FUF: the Universal Unifier
User Manual
Version 2.0

CUCS-489-89

Michael Elhadad

Department of Computer Science
Columbia University
New York, NY 10027
Ethadad@cs.columbia.edu

February 1989

Abstract

This report is the user manual for FUF version 2.0, a nawral language generator program that uses the technique of
unification grammars. The program is composed of two main modules: a unifier and a linearizer. The unifier takes
as input a semantic description of the text to be generated and a unification grammar, and produces as output a rich
syntactic description of the text. The linearizer interprets this syntactic description and produces an English sen-
tence. This manual includes a detailed presentation of the technique of unification grammars and a reference manual
for the current implementation (FUF 2.0).

Copyright © 1989 Michael Elhadad

duls-Y89-%9

FUF: the Universal Unifier
User Manual
Version 2.0

Michael Elhadad

Department of Computer Science
Columbia University
New York, NY 10027
Elhadad@cs.columbia.edu

28 February 1989 at 15:04

Abstract

This report is the user manual for FUF version 2.0, a natural language generator program that uses the technique of
unification grammars. The program is composed of two main modules: a unifier and a linearizer. The unifier takes
as input a semantic description of the text to be generated and a unification grammar, and produces as output a rich
syntactic description of the text. The linearizer interprets this syntactic description and produces an English sen-
tence. This manual includes a detailed presentation of the technique of unification grammars and a reference manual
for the current implementation (FUF 2.0).

Copyright © 1989 Michael Elhadad

Table of Contents

1. Introduction

1.1, How to read this manual
1.2. Function and Content of the Package

2. Getting Started

2.1. Main User Functions

3. FDs, Unification and Linearization

3.1. What is an FD?
3.2, A simple example of unification
3.3. Linearization

4. Writing and Modifying Grammars
3. Precise characterization of FDs

5.1. Generalities: features, syntax, paths
5.2. FDs as graphs

53. Disjunctions: The ALT keyword

3.4. Optional features: the OPT keyword

5.5. Control of the ordering: the PATTERN keyword

5.6. Explicit specification of sub-constituents: the CSET keyword
5.7. The special value NONE

5.8. The special value ANY - The Determination stage

5.9. The special value GIVEN
5.10. The special attribute CAT: general outline of a grammar

6. Tracing

6.1. External vs. Internal Traces: switches

6.2. Tracing of alternatives and options

6.3. Local tracing with houndaries

6.4. The trace-cnable and tracc-disable family of functions

. Indexing and Complexity of grammuars

7.1. Indexing
7.2. Complexity

8. Morphology and Linearization

8.1. Lexical categories are not unificd

8.2. CATegories Accepted by the morphology module

8.3. Accepted features for VERB, NOUN, PRONOUN, DET and PUNCTUATION:

8.4, Possihie values for features NUMBER, PERSON, TENSE, ENDING, BEFORE, AFTER,
CASE, GENDER, PERSON, DISTANCE, PRONOUN-TYPE, A-AN

9. The Dictionary
10. Reference Manual

10.1. Unification functions
10.1.1. *lexical-catcgorics*
10.1.2. *u-grammar*
10.13. u
19.1.4. uni
10.1.8. uni-fd
10.1.6. unif

10.2. Checking
10.2.1. fd-syntax
10.2.2. fd-sem
10.23. fd-p
10.2.4. grammar-p

10.3. Tracing
103.1. *all-vace-of ™
103.2. *all-tracc-on*

O Q0 L L) Cd I =t = =

10.3.3. *trace-determinc™
10.3.4. *trace-marker*
10.3.5. *top*
10.3.6. all-racing-flags
10.3.7. intemal-trace-off
10.3.8. internal-trace-on
10.3.9. trace-disable
10.3.10. wrace-disable-all
10.3.11. trace-disable-match
10.3.12. trace-enable
10.3.13. trace-enabic-all
10.3.14. trace-enable-maich
10.3.13. trace-off
10.3.16. trace-on
10.4. Complexity
10.4.1. avg-complexity
10.4.2. complexity
10.5. Manipulation of the dictionary
10.5.1. *dictionary*
10.5.2. lexfetch
10.5.3. lexstore
10.6. Linearization and Morphology
10.6.1. call-linearizer
10.6.2. gap
10.6.3. morphology-hclp

10.7. Manipulation of FDs as data-structures

10.7.1. FD-intersection
10.7.2. FD-member
10.7.3. FD-1o-list
10.7.4. gdp
10.7.5. gdpp
10.7.6. list-to-FD

10.8. Fine tuning of the unifier
10.8.1. *any-at-unification®
10.8.2. *kecp-cset*
10.8.3. *keep-none*

Appendix L Installation of the Package
I.1. Finding the files

[.2. Porting to a new machine

1.3. Packages

Appendix I1. Advanced Features

I1.1. Advanced Uses of Patterns
I1.2. Advanced uses of CSET

I1.3. Long Distance Dependencies and the GAP feature
I1.4. Specifying complex constraints: the TEST and CONTROL keywords

Appendix III. Non linguistic applications of the unifier: dealing with lists

I11.1. The member/append example

III.2. Representing lists as FDs
IIT.2.1. NIL and variables
[11.2.2. The "~" notation

I11.3. Environment and variahle names vs. FD and path

G&E&8 G

IT1.4. Procedures vs. Categories, A

[11.5. The total FD includes the st

Appendix [V. Non standard features of theim

[V.1. No disjunction in input
[V.2. Mergeable constituents inp
[V.3. Indexing of alternation
1V.4. Test and Control

[v.5. GIVEN

Index

rauments vs. Constituents

ack of all computation
[11.6. Analogy with PROLOG programs
[11.7. Use of Set values in linguistic applications

atterns

plementation and restrictions

i

1. Introduction

1.1. How to read this manual
This manual is designed to help you use the FUF package and to describe and explain the technique of
unification grammars.

The FUF package is made available to people interested in text generation and/or functional unification. It can
be used:
 as a front-end to a lext generation System, providing a surface realization component. A grammar of
English with a reasonable syntactic coverage is included for that purpose.

« as an environment for grammar development. People interested in expressing grammatical theories or
developing a practical grammar can experiment with the unifier and linearizer.

* as an environment for a study of functional unificaton. Functional unification is a powerful technique
and can be used for non-linguistic or non-grammatical applications.

This manual contains material for people interested in any of these. It starts with an inroduction to functional
unification, its syntax, semantics and terminology. The next sections deal with the "grammar development” tools:
racing and indexing, a presentation of the morphology component and the dictionary. Finally the last section is a
reference manual 10 the package. One appendix is devoted to the possible non-linguistic applications of the
formalism, and compares the formalism with programming languages.

1.2. Function and Content of the Package

FUF implements a natural language surface generator using the theory of unification grammars (cf section
bibliography for references). [ts input is a Functional Description (fd) describing the meaning of an utierance and a
grammar (also described as an fd).The Syntax of fds is fully described in section S. The output is an English
sentence expressing this meaning according to the grammatical constraints expressed by the grammar.

There are two major stages in this process: unification and lineanzation,

Unification consists in making the input-fd and the grammar "compatible” in the sense described in [10]. It
comes down 10 enriching the inpui-fd with directives coming from the grammar and indicating word order, syntactic
constructions, number agreement and other features.

The enriched input is then linearized to produce an English sentence. The linearizer includes a morphology
module handling all the problems of word formation (s’s, pretents, ...).

2. Getting Started

Appendix [describes how to install the package on a new machine. Contact your local system administrator 0
leam how 1o load the program on your system. You should know how 10 load the example grammars and
corresponding inputs.

(AN

2.1. Main User Functions
Once the system is loaded, you are ready 1o run the program. To try the unification, the user functions are:

(ONI FD soptional GRAMMAR Non-Intaeractive)
by default the grammar used is *u-grammar*
non-interactive is nil
Completa work : unification + linearization. Cutputs a sentence.
If non-interactive is nil, a line of statistics is
also printed.

(ONI-FD FD &optional GRAMMAR Non-Intaeractive)
by default the grammar used is *u-grammar*
non-interactive is nil.
Doaes only the unification. Outputs the enriched fd. This is tha
function to usa when trying the grammars manipulating lists of gr5.1
If non-intaeractive is nil, a line of statistics is also printad.

CL> (uni iro0l)

The boy loves a girl.
CL> (uni-fd 1r02)
& ...

(UNIF FD &toptional GRAMMAR Non-Intaeractive)
by default the grammar used is *u-grammar*
As uni-fd but works aeven if FD does not contain a CAT feature.

If you want (0 change the grammar, or the input you can cdit the files defining it, or the function with the same

name.

There are two other useful functions for grammar developers: £d-p checks whether a Lisp expression is a
syntactically correct Functional Description (FD) to be used as an input. If it is not, helpful error messages are
given. grammar-p checks whether a grammar is well-formed.

NOTE: use £d-p on inputs only and gramma r-p on grammars only.

(FD-® FD)

~=> T if FD is a well-formed FD.

--> nil (and error messages) otherwvise.
DO NOT USK FD-P ON GRAMMARS

(GRAMMAR-? toptiocnal GRAMMAR print-messages print-warnings)
-=> T if GRAMMAR (by default *u-grammar*) is a well-formed grammar.
--> nil (and errer messages) otherwise.
- FD is *u-grsmmar* by default
- print-messsges is t by default.
If it is non-nil, some statistics on the grammar are printed.
It should be nil when the function is called non-interactively.
- print-warnings is nil by default.
If it is non-nil, warnings are ganerated for all paths in the
grammar. (It is sometimes a good idea to manually check that all
paths are valid.)

(LIST-CATS &optional GRAMMAR)
--> List of categories known by the grammar (by default *u-grammar®).

(V3]

Examples:
ClL> (fd-p ' ((a 1) (a 2)})
----> error, attribute a has 2 incompatible values: 1 and 2.
nil

CL> (grammar-p)

————>

Cl> (grammar-p ‘((a 1) (b 2)))

----> @rror, a grammar rmust be a valid FD of tha form:
((alt (((cat cl)...) ... ((cat en) ...)))). nil.

CL> (list-cats)

-===> ({cat s) (cat np) (cat vp))

The functions complexity and avg-complexity measure how complex is a grammar, that is how much
time unification with this grammar requires. They are documented in section 7 on indexing.

3. FDs, Unification and Linearization
In this secton, we informally introduce the concepts of FDs and unification. The next section provides a
complete description of the FDs as used in the package, and presents all available unificadon mechanisms.

3.1. What isan FD?

An FD (functional description) is a data structure representing constraints on an object. It is best viewed as a list
of pairs (awribute value). Here is a simple example:

[((articlo “the") (noun "cat"))

There is a function called £d-p in the package that lets you know whether a given Lisp expression is a valid
FD or not and gives you helpful error messages if it is not. In FUGs, the same formalism is used for representing
both the input expressions and the grammar.

3.2. A simple example of unification

We present here a minimal grammar that contains just cnough to generate the simplest complete sentences. It is
included in file "gr0.l" in the directory conuining the cxamples. A little more complex grammar, handling the
aclive/passive distinction, is available in "grl.1", and a more interesting one in "gr2.f".

((alt MAIN ¢
;; a grammar always has the same form: an alternative
::; with one branch for each constituent category.

;; First branch of the alternative
;; Daescribe the catagory S.
((cat s)

(prot ((cat np)))

(goal ((cat np)))

(varb ({(cat vp)

(number (prot numbear))))
(pattern (prot verb goal)))

;. Second branch: NP
((cat ap)
{(n ((cat noun)))
(alt (
;; Proper names don’t need an article
((proper yas)
(pattern (n)))
;; Common names do
((proper no)
(pattern (det n))
({dat ((cat article)
{lex "the")})))))

;; Third branch: VP

((cat vp)
(pattern (v dots))
(v ((cat varb)))))))

A few comments on the form of this grammar: the skeleton of a grammar is always the same, a big alc
(alternation of possible branches, the unifier will pick one compatible branch 0 unify with). Each branch of this
alternation corresponds 10 a single category (here, S, NP and VP),

The second remark is about the form of the input: as shown in the following example, an input is an FD, giving
some constraints on certain constituents. The grammar decides what grammatical category corresponds to each
constituent.

The next main function of the grammar is 0 give constraints on the ordering of the words. This is done using
the pattern special atribute. A pattern is followed by a picture of how the constituents of the current FD
should be ordered: (Pattern (prot verb goal)) means that the prot constituent should come just before
the verb constituent, ¢,

In the first branch, the oaly thing to notice is how the agreement subject/verb is described: the number of the
PROT will appear in the input as a feature of the FD appearing under PROT, as in:

(prot ((number plural) (lex "car")))

standing for “"cars”. To enforce the subject/verb agreement, the grammar picks the feature number from the
crot sub-fd and requests that it be unified with the corresponding feature of the ve rb sub-fd. This is expressed by:

(verdb ((number (prot number))))

which means: the value of the numbe r feature of e rd must be the same as the value of the numbe r feature
of proz.

