a user.
These subsystens are accessed using a DF file, which contains a |ist

of the files in a given subsystem

Both data files and DF files are inmmtable. A nodified file never
replaces an old copy of the file. Instead, an entirely new version is
created with a nunerical suffix indicating the version nunber.
Because a particular version of a file never changes, |ocal caching is
greatly sinmplified: a user need not worry about nodifications to a

renote copy of the file. |In effect, the problem of maintaining cache

19

consistency is translated into the requirenment of keeping a version

hi story. This may well be an inprovenent, if |oose consistency is
t ol erabl e. To further sinplify the schene, Cedar caches only whole
files.

Unfortunately, Cedar file names are required to include the server
on which the associated file resides. A form of synbolic linking is
avai | abl e, however. Using a DF file, a user can forman attachnent to
a given subsystem This is a form of lazy copying in which a file
within the subsystem is not copied to the local workstation until it
is actually needed. The attachnent allows the user to specify much
simpler nanes for files within a subsystem ignoring server details
after the attachnment is nmade to a specific, imutable version of a
file. Thi s does nmean, however, that a new attachnment nust be nmde if
a new version of the file is created, and Cedar has tools to handle

this with rel ative ease.

There is a problemthat can arise when files are brought over to a
| ocal user. On the local nmachine, a file name is collapsed to a
sinple name: the prefix indicating the server is deleted. As the
authors remark parenthetically, "Collapsing to sinple names in this
way can generate name conflicts, which in Cedar are avoi ded by careful
nane choice!" (exclamation point in original). Perhaps so, but this

is still an undesirable feature.

To prevent versions of files fromaccunulating indefinitely, Cedar
associates a keep with each local file name. The keep indicates how

many versions will be retained |ocally. Usual ly, the keep for a

20

source file is two, and that for a derived file such as object code is
one, since previous versions are normally irrelevant. Unfortunately,
keeps cannot be used with renote files. Cients nust run utilities to

get rid of unneeded versions.

The QuickSilver file system|[Cabrera 87], when inplenented, plans
to support both nultiple versions of files and update-in-place. Files
that are read or witten in whole-file transfers will be treated as
i mrut abl e objects, as in Cedar. The QuickSilver designers propose the
use of utilities, rather than keeps, to handle versions in a "coherent
way. " This is not an extrenmely attractive idea, since users are
notoriously lax about cleaning up even their single-version file
spaces. Wen update-in-place semantics are required, QuickSilver wll
provide only the actual file I/Q Concurrency control wll be up to

t he application.

Maintaining nmultiple versions of a file certainly makes caching
easier. Local cache managers need not worry about inconsistency since
every version is unique. But it is not clear that this justifies
saddling the file systemwth the job of version control. After all,
an application program such as RCS can always be used to perform the
same function. And RCS will, in fact, require considerably |ess disk
space than a file system that retains explicit copies of every

Ver si on.

Since an old version of a file may be accessible when the nost
recent version is not, availability is inproved if a user is wlling

to accept stale data. (O course, the user nust be inforned that the

21

data is stale.) This will be helpful if, for exanple, a user happens
to have an old version of a file on diskette that can be used when the
file is otherwi se unavail abl e. In addition, handling versions wthin
the file system spares the user the burden of going through two
mechani sns to access data: the actual read or wite of the file and

t he check-out or check-in required by RCS

22

CACHI NG AND STASHI NG

Caching is traditionally used to inprove performance, but keeping
an extra copy of a file in a cache can also increase availability.
Per haps the nost significant decisions that nmust be nmade about caching
are what to cache and where to cache it. This section will discuss

two systens that answer these questions in conpletely different ways.

A description of the related concept of stashing will conclude the
section.
The primary goal of t he Andr ew file system[Morris

86, Satyanarayanan 85], called AFS, is high scalability, and it is
apparently successful in that regard [Howard 88]. In order to neet
this goal, AFS takes great pains to reduce both server utilization and
network traffic. When a user needs to access a file, the entire file
is transferred to the user’s local disk so that no further server

interaction is needed until the file is cl osed.

