User-Defined Predicates in OPS5:
A Needed Language Extension for
Financial Expert Systems

CUCS-496-89

Alexander J. Pasik
Department of Computer and [nformation Science
New Jersey Institute of Technology
Newark, New Jersey

Daniel P. Miranker
Department of Computer Science
University of Texas at Austin
Auwstin, Texas

Salvatore J. Stolfo

) Department of Computer Sclence
= Columbia University
New York, New York

Thomas Kresnicka
School of Business
Columbia University

New York New YorR

Abstract

OPS5 is widely used for expert system development in incustry as well as for
academic research. Its limited expressive power, however, can lead to cumbersome and
inefficient code. Often a single domain rule must be encoded as a serdes of OPS35 rules
requiring extensive performance overhead and resulting in an awkward representation of
- the knowledge. In the financial expert syéiern ALEXSYS, which performs mortgage pool
allocation, the lack of user-defined predicates proved to be a major obstacle, prohibiting
real time performance.

This work describes the addition of user-defined predicates in OPS3, supported by
a patch to Carnegie-Mellon University’s Common Lisp OPS5 implementation. Also, the
necessity of this extension is demonstrated in the context of the ALEXSYS morigage
pool allocation expert system, both in terms of increased efficiency and improved

knowledge representation.

Introduction

Since its introducdon in 1981, OPS5 has become a popular language for building
expert systems. OPS5 and its derivatives (such as ¢35 [Vesonder 1988] and OPS83 (Forgy
1985D have been used both in academic production system research [(Allen 1982,
Barachini 1988, Laird er al. 1986, Miranker 1986, Pasik 1989, Scales 1986, Schor er al. 1986]
and commercial expert system development (Gordin et al. 1988, Millikin et al. 1988,
Vesonder et al. 1983]. This extensive use can be compared to the proliferation of
FORTRAN programs: the language being the first to provice a spedific functionality with

- adequate performance, OPS5 became widely used. However, like FORTRAN, OPSS5
=suffers because of its originating status; later producton system research revealed the
need for more powerful language constructs (van Biema 1986].

As rule-based expert systems are used more frequendy in industry, certain domains
reveal the specific needs for additional, more powerful language constructs. While
building the financial expert system ALEXSYS for mortgage pool allocation, aspects
about financial expert systems in general were revealed to require more complex
numeric operations than available in OPSS5. Particularly, OPS5 does not allow for
arbitrary, user-defined tests on values in the left-hand-side of rules. Several derivatives of
OPS5 have incorporated this language feature [Allen 1982, Forgy 1985, Giarratano 1988],
attesing to the need of this fadlity in building rule-based programs. The work described

herein serves two purposes:

1. to demonstrate the importance of user-defined predicates by showing
the effects of their presence or absence on a commercial, financial
expert system. These effects include performance and knowledge

representational issues.

to provide a portable Common Lisp patch to Carnegie-Mellon
University’s Common Lisp OPS5 interpreter which extends OPSS to

include the fadility of user-defined predicates.

o

The ALEXSYS Problem

The mortgage pool allocation problem is faced by financial companies which trace
in mortgage pools. Each month, a set of transactions must be processed so as to provice

a2 maximum prefit potential for the company. The decision making process determines
the allocation of available mortgage pools to the contracts made in the previous month.
The decisions, however, must be made within the constraints imposed by a ser of federal
regulatons.

The volume and profitability of a trading floor is limited by the capacity of the
allocators to advantageously fill sell orders curing the final rush of the settlement days. An
allocator waditionally operates with a calculator in one hand and the telephone in the
other. As institutions handle ever-increasing volume, the allocators become hard-
pressed to support the activity during the contract settlement hours, much in the same
way as actvity comes to a head during the closing minutes in the trading pits. Allocators
carry the additional responsibilities of ensuring that inventories are delivered into
contracts in legal amounts subject to complex rules set by a federal agency and ensuring
* that profit is mace from the small variance allowed in how contracts are filled. Toward
the end of a setdement day an allocator’s primary concern is to deliver correct
settlement information by telephoning counter-parties on overloaded telepnone lines.
There often is insufficient time to determine an optimal allocation for each contract