In the second branch, describing the NPs, we have two cases, corresponding to proper and common nouns.
Common nouns are preceded by an article, whereas proper nouns just consist of themselves, e.g., "the car™ vs.
"John". If the feawure proper is not given in the input, the grammar will add it. By default, the current unifier will
always try the first branch of an alc first. That means that in this grammar, proper nouns are the default.

Finally, a brief word about the general mechanism of the unification: the unifier first unifies the input FD with
the grammar. [n the following example, this will be the first pass through the grammar. Then, each sub-constituent
of the resulting FD that is part of the cset (constituent-set) of the FD will be unified again with the whole
grammar. This will unify the sub-constituents prot, ve rb and goal also. This is how recursion is triggered in
the grammar. The next section describes how the csec is determined. All you need to know at this point is that if a
constituent contains a feature (cat xxx) it will be uried for unification.

In the input FDs, the sign “==="is used as a shoricut for the notation:

(n =— John) <==> (n ((lex John))) l

The lex feature always contains the single string that is to be used in the English sentence.

Whaen unified with the following FD, tha grammar will output the
sentaence "John likes Mary".

(setg 1ir0l '’ ((cat s)

(prot ((n == john)))
(verb ((v == lika)))
(goal ((n === Mary)))))

That corresponds to the linearization of tha following complata
FD (this is the raesult of the unification):

CLISP> (uni-fd ir0l)

((cat s8)
(prot ((n ({lex "john")
(cat noun)))
(cat np)
(proper yes)
(pattern (n))))
(verb ((v ((lex “like")
(cat vaerb)))
(cat vp)
(number nil)
(pattern (v dots))))
(goal ((n ((lex "Mary")
(cat noun)))
(cat np)
(proper yes)
(pattern (n})))
(pattarn (prot verb goal)))

Following the trace of the program will be the easiest way 1o figure out what is going on:

CLISP> (uni iro0l)

-=>

Entaering alt MAIN -- Branch #1 (CAT §)

~-->Enriching input with (CAT NP) at level (PROT)
-->Enriching input with (CAT NP) at level (GOAL)
-->Enriching input with (CAT VP) at level (VERB)
-->Enriching input with (NUMBER (PROT NUMBER)) at laevel (VERB)
-->Enriching input with (PATTERN (PROT VERB GOAL)) at laevel NIL
-—>

-—>

Entering alt MAIN -- Branch #2 (CAT NP)

-->Enriching input with (CAT NOUN) at level (PROT N)
-->Enriching input with (PROPER YES) at laeval (PROT)
-->Enriching input with (PATTERN (N)) at level (PROT)

-—>

-—2>

Entering alt MAIN -- Branch #3 (CAT VP)

-->Enriching input with (PATTERN (V DOTS)) at level (VERB)
-->Enriching input with (CAT VERB) az level (VERB V)

-->

—-—>

Entaering alt MAIN -- Branch #2 (CAT NP)

-->Enriching input with (CAT NOUN) at level (GCOAL N)
~-->Enriching input with (PROPER YES) at level (GOAL)
~->Enriching input with (PATTERN (N)) at level (GOAL)

-—>

[Used 17 backtracking points]

John likes Mary.

In the figure, you can identify each step of the unification: first the top level category is identified: (cats). The
input is unified with the corresponding branch of the grammar (branch #1). Then the constituents are identfied. We
have here 3 constituents: PROT of cat NP, VERB of cat VP and GOAL of CAT NP. Each consttuent is unified in
turn. Then for each constituent, the unifier identifies the sub-constituents. In this case, no constituent has a
sub-constituent, and unification succeeds. Notic that in general, the hierarchy of constituents is traversed breadth
first.

Now, it is also imporant to know when unification fails. The following example tries to override the
subject/verb agreement, causing the failure:

(setg 1r02 ' ((cat s)

(prot ((n === john) (number sing)))
(verb ((v === like) (number plural)))
(geal ((n == Mary)))))

CLISP> {(uni ir02)

-=>

Entaring alt MAIN -- Branch #1 (CAT S)

-->Enriching input with (CAT NP) at level (PROT)
-->Enriching input with (ZAT NP) at level (GOAL)
-->Enriching input with (CAT VP) at leval (VERB)
-~>Fail in trying PLURAL

with SING at levael (VERB NUMBER)

<fail>

3.3. Linearization
Once the unification has succeeded, the unitied [d is sent to the linearizer. The linearizer works by following
the directives included in the pattern . The exact way to dctine these features is explained in section 5.5. The

linearizer works as follows:
1. Identify the pattern feature in the top level: forir0l,itis (pattern (prot verb geal)).

2. If a pauern is found:
a. For each constituent of the pattern, recursively linearize the constituent. (That means linearize
PROT, VERB and GOAL).

b. The tinearization of the {d is the concatenation of the linearizations of the constituents in the
order prescribed by the pattern feature.

3. lf no feature pattern is found:
a. Find the lex feature of the fd, and depending on the category of the constituent, the mor-
phological features needed. For example, if fd is of (cat wverb), the features needed are:

cerson, number, tense.

b. Send the lexical item and the appropriate morphological features to the morphology module .
The linearization of the fd is the resulting string. For example, if lex="*give’” and the feamres
are the default values (as it is in irQ1), the result is **gives."’

Note that when the fd does not contain a morphological feature, the morphology module provides reasonable
defaults. More details on morphology are provided in scction &,

Note also that if a pattern conuains a refercnce 10 a constitucnt and that the constituent does not exist, nothing
happens: the linearization of an empty consttuent is the ecmpty string. The following example illustrates this
leature:

Onified FD:

((cat s)
(pattern (prot verb goal benef})
(prot ((cat noun) (lax '‘John’’)))
(verb ({(cat vaerb) (lex ‘'‘like’’)}))

Linearized string (nota that constituents GOAL and BENEF are missing):
John likes.

Finally, note that if one of the consutuent sent to the morphology is not a known morphological category, the
morphology module can not preform the necessary agrecments. This is indicated by the following output:

Unified FD:

((cat s)
(pattarn (prot verb goal))
(prot ((cat noun) (lax '‘John’’)))
(verb ((cat verb) (lex ‘'‘lika’’)))
(goal ((cat zozo) (lax ‘'‘trotteur’’))))

Linearized string:
John likes <unknown cat ZOZO: trotteur>

In general, when you find that in your output, it mcans you have done something wrong. You should check the
list of legal morphological categories (sec section 8) or you should check why a high level constituent is sent to the
morphology (your fd is 100 flat). You can use the function morphology-help to have on-line help on what the
morphology module can do.

4. Writing and Modifying Grammars
In this section, we briefly outline what sicps must be followed to develop a Functional Unification Grammar.
The methodology is the tollowing:

1. Determine the input to use. [n general, input 1s given by an underlying application. If not, the
criterion 1o decide what is a good input is that it should be as much ‘‘semantic’’ as possible, and
contain the fewest syntactic features as possible,

2. ldentify the types of sentences to produce.

3. For each ype of sentence, identify the constitucnts and sub-constituents, and their function in the
sentence. A constituent is a group of words that are ‘‘tied together’” in a clause. A constituent in
general plays a cerain function with respect to the higher level constituent containing it. For example,
in **‘John gives a book to Mary,"" the group ‘‘a book'* forms a constituent, of category ‘‘noun-group,’’
and it plays the role of the ‘‘object upon which action is performed’” in the clause. Such role is often
called the “*medium’’ in functional grammars,

4. Determine the output (that is, the unilicd fds before lincarization). In the output, constituents should
be grouped in the same pair and the attribute should indicate what function the constituent is fulfilling.
In the previous exampie, we want 10 have a pair of the form (medium <fd describing ‘‘a
book’ ‘ >) in the output. The output must also contain all ordering constraints necessary (o linearize
the sentence and provide all the morphological feature needed to derive all word inflections (e.g.,
number, person, lense).

S. Determine the ‘‘difference’’ between the input and the output. All features that are in the output but
not in the input must be added by the grammar.

6. For each category of constituent, write a branch of the grammar. To do that, you need (0 specify under

10

which conditions each feature of the *‘difference’” must be added to the input.

This is of course an over-simplified description of the process. Sometimes, the mapping from the input 1o the
output is best considered if decomposed in several stages. For cxample, in gr4 (cf. file gr4. 1), the grammar first
maps the roles from semantic functions (like agent or medium) to syntactic roles (like subject or
direct-object), and then does the required syntactic adjustments.

In general, the important idea here is that you must first detcrmine your input and your output and the grammar
is the difference of the two.

5. Precise characterization of FDs

5.1. Generalities: features, syntax, paths
Pairs are called features. The aunbute of a feature necds 10 be an atom. The value of a feature can be either an
atom or recursively an FD. Here is an example:

(1) ((cat np)
(det ((cat articlae)
(definite yes)))
(n ((cat noun)
(numbaer plural))))

A given atribute in an FD must have at most ONE value. Therefore, the FD ((size 1) (size 2)) is
illegal. In fact FDs can be viewed as a conjunction of consiraints on the description of an object: for an object to be
described by ((size 1) (size 2)) it would necd to have its property size to have both the values 1 and 2.
Conversely, if the attribute size docs not appear in the FD, that means its value is not constrained and it can be
anything. The FD nil (empty list of pairs) thus represents atl the objects in the world. The pair (att nil)
expresses the consmraint that the value of ate can be unything. [t is therefore useless, and the FD ((attl nil)
(att2 val2)) isexactly equivalenttothe FD ((atc2 val2)).

Any position in an FD can be unambiguously rcfered to by the "path” leading from the top-level of the FD 1o
the value considered. For example, FD (1) can be described by the set of expressions:

(cat) = np

(det cat) = article
(det definite) = yes
(n cat) = noun

(n number) = plural

Paths are represented as simple lists of atoms (lor cxample, (det definite)). This notation is not am-
biguous because at each level there is at most one leature with a given altribute.

A path can be "absolule” or “relative.” An absolute path gives the way from the top-level of the FD down to a
value. A relative path starts with the symbol "~ " (up-arrow). [t refers to the FD embedding the current feature. You
can have several "~" in a row 10 go up sevcral levels. For cxample:

((cat s)
(prot ((cat np)
(number sing)))}
(verb ((cat wvp)
(number (~ ~ prot numbar))}))

I
this is refaering to the absolute path (prot number)

11

The value of a pair can be a path. In that case, it means that the values of the pair pointed o by the path and the
value of the current pair must always be the same. In this case, the two features are said to be unified. In the
previous example, the features at the paths <verb number>and <prot number>are unified. That means they
are absolutely equivalent, they are two names lor the same object. This is equivalent to the sysiemic operation of

"conflation”.

The only case where a given attribute can appear in several pairs is when it is followed by paths in all but one

pairs. That is:

((a ((al v1)))
(a (b))
(a (c)))

is a valid FD. It is equivalent for examplc to:

{((b ((al vl1)))
{a (b))
(e (b))

5.2. FDs as graphs

It is often useful 10 represent FDs as Dirccted Acyclic Graphs (DAGs). Here is how the correspondance is
cstablished: an FD is a node, cach pair (attrz. value) is an arc leaving this node. The attr of the pair is the
label of the arc, the value is the adjacent node. Internal noxdes in the graph have therefore no label whereas leaves are

atomic values.

((cat s) / 1\
(prot ((cat np) / | \
(aumber sing))) <=m==> prot cat verb
(verb ((cat vp) | | |
(aumber sing)))) . * *
/ N\ | / \
/ \ s/ \

| I |
number cat cat numbar
| o |
i | |
sing np vp sing

When a relative path occurs somewhere in an FD, to find where it points to, just go up on the arcs, one arc for
each "~". When the value of a pair is a path, e.g., (a (b)) it means that the current arc is actually pointing to the

same node as the path given.

*

((cat s) /1N
(prot ((cat np) / I \
(number sing))) <====> prot cat verb
(varb ((cat vp) | | |
(number (* ~ prot number))}) * * *
/ \ | / \
/ \ s/
| I |
cat number numbar cat
| I |
| +o—t |
| | |
np sing vp

-~

The following atmributes have a special unification bchavior: alt, opt, pattern,

control and cac. The following values have a special unification behavior: none, any and given. These

are all the "keywords” known by the unifier.

5.3. Disjunctions: The ALT keyword
alc stands for "altemnation”. The syntax for using alc is:

((attl wvall)
(att2 wval2)

(attn valn))

(ALT (£d1 f£d2 ...

fdn))

The meaning of a pair with an alt auribute is: the unificr will try to unify the total FD by replacing first the
pair alc by the FD £d1, if this unification fails, then the unifier will try the following altemnatives. If ail branches
of the alc fail, the unification fails.