Such whole-file caching is not an unreasonabl e approach. I ndeed,
several studies indicate that a high percentage of file accesses
i nvol ve whole-file transfers [Qusterhout 85, Floyd 86], so support for

caching at a finer granularity would be wasted nuch of the tine.

Furt her, whol e-file caching is nore likely to provide high
availability, since entire files will be available in case of failure,
instead of isolated disk blocks. Extremely large files such as

dat abases, however, obviously cannot be manipulated in this way. The
AFS designers are well aware of this restriction, but take the

position that such support is not needed in their environnent.

23

In the initial AFS inplenentation, a file in the local cache had
to be validated before use. The client sent a nmessage to the server
requesting confirmation that the client’s copy of the file was stil
up-to-date. This placed an unnecessarily heavy |l oad on the server, so
val i dati on was subsequently abandoned and replaced with a callback
schene. A cached file is now assuned to be valid unless the system
has explicitly invalidated it by sending a nessage to the client. AFS
keeps track of which clients are caching a given file, and sends
cal | back messages to all of them when a new version of the file is
written. This nodification has inproved performance significantly,

whil e continuing to ensure cache consi st ency.

The Sprite network file system[Nelson 88], which is specifically
designed for high performance, uses caching on both the client and
server sides. Caching is block-oriented as in nost centralized file
syst ens. Furthernore, Sprite is intended to show the feasibility of
di skl ess workstations, so all caching is done in nenory instead of on
disk as in AFS. If a file is concurrently wite-shared, client
caching is disabled so that a consistent view of the file can be

mai nt ai ned.

One unusual idea in Sprite cache managenent is dynamcally varying
the relative sizes of cache nmenory and virtual nenory. The Sprite
desi gners have no objection to a cache occupying the mjority of a
user’'s nmenory, if not much space is needed for running processes. In
fact, a Sprite file server uses the bulk of its nmenmory as a file

cache.

24

Bl ock-oriented caching is nore flexible than whole-file, but it is

nmore expensive. It is a nore conplex nodel, and a harder one in which
to maintain intra-file consistency. It is also likely to involve a
heavier |load on the server. On the other hand, whole-file caching
seens like an inmutable design decision. It is not difficult to

i magi ne a block-oriented system being nodified to support whole-file

caching as well, but it is very hard to picture the reverse.

The merits of various caching nedia are also debatable. A menory
cache will clearly be faster than one on disk, but it will certainly
be small er. In addition, if a crucial server is down for an extended
period, there may be no way to save a file on a diskless Sprite
wor kst ati on. (Because of Sprite's delayed wites, relatively brief
server crashes may go unnoticed by the client.) Further, if a client

crashes, data is nore likely to be | ost when using nenory caching.

Ei t her cache medium however, will provide at |east sone anmount of
i ncreased availability. Even if a client is conpletely disconnected
from the rest of the system file data in the client’'s cache wll
still be available for use. Depending on the caching nethod used,
this data may consist of anything froma single block of a file up to
many separate files. Because of its larger capacity, a disk cache

appears superior for obtaining high availability.

The concept of stashing involves anticipatory file reads -
figuring out what data the client is likely to need next so that it
can be fetched in advance. This is inportant for availability because

a failure is less likely to have an effect on a user whose heavily

25

used files have already been fetched and stashed locally. Since Coda
[Sat yanarayanan 89] typically has an entire volunme (all of a user’s

files) inits local disk cache, the cache actually doubles as a stash.

The proposed FACE system[Alonso 89] maintains a stash that is
distinct from its cache. A stash contains quasi-copies of a file:
copies that may be sonmewhat out-of-date, but are never older than a
certain fixed limt. The stash is continually refreshed by a
bookkeeper that requests a new copy of a file when the current quasi-
copy becones too old. Al refreshes are client-initiated so that the
server does not have to keep track of when files need to be refreshed.
This reduces the load on the server. A sinple optinmization is for the
client bookkeeper to include the tinmestanp of the current quasi-copy
inits request for an updated version. The server need not send a new

copy if the client already has the |l atest version of the file.

