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1 Introduction

Language generation systems have used a variety of grammatical formalisms for producing syntactic structure
and yet, there has been little research evaluating the formalisms for the specifics of the generation task. In our
work at Columbia we have primarily used a unification based formalism, a Functional Unification Grammar
(FUG) [Kay 79] and have found it well suited for many of the generation tasks we have addressed. Over the
course of the past 5 years we have also explored the use of various off-the-shelf parsing formalisms, including
an Augmented Transition Network (ATN) [Woods 70], a Bottom-Up Chart Parser (BUP) [Finin 84], and a
Declarative Clause Grammar (DCG) [Pereira & Warren 80]. In contrast, we have found that parsing
formalisms do not have the same benefits for the generation task.

In this paper, we identify the characteristics of FUG that we find useful for generation. Of the following general
criteria we have used in evaluating language generation systems, we focus on order of decision making and
its impact on expression of constraints:

1. Input Specification: Input to a surface language generator should be semantic, or pragmatic, in
nature. Ideally, few syntactic details should be specified as these should be filled in by the
surface generator, which contains the syntactic knowledge for the system. Furthermore, some
flexibility should be allowed in what must be provided as input; not all pragmatic or semantic
features may always be available for each input concept and the surface generator should be
able to function in their absence. Finally, input should be kept simple.

2. Expression of constraints on decision making: One main task of a language generator is to
make decisions about the syntactic structure and vocabulary to use. Such decision making is
done under constraints and the ability to clearly and concisely represent constraints is important
[McKeown & Paris 87]. |If these constraints can be represented declaratively, without
duplication, clarity of the system is improved.

3. Order of decision making: The order in which decisions must be made and the interactions
between them has an impact on representation of constraints. If decisions must be made in a
fixed order, representation of constraints on those decisions may become more complex. The
order of processing, bottom-up, top-down, left to right, or any other variation, can significantly
influence how constraints interact.

4. Efficiency: As in any interactive system, an efficient, speedy response is desirable. At this point
in time, most grammatical systems can provide a response in reasonable real time. In fact, in
practice there doesn't appear to be significant differences in run time between a deterministic
surface generator such as MUMBLE [McDonald 86] and unification based processors such as
FUG [McKeown & Paris 87)].



5. Reversability: Ultimately, a natural language system that uses only one grammar both for
parsing and generation is desirable. Using a reversible grammar means that syntactic
knowledge need not be duplicated for the two tasks. In reality, however, a grammatical
formalism has usually been developed with one task or the other in mind. Due to the differences
in focus between the two tasks, when a formalism is adopted for the other task, the match is
often not ideal. For example, when FUG is used for interpretation, an additional, rather complex
chart must be supplied [Kay 79]). On the other hand, when grammars originally developed for
interpretation are used for generation, points 1-3 often can not be achieved easily, as we shall
attempt to show.

Our claim is that order of decision making in FUG through unification allows for flexibility in interaction between
constraints. This, in turn, allows for a more concise representation of constraints. To illustrate these properties
of FUG, we use the task of selecting a connective (e.g., but, however, nonetheless, since, because, etc.) to
conjoin two input propositions. Connective selection is a subset of the lexical choice problem. Lexical choice
has been shown to require complex interaction between constraints [Danlos 87, Danlos 88], and connective
selection in particular contains a number of chailenges particular to generation.

Our goal in this paper will be to show the advantages of the following main features of order of decision
making in FUG:
* Not strictly left-to-right: \In FUG, all decisions that can be made at the top-level are made before
producing constituents. These decisions can send constraints down to lower levels if necessary.
Thus some decisions about later sentence constituents ¢an be made before decisions about prior
constituents in the sentence. This is important when a decision made early on in the sentence
depends on a decision made later.

» Bidirectional: Specifying dependence of a decision on a constraint automatically specifies the
inverse because of the use of unification: if the constraint is unspecified on input it will get filled in
when the otherwise dependent decision is made.

e Interaction between different types of constraints is determined dynamically: How different
constraints interact can be determined at run-time depending on the current context of generation.
This means the grammar can be modularized by constraints with specific interaction left
unspecified. In contrast, the parsing formalisms synchronize in lock-step the influence of different
constraints as they proceed through the construction of syntactic structure making their
representation difficult.

In the following sections we first give an overview of FUG, showing how decision making is carried out for a
simple grammar. We then introduce the problem of connective choice, describing the constraints on choice
and the type of decision making required. We show how the basic characteristics of FUG lend themselves to
the implementation of connective choice.