The order in which branches are put within the alc docs not change the result of the unificaton. (This is an
imporiant {eature of the process of unification: the result is always order-independent.) However, since only the
lirst successful unification is reurned, order can be used 1 specify default values. For example, if you want to
specify that a sentenee should be at the active voice by default, the following order should be used:

)

<))

(ALT (((voioe agtive)

(-(w.rt;ico passive)

An alrc can be embedded within another ale or it can be the value of a feature.

13

5.4. Optional features: the OPT keyword
oot is used to indicate that a set of features is optional. The syntax is

((attl wvall)
(OPT ‘ fd)

(attn valn))

The meaning is: if the unification of the whole FD succeeds with fd, it is returned as the result. If it fails, the
unifer tried again without fd. copt is thercfore a more readable equivalent to the form:

[(ALT (fd nil))

opt is used exacdy in the same way as alc.

5.5. Control of the ordering: the PATTERN keyword

As mentioned previously, the generation of a scntence is made of two subprocesses: the unification and the
linearizauion. The unificauon produces a complex description of a sentence, made of several consttuents. Each
constituent is described by an FD, and can recursively contain other subconstituents.

The linearization takes such a complex non ordered description and outputs a linear, ordered soing of words.
This operation is consuained by directives put within the FD. These constraints on the ordering are put after the

special attribute paccern.

For example, in a scntence containing the constilucnts prot, goal and verb, the following pattern can
be used:

[(PATTERN (PROT VERB GOAL))

This means that the linearizer should output a string made of the linearization of the constituent prot first,
followed by the lincarization of the constituent verbd and finished by the lineanization of the constituent goal. It
also means that nothing can come before prot and after goal, and nothing can come between each pair.

The constituents correspond o features of the FD describing the sentence. That is, this FD must contain pairs
with the atributes prot, verb and goal. For example:

((cat 8)

(PROT (...))

(GOAL (...))

(VERB (...))

(PATTIRR (PROT VERB GQAL)))

If a constituent mentioned in the patiern is not present in the FD, nothing happens: the linearization of an empty
(or non existent) constituent is the empty string.

The patczern dircctives are generally added by the grammar, since the input to the unifier should be a
semantic representation and therefore docs not contain any consuaint on word ordering.

14

A given grammar can generate several constraints, that is it can add 2 or more pattern pairs lo the result. The
unifier therefore includes a pactexzn unifier. The role of the pattern unifier is 10 take several constraints on the
ordering and to output one ordering that subsumes all of them.

The following symbols have a special meaning for the patiem unifier: dots and pound (standing respectively
for the notations °..." and '#’).

A pattern (¢l ... ¢2) (noted in the program (cl dots <¢2)) indicates that the constituent ¢l must
precede the constituent c2, but they need not be adjacent. Zero, one or many other constituents can come in
between. The pattem (cl ... c2) sull requires the sentence to start with constituent ¢l and to end with c2.
The pattern (... cl ... c2 ...) only forces cl 10 come before c2.

The pound (#) symbol is used to represent () or 1 constitucnt. For example, if you want o allow a sentence to
start with an opuonal adverbial, you can specify it with the pattem (¢ prot ... verb ...). This directive
will be compatible with both (prot wverb goal) and (adverb prot verb goal) for example,

As a consequence of the use of the two symbols pound and dots, the constrainis described by pattern
directives are PARTIAL orderings.

Appendix [describes some advanced uses of pattern unification.

[n addition, the pattern unifier can be uscd to enforce the unification of constituents. The classical example is
given by the focus constituent. There is good linguistic cvidence that the focus of a sentence tends to occur first in
a sentence. To represent this constraint, a grammar can include the following directive:

(PATTERN (FOCUS DOTS))

That is, a sentence should start with its focus. Now, we also know that a sentence at the active voice should
start with its subject, that is its prot constituent. This is expressed by:

[(pxrrmmz (PROT ... VERB ...))

If both constraints are w0 be satisfied, we nced 10 say that focus and prot are actually the same constituent,
otherwise, the 2 pattems are incompatible. That is, the constitucnis focus and prot need w0 be unified. This
mechanism would be quite expensive to implement for all constituents, and would need to meaningless attempts
most of the time. Therefore, 10 allow this kind of unitication 10 occur, the current unifier requires the pattermn to
include a special directive, indicating that a constitucnt can be unified with other constituents 10 make two patterns
compatible. The notation used is: (* constituent).

Example:
(PATTERN ((*» TOCUS) DOTS))
(PATTERN (PRCT DOTS VERB DOTS))

are compatible, and require the unification of the constitucnts focus and prot. Note that prot needs not be
“stared” 10 be unified with £ocus. The nounion can be understood as specifying that £ocus is a kind of "meta-
constituent”,

NOTE: Patterns can contain full paths 10 specify constitucnts, For cxample, the following is a legal patiern:

15

(PATTERN ((prot n) (verb v) goal))]

NOTE: the unification of patterns is a non-deterministic operation. It can produce several results for a given
input, and there is no way to produce in which order these possible solutions will be tried. Caution should be
exercised when specifying pauems: they should be specific enough to allow only acceptable word orderings (do not
use (00 many dots) but should not be too specific to allow for as yet not supported constituents (for example, a
sentence can start with an Adverbial, not necessarily an NP).

5.6. Explicit specification of sub-constituents: the CSET keyword

The unifier works recursively: it unifics [irst the top-level FD against a grammar (generally the top-level FD
represents a sentence), and then, recursively, it unifies cach of its constituents. For example, to unify a sentence, the
unifer first takes the whole FD and unifies it with the grammar of the sentences (cat S}, then it unifies the prot
and goal with the grammar of NPs (cat np),then it unifics the verb with the grammar of VPs (cat vp).

You can specify explicitly which fcawres of an FD corresponds to constituents and therefore need w be
recursively unified. To do that, add a pair:

(CSET (el ... ecn))

For examplae:
(CSET (PROT VERB GOAL))

The value of a cset (stands for Constitucnt SET) is considered as a SET (in the mathematical sense).
Theretore the 2 following pairs are corrcctly unificd:

(CSET (PROT VERB GOAL))
(CSET (VERB GOAL PROT))

Actually, two cset pairs are unificd if and only if there values are two equal sets.

The current version of the unifier docs not rely cxclusively of csets to find the constituents to be recursively
unilied. Here is the procedure followed o identify the constituent set of an fd:
1. [falcature (cset (cl ... cn)) isfound in the FD, the constituent set is just {cl ... cn).

2. If no feature cset is found, the constituent sct is the union of the following sub-fds:
a. If a pair contains a feawure (cat xx), 1l is considered a constituent,

b. If a sub-fd is mentioned in the pattcmn, it is considered a constituent.

As a consequence, csecs are rarely nccessary. They are generally used when an fd contains a sub-fd that
either is mentioned in the pattern or contains a fcature cat, but that you do NOT want to unify. In that case, you
can explicitly specify the cset without including this unwanted sub-{d.

NOTE: A csect values can conwin full paths 10 specifly constituents. So for example, the following is a legal
fealure:

[?;sot ((prot n) (verb v) goal)) AAJ

3.7. The special value NONE

There is a way to prevent an FD from ever geuting a valuc for a given attribute. The syntax is: (att NONE).
[t means that the FD conuaining that pair will NEVER have a value for act. Or in other words, that the object
described by the FD has no auribute act.

3.8. The special value ANY - The Determination stage

An any value in a pair means that the feature must have a dctermined value at the end of the unification. A
complete unified FD will never contain an any, since an any stands for something that must be specified. If after
unifying everything, the resulting FD contains an any, then the unification fails.

An any represents a strong constraint. It means that a feature MUST be instantiated. any should not be
understood as “the feature has a value in the input” but as "the feature WILL have a value in the result”.

The idea of a “resulting tinal FD" coming out of the unification is important. [t actually implies that the process
of unification is the composition of 2 sub-proccsscs: the unification per se and what we call here the
“determinauon”.

The determination process assures that the resulting FD is well formed. It is a necessary stage since the
"resulting final” FD is more constrained than regular FDs. Hcre is what the determination does:
» checks that no any is left.

o tests all the test constraints.
It is imporwant to realize that none of this can be donc hefore the unification is finished.

Note that in practice, ANY is used VERY rarcly.

3.9. The special value GIVEN
NOTE: GIVEN is a keyword specific to this implementation. [ts use is not recommended. See appendix [V for
a list of the non-standard features of this implementation.

A given value in a pair means that the featurc must have a real value at the beginning of the unification. A
unified fd will never contain a given since given will always be unified with a real value. given is useful o
specify whal features are necessary in an input. [t is also much more efficient than any. [t is often used in branches
ofun alc, 1o “'test' " for the presence of a featurc.

The rule is: when you think of using any, you often want 10 use given.
5.10. The special attribute CAT: general outline of a grammar

Each constituent of an FD is generally characterized by its "category”. In FD terms, that means each constituent
includes a feature of the form (CAT category-name), where category-name is expected to be an atom.

A grammar is expected o give dircctives for cach possible category, for example NP, VP, or NOUN, The
outine of a grammar must be:

((alt {
((cat s)
<rest of grammar for category S>)
((cat np)
<rest of grammar for cataegory NP>)
<other categories>

)})

NOTE: The current version of the unifier makes the assumption that the grammar has such a form. The (CAT

17

xxx) pairs must appear first. The function gramma=z-p checks that a grammar has the right form. The list of
categories known by the grammar can be found by using the function 1ist~cats. See appendix IV for a list of the

non-standard features of this implementation.

6. Tracing

There are plenty of methods Lo tracc the process of unification, generating more or less output. You want to

choose the method gencrating only the most relevant trace.

6.1. External vs. Internal Traces: switches
For the purpose of debugging the unificr, there is a switch generating an extremely detailed output.

To use it, type:
(internal-trace-on)

To switch it off:
(internal-trace-off)

The other traces are used (o lollow the process of uniticaton, and are used to debug a grammar, they don't give

any information on the internals of the program. These arc the external races users generally use.

Since these traces are orented to a grammar developper, we want the grammar developper to indicate what
portions of the grammar must be traced: the grammur is traced, not the program. Therefore, to trigger tracing, one
must put directives into the grammar. At the Lisp level, and for a given grammar including tracing directives, Taces

can be switched on or off by the functions:

13

(trace-on) enable all trace maessages to be output.
(trace-off) disable all trace messages to bae output
(all-tracing-flags &optional (grammar *u-grammar*))
return the list of all tracing flags defined in grammar.
dafined in the grammar.
(tracaea-enablae flag) re-enablae a disabled flag.
(trace-disablae-all) disable all flags.
(-race-enablae-all) re-enablae all flags.

trace-disable-match string)
disable all flags whose names contain string.

(trace-enable-match string)

(tzace-disable flag) disable flag. Everything works as if flag was not

re-enable all flags whose names contain string.

6.2. Tracing of alternatives and options

The most useful trace of the unification is generated by giving a name to an alternative of the grammar. It is

done by adding an atomic name after the keywords alt or opt in the grammar:

{(alt PASSIVE
(
branch 1 of alt passiva
((verb ((voice passivae)))
(prot none))

;. branch 2 of alt passive
((verb ((voice passive)))
(prot any)
(prot ((cat np)))

(by-obj ((cat pp) (prep ((lex "by"))) (np ("~ prot}))))
(pattern (dots verb by-obj dots)))))

;; body of alt passive (common to all branchaes)
(verdb ((cat verb-group)))
.)

Here, this fraction of the grammar has been marked by the dircctive: (alt PASSIVE

.. .).{(An equivalent

noluon is (alt (trace with PASSIVE) ...).) The ctfect will be that all unificaton done subsequently

will be traced, producing the fotlowing output:

--> Entaring ALT PASSIVE
--> Trying Branch #1 in ALT PASSIVE:
--> Fail on trying (prot ncne) with
(prot ((nnp ((n ((lex boy)))})))
--> Trying Branch #2 in ALT PASSIVE:

If a wraced altemnative is found later in the grammar, the level of indentation will increase. If the level of
indentation decreases, that means a whole (alt .. .) has failed. It is indicated by the output:

[--> Fail on ALT PROT. J

The possible messages printed when the grammar is traced are:

Move in the alternatives:
ENTERING ALT f£: BRANCH #i
FAIL IN ALT £
When thae alt is indexed (cf saection 7):
ENTERING ALT f -- JUMP INDEXED TO RBRANCH #i INDEX-NAME
NO VALUE GIVEN IN INPUT FOR INDEX INDEX-NAME - NO JUMP
For options:
TRYING WITH OPTICN o
TRYING WITHOUT OPTION o
Regqular unification:
ENRICHING INPUT WITH s AT LEVEL 1
FAIL IN TRYING s with s AT LEVEL 1
Pattarn unification:
UNIFYING PATTERN p with p
TRYING PATTERN p
ADDING CONSTRAINTS ¢
FAIL ON PATTERN p
Unification betwaeaen pointers to constituents:
OPDATING s WITH VALUE s AT LEVEL 1
s BECOMES A POINTER TO s AT LEVEL 1
OPDATING BOTH PATHS TC A BOUND

HINTS: You want to trace only the most rclevant alicrnatives of your grammar to generate the less output
possible. It is a good idca to trace hirst inner alternatives. Use trace-disable and trace-enable to control

which flags you want 10 use.