FACE proposes several nethods for specifying which files are to be
st ashed. A user may |list frequently used programs such as text

editors and conpilers in a ".stashrc" file. The system should al so be
able to analyze "nmake" programfiles to determ ne which user files are
likely to be needed. Alternatively, a user can explicitly tell the
system when to start and stop nonitoring file usage. Perhaps best of
all, the system might determine a user’'s "working set" of files by

monitoring what a user does and dynamically deciding which files to

st ash.

Since Sun’s NFS [Sandberg 85] is so wdely wused, FACE is

i mplemrented as a set of enhancenents to that system Several extra

26

fields are added to NFS data structures to support stashing, including
a field that indicates whether the user wishes normal file accesses to
be directed to the stash instead of to the renote file server

Because stashed copies are not guaranteed to be the latest version of
a file, this strategy is recommended only for files that change very
i nfrequently. In the nornmal case, the stash is used only when the

file is otherw se unavail abl e.

FACE provides high availability at the cost of possible (but
usual ly not severe) inconsistency. Coda’ s approach of using the disk
cache as a stash when needed seens preferable, however . The
consi stency is decidedly higher, and is not very expensive to maintain

si nce cal | backs are used.

27

LOGE NG

Sonme file systens nake use of a technique traditionally associated

wi th database systens: |ogging. A log is a redundant collection of

all updates. Unavai l abl e or corrupted data can be reconstructed by
replayi ng updates sequentially. By definition, one appends only to
the end of a 1og. Therefore, witing updates to a |og mekes disk

writes sequential rather than random This greatly reduces seek tinme

and i nproves wite perfornmance.

W will discuss two systems that wuse logging techniques in
different ways. One is a working system that logs only a certain
class of information. The other is a proposed design that makes the
seeningly outrageous claim that the entire file system can be stored

in a single |og.

Hagmann's reinplenentation of the Cedar File System|[Hagmann
87] logs only "netadata" such as directories. The main goal here is
to nake crash recovery fast. The original version of Cedar (CFS),
using a 300 negabyte disk drive, took at |east an hour to recover from
a crash. This was because atom c update of directory information was
not supported, and the entire disk had to be analyzed in order to

restore consi st ency.

In the reinplenmentation (FSD), the log of netadata obviates the
scavenger hunt through the disk. By sinply replaying the |og, FSD can
reconstruct a consistent directory. Crash recovery tine is reduced to

twenty-five seconds.

Al though netadata must be both logged and witten, normal-case

28

performance does not suffer. Modi fications are nmade to buffered
copi es of netadata pages, and then |ogged. Wen the |og waps, pages
whose npbst recent version in the log are about to be overwitten are
finally witten to the appropriate directory pages on disk. But
because locality is so high in nanme tables, alnbst no wites of
directory pages actually take place. There is alnost always a nore
recent log entry for a netadata page than the entry that is about to

be overwitten.

FSD does not log a file's data pages. This is based on the
beliefs that hot spots are rare and that nost files are witten
exactly once. So unlike netadata pages, |ogged data pages actually
would end up being witten twice: once in the log, and once in the

file.

Qusterhout and Douglis [Qusterhout 89] nmke a radical proposal:
restructure the entire file system so that all files exist solely as
entries in a single log. Since this systemrelies on the idea of disk

arrays, it will be enlightening to discuss that concept first.

Redundant arrays of inexpensive disks, or RAID [Patterson 88], is
an approach ained at increasing the performance of disk I1/0O Al though
CPU speed and nenory capacity have increased (and continue to
increase) at a dramatic rate, perfornmance of single |arge expensive
di sks (SLEDs) has inproved only slightly. So instead of using a small

nunber of SLEDs, a RAID enploys a | arge nunber of inexpensive disks.

Si nce inexpensive disks are considerably slower than SLEDs, this

nmet hod may seem count er producti ve. But if the cheaper disks are run

29

in parallel, and data is interleaved across disks, |1/0O requests can be
broken down into multiple, sinultaneous operations on multiple disks
in a RAID. In a transaction processing environment, each disk can be
used independently, allow ng several transactions to performdisk 1/0O
concurrently. In either case, the effective bandwidth is considerably

hi gher than when using SLEDs - as nuch as twelve tines higher.