Much of an allocators’ expertise. can be encoded into an expert system. As an
interactive allocator’'s assistant, the expert system ALEXSYS can rapidly recalculate
allocations as quickly as market conditons and inventory information is updated.
ALEXSYS can enhance an allocators’ performance by optimally allocating contracts,
rapicly adjusing the allocations according to dynamic conditions and freeing the
allocator to handle telephones and stipulated trades. ALEXSYS optimizes allocations for
maximum profitability, maintains inventory under quality constraints, and reduces fails.
Fails are the primary source of lost revenue in the allocation process. Fails can occur
~ because of technical or clerical violations of the federal regulations. Fails also occur as a
result of insufficient inventory due to short positions or as a domino effect of a fail by a
counter party. ALEXSYS eliminates technical errors and prompdy warns the allocators
of uncovered positions. As a hedge against counterparty pool changes, allocators do not
always use the entire variance on delivery. The rapidity with which the computer may
reallocate contracts allows the allocators to exploit the full vardance and capture this lost
source of profit

The federal regulations which control mortgage pool allocation take the form of
rules which indicate what sorts of pool combinations are legal. For example,

to

If 2 $1,000,000 contract for mortgage pools of a coupon rate of less than
12% is to be filled, then no more than 3 pools can be used to fill the
contract. Also, no two of the three pools can account for more than

$975,000 of the contract

During the development of ALEXSYS, the necessity of user-defined predicates was
revealed. For example, the rule mentioned above cannot be expressed in a single
production in standard OPSS. Rather, the rule should be able to be written encoding the

information as foilows:

(p £fill-contract-with-three-pools
(contraczt “wvalue 1000000 “coupon < 0.12)
{(pool ~id <pl> “~amount <x1>)

(ecol ~id <p2> "amount <x2>)

(pool "~id <p3> ~amount <x3>)

SUCH THAT

(and (= (+ <x1> <x2> <x3>) 1000000)
(< (+ <x1> <x2>) 975000)
(< (+ <x1> <x3>) 973000)
(< (+ <x2> <x3>) 975000))

-—>

)

Because arbitrary tests cannot be performed on OPS5 lefti-hand-sides, the above
process can only be performed by, in a first set of rule firings, computing the four sums
in temporary working memory elements, one corresponding to each three pool
combination in working memory. Then a second set of rule firings would select one of
the combinations, and a third set of firings would remove the remaining combinations
from memory. This three rule encoding artificially disuibutes the knowledge that is

- being encoded. Also, there is a large efficiency cost to this approach. It is hypothesized

that this scenario is common among financial systems.

User-Defined Predicates

Based upon the ALEXSYS experience, the necessity of user-defined predicates in
OPS35 was demonstrated. The lack of such functionality leads to not only awkward
knowledge representation, but also unacceptable performance costs. Referring to the
sample rule provided in the previous section, a valid vanilla OPS5 encoding follows:

W

fi

(p fill-contract-with-three-pcols-MAKE-SUMS
(contract “value 1000000 "“coupcn < 0.12)
{pool ~id <zl> “amount <x1>)

(poel "~id <p2> “amount <x2>)
(pool "~id <p3> ~amount <x3>)
= (sums "~ids <pl> <p2> <p3>)
-—>
(make sums "~ids <pl> <p2> <pi3i> ; ids is a vectcr at:rs
“sum (compute <x1> + <x2> + <x3>)
“suml2 (compute <x1> + <x2>)
“s3uml3 (ccmpute <x1> + <x3>)
*s3um23 (compute <x2> + <x3>)))

(p fill-contract-with-three-pools-CHCOSE
(contract "“value 1000000 “ccupcn < 0.12)
{ (sums "~ids <pl> <p2> <p3>

“sum 1000000

“suml2 < 3973000

“sumi3 < 975000

“sum23 < $75000) <sums> }
(pool ~id <pl> “amount <xl1>)
(pocl ~id <p2> "~amount <x2>)
(pocl ~id <p3> “amount <x3>)
-—>
(medify <sums> “chosen t)

.)