6.3. Local tracing with boundaries
If you want a more focused tracing, you can put anywhere in the grammar a pair of atomic flags whose first
character must be a "%" (value of variable *trace-marker*). All the unification done between the 2 flags will

be traced, and will produce the same messages as usual.

;: branch 2 of alt passive
({verdb ((voice passive)))

(prot any)

sby-obiy

{prot ((cat np)})

(by-obj ((cat pp) (prep ((lex “by"))) (np (* prot))))
thy-obid

(pattern (dots verb by-obj dots)))

All the unification done between the 2 ags %by-0bj% will be traced. You furthermore will have a message:

Switching local trace flags on and off:
TRACING FLAG ¢
ONTRACING FLAG £

HINTS: You generally want to have only small portions of the grammar put between tracing flags.

6.4. The trace-enable and trace-disable family of functions

In general, a grammar is defined in a file, that you load in your Lisp environment. The tracing flags are defined
in that file after the alts and opts or as local [Tags. When you develop a grammar, you want o focus on different
parts of the grammar. In order (0 do that, you can sclectively cnable or disable some of the flags defined in the
grammar.

The function all-tracing-£lags rcturns a list of all the Mags defined in the grammar. You can then
choose 1o enable or disable all the flags, only a given [lag, or all flags whose name matches a given string.

When a flag is disabled, everything happens as if the flag was not defined at all in the grammar. Note that you
cannot create a new flag in the grammar by using these [unctions. You can simply turn on and off existing flags. It
is therefore a good idca to define all the possible flags in a grammar and to adjust the list of enabled flags from
within lisp.

7. Indexing and Complexity of grammars

In order 10 increase the efficiency of the unification, the program allows the inclusion of index declarations in
the grammar. To better understand why such declarations can make things faster it is necessary to understand what
makes unification slow.

7.1. Indexing

The main problem for the program is 10 handlc non-dclerministic constructs in the grammar. The non-
deterministic consmructs are currently: alt, opt and pazzern. Unification of these constructs with an input can
produce several results. Whenever the unilicr encounters such a construct, it does not know which of the possible
resuits to choose. For example, when unilying an alc there is no way 1o choose a branch out of the many available

in the alc. The way the program works 1s 10 try cach ot the possibilities one afler the other. When the unification
later on tails, the program backtracks and trics the next possibility.,

This method ts actually a blind search through the space of all the descriptions compatible with the grammar.
Indexing is a technique used to guide the search in a more efficicnt way when more knowledge is available.

The program allows indexing of alt constructs.! The indexing tells the unifier how to choose one branch out of
the alteradon based on the value of the index only, and without considering the other branches ever. The following
cxample illustrates the lechnique.

YA 25t construct is actually an alz with 2 branches, onc haing the tnvial mil. [t would not make sense 1o index il. A pattern construd is
ambiguous because patiems like (...2...b...) and (...c...d...) can he combined tn many ways. Actually, it is always more efficient 10 put patems at
the end of the grammar, because much of the ambiguity generated by these patterns would not change the unification anywasy, except when the (*

consutuent) device is used. In any case, the equivalent of “indexing’ a palicm, that is reducing the ambiguity, is 1o usc as few dots as possible in
the pauems.

21

Example taken from grd

((alt (trace with process) (index on process-typae)
(((process-type actions)
L.l)
((procaess-type mental)
.-)
((process-typa attributiva)
cl)
({process-type equativa)
e 1))
-)

In the example, the (index on process-tyce) declaration indicates that all the branches of the alter-
nation can be distinguished by the value of the process-type feature alone. If the input contains a bound feature
process-type, il is possible to dircctly choose the corresponding branch of the alternation. If however the input
does not correspond such a feature, it has 0 go through the alt in the regular way, with no jumping around.

This is what happens in the tracing messages for cach casc:

If input is:

((cat clause) (process-type attributive) ...)
Trace message is:
-->Entering alt PROCESS -- Jump indexed to branch 3 ATTRIBUTIVE

If input does not contain a feature process-type:
((cat clausa) (prot John) ...)

Trace message is:
-->No value given in input for index PROCESS-TYPE - No jump
-->Entering alt PROCESS -- Branch #1

A grammar is always indcxed at the top-lcvel by the cat feature. [t makes more sense (o index on the features
that will be bound in the 1nput or at the moment the alt will get tried, but it never hurts to index an alt, so it is
recommended 10 index whatever 1s indexable. A program will be soon reteased to perform this indexaton.

The function £d-sem checks that an index declaration is valid, that is, that each branch of the alternation
actually has a bound value for the index, and that all the branches have a different value for the indexed feature.

Note the syntax of an alt construct:

alt-form : (alt {trace-decl} (index-decl} (list-of-fds))
trace-decl : atomic-flag | (truce (...} any-flagq)
index-decl : (index (...} incdex-path)

index-path : atomic-feature | valid-path

The indexed feature can be at the top level ol all the branches, as in the first example for process-type, but
it can also be at lower levels, like in the following cxamplc:

M

Example taken from grdé:

((alt verb-trans (index on (verb transitivity-class))
({({(verb ((transitivity-class intransitiva)))
R
{(varb ((transitivity-class transitive)))
L)
((verb ((transitivity-class bitransitiva)))
)
((verb ((transitivity-class neutar))})
Lel))
-))

NOTE: you CANNOT index an alternation if one of the indexced values is NONE, NIL, ANY or GIVEN.

7.2. Complexity

The complexity of a grammar can be described by the number of possible paths through it, each path cor-
responding 1o the choice of one branch for cach alicrmation. (This measure of complexity is the number of branches
the grammar would have in disjunctive normai form (cf biblingraphy).) Indexing the grammar actually divides this
measure of complexity by a great number.

The funclions complexity and avg-complexity compute different measures of the complexity of a
grammar.

(COMPLEXITY &optional grammar with-index)

--> number of branches of grammar in disjunctive normal form.

- By default, grammar is *u-grammar®

- By default, with-index is T. When it is T, all indeaxed alts are
considered as one single branch, when it is nil, they are
conasidered as regular alts.

(AVG-COMPLEXITY coptional grammar with-index rough-avg)

--> "average" number of branches tried when input contains no

constraint.

- By default, grammar is *u-grammar*

- By default, with-index i3 T. When it is T, all indexed alts are
considered as cne single branch, when it is nil, they are
considered as regular alts.

- By default, rough-avg is nil. When it is nil, the average of an
alt is the sum of the complexity of the half first branches. When

it 1s T, the average is half of the sum of the complexity of all
branches.

Note that these functions do not currently mcasurc the ambiguity of the patterns included in the grammar.

8. Morphology and Linearization

The morphology module (partially writicn by Jay Meycrs USC/ISI) makes many assumptions on the form of
the incoming functional description. If you want 10 usc it, you must be aware of the following conventions.

8.1. Lexical categories are not unified

The categories that are handled by the momhology modulc can be declared to be "lexical categores”. If a
category is a lexical category, it is not unificd by the unificr, and it is passed unchanged to the morphology module.
The assumption here is that the morphology module will do all the reasoning necessary for these categories.

To declare that a category is lexical, you can simply add its name to the global variable
~lexical~catagories=. This vanable is defincd in file TOP.L. lis current value is:

(defvar *lexical-categories*

' (verb noun adj prep conj ralpro adv punctuation modal)
"The Lexical Catagories not to be unifiad")

8.2. CATegories Accepted by the morphology module

The following categories only are known by the morphology module. If a category of another type is sent to the
morphology, no agreement can be performed. The output in that case is:

|<Unknown cat CC: LEX>

MORPH accapts the following valuaes as the value of the attribute CAT:
ADJ, ADV, CONJ, MODAL, PREP, RELPRO, PUNCTUATION, PHRASE:
words are sant unmodified.
NOON:
agreement in number is done.
irregular plural must be put in the list *IRREG-PLURALS*
in file LINEARIZE.L
PRONOUN:
agreemant done on pronoun-type, case, gender, number,
distance, person.
irreqular pronouns are dafined in file LINEARIZE.L

VERB
agreemant is done on number, person, tense and ending.
irreqular verbs must be put in the list *IRREG-VERBS*
in file LINEARIZE.L

DET

agreement is done on number, definite and first letter of
following word for "a"/"an" or feature a-an of following word.

The function morphology-help will given you this information on-line if you need it

8.3. Accepted features for VERB, NOUN, PRONOUN, DET and PUNCTUATION:

ENDING: (ROOT, INFINITIVE, PAST-PARTICIPLE, PRESENT-PARTICIPLE}
NUMBER: {SINGULAR, PLURAL}

PERSON: {FIRST, SECOND, THIRD}

TENSE : (PRESENT, PAST}

NOUN:
NUMBER: {SINGULAR, PLURAL}
FEATURE: {POSSESSIVE}

A-AN: {AN, CONSONANT}
PRONOUN:
PRONOUN-TYPE: (PERSONAL, DEMONSTRATIVE, QUESTION, QUANTIFIED}
CASE: {SUBJECTIVE, POSSESSIVE, OBJECTIVE, REFLEXIVE}
GENDER: {MASCULINE, FEMININE, NEUTER}
PERSON: {FIRST, SECOND, THIRD}
NUMBER: { SINGULAR, PLURAL}
DISTANCE: {NEAR, FAR}

DET :
NUMBER: {SINGULAR, PLURAL)

PUNCTUATION:
BEFORE: (Il'.u' W, e, ..(a-' u)u' .‘.)
AFTER : (n'."‘ N N --)--, .“)

The feature A-AN is used 0 indicatc cxcepuons to the rule: normally, a noun starting with a consonant is
preceded by the indefinite article *“a’" and i the noun siaris with a vowel, it is preceded by “*an.”” Some nouns start
with a consonant but must still be preceded by “*an’" (for example, **honor’’ or acronyms “‘an RST"’). In that case,
the feature (a-an an) must be added to the corresponding noun.

8.4. Possible values for features NUMBER, PERSON, TENSE, ENDING, BEFORE,
AFTER, CASE, GENDER, PERSON, DISTANCE, PRONOUN-TYPE, A-AN

NUMBER: ({SINGULAR, PLURAL}
Default is SINGULAR.

ENDING: (ROOT, INFINITIVE, PAST-PARTICIPLE, PRESENT—PARTICIPLE}
Default is none.

PERSON: (FIRST, SECOND, THIRD}
Dafault is THIRD.

TENSE : (PRESENT, PAST)
Default is PRESENT.

BEFORE: (™;", ",", ":", "(", ")”", ...} (any punctuation sign)
Default is nona.

AFTER : (--'.n' -a'--' co:v-' 'l(--’ u)vl‘ “‘}
Caefault is nona.

CASE: {SUBJECTIVE, OBJECTIVE, POSSESSIVE, REFLEXIVE)
Default is SUBJECTIVE.

GENDER: (MASCULINE, FEMININE, NEUTER}
Default is MASCULINE.

PERSON: (FIRST, SECOND, THIRD)
Default is THIRD.

DISTANCE: (FAR, NEAR}
Dafault is NEAR.

PRONOUN-TYPE: (PERSONAL, DEMONSTRATIVE, QUESTION, QUANTIFIED}
Dafault is none.

A-AN: {AN, CONSONANT}
DCafault is CONSONANT.

9. The Dictionary

The package includes a dictionary o handle the imegulantics of the morphology only: verbs with irregular past
forms and nouns with irreguiar plural only nced to be added to the dictionary.

There is no semanuc information within this dictionary. In fact, a more sophisticated form of lexicon should
have the form of an FD. This dictionary is a part of the momhological module only.

The way 0 add information to the lcxicon is 1o cdit the values of the special variables *irreg-plurais* and
*ireg-verbs®. These variables are defined in the file LEXICON.L. After the modification, you need to execute the
function (initaliaze-lexicon). The best way to do that is 10 cdit a copy of the file LEXICON.L and to load it back.

After loading it, the new lexicon will be rcady 1o use.