Since disks fail independently, adding many nore disks to a system
greatly decreases the expected tinme between failures. So in order to
make di sk arrays feasible, sone disks nmust contain redundant data for
backup purposes. There are many ways to nanage this redundant
i nformati on. The designers pursued five successively better
approaches, beginning with sinple mirrored disks, and ending with a
schene that interleaves the data and error correction information
across all disks in the RAID. No effort is made to nmake the systens
nean tinme to failure significantly longer than the product’s expected
lifetine. Wio cares if a RAID fails only once a century when the

hardware itself will probably be used for |less than twenty years?

Qusterhout and Douglis’s log-structured file system builds on the
RAID idea, and attenpts to reduce the tine spent perfornming 1/0O even
further. Recogni zing that seek tine is critical, the system does its
best to make disk access sequential rather than random On wites,
the system succeeds admirably: new data is always appended to the end
of the 1og. And given a large nmenory cache, nobst reads can be
satisfied directly from the cache. Actual disk reads, it is clained,

can be handled with reasonable efficiency. Furthernore, the 1o0g

30

approach is well-suited to use with |arge di sk arrays.

There are several other alluring features of this idea. First,
crash recovery will be very fast, since there is no need to analyze
all directory and allocation information in order to effect repairs.
Only the nost recently witten blocks need be exam ned. Second, files
will exhibit tenporal locality: files witten at about the sane tine
will be stored near each other on disk. This may well be hel pful when
the files are read. Finally, a versioning system would be relatively
easy to add, since a new version of a file does not overwite the old
copy. (This would not be an RCS-1ike schene, however, since every

byte of every version would be retained.)

Wites are always extrenely efficient, since data is sinply added
sequentially to the end of the 1og. Reading is nmuch trickier,
however . Wiile nmpbst reads will be from the cache, sone reads nust
obvi ously be from disk, and the system has a schene for nmaking these
reads fairly efficient. Rat her than having the directory, or "nmap
array," stored at sone fixed location on the disk, a "floating-mp"
technique is used in which map entries are added to the log in exactly
the sane fashion as data bl ocks. After blocks containing file data
have been witten, a new map entry is logged that points to all active

bl ocks in the | atest version of the file.

Now that map entries are no longer sinple to locate, a map of nmap
bl ocks is needed: the "super-map." The super-map is retained in
nenory, and is also periodically Iogged. After a crash, the system

need only scan back to the nobst recent wite of the super-map, and

31

proceed from there. This is simlar to checkpointing in a database

system

The system can now |ocate any file by scanning all map bl ocks
pointed to by the super-map. \Wen the proper map entry is found, the
file itself can be pieced together. Since files are usually witten
in their entirety - and therefore stored sequentially in the log - the
seek time may not be as long as it first appears. If there are many
map bl ocks, however, much seek tine nay be required just to |locate the
correct nmap entry. This is an inescapable disadvantage of the
floating-map technique, but since map blocks are cached, the average

/O time should not be significantly affected.

Since disks are, alas, not of infinite capacity, there nust be a
way to handle log wap-around, and this system uses an increnental
approach. As the wrap point advances within the log, live blocks are
copied to the head of the log, overwiting dead data. This keeps live
data physically contiguous, but at the expense of a great deal of

recopyi ng.

O course, there nust be sone way of deternining whether or not a
given data block is alive. The requisite file maps will nornally be
in the cache, but this is not a conplete solution. The system can
only verify that a block is dead by scanning all of the map entries -

and the nunber of entries is likely to be very |large.

One coul d reserve space in each disk block to identify the file to
which it belongs, but this is both wasteful and highly problematic.

Unl ess the disk hardware is capable of handling these |abels during

32

DMA operations, which is unlikely, a considerable amunt of overhead
wll be needed. Each disk block wll have to be processed
i ndi vi dual ly, and each will require a separate I1/O call.
Alternatively, the system could maintain a bit map indicating which
bl ocks are alive and which are dead. But this map will be extrenely

large, and will itself have to be periodically I ogged.