Finally, we make comparisons with other formalisms. In particular, we note that control strategies developed
for parsing formalisms lack the flexibility FUG provides. Our more general position is that, while reversability of
grammatical processors is definitely a worthwhile aim, a syntactic processor that was originally developed for
parsing may not be ideal for generation. This results partiaily from the fact that control of processing is driven
in part by the input sentence, or word order, in interpreting language. Emphasis is on using the input to
determine which grammatical rules to apply next. In contrast, in generation, there is no need to select words
as they appear in a sentence. In fact, many systems determine the verb of the sentence first as this can
control the assignment and syntactic structure of the subject and object (e.g., MUMBLE [McDonald 86]). Part
of our goal in identitying the problems in using a parser for generation is to point out some of the



characteristics that are useful for generation so that they can be taken into account when future reversible
. syntactic processors are designed.

Despite our overall preference for FUG, there are certain tasks in selecting connectives that are difficult to
represent in FUG, but which can be easily accommodated in other formalisms and we note these in our
conclusion.

2 Overview of FUG

The main characteristic of FUGs ( [Kay 79, Shieber 86]) is that all information is uniformly described in the
same type of structure - the functional description (FD). An FD is a matrix of attribute-value pairs (called
features). Both the input and the grammar are represented as FDs. The only mechanism allowed when
dealing with FDs is unification. Intuitively, the unification of two FDs consists of building a larger FD that
comprises both input FDs and is compatible with both. Crucial features of the process are that it is (1)
independent of the order of features in the input FDs, (2) bidirectional, (3) monotonic and (4) completely
declarative - a grammar being best viewed as a set of constraints to be added to or checked against an input.

The unification algorithm begins by selecting the syntactic category from the input and unifying the grammar
for that category with the input. Unification is controlled by the grammar and basically consists of checking
grammar attribute value pairs of this category against the input. If a grammar attribute does not exist in the
input, the grammar attribute value pair is added to the input. If the attribute does exist, the grammar and input
values for this attribute are unified, and the resuits added to the input. This stage of unification can be
characterized as a breadth first sweep through the top level category adding restrictions governed by this
category. Following this stage, each constituent of the resulting FD is in turn unified with the grammar in the
same way. Thus at this next stage, unification results in successive refinement of embedded constituents. The
constituents that are to be unified are specified by the special attribute CSET (for Constituent Set) and the
order in which they occur need not necessarily be the order in which they will occur in the resulting sentence.
Again, this means that decision making is top-down but not necessarily left-to-right. A further distinction is that
all decisions get made at the top level before moving to embedded constituents.

To see how order of decision making occurs in FUG, consider the unification of a sample grammar (Figures 1,
2, and 3) and input (Figure 4).! This grammar is a small portion of the clause category of a larger grammar we
are currently using [Elhadad 88] and is based on the systemic grammar described by Winograd [Winograd 83].
This portion will generate either action sentences (e.g., “John gives a blue book to Mary.”) or attributive
sentences (e.g., “This car is expensive.”). Note that input to this grammar is specitied semantically with the
exception that the input must specify the type of phrase we are trying to generate.

The grammar for the clause category is divided into three sections. The first section (Figure 1) specifies how
syntactic features get added to semantic roles depending on the semantic type of the clause being generated.
Thus, in the sample grammar we see that the protagonist role (prot) of an action sentence is specified as an
np, while the attribute role of an atiributive sentence is specified as either adjective or np. The second section
(Figure 2) identifies the voice-class of the verb and, according to the chosen voice, the grammar determines
how the semantic cases are mapped into the syntactic roles, subject, object, and indirect object. Finally, in the

See [Kay 79}, [McKeown 85), [Appeit 85] for more details on FUG.




01 CAT CLAUSE : clause ----————-——-—-———-——--—-—————c————————————

Se e N
N Se o n

((cat clausae)
(alt
(

;; Process-type: action, mantal, or relation

;; Process 1: Action --> actions, evaeants, natural phenomana
;; inherant cases --> prot, gocal, benef.
;; all are optional, but at least one of goal or prot must be present.
;: this will be dealt with in the voice alternation.
((process-type actions)
(prot ((cat np) (animate yes)))
(goal ((cat np)))
(benef ((cat np)))

(verb ((process-class actions)
(lex any)))) ;there must be a verb given

;; Process 3: relation --> equative, attributive
;: there need not be a verb, it will be determined by the
;; epistemic modality features among the possible copula.
((process-type attributive)
(verb ((process-class attributive)))
;; so far all we do if the verb is not given uss "be"
;; later use modality...
(opt ((verb ((lex "be")
(voice-class non-middle)
(transitive-class neutral)))))
;; inherent casas --> carrier, attribute
;; both are required.
(carrier ((cat np) (definite yes)))
; attribute can be a property or a class
; like in "John is a teacher" or "John is happy".
(alt
(((attribute ((cat adj) (lex any))))
({(attribute ((cat np) (definite no)))))))

Figure 1: Sample FUG -- Section 1

third section (Figure 3), the syntactic roles are arranged linearly through the use of patterns.