The variable *irreg-plurals® is a list of pairs of the form (key plural). The default list starts like this:

*UONIOUNY [9A3]-MO] B ST N "UONENUNUOD 2y UNJ 01 PoPIIU UONPULIOJUl SUIUIZIUOD |, SWRIj-¥OES,, B PUE papadu

e S1NSa 20w J1 [fed 01 UOTIBNUNUOCY B ‘pj Junnsas © sonjea ¢ swmdl pue zpf yua [pf satjiun n :uondiidsaq
*UBD ZP3 ‘SIONNSUOD SOSIUIUUIP-UOY UITIU0D J0UUED TP3 'S4 AJBDiqie 218 ZPJ pue TIP3 »

suawnfay

(zp/ rp/) swaoy Buyie)
uonounj :ad4 |

ne 101

1 1doode d-zeunwea b 1 wao) prea sy wownile se sewwead v Sunsedxs suonaung an

[T 01 aNfeA 1NEJIDP AN ST 1] "JRWWERID) UONEDYIU[) [EULIIDUNS B SUICIUOD [qTIIBA » TPWWERIH-T, 24 :uondilasaqg
s)qeurea ad4 |

»JRWWEIE-N, 7 1°0]

(Tepow uoT3en3dsund ape oadiax (ucd dead (pe unou giaa) ian|ep plepuels
"paijrun Furoq noynm wouodwod AZojoydiow ayn o1 1us am

181 950Y1 are SoU0FANed 95y Seweu AI0TIED JO ISI| L SI DjQUIILA +SBTI05B1Ies- TEDTXS T, Y] uondiidsaqg
ajqeuea :ad4& |

«Sou030180-[801X3, "T°1°01

suonduny uonedyIun "T°0T

*Afreonaqeydre pauos st 1s1) 9y *As03a:1e0 yoeo v *sasodmed 9 Jopun padnoid aie Aay] -arejndivew ued g4 3o
JOST B 1BY1 SIYIIMS PUR SI|QBLIBA ‘SUONDUNJ Y1 ||T JO 1SI] B SOPN{OUI UONIIS SIyl *SSaua19dwod JO axes ayl 10
[BNUBJA 30U313j3Y 01

(...

~$80pP, ,0P.)
, 8o ,,)

(.euocp, .butop. .PTP.

(., ewod, ,Hutwod, ,vwes, ,FOWOD,
(.aybnog, .Puidng, .3ybnoqg, .sinq. .Anqg.)

JDButwooeq, ,eweseq, ,sswodeq, ,Bwodeq,)),

(., mwoseq,,

1Byl 931 SIIEIS aNBA WNBJOp YL

(spdionred-1sed sydionred

-ussaxd 1sed remnBuis-uosiad-puyi-iussaid 1001) wioj Ayl Jo s2ydn-g JO I1Si| B S1 ,SQIBA-83L, J|qEURA YL

(-
(.e3®p, .®3®p,)
(.s®Y30T2. .¥OUIOTO.,)
(UIPTTU®., JPTTHR.)

(.s8AaT®D,, ,FT®,)) .

10.1.4, uni

Type: functon
Calling form: (uni inpui-fd soptional grammar non-interactive)
Arguments:

¢ inpuc-Idisaninput fd. [t must be recognized by fd-p.

* grammar is a FUG. It must be recognized by grammar-p. By default, it is *u-grammar~.

e ~on-interactiveisatlag. [tis nil by dcfauit.
Description: uni unifies input-fd with grammar and lincarizes the resulting fd. It prints the result and some
stausucs if non-interactive is nil. It returns no value. grammar is always considered as indexed on the feature cat.
If input-fd contains no feawre cat the unification fails. (ci. uni £ if this is the case.)

10.1.5. uni-fd

Type: function
Calling form: (uni-£d input-fd soptional grammar non-interactive)
Arguments:

* input-£disan input fd. It must be recognized by £d-p.

* grammar is a FUG. It must be recognized by grammar-p. By default, it is *u-grammar=.

e non-interactiveisa flag. ltis nil by detault
Description: uni-zd unifies inpui-fd with grammar and rcturns the resulting total fd. The result is determined.
uni-£d prints the same statistics as uni if non-interactive is nil. grammar is always considered as indexed on
the feature cat. If inpw-fd contains no fcature cat the unification fails. (¢f. uni £ if this is the case.)

10.1.6. unif

Type: function
Calling form: (unif input-fd soptional grammar non-interactive)
Arguments:

e input-£d is an input fd. [t must be rccognized by £d-p.

¢ grammar is a FUG. It must be recognized by grammar-p. By default, it is *fu-grammar*.
snon-interactiveisaflag. Itisnil by decfault

Description: uni £ unifies input-fd with grammar and rcturns the resulting total fd. The result is determined.

If input-fd containg no feawre cat, unif trics all the catcgones retumed by 1ist-cats unul one returns a

successful unification.

unif checks input-fd with £d-p and it checks grammar with grammar-p. unif prints the same statistics as

uni if non-interactive isnil.

10.2. Checking

10.2.1. fd-syntax

Type: function
Calling form: (£d-svntax soptional fd print-warnings)
Arguments:

e £d is a list of pairs. [t is *u-g-amma=~ by dclault

sprint-warnings isa flag. ltis nil by detault.
Description: £d-syntax verifies that fd is a valid fd. If it is, it rcturns T. Otherwise, it prints hetpful messages and
returns nil. If print-warnings is non-nil it also print wami - s for all the paths it encounters in the grammar. This
is useful when you suspect that one path is invalid or pointing (0 a bad location.

Diagnostics detected by £d-syntax

message condition

Onc of the element of the list of pairs is not a
FD should be a list of atir-valuc pairs. pair and not a valid tracing flag.

Onec of the attributes of the pairs is a valid trac-
--- WARNING: ~A is used as an attribute not as | ing (lag, but is not considered as a tracing flag but as

a flag. a regular attribute.,
One of the pairs contain more than 2 valid ele-
Too many values given. mcnts.
One of the pairs contain less than 2 valid ele-
Too few values given. ments.
Illegal use of flag or 100 many values given. A tracing flag is in a bad position.
lllegal value for the atribute OPT. OPT cxpects a valid FD as a value.
Value of special attribute ALT should be a hist of The syntax of alt is (alt (fdl .
FD's. : £dn)). The value of alt is not a list of valid fds.
Value of special atribute OPT should be an FD, Synmax of opt is (opt £d).
Value of special attribute CSET must be a list of cset accepls a flat list of atoms or paths only as
paths. constitucnts,

pattern accepis a flat list of atoms, paths or
Value of special attribute PATTERN should be a [mergeable constituents. A mergeable constituent is
list of paths or mergeable atoms. marked (* ¢).

A pair is an (attribute value) list and
value can only be a symbol, or a valid path (that is, a
Nat tist of constituent names starting with 0 or more
A value should be cither a symbol, a valid path | ") or recursively an fd. None of these 3 categories
or an FD. has hcen recognized in this case.

When print-warnings is non-nil, this message
--- WARNING: ~s is assumed to be a valid path. | is printed for all paths occuring in fd.

10.2.2. fd-sem

Type: function
Calling form: (£d-sem soptional fd grammar-p)
Arguments:

e £ds a synuctically vahid fd. Itmust be recognmized by €4 -p. Itis *u-grammar = by default,

» grammar-p is a flag. [tis T by default.
Description: £d-sem verifies that fd is a scmantically valid fd. [f it is, it returns T. Otherwise, it prints helpfut
messages and rewrns nil. [f gramunar-p is non-nil £d-semexpects fd to be a grammar. [t allows disjunctions in
Jd. In this case, fd-sem rcturns 3 values if fd is u valid grammar: T, the number of traced alternatives in the
grammar, and the number of indexed alternatives.

If grammar-p is nil, fd is considered as an input fd. Disjunctions are not allowed. In any case, only one value
is returned (T or nil).

Diagnostics detected by £d-sem

message condition
grammar-p is nil and a disjunction has been
Disjunctions are not allowed in input fds. found in fd.
--- Warning: PATTERN or CSET should not be grammar-pisnil and a patcern or cset has
placed in input. heen found in fd.

An attribute has been found with 2 different
atomic values in the same branch of a disjunction.
Contradicting valucs for attribute ~s. (for example, ((a 1) (a 2))).

10.2.3. fd-p
Type: function
Calling form: (£d-p input-fd)
Arguments:
* input-fd is an fd with no disjunctions.
Description: checks that input-fd is both syntactically and scmantically a valid fd.
NQOTE: Do not use fd-p on grammars.

10.2.4. grammar-p

Type: funcuon
Calling form: (grammar-p &optional fd print-messages print-warnings)
Arguments:

e fdisa FUG. ltis *u-grammar* by default

e print-messages isa flag. [tis T by dcfault.

e print-warningsisaflag. ltisnil by default
Description: grammar-p verifies that fd is a valid grammar, both synuactically and semantically. If it is, it prints

some slatistics and returns T. Otherwise, it prints helpful messages and retums nil.

If prini-messages is nil no statistics are printed.

If print-warnings is non-nil wamings are printed for ail the paths encountered in the grammar. This is useful
when you suspect that one path is invalid or pointing 10 a bad location.

NOTE: do not use grammar-p on input fds.

10.3. Tracing

10.3.1. *all-trace-off*

Type: variable.
Description: The *rall-trace-of £~ variable contains a (lag that is recognized by the unifier and terminates the

printing of all tracing messages. It must be placed in a valid position for a tracing flag.
Standard Value: %$TRACE-OFF%

10.3.2. *all-trace-on*

Type: variable.
Description: The *all-trace-on* variable coniains a flag that is recognized by the unifier and undoes the

effect of the *all-trace-off* flag, that is, it recnables all racing messages. It must be placed in a valid position for a
tracing flag.
Standard Value: %TRACE-ON%

10.3.3. *trace-determine*
Type: variable.
Description: The *trace-cdetermine~ is a swilch enabling the printing of tracing messages on the deter-
mination stage. It indicates which TEST expressions are cvaluated.
Standard Value: nil

10.3.4. *trace-marker*
Type: vanable.
Description: The *trace-marker* variablc contains a character. It is used to determine valid tracing flags: if

the first character of the name of a symbol is *tracc-marker®, the symbol is a valid tracing-flag.
Standard Value: #\%

10.3.5. *top*
Type: variable.
Description: The *top* variable is a swilch cnabling the printing of extensive debugging messages on the
backtracking behavior of the unifier. Should be used for development only.
Standard Value; nil

10.3.6. all-tracing-flags
Type: function
Calling form: (all-tracing-flags &optional grammar)
Arguments:
* grammar is a FUG. [t must be recognized by grammac-p. By default, itis *u-grammar=*.
Description: all-tracing-£lags rctums a list of all the tracing fags defined in grammar, in the order where
they are defined in the grammar.

10.3.7. internal-trace-off
Type: function
Calling form: (internal-trace-c££)
Description: internai-zrace-ozZ turns off the iracing of intermal debugging information. Iniually, no debug-
ging information is printed.

10.3.8. internal-trace-on
Type: function
Calling form: (intarnal-trace-on)
Description: inteznal-trace-cn tums on the tracing of internal debugging information. Initiaily, no debug-
ging information is printed. Shouid be used for development only.

10.3.9. trace-disable
Type: function
Calling form: (trace-disable flag)
Arguments:
¢ Zlagisatracing tlag. A tracing flag must be an clement of the result of all-tracing-flags.
Description: t race-disable disables the tracing flag flag. Initially, all tracing flags are enabled.

10.3.10. trace-disable-all
Type: function
Calling form: (t race-disable-all)
Description: crace-disable-all disables all tracing flags. Initially, all tracing flags are enabled.

10.3.11. trace-disable-match
Type: function
Calling form: (t race-disable-match string)
Arguments:
e siring 1S a string.
Description: trace-disable-match disables all wracing flags whose names contain string as a substring.
[niually, all racing flags are enabled.

10.3.12. wace-enable
Type: function
Calling form: (trace-enable flag)
Arguments;
e flag is a racing flag. A tracing flag must be an clement of the result of all-tracing-flags.
Description: trace-enable enablcs the trucing Nag flag. Initially, all racing flags are enabled.

10.3.13. trace-enable-all
Type: function
Calling form: (zzace-enable-all)
Description: trace-enable-all cnables all tracing flags. Initiaily, all tracing flags are enabled.

32

10.3.14. race-enable-match
Type: functon
Calling form: (trace-2anable-match siring)
Arguments:
e string is a string.
Description: trace-snable-match enables all wmcing flags whose names contin string as a substring. In-

iually, all tracing flags are enabled.

10.3.13. race-off
Type: function
Calling form: (trace-off)
Description: trace-of £ turns off tracing. If no argument is provided, all tracing is tumed off. Initially, tracing

is off.

10.3.16. trace-on
Type: function
Calling form: (trace-on)
Description: t race-on turns on tracing.

Iniually, wacing is off.

10.4. Complexity

10.4.1. avg-complexity
Type: funcuon
Calling form: (avg-complexity &optional grammar with-index rough-avg)
Arguments:
e grammar is a grammar. [t must be recognized by grammar-p, Itis *u-grammaz* by default.

e with-~index isaflag. It is T by default.

¢ rough-avgis aflag. [tis nil by default.
Description: avg-complexity computes a measurc of the average complexity of a grammar, [t tries to compute
an "average” number of branches tried when the input 10 unification contains no constraint

When with-index i$-T, all indexed alts are considercd as single branches, when it is nil, they are considered as
regular alcs.