The idea of a log-structured file systemis novel, thoroughly non-
traditional, and a potential way to get around the disk 1/0
bottl eneck, especially when coupled with the idea of "striping" the
| og across a disk array. Whet her this approach can be nade to work
well remains to be seen, since neither the authors nor anyone el se has
ever built such a system Qusterhout and Douglis plan to inplenment a

prototype shortly.

33

CONCLUSI ON

Quite a nunber of distributed file systens have been built, and
several of them are specifically designed to be highly available.
Most of these systems pay a substantial performance penalty for their
availability, however, because they provide consistent copies, and
there is an intrinsic trade-off between consistency and availability.

Are there sonme | essons to be | earned here?

First, although replication is certainly mandatory, the degree of
replication need not be very high. Even a sinplistic two-copy
approach - primary and backup - is likely to be effective alnpost al
of the tine. For files whose availability is critical, however, such
a schenme may be insufficient. A system night allow users to assign
di fferent degrees of replication to different files, based on the need
for availability of each file. A sophisticated system nmi ght even make
educat ed guesses about the relative inportance of various files. For
exanple, a tenporarily unavailable object file is no disaster if the
source code is available for reconpilation, but an unavail able source

file may bring a programmer’s work to a halt.

Second, any file systemthat wants to be highly avail able nust be
optimstic in the face of network failure. A conservative schene
woul d be forced to deny access to a file in at |least one part of the
partition, since it would assune that an unavail able replica was being
updat ed somewhere else. This is a poor schene since conflicts are the
exception, not the rule. LOCUS and Coda are certainly correct in

their decision to detect conflicts after the fact rather than trying

34

to prevent them from occurring in the first place. One nmjor
exception to this rule is database systens, in which wite-sharing is
commonpl ace and conflict prevention is worthwhile. (Coda, of course

does not support databases at all due to its use of whole-file

cachi ng.)

Finally, caching at both the client and server is of crucial
i mportance. As discussed in the section on caching and stashing, a
well-filled client cache or stash may allow a user to work even when
di sconnected from the rest of the system The Coda system actually
i mpl ements di sconnected operation, but the performance is not yet
fine-tuned. The difficult part of such a schene is deciding how to
manage the cache or stash in order to fill it with files that will be
of nbst use to the client. Predicting the future is beyond the
capabilities of mpst conputers, so sone heuristic should be used -
preferably a sinple one, or at least no nore conplex than those

proposed for use in the FACE system

The potential to increase the availability of files is one of the
strong points in the idea of a distributed system Much promi sing
work has already been done in this area, but nore research is needed

before highly available file systens becone a standard facility.

35

SYSTEM H GH AVAI L. SCALABLE REPL. UNI'T MULT. VERS.
Andr ew No Yes Vol une No
Coda Yes Yes Vol une No
Cedar (ol d) No No File Yes
Cedar (new) No No File Yes
FACE Yes No File No
LOCUS Yes No Pack No
Qui ckSi | ver No Yes File Yes
RNFS Yes No File No
Roe Yes No File No
Sprite No Yes File No

uses client menory caching on diskless workstations. Sprite is scalable,
scale as well as Andrew [Howard 88].

but does not

[Al onso 89]

[Al sberg 76]

[Cabrera 87]

[Ellis 83]

[Fl oyd 86]

[Hagmann 87]

[Howar d 88]

[Kl ei man 86]

[Marzul | o 88]

[Morris 86]

36

Ref er ences

R Alonso, D. Barbara, and L. L. Cova.

FACE: Enhancing Distributed File Systens for Autononous
Conmputi ng Environnents.

Techni cal Report CS-TR-214-89, Princeton University,
March, 1989.

P. A Alsberg and J. D. Day.

A Principle for Resilient Sharing of Distributed
Resour ces.

In Proc. Second Intl. Conf. on Software Engineering,
pages 562-570. Cctober, 1976.

L. F. Cabrera and J. Wllie.

QuickSilver Distributed File Services: An Architecture
for Horizontal G owh.

Techni cal Report RJ 5578 (56697), |BM Al maden Research
Center, April, 1987.

C. S Elis and R A Floyd.

The Roe File System

In Proc. Third Synp. on Reliability in Distributed
Sof twar e and Dat abase Systens, pages 175-181. | EEE,
1983.

Ri ck Fl oyd.