(p fill-contract-with-three-pcols-RIMOVE
{ (sums "~chosen <> t) <sums> }
>

(remove <sums>))

The rules are not complete, but the necessary aspec:s are represented. When there

re a large number of pools (n), the first rule will match successfully against all

combinations of pools (n3) and genérare as many working memory elements in
successive firings. The second rule will match only against the few combinations which
generated valid sums (potentially much less than n3). Finally, the last rule serves to

remove unwanted working memory elements.

By allowing user-defined predicates in OPSS3, the rule can be written as follows:

h

(p fill-contract-with-three-pcols
(contract “value 1000000 ~coupon < 0,12)
{cocl ~id <pl> "amount <x1>)
(pcol ~id <p2> ~amount { <x2>

(sum< 975000 <x1>) })
(pool ~id <p3> ~amount { <x3>
(sum< 973000 <x1>)
(sum< 975000 <x2>)
(sum= 1000000 <x1> <x2>) })
-—>
.)

In this rule, the user-defined predicates sum< and sum= are used. They are defined

in Common Lisp as follows:

(defun sum< (wm-value amount &rest args)
(and (numberp wm-value)
(numberp amount)
(every #’numberp args)
(< (apply #’'+ (cons wm-value args)) amount)))

(defun sum= (wm-value amount &rest args)
(and (numberp wm—-value)
(numberp amount)
{every #’numberp args)
(= (apply #’+ (cons wm-value ar-gs)) amount)))

In defining user-defined predicates, the first argument is assumed to come from the
working memory element being matched. Thus in calling the funcion from a rule, there

is an implicit first argument coming from working memory. For example, in the
previous rule, the call (sum< 975000 <x2>) in the third pool condition element would

' result in a call to the lisp function sum< with wm-value bound to the data being matched

(that is, the value of the third pool's amount aturibute), amowunt bound to 975000, and
args bound to a list containing the remaining arguments (that is, a list containing the value
that OPS5 bound to <x2>). Similarly, the call (sum= 1000000 <x1> <x2>) results in the lisp

function call:

(sum= value-of-amount-attribute 1000000 OPS5-vclue-of-<x1> OPSS5-value-of-<x2>)

This rule will fire once for each valid combination, selecting an appropriate set of
pools which conform to the federal regulation encoded. The restictions imposed by the
additional predicates limit the amount of matching greatly, and thus result in improved

efficiency.

n

The ability to use user-defined predicates is accomplished via a patch to the
Common Lisp OPS5 interpreter. Calls to the user-defined predicates are compiled into
he existing Rete pattern-matching network [Forgy 1982|. Thus, user-defined predicates
fit within the algorithmic framework of the Rere algorithm. A similar approach can be

used in other interpreters using alternative algorithms such as TREAT [Miranker 19861.
These algorithms share a simiilar mechanism for pattern matching based on the
combination of database operations of selects and joins. The addition of user-defined
predicates is accomplished at the level of allowing arbitrary tests for the selects and joins
without modifying the underlying mechanism.

The performance improvements provided by user-defined predicates can be
illustrated using the same example. As shown in figures 1, 2, and 3, the vanilla OPS5
version running with 7 pools executes in O(n3) number of cycles generating 2 maximum

= of O(n3) working memory elements. The run time of the system grows exponentially.
However, the version with user-defined predicates executes in O(1) cycles, independent
of the size of working memory. It uses working memory only to represent the actual

pcols, that is O(n), and executes in O(n) time.

8000
[]
6000 | /
.a-Vanila OPS5
Cycles 4000 L
O wilUsar Preds
2000 L
]
0 lom—"0g —a
0 10 20

Figure 1: As the number of pools in working memary increases,
b number of cycles increases O(n?) in vanilla OPS5,
but remains constant (1 cycle) with user-defined predicates.