When rough-avg is nil, the average ol an alt is thc sum of the complexity of the first half of the branches.
When it is T, the average is half the sum of the complexity of all branches.

10.4.2. complexity

Type: function
Calling form: (complexity &optional grammar with-index)
Arguments:

W)
(o0

* grammar is a grammar. [t must be recognized by grammar-p. Itis *u-grammar= by default.

* with-index is a flag. It is T by default,
Description: complexity computes a measure of the complexity of a grammar. It tries w0 compute the worst case
number of branches tried when the input (o unification contains no constraint. The number it returns is equivalent o
the number of branches the grammar wouid have in disjunctive normal form.

When with-index is T, all indexed alts are considered as single branches, when it is nil, they are considered as
regular alts.

10.5. Manipulation of the dictionary

10.5.1. *dictionary*

Type: variable
Description: The *dic=zionary* variable is a hash-table containing different types of entries. Each entry con-
tains information on irregular morphological words.

The current dicﬁonary contains entrics for verbs, nouns and pronouns. [t is defined in file LEXICON.L

The entries contain the following propertics:
» verb : present-third-person-singular past prescnt-participle past-participle

e noun : plural

* pronoun : subjective objective possessive reflexive.

10.5.2. lexfetch
Type: function
Calling form: (Lexfetch key properry)
Arguments:
* key is a non-inflected “root” form of a word. [t must be a string.
« property is one of the properties defined in *dictionary* for the part-of-speech of the word.
Description: lexZfetch feiches the inflected form of the word key from the hash-table *dictionary*. The
properties accessible are those defined in ~dictionary*.

10.5.3. lexstore
Type: function
Calling form: (lexstore key property value)
Arguments:
¢ key is a non-inflected “root” form of a word. [t must be a string,
* properry is one of the propenies defined in *dictionary* for the part-of-speech of the word.
o value is the inflected form of key for property. It must be a string.
Description: lexstore stores the inflccicd form value of the word key in the hash-table *dictionary~*. The
properues accessible are those defined in *dictionary*.

10.6. Linearization and Morphology

10.6.1. call-linearizer
Type: funcuon
Calling form: (call-linearizer fd)
Arguments;
« fd is a unified determined total fd. It must be accepted by £d-p.
Description: call-linearizer lakes a completc determined {d in input and returns a string corresponding o

the linearization of the fd.

10.6.2. gap
Type: feature.
Description: if a constituent contains the fcature gap, it is not rcalized in the surface (it is a gap, still holding the

place of an invisible constituent in the sucture). It is used for implcmenting long-distance dependencies.

10.6.3. morphology-help
Type: function.
Calling form: (morphology-help)
Description: gives on-line help on what the morphology componcnt can do.

10.7. Manipulation of FDs as data-structures

10.7.1. FD-intersection

Type: function
Calling form: (fd-intersection fd] fd2)
Arguments:

o fd] and fd2 are valid fds (recognized by £d-p). They represent lists as fds, using constituents car and
cdr, and are terminated by a (cdr none).
Description: fd-intersection computcs the interscction of two lists represented as FDs, and returns the result

as a regular Lisp list.

10.7.2. FD-member

Type: functon
Calling form: (fd-member el fdlist)
Arguments:

» elr is any value acceptable as a value 10 an (auribute valuc) pair.

» fdlist is a valid fd (recognized by £d-p). It represents a list as an fd, using constituents car and cdr,

and is terminated by a (cdr none).

Description: f£d-member works as the lisp function member bhut on a list represented by an fd. It returns a list
represented by an fd.

35

10.7.3. FD-to-list

Type: function
Calling form: (éd-to-lisc fdlist)
Arguments:

* fdlist is a valid fd (recognized by £d-p). It represents a list as an fd, using constituents car and cdr,
and is terminated by 2 (cdr norne).

Description: Zd--o~1isc converts a list from an fd representation 10 a lisp representation.

10.7.4. gdp
Type: function
Calling form: (gdp fd path)
Arguments:
e fd 1s a valid fd (recognized by £d-p).
e path is a valid path (that is a tlat list of constituent names, starting with Q or more A)
Description: gdp goes down the path path (hence its name: GoDownPath) and returns the fd found at the end of
path. It is the only function that should be used to access sub-parts of an fd. gdp always returns a valid fd.

gdp works only if the special variable 'inp‘lll" is acccssible and bound to the total fd containing fd.

If path leads 0 a non-existent sub-fd, gdp rcturns:

e NONE: if the fd cannot be extended to include such a sub-fd (that's when we meet an atom on the way
down)

e ANY : if the fd MUST be cxtended to include such a sub-fd (and exactly this sub-fd, that is only when
the value is ANY)

* NIL : otherwise {thatis, an UNRESTRICTED fd).

10.7.5. gdpp
Type: function
Cailing form: (gdpp fd path frame)
Arguments:
¢ fd is a valid fd (recognized by £d-p).
e path is a valid path (that is a t1at list of constituent names, starting with 0 or more *)

o frame is a structure of type frame. By dcfault itis dummy - £ rame, an empty frame.
Description: gdpp goes down the path path (hence its name: GoDownPathPair) and returns the pair whose value is
the fd found at the end of path. It is the function that should be used to work as the basis to the set £ of gdp, 1o set
values to parts of an fd. gdpp always returns a pair whose sccond is a valid fd, and is never a path or none if fd
cannot e extended to include path. (gdpp *input* nil) retums the pair (*top* *input=) (where *input*
refers 1o the toal fd).

gdpp works only if the special vanablc "input® is accessible and bound to the total fd containing fd.

If path leads 1o a non-cxistent sub-(d, gdpp cxlcnds (by physical modification) fd to include a path down 10 the
required path if possible, or the function rctums none. When the fd is modified physically, frame is updated (the

field undo) 1o keep track of the modification.

36

10.7.6. list-to-FD

Type: function
Calling form: (List-to-£d lis)
Arguments:

« list is a regular lisp list.
Description: 1ist-to-£d converts a list from a a lisp representation 10 an FD representation.

10.8. Fine tuning of the unifier

10.8.1. *any-at-unification*

Type: vanable
Description: If rany-at-unification= is nil, and the unifier encounters a pair (atribute any) in the
grammar, and no feature atcribute exists in the input, the unification succeeds and the input is enriched with the
pair (atribute any). Only at the determination stage, it is checked whether anys remain in the total fd. If it is the
case, the unification fails, and the unificr backtracks.

If rany-at-unification= is non-nil, the test (o decide whether the feature attribute exists or not is
performed immediately on the non-dctermined td. The result may be incorrect, but it is much faster. The result is
assured 10 be correct if the feature tested is one that is ncver instantiated by the grammar, and is expected 0 be
provided in the input.

Standard Value: T

10.8.2. *keep-cset*
Type: variable
Description: If *keep-cset * is nil, the determination stage removes ail the cset features from the total fd. If
itis T it keeps them.
Standard Value: nil

10.8.3. *keep-none*
Type: variable
Description: If *kxeep-none~ is nil, the determination siage removes all the pairs whose value is none from
the towal fd. If itis T it keeps them.
Standard Value: T

37

Appendix 1
Installation of the Package

I.1. Finding the files

You need (o find out on which machine and under which directory the system is available. You also need to
know how to run Common Lisp on that machine.

Language : Common Lisp
Systam : At Columbia, available
on Lisp-A (Symbolics), in directory >elhadad>fuf>
on thae HP workstations (HP-UX), in /u/cs/elhadad/Fug/work/
(define environment variable "fug2"” to this valua:
under csh: setenv fug2 /u/cs/elhadad/Fug/work
under ksh: fug2=/u/cs/elhadad/Fug/work; aexport fug2)
Examples are in the subdirectory named "aexamples".

Start : on Lisp-A: (load “>elhadad>fuf>fug")
on the HPs: % cl #need to have /lisp/bin is path
CL> (load "S$fug2/fug2")

The file FUG2.L will load all the required modulcs. Examples are in the files GRO, GR1 and ﬁp for the
grammars, and in files IR0, IR 1, ... and up for the inputs. The examples are of increasing complexity.

To try the examples, type:

CL> (load "gr0”)
t
CL> (load "ir0")
t

I.2. Porting to a new machine
The program is contained in 16 files of source and 10 files of examples. All the source files should be grouped
in a directory, that we will call here S £ug2., and the cxample files in a subdirectory of S$fug2 called examples.

Once this is done, you probably nced 1o edit the file FUG2.L. This file loads all the required modules and
defines a few functions useful for compiling or lnading the package. [n the file FUG2.L, the function require is
used 0 load all submodules. requi re takces as lirst argument the name of a module, and accepts a second optional
argument, the name of the file conwining that maexluic.

You must change the second argumcnts of all the require statements in file FUG2.L and update there the
name of the directory, from S£ug2 to the name of your dircctory.

You also need 10 cdit the first linc of the functions compile-fug and reload-fug and change there the
name of the directory from $ £ug (o the ncw namc,

When the file FUG2.L is updated, load it in your common-lisp environment and follow these 4 steps:

(Load "$fug2/fug2”)
(in-package "FUG2")

(compila-£fug2)

(relcad-fug2)

NOTE TO UNIX USERS: if you run CommeonLisp under Unix, and your version of Lisp can read environment
variables and expands such variables in file names (for cxample, (load “~userx/filel") is a valid state-
ment, or (Lload “"Svar/£ile2™)), then you don't nced to edit the file FUG2.L. All you need to do is o define
the environment variable "£ug2” to the complcte pathname of the directory containing the source files.

Once this installation is done, all you nced to do to load the package is (load "$fug2/fug2") (with
Sfug2/ replaced by the name of your dircctory if you arc not under Unix).

I.3. Packages

The whole package is loaded in package * FUG2. The casicst way Lo access it is o type:

(in-package "FUG2") ;; note the upper-casae

or

(ua.-packago “"FUG2")

The following symbols are exponed from package "FUG? (they are the external symbols of the package, cf
(Steele-84, chapter 11, p171-192)):

External Symbols of package FUG

File Symbols

id-p
fd-syntax
Id-sam

checker.] grammar-p
complexicy

complexity.| avg-complexity
~keep-cset*

determine.l *keep-none~

graph.1 rany-at-unificacion~
*dizzionary~>
lexfetch

lexicon.i laxstore
call-linearizer

lineanze.l morphology-help
gdp

path.1 gdpp

Tu-grammar*
*lexical-categories~
uni

uni-fd

unif

top.l list-cats

rr-ace-on

trace-off
internal-trace-on
internal-trace-off
trace-enable
trace-disable
trace-enable-all
trace~disable-all
trace-enable-match
trace-disable-match
all-tracing-flags
trace-marker
rall-trace-off~r
rall-trace-onr~
trace-determine
trace.l *top*

In addition, the following symbols arc cxicrmal. These arc the keywords used as names in the code:

40

External Symbols of package FUG (keywords)
File Symbols

already exists in LISP
trace already exists in USER
a

alc

any

zat
control
cset

dots
done
gap

Ggiven
index

low
mergeable
none

oot
pattern
pound
punctuation
top.l test

All these symbols are documenied for reference in section 10, If you use the package FUG?2 in another
package, only these symbols will be imported.

41

Appendix II
Advanced Features

II.1. Advanced Uses of Patterns
In addition to constrain the ordering of constituents, the pattemn unifier can be used 10 enforce the unification of
constituents. The classical example is given by the Zccus constituent. There is good linguistic evidence that the

focus of a sentence tends 10 occur first in a sentence. To represent this constraint, a grammar can include the
following directive:

(PATTERN (FOCUS DOTS)) J

That is, a sentence should start with its focus. Now, we also know that a sentence at the active voice should
start with its subject, that is its prot constituent. This is cxpressed by:

(PATTERN (PROT ... VERB ...)) AJ

If both constraints are to be satisficd. we nced 10 say that focus and prot are actually the same constituent,
otherwise, the 2 pauterns are incompatible. That is, the constituents focus and prot need to be unified. This
mechanism would be quite expensive to implement lor all constituents, and would need to meaningless attempts
most of the ume. Therefore, to allow this kind of unification o occur, the current unifier requires the pattern to
include a special directive, indicating that a constitucnt can be unified with other constituents to make two patterns
compatible. The notation used is: (* constituent).

Examplae:
(PATTERN ((* FOCUS) DOTS))
(PATTERN (PROT DOTS VERB DOTS))

are compatible, and require the unification of the constitucnts focus and prot. Note that prot needs not be
“stared" 0 be unificd with focus. The natation can be understood as specifying that focus is a kind of "meta-
constituent”.

I1.2. Advanced uses of CSET
Note that CSET is rarely used, and most oficn uscd when you DO NOT want a sub-fd to be unified as a
constituent, even though it is mentioned in a paticrn or it conwins a feature (cat xx).