Short-Term Fil e Reference Patterns in a UN X
Envi r onnent .

Techni cal Report TR 177, University of Rochester,
Mar ch, 1986.

R Hagmann.

Rei npl enenting the Cedar File System Using Loggi ng and
G oup Commit.

In Proc. Eleventh ACM Synp. on Qperating System
Principl es, pages 155-162. Novenber, 1987.

J. H Howard et al.

Scal e and Performance in a Distributed File System

ACM Trans. on Conputer Systens 6(1):51-81, February,
1988.

S. R Kleinan.

Vnodes: An Architecture for Miultiple File System Types
in Sun UNI X

In Proc. 1986 Summer Useni x Conf., pages 238-247.
June, 1986.

K. Marzullo and F. Schruck.

Supplying High Availability with a Standard Network
File System

In Proc. Eighth Intl. Conf. on Distributed Conputing
Systens, pages 447-453. May, 1988.

J. H Mrris et al.
Andrew. A Distributed Personal Conputing Environment.
Comm ACM 29(3):184-201, March, 1986.

37

[Nel son 88] M N Nelson, B. B. Welch, and J. K. Qusterhout.
Caching in the Sprite Network File System
ACM Trans. on Conputer Systens 6(1):134-154, February,
1988.

[Qust er hout 85]
J. Qusterhout et al.
A Trace-Driven Analysis of the UNIX 4.2 BSD File
System
In Proc. Tenth ACM Synp. on QOperating System
Principl es, pages 15-24. Decenber, 1985.

[Qust er hout 89]
J. CQusterhout and F. Douglis.
Beating the I/O Bottleneck: A Case for Log-Structured
File Systens.
ACM Operating Systenms Review 23(1):11-28, January,
1989.

[Par ker 83] D. Stott Parker et al.
Det ection of Mutual Inconsistency in Distributed
Syst ens.
| EEE Transacti ons on Software Engi neering
SE-9(3):240-247, May, 1983.

[Patterson 88] D. A Patterson, G G bson, and R H Katz.
A Case for Redundant Arrays of | nexpensive Di sks

(RAID).
In SIGVOD 88, pages 109-116. ACM 1988.
[Popek 85] G J. Popek and B. J. Wl ker.

The LOCUS Distributed System Architecture.
MT Press, 1985.

[Rifkin 86] Andrew P. Rifkin et al.
RFS Architectural Overview.
In Proc. 1986 Summer USENI X Conf.. June, 1986.

[Sandberg 85] R Sandberg et al.
Design and | nplenmentati on of the Sun Network
Fil esystem
In Proc. 1985 Sumer USENI X Conf., pages 119-130.
June, 1985.

[Sat yanar ayanan 85]
M Satyanarayanan et al.
The ITC Distributed File System Principles and Design.
In Proc. Tenth ACM Synp. on QOperating System
Princi pl es, pages 35-50. Decenber, 1985.

[Sat yanar ayanan 89]
M Sat yanarayanan et al.
Coda: A Highly Available File Systemfor a Distributed
Wor kst ati on Envi ronnent .
Techni cal Report CMJ CS-89-165, Carnegie-Mel Il on
University, July, 1989.

[Schroeder 85] M D. Schroeder, D. K Gfford, and R M Needham
A Caching File System for a Programrer’s Workstati on.
In Proc. Tenth ACM Synp. on Operating System
Princi pl es, pages 25-34. Decenber, 1985.

38

[Si debot ham 86]
Bob Si debot ham
Vol unes: The Andrew File System Data Structuring
Primtive.
Techni cal Report CMJ I TC- 053, Carnegie-Mellon
University, Autumm, 1986.

[Tichy 82] Walter F. Tichy.
Design, Inplenentation, and Eval uati on of a Revision
Control System
In Proc. Sixth Int. Conf. on Software Engi neering.
| EEE, Septenber, 1982.

[Vel ch 86] B. Welch and J. Custerhout.
Prefix Tables: A Sinple Mechanismfor Locating Files in
a Distributed System
In Proc. Sixth Intl. Conf. on Distributed Conputing
Systenms, pages 184-189. | EEE, My, 1986.