These sections are represented by three large alternatives (alt) in the grammar.2 OQutput is produced by
successively unifying each of these alternatives with the input, thus adding the constraints from each section.
This grammar thus implements Kay's [Kay 79] suggestion that the semantic and syntactic grammar be
represented separately and unified to produce output.

In unifying input T2, Figure 4, with the clause grammar, section 1 which specifies constraints associated with
the clause’s semantic category, is unified first. Since it consists, itself, of alternatives representing each

2Alternatives are a special construct of FUGs. They represent a disjunction of possibilities. To unify an FD F with an altemative (alt
(fdl £d2 ... fdn)), the unifier tries to unity each of the "branches” of the altemative (i.e., the £dis). The result is the disjunction of
the successfully unified branches. In our implementation, only the first branch that can be unified with F is retumed.



; Voice choice --> operative, receptive, middle.
; Operative is rougly active. Receptive, roughly passiva.
; Middle = gsantences with only one participant ("the sun shines")
; Choice middle/non-middle is based on verb classification
;: Choice receptive/cperative is based on focus (using patternm).
;; The voice alternation does the mapping semantic case -> syntactic roles
(alt
{((voice operative)

(verb ((voice-class non-middle)

(voice active)))

Sa e e ow,

(alt
(((procaess-type actions) ;; The notation (subject (* prot))
(subject (* prot)) ;: is to be read as the equation:
(cbject (* goal)) ;; the value of subject must be the
(iobject (* benef))) ;; sama as the valuae of the path
((process-type attributive) :; (* prot).
(subjact (4 carrier)) ;2 (* prot) is a relative path, giving
(object (* attribute)) ;; the address of another pair starting
(iobject ncne))))) ;; at the current position. * means
((voice receptive) <...>) ;! go up one level (to the embadding
((voice middlae) <...>))) ;: pair).

Figure 2: Sampie FUG -- Section 2

;; Geaneral things: arrange syntactic roles together
;; and do the agreaments.
;; The patterns are here of course.

; Focus first (change when add modifiers)
(pattern ((* focus) dots))

; Arrange order of complements
(pattern (subj)ect vaerb dots))
(alt
; VERB VOICE ACTIVE
(((verb ((voice active)))
(alt
(((cbject none)
(iobject none))
; John gave the book
((verd ((transitive-class bitransitive)))
(iobject none)
(pattern (dots verb object dots)))
; John gave Mary the book
((verb ((transitive-class bitransitive)
(dative-prep none)))
(pattezn (dots verd iobject cbject dots)))
( (icbject none)
(pattem (dots verb object dots)))
((varb ((dative-prep any)))
(dative ((cat pp)
(prep ((lex (* ~ *~ verb dative-prep))))
(np (» ~ iobject))))
(pattern (dots verb object dative dots))))))

Figure 3: Sample FUG -- Section 3

possible semantic clause type (in this grammar, either action or attributive process types), the first step is




T2=

({(cat clausa)
(process-type actions)
(prot ((leax "John")
(np-type proper)))
(goal ((lex "book")
(np-type common)
(dafinite no)
(dascriber === "blua")))
(benef ((lex "Mary")
(np-type proper)))
(verb ((process-class actions)
(voice-class non-middle)
(transitive-class bitransitive)
(dative-prep "to")
(lex “"giva")}})

Figure 4: Sample Input

selecting one of these alternatives. Since the input includes the attribute value pair (process-type action),
the first alternative matches. Unification of this aiternative results in the addition of the italicized lines in the FD
shown in Figure 5. At this point the syntactic categories of each semantic role have been determined and
some further features added. The unifier now proceeds to the second section based on voice class. At this
point, (voice operative) will be selected because no voice is specified in the input and there are no
incompatibilities between the (volce operatlve) alternative and the input. Later on, this choice will be
confirmed or rejected by the focus constraint. The result from this unification is the addition of the underiined
lines in Figure 5 and the FD now contains the mapping of semantic roles to syntactic roles. Finally in unifying
the third section of the clause grammar with the input, order of syntactic constituents is determined. This is
done in two steps. First the constraint from focus is added (pattern ((* focus) dots)), stating that focus must
occur first.3 In the second step, syntactic constraints on order are added, namely that subject must occur first
(Pattern (subject verb dots)). At this point, subject is unified with focus and if they are not the same, the
unifier would retract its earlier decision of (voice operative) and select (voice receptive) instead. In this
example, subject and focus both refer to the protagonist and the remaining syntactic details for the active voice
are filled into the grammar, specifying the order of the object and indirect object. This results in the addition of
the last lines in small caps to the FD in Figure 5 and the FD is linearized as “John gives the blue book to
Mary.”, following unification of its constituents, prot, goal, and benef.4

3The * indicates that this element of the pattern must be unified with the alement of some other pattern. This feature is not standard in
Kay's formalism and was added to increase efficiency.