When a CSET feature is specificd, the arder of the constituents can be important to make unification more
efficient. The unifier raverses the input I'd breadth-first identifying constituents at each level. Within the same
level, the CSET feature when present specifics in which order the constituents must be unified. Therefore, if there is
a constituent known 1o be easy to unify, and whose valuc condition the unification of the brother constituents, it
should be unified first, and placed first in the CSET. This way, the CSET feature can be used 0 opimize the work
of the unifier.

((cat hard)

(a #) ; is hard to unify

(b #) : is hard to unify

(c #) ; is easy to unify and constraina the unification of a and b
(csat (c a b))) ; unify ¢ first, then a and b.

I1.3. Long Distance Dependencies and the GAP feature
The special feature gap is used to indicatc that a constituent must not be realized in the surface text. If a
constituent contains an auribute gap with any non-NONE valuc, the linearizer will skip it.

This device is used o implement long-distance dependencics in grammars. For example, in a relative clause, the
relative pronoun can be viewed as the marker of the rclativization, and the relative clause as a complete clause, with
one constituent elided. Thus, in The man whom [know, the relative clause would have the structure [know the man
and the constituent the man would ~¢ a gap. whereas the relative pronoun wasm would inherit its properties.

I1.4. Specifying complex constraints: the TEST and CONTROL keywords

NOTE: These two keywords are specific to this implemeniation. Their use is not recommended. See appendix
IV for a list of the non-standard featurcs of this implementation,

cest and control are two "impure” specifications: they do not rely on the principle of unification to prevent
a successful unification of 2 FDs. control should not he used except under extremely special circumstances. For
the time being, it can be considercd a synonym of test.

test is used to add a complex constraint on the result of a unification. A complex constraint refers to any Lisp
predicate. If at the end of the unification the predicaie is <atislicd when applied to the resulting fd, the unification
succeeds, otherwise it fails, and the unificr backtracks (o find another solution.

The special character '@" is used 1o refer 10 parts of the FD in the expression of the constraints, A ' must be
followed by a valid path (either absolute or relative). The cxpression @ (* ~ a b) is replaced by the value of the
feature refered to by that path before the predicate is cvaluaicd.

The order in which the test predicates will be cvaluated is obviously not determined. Side effects are
therefore STRONGLY discouraged within the body of the test constraints.

Examples:
((a 1)
(teast (equal @(a) &(b))))

is equivalent to the nicer:

((a 1)
(b (a)))

((a 1)
(test (numberp R(a))))

There is conceptually the same difference between TEST and CONTROL as there is between ANY and

GIVEN: TEST constraints are tested at determination time, whercas CONTROL consuraints are tested as soon as the
unifier meets them. CONTROL is therelore in general much morce efficient than TEST, but the results it provides

are unpredictable in certain cases (if the features tested arc given a different value later on during the unification, the
result of the test could be different).

45

Appendix ITI
Non linguistic applications of the unifier: dealing with lists
Unification as used in the theory of functional unification grammars is a powerful mechanism that is not
restricted to linguistic domains. It can be viewed as a “programming language” of its own. Actually, it is similar by
many aspects to PROLOG. There are however some very specific features that make working with this version of
unifcation well adapted to grammars, and not so well to more classic programming tasks.

III.1. The member/append example

To make things clear, this implemcntation includes a “grammar” doing some list processing. The only opera-
uons presented are member and append. This grammar is in the directorey examples in file GR5.L. It is printed here
for easy reference for the discussion.

' ((alt
(((cat appand)

(alt append

;; First branch: append([].Y,Y).

(((x none)
(z (~ vy))
;: This is to normalize thae result of a (cat append):
;: it must contain the CAR and CDR of the result.
(car (*~ z car))
(cdr (" z edr)))

;. Second branch: append(([X/Xs],Y, (X/2]):-append(Xs,Y,2).
((alt (((x ((car any)))) ; this alt allows for partially
((x ({(cdr any))}))) :; defined lists X in input.
;; recursive call to append
;; with new arguments x, y and z.
(csat (2z))
(z ((car (~ ~ x car))
(cdr ((cat append)
(x (* ~ * x edr))
(y (* ~*ynnn
(car (* z car))
(edr (* z cdr)))})))
(({cat member)
(alt member
(((x (~ y car)))
({(y ((cdr any)})
(m ((cat member)
(x (~ ~ x))
(y (* ~ ¥y cdr)))))))))

This grammar is actually almost cquivalent to the lollowing PROLOG program:

mamber (X, [X]_]).
member (X, {_|Y)) :- membar(X.Y)

append ({],Ys,Ys).
append ({X|Xs),Ys, (X|Za])) :- append(Xs, Ys,K Zs).

Note that the PROLOG form is much nicer! But there arc reasons to look at the FUG version anyway. Here is

46

how it works.

[I1.2. Representing lists as FDs
The first problem to handle lists with FUGs, is Lo represent lists as FDs, since FUGs can handle only FDs.

Quite simply, lists are represented as an FD with two features, CAR and CDR (with names ala Lisp).

The list (a b ¢) is repraesaented by the FD:

({(car a)
(edxr ((car b)
(edr ((car c)
(cdr nona))))))

The list (a (b c)) is represented by tha FD:

((car a)
(cdr ((car ((car b)
(edr ((car c)
(edr nona)))))
(ecdr none))))

I11.2.1. NIL and variables

Note in the previous example that the cqinvalent of the lisp atom NIL is NONE in the FD. NIL in an FD means
"anything can come here” whercas NONE mcans "nothing can come here”. NIL therefore plays a role similar to
uninstantiated variables in PROLOG.

The PROLOG expression (2 X c] can be represented by the FD:

((car a) ((car a)
(ecdr ((car nil) (cdr ((cdr ((car ¢)
(cdr ((car c) <==> (cdr nona))))))

(cdr none)))}))
The PROLOG expression [a b | Xs] can be representad by the FD:

((car a)
(cdr ((car b))))

[I1.2.2. The "~" notation
The car/cdr notation for lists is very awkward to use. The file FDLIST.L includes a mechanism to translate
between the regular Lisp notation and the FD notation. It defines the macro-character "~" to indicate list values.

((cat member) ({cat member)
(x a) <==> (x a)
(y ~(c b a))) (y ((car c)

(cdr ((car b)
(cdr ((car a)
{cdr none))))))})

47

Note that the "~" notation can be uscd only lor completely specified lists. [f some elements are uninstantiated
you must describe the list with the car/fcdr notation.

IT1.3. Environment and variable names vs. FD and path
The notions of environment and variable in PROLOG or LISP correspond to the notion of “total FD" and path
in Funcuonal Unification. What we call a "towl FD" is the highest level FD, the one corresponding to the path Q. It

1s the FD corresponding to the input to the unificr, and that will be “determined” at the end of unification. This FD
contans all the environment of a computation.

Variables are then just places or positions within this total FD.

If thae total FD is the D corresponding to [a X c¢]
((car a)
(cdr ((cdr ((car c)

(cdr none))))))

The variable X can be rafered to by using the path (cdr car)

I11.4. Procedures vs. Categories, Arguments vs. Constituents

A program in FUG can be vicwed as o collection of procedures, each procedure being represented by a
category. In the member example of scciion 111, un input containing the feature (cat member) will be sent 1o the
member procedure.

Procedures expect arguments and return results. There is no notion of input and output in unification, as far as
arguments are concemed. So we just consider arguments in general. For example, the member procedure has two
arguments, called X and Y and rcpresenied in FUG notation by the constituents X and Y of the (cat member).

The procedure append has threc argumcnts, X, Y and Z. Z can be seen as the "result” of the procedure, or in
functional notation: Z = append(X.,Y).

Note that, as in the corresponding PROLOG program, the FUG implementation of member and append is
non-direcuonal. All of the arguments can be partially specified, and the unification enforces the relation existing
between them.

I11.5. The total FD includes the stack of all computation

One problem with the way FUG work is that there is no notion of "environment” besides the total FD.
Therefore, when a program works recursively, all the local variables that are normally stacked in an external
environment are stacked within the otal FD. At the end. the towal FD contains the whole stack of the computation,
and is pretty heavy to manipulate.

As an cxample herce is the result of the ximple call append([a.bl,(c.d] Z):

*Z JO YD PUB YV SIUSMMINSUOD 31 JO anjea oY1 Ajguqoad st 4 S1y1 ut 159101u1 JO Suip Ajuo o 'Aj1eunuiog

(COCCC((anon ¥a) (0 ¥)) ¥e)
(0 w)
{((((anoN ¥@D) (g ¥¥D)) ¥e) (O ™)) 2)
(((((aNON uaAD) (Q ¥¥D)) um) (O ¥W)) X)
(mmont Xx)
(QR234Y 1YD))
¥ao)
(g u¢D)
{((({((anorR ¥a@D) (0 ¥¥D)) ¥@)
(o ¥wo)
(((ANON u@D) (a ¥¥D)) ¥ad) (Do ¥v¥Dd))2)
((ANON ¥@D) (a W¥D)) ¥W@d) (o wyd)) x)
(ZINON X)
(aN3aay Ivo))
uago)
(g 9v¥D))
Z)
(((((aNON uaDd) (g ¥¥D)) uUad) (O wvd)) R)
(((INONR u@D) (g ¥¥D)) X)
(aN3aay Ivo))
ugo)
(¥ 2wD)

({
((«

(OO (anon ¥ad) (g ¥wvo)) ¥ao)
{0 ¥¥o)
(((((aNONR ¥@D) (a ¥¥Dd)) ¥ad) (D ¥¥d)) 2)
(((((anoN ¥ad) (a ¥vo)) ¥ad) (O w)) X)
(ENON X)
(@R3aa¢ Ivo))
¥ao)
(g 9vo)
(CCCC(anoN ¥@d) (a ¥vo)) w¥ao)
(D ¥¥D)
(((((3NON ¥aD} (g ¥¥D)) ¥AEdD) (D ¥Wwd)) z)
((((aZnON u@d) {(a ¥WvDd)) ¥Ed) (D ¥¥d)) X)
(ENON X)
(an3aavy Ivo))
¥ao)
(g 9v¢o))
Z)
{(({(3nOR u¥@D) (g ¥¥D)) u¥ad) (o ¥w¥d)) X)
(((ZNOR ¥aD) (8§ WD)} X)
(gNZEaay Ivo))
gao)
(¥ 2¥D))
Z)
(((({(anON u¥@D) (a ¥w¥D)) ued) (0 ¥w)) A)
({(((anon ua@d) (8 ¥¥D)) ¥ad) (¥ ¥¥wO)) X)
(an3aay Ivo))

49

IT1.6. Analogy with PROLOG programs

We have seen so far what aspects of FUGs arc specific and different from other programming languages.

A program written using a FUG is very similar to 1 PROLOG program:
« The notion of success and [ailure in unification arc cquivalent 10 the "yes” and "no" of PROLOG
programs.

« Simple statement can be combined using the connectives AND and OR: both FDs and PROLOG
statements make use of conjunction and disjunction.

« Both notations rely heavily on unification, and refincment of partial descriptions to perform computa-
tions.

I11.7. Use of Set values in linguistic applications
This discussion of FUGs as programming languages can appear frivolous. Tt is actually molivated by the desire

to integrate more expressive {catures in linguistic grammars.

There are many different reasons 10 use sct valucs in grammatical descriptons. For example, to describe a
conjunction like "John, Mary and Frank™ the sct (John, Mary, Frank) appears as a good candidate. Many other
applications for the category of sct appear quitc naturally when wridng a grammar.

We want [0 be able to express grammatical constraints on such constructs within the framework of FUGs. We
have found the procedures member and append (o he guite usclul in this attempt.

Appendix IV
Non standard features of the implementation and restrictions
The current implementation includes features not available in other systems working with functional unifica-
tion, and imposes restrictions. This section lists these non-standard aspects of the implementation. For each of the
restriction, it is precised whcther the checking functions (d-p, fd-semand grammar-p) detect the limitation
or not.

IV.1. No disjunction in input
The input must be a simple FD, containing no disjunction (alz or opt). It can conuin patterns. tests and
controls are not allowed in input.

It is advised not 10 put pacterns, =s2ts or anvs in the input fd. These constructs are indeed best viewed as
devices used by the grammar to rcalizc or cnlorce some constraints. The input should be left as "declarative™ as
possible, and therefore should not contain such conxiructs.

[f disjunction are found in an FD given 0 £d-sam, an crror message is printed. £d-sem also issues warnings
if its argument contains patzerns Or csets.

IV.2. Mergeable constituents in patterns

An extension to the standard pattern unification mechanism is the use of "mergeable constituents”. A mergeable
constituent in a pattern is noted (* constituent-name). This notation indicates that when unifying the pattern
containing it, this constitucnt can be "merged” or unificd with another constituent that would need to be placed at the
same position in the paticrn,

For example, pattems (a ... b) and (¢ ... b} cannol be unified, because the first position of the unify-
ing pattern would need to be both a and <. But patiems ((* a) ... b) and (¢ ... Db) can be unified, under
the constraint that constituents a and ¢ be unificd (or "merged™). See also section 5.5 for a description of patiern
unification.