(94

8000
[

6000 L
&« Vaniila CPS5

WM Size 4000 L
O wilser Freds

2000 |
 §

0 lge——"5 a

0 10 20

= Figure 2: As the number of pools in working memory increases,
the maximum working memory size increases O(n9) in vanilla OPS3,

but remains linear in the number of pools with user-defined predicates.

100000 - : .
1000 | .
2 Tine -8- Yanilla QPS5
(secends) . O willser Preds
a
0.1 : !
0 10 20
Pccls

Figure 3: As the number of pools in working memory increases,
the run time increases exponentially in vanilla OPS3,
but remains linear in the number of pools with user-defined predicates.
(Note: The plot is semilogarithmic.)

Conclusion

In writing expert sysiems which encode decision-making processes based on
complex numerical data, user-defined predicates are an essendal language feature for
producton sysiems. Financial expert systems such as ALEXSYS are such sysiems, and

the necessity of user-defined predicates in this system is demonstrated both from

knowledge representational and performance standpoints.
User-defined predicates have been available in commercial expert system tools, but

not in the freely available Common Lisp OPS5 which is used extensively throughout the
expert system industry. Also, the effecis on performance have not previously been

demonstrated.
As a result of this work, a Common Lisp patch to the OPS5 interpreter, available

through the Department of Computer Science at Columbia University, exiends OPSS
with user-defined predicates. In addition, the enormous benefit in performance
demonstrated herein provides incentive for the widespread use of the language

extension in financial, real-time expert systems.

References

1. Allen E. (1982) YAPS: Yet Another Procuction System. Technical Report 1146,
Deparmment of Computer Science, University of Maryland.

Barachini F. (1988) PAMELA: A Rule-Based Al Language for Process-Control
Applications. The First International Conference on Industrial and Engineering
Applications of Artificial Intelligence and Expert Systems, pages 860-867.

N

3. Forgy C.L. (1982) Rete: A Fast Algorithm for the Many Patterr/Many Object Pattern
Match Problem. Artificial Intelligence 19(1) 17-37.

. 4. Forgy C.L. (1985) OPS83 User’s Manual and Report. Production Sysiems

Technologies.

5. Giarratano J.C. (1988) CL/PS User’s Guide. NASA Cosmic Program Documents
MSC-21208, MSC-21467, and MSC-21475.

6. Gordin D., Foxvog D., Rowland J., Surko P., and Vesonder G. (1988) OKIES: A
Troubleshooter in the Factory. The First International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems, pages 24-28.

Laird J., Rosenbloom P., and Newell A. (1986) Universal Subgoaling and Chunking.
Boston, Massachusets: Kluwer Academic Publishers.

~

8.

10.

11.

13.

14.

Milliken X R., Finkel A.].,, Klein D.A., and Waite N.B. (1988) Adding Rule-based
Techniques to Procedural Languages. The First International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert

Systems, pages 185-195.

Miranker D.P. (1986) TREAT: A New and Efficient Match Algorithm for Al
Production Systems. Ph.D. Thesis, Deparunent of Computer Science, Columbia

University.

Pasik A.J. (1989) A Methodology for Programming Production Systems and its
Implications on Parallelism. Ph.D. Thesis, Department of Computer Science,
Columbia University. _

Scales D. (1986) Efficient Matching Algorithms for the SOAR/OPS5 Production
System. Technical Report, Knowledge Systems Laboratory, Computer Science

Deparument, Stanford University.
Schor M.L, Daly T.P., Lee H.S., and Tibbitts B.R. (1986) Advances in Rete Pattern
Matching. AAAI-86, pages 226-232.

van Biema M., Miranker D.P., and Stolfo S.J. (1986) The Do-loop Considered
Harmful in Production System Programming. First International Conference on

Expert Database Systems, pages 88-97.

Vesonder G. (1988) Rule-based Prograrmmng in the Unix System. AT&T Technical
Journal 67(1) 69-80.

Vesonder G., Stolfo S.J., Zielinski J.E., Miller F.D., and Copp D.H. (1983) ACE: An
Expert System for Telepbone Cable Maintenance. JCAI-83, pages 116-121.