IV.3. Indexing of alternation
This implementation allows indexing of a Lts. us described in section 7. The notation used is:

(alt (trace-flag} ((index (...} indexsd-path)) (branches+))

where each branch is a regular fd. The validity of the indexed-path is checked by the function
grammar-p.

IV.4. Test and Control

It is possible 1o specify arbitrary constraints on the result of an unification within the grammar by using the
constructs test and cont zol described in scction $.7. The notation is:

(TEST <lisp-expression>)

(W)
3]

where <lisp-expression> is an arbitrary lisp expression, where cerain variables can be @ (path), and refer 10
the value of (path) in the detcrmined result of the unification (scc scction 5.8 for a definition of the determination

stage of unification).

Unification succeeds if the evaluation of <lisp-expression> in the environment of the determined result is
non-nil. [fitisnil, the unifier backtracks.,

control works in a similar way, cxcept that the <lisp-cxpression> is evaluated immediately when the unifier
encounters the cont zol, and therefore is cvaluated in a non-determined fd.

Note that both test and control can be used only to cnforce complex constraints but not 1o compute
complex results to be added in the unification.

The function grammar-p does not check that the valucol test and cont rol is a valid lisp-expression.

IV.5. GIVEN

The special value given is defined in this implemeniation. A feature (att given) is unified with an input
fd, if the input contains a real value lor auribute acz atthe heginning of the unification.

given is useful to check the presence of required features in inputs.

(7]

(10}

(1

(12]

References

Grosz, B.J., Sparck Jones, K. and Webber, B.L.
Readings in Natural Language Processing.
Morgan Kaufmann, Los Alws, 1986.

Karttunen, L.

Features and Values.

In Proceedings of the 10th International Conference on Computational Linguistics (COLING 84), pages
28-33. ACL, Stanford, Califomia, July, 1984,

Karnttunen, L.
Structure Sharing with Binary Trees.
In Proceedings of the 23rd annual meeting of the ACL, pages 133-137. ACL, Chicago. 1985.

Karttunen, L.

D-PATR: A development Environment for Unification-Based Grammars,

In Proceedings of the 11th [nternational Conference on Computational Linguistics (COLING 86), pages
74-79. ACL, Bonn, 1986,

Karttunen, L.
D-PATR: A Development Environment [or Unification-Based Grammars.
Technicat Report CSLI-86-61. CSLL. August, 1986.

Karttunen, L.

Parsing in a Free Word Order Language.

Natural Language Parsing.

Cambridge University Press, Cambridge, England, 1985, pages 279-306.

Kasper, R.

Systemic Grammar and Functional Unification Grammar,

Systemic Functional Perspectives on disconrse: selected papers from the 12th International Systemic
Workshop.

Ablex, Norwood, NJ, 1987,

Kasper, R.
A Unification Method for Disjunctive Feature Descriptions.
In Proceedings of the 25th meeting of the ACL, pages 235-242. ACL, Stanford University, June, 1987.

Kasper, R. and W. Rounds.
A Logical Semantics for Feature Structures.
In Proceedings of the 24th meeting of the ACL. ACL, Columbia University, New York, NY, June, 1986.

Kay, M.
Functional Grammar.
In Proceedings of the Sth meeting of the Berkely Linguistics Society. Berkeley Linguistics Society, 1979.

Kay, M. .

Algorithm Schemata and Data Siructnres in Syniactic Processing.
Technical Report CSL-80-12, Xcrox Parc, October, 1980,

Also in Readings in NLP, p35-70.

Kay, M.

Functionat Unification Grammars: a Formalism lor Machine Translation.

In Proceedings of the 10th International Conference on Computational Linguistics (COLING 84), pages
75-78. ACL, Swanford University, 1984,

w
s

(131 Kay, M.
Parsing in Functional Unification Grammar.
Natural Language Parsing.
Cambridge University Press, Cambridge, England, 1985, pages 152-178.
Also in Reading in NLP p125-138.

{14} Pereira, F.C.N.
A Structure-Sharing Representation for Unification-Based Grammar Formalisms.
In Proceedings of the 23rd annual meeting of the ACL, pages 137-144. ACL, Chicago, 1985.

(15]) Pereira, F. and S. Shieber.
The Semantics of Grammar Formalisms Scen as Compuicr Languages.
In Proceedings of the Tenth International Conference on Computational Linguistics (COLING 84), pages
123-129. ACL, Stanford University, Stanlord, Ca, July, 1984.

[16] Ritchie, G.D.
Simulating a Turing Machine using Functional Unification Grammar.
In Proceedings of the Europeean Conference on Al (ECAI 84), pages 127-136. 1984,

[17] Rirtchie, G.D.
The Computational Complexity of Scntence Derivalion in Functional Unification Grammar.
In Proceedings of the 11th International Conference on Computational Linguistics (COLING 86), pages

584-586. ACL, Bonn, 1986.

[18] Rounds, W.C. and A. Manaster-Ramer.
A Logical Version of Functional Grammar.
In Proceedings of the 25th meeting of the ACL. pages 89-96. ACL, Stanford University, June, 1987,

[19] Shieber, S.M.
The Design of a Computer Language (or Linguistic [nformation.
In Proceedings of the 10th International Conference on Computational Linguistics (COLING 84), pages

362-366. ACL, Swanford University, 1984,

{20] Shieber, S.M.
Using Restriction to Extend Parsing Algorithms for Complex Feature-Based Formalisms.
In Proceedings of the 23rd annual meeting of the ACL, pages 145-152. ACL, Chicago, 1985S.

[21] Shieber, S.M.
A Compilation of Papers on Unification-Based Gramunar Formalisms, Paris | & 1.
Technical Report CSLI-8548, CSLI. 198S.
3 papers COLING 84 + 3 ACL 85.

(22] Shieber, S.
CSLI Lecture Notes. Volume 4: An introduction to Unification-Based Approaches to Grammar.
University of Chicago Press, Chicago, [1. 1986.

{231 Wiuenburg, K.B.
Natural Language Parsing with Combinatory Categorial Grammar in Graph Unification-Based Formalism.

PhD thesis, Austin University, 1986.

[24] Wroblewski, D.A.
Non Destructive Graph Unification.
In Proceedings of the Sixth Nationat Conference on Al IAAAL 87), pages 582-587. AAAI, Seaule, 1987.

Index

4 notation 14

S notation (Unix) 38
Sfug? 37,38

* notation 14,28, 41
*3ll-trace-off = (variable) 30
all-trace-on (variable) 30
any-at-unification (vanablc) 34
*dictionary® {vanablc) 33
*irreg-plurals® (vanabic) 23,25
ireg-verbs® (variable) 13,26
“keep-cset® (variable) 36
keep-none (vanahle) 36
lexical-categories (variabic) 13,26
top® (variable) 30
*trace-determune® (vanable) 30
*trace-markar® {vanable) 19,30
*u-grammar® (vanahic) 16

.. nctation 14
==nowauon $§
@ notatien 42, £1
A noaauon 28,35

A-an (morpholegical lcaure) 23
Absolute path 10

Ad) 23

Adv 23

Agreement (subjectiverb) 4,7
Alltracing-flags (function) 18, 20,30
Alt (keyword) 4,12,18,20,21,28
Any (special value) 36,16, 35
Append 45,47

Arguments to procedures (in FUG as program) 47
Avg-complexity (funcuon) 22,32

Branch (of an alt) 4

Cali-lineanzer (function) 34

Car (in FDs) 46

Case 23

Cat (special aunbute) 16, 21,23,27
Category 16

Cdr (n FDu) 46

Common Lisp 37

Commonnoum 5

Comparison prolog/FUG as program 49
Compile-fug (function) 37
Complexity (function) 22, 32
Complexity 22

Con 23

Conflation 11

Conjuncuon 10

Consutuent 4,15

Constraint {featurc as) 10
Constraunts (specifying compicx) 42
Control (keyword) 42, 51

Cset (keyword) 5,15, 28,41

Cset (unificauon) 15

Debugging 17

Default (in alt) 5,12
Demonstrative 23

Denotation (af FDs) 10

Det 23,24

Determination 16, 27, 36, 47, 51
Dictionary 25

Directed acyclic graph 11
Directory 37

Disjunction 12

Disjunctive normal form 22,33
Distance 23

Dots (in pauem) 14

Effiaency (of unificauon) 20

Ending 23

Environment (of a FUG as a program) 47
Examples 3,37

Extenal symbols 38

Extemal tracing 17

Fadure (of unificauon) 7,12, 19
Far 23

FD 1,3

Fd-intersection (funcion) 34
Fd-member (function) 34
Fd-p (function) 2,3,29, 51
Fd-sem (function) 21,28, 51
Fd-syntax (funcuon) 28
Fd-to-list (function) 35
Features 10

First (person) 23

FUG2 (package) 38

Fug2.l (file) 37

Gap 14,42
Gdp (function) 35

Gdpp (function) 3§
Gender 23

Given (special value) 16, 52
GrO.l (fle) 3,37
Grl.l(file) 37

Grldl(file) 37

Grl.l (Aile) 37

Grd.1 (fle) 10,37

Gr5. (fde) 37

Grammar organization 16
Grammar-p (funcuon) 2,29, 51
Graphs (FDs as) 11

[ndexauion (automstic) 21
Indexing 20, S1

Infiniive 23 -

[ruualize-lexicon (function) 25
[nstandated festares 16, 46
Intermal tracing 17
Internal-trace-off (functon) 17, 31
Intemnaltrace-on (function) 17, 31
[rO.1 (Mle) 37

lell (file) 37

[r2.1(fe) 37

[ed.1 (fle) 37

fra.l (fde) 37

[rS.1 (fUe) 37

Jumping (10 2 branch) 21

Lex (special aunbute) 5
Lexfeich (function) 33
Lexical categories 23
Lexicon.l (file) 25,33
Lexstore (function) 33
Lincanzation 1,8, 13,22, 34
Lineanze.l (file) 23

List (as FDs) 16

List-cats (function) 2
List-to-id (funciion) 36
Lists (as FDs) 34,35,36
Loading the system 37

Member 413,37

Mergeable constituents (in pauem) 14,28, 41, 51
Modal 23

Morphology 8.9,22,34

Morphology-help (function) 9, 23, 34

Near 23

Nil (special value) 10,35, 34

No disjunction in input 51

Non-determnistic constructs 15, 20

Non-standard features of implementation 16, 17, 42, 51
None (special value) 16,33

Noun 23

Number 23

Objective 23

Opt (keyword) 13, 18,20, 28
Optional features 13

Order independence 12
Ordenng constratnts 4, 13

Packages 38

Pair (attnbuteivalue) 10

Past 23

Past-paniciple 23

Path (Natdescnpuion of Fls) 10
Path (undficauon) 11

Path 10, 28,35

Patem (keyword) 4, 8,13, 20, 28
Patem (undicauon) 14

Person 23

Personal 23

Phrase 23

Plunal 23

Porung 0 1 new machine 37
Possessive 23

Pound (in pauem) 14

Pep 3

Presem 23

Proceduses (in FUG a5 program) 47
Prolog 48, 47

Proacun 23

Pronaun-type 23

Proper noun 5

Punctuauon 23, 24

Quanufied 23
Quesuon 23

Recunsion S, 1S

Refermce to the FD in atest capression 42
Reflexive 23

Relauve path 10, 1t

w

~J

Reload-fug (function) 37
Relpro 23

Require (Lisp function) 37
Restricuons 17, 51

Root 23

Search (through the grammar) 20
Second (person) 23

Set values in FDs 49

Singular 23

Sub-constituents 5

Subjective 23

Syntax 10

Tense 23

Test (keyword) 42,51

Third (person) 23

Total fd 16, 27. 35, 36, 47

Trace-disable (funcuon) 18, 20, 31
Trace-disable-all (function) 18, 20, 31
Trace-disable-match (function) 18, 20,31
Trace-enable (function) 18,20, 31
Trace-enable-all (function) 18, 20, 31
Trace-enable-match (functon) 18, 20, 32
Trace-off (function) 18,32

Trace-on (funcuon) 18, 32

Tracing (local) 19

Tracing (of alt) 18

Tracing (of opt) 18

Tracing 17

Tracing Nag 19, 28,30

Tracing messages 19

U (function) 26

Unt (function) 2,27

Uni-fd (function) 2,27

Unuf (function) 2,27 .
Unification (overall mechanism) 5
Unification |

LUnificaton funcuons 26
Unknown category 9,23
Use-package (function) 40

Variables (in FUGs) 46, 47
Verb 23

- notation 26