“Note also that the three pattems in small capes are actually unified by a special pattern unifier to produce the single pattem: (pattern
(subject verb object dative dots)) plus the following conflation constraint (focus (*~ subject)) derived from the
unification of the first two patterns.



T2 after unification with the grammar:

((cat clause)

(process-type actions)

(prot ((lex "John")

(np-type proper)
(cat np)
(animate yes)) )

(goal ((lex "book")

(np-type common)
(definite no)
(describer === "blue")
(cat np)))
(benef ((lex "Mary")
(np-type proper)
(cat np)y)

(vexrb ((process-class actions)
(voice-class non-middle)
{(transitive-class bitransitivae)
(dative-prep "to")

(lax "give")
(voice active)})

{(voice operativae)

(subject (* prot))

(object (* goal))

(iobject (* banef))

(PATTERN ((* FOCUS) DOTS))

(PATTERX (SUBJECT VERB DOTS))

(DATIVE ((CAT PP)

(PREP ((ILEX (* 4 ~ VERB DATIVE-PRER))))
(® (~ * IOBJECT))))
(PATTERN (DOTS VERB OBJECT DATIVE DOTS)))

Figure 5: After unification of the clause level

3 Cholce of Connective: an Example

Choosing a connective (e.g., “but,” “although”) is a task particular to language generation that requires
flexibility in the order that decisions are made and thus, we argue FUG is well suited to represent constraints
on connective choice. The need for flexibility arises because the features used to select a connective also
have an influence on other aspects of generation. Therefore, there is interaction between the selection of a
connective and the generation of the connected propositions. There are two types of interaction that can

occur:
e External: mutual interaction is necessary between the deep and surface components of the
generation, and the order of decision making must be left as flexible as possible between a
surface generator and its environment. For example, choice of a connective can influence what
can be said next. Conversely, what must be said next can influence the choice of a connective.
Similarty, [Danlos 88, Danlos and Namer 88] argues that the morphological component of a
generation system may have to interact with a deeper component to decide on pronominalization.
For example, in French, when deciding whether to pronominalize “Marie” in "Jean aime Marie,”
the fact that the pronoun “la” would be elided in “Jean I'aime” and therefore loses the distinctive
marks of gender, may introduce an ambiguity in the reference. It is therefore necessary to aliow
the morphological component to interact with other components, dealing with semantic and
rhetoric issues.



e Internal: there is complex interaction between surface decisions. Therefore order of decision
within the grammar must be left as flexible as possible. For example, the choice of an adjunct can
precede and influence the choice of the verb in a clause, and vice-versa.

In this section, we illustrate interaction between internal decisions of the grammar through an example of
lexical choice. In this case, lexical choice in an embedded clause can influence the choice of connective and
choice of connective can in turn influence lexical choice of the clause. Thus we have a propagation of
constraints from connective down to the clauses it connects and as well, we have a propagation of constraints
from the decision made in the clause back up to choice of connective. Constraints between the two
constituents are bidirectional and decision making must not be strictly left to right. We illustrate extermnal
interaction by showing how ditferent connectives chosen to conjoin the same two clauses allow for different
follow-up sentences. To illustrate these two cases, we describe the features that play a role in connective
selection, give an example of the two cases of interaction, and describe our implementation of connective
selection in FUG through this example.

However, since choosing a connective to link two propositions is a subset of the problem of lexical choice, a
problem in language generation that has raised questions about modularization and order of decision making
in generation, we first briefly survey previous work on lexical choice.

3.1 Previous Work in Lexical Cholce
The place of word selection within a complete generation system is a controversial topic. Several options
have been put forth in recent work:

During Surface Generation: Many previous systems position the task of lexical choice as part of the
component that does surface language generation. One class of such systems [McDonald 86, McKeown
85, Paris 87] use a dictionary based on Goldman's [Goldman 75] system. The dictionary is keyed by intemal
concepts for which a word or phrase must be chosen (for Goldman these were conceptual dependency
primitives such as ingesf) and each entry contains a discrimination net which makes tests on various features
to determine the word or phrase to use. In MUMBLE [McDonald 86), the dictionary is accessed from the
grammar in the process of building syntactic structure. Thus lexical choice is interleaved with syntactic choice.
Since syntactic structure is built by constructing and traversing the syntactic tree in depth-first traversal, words
will typically get selected in left-to-right order. There are some exceptions. For example, MUMBLE selects the
verb of the sentence first. In other systems (e.g., [McKeown 85, Paris 87]) all necessary dictionary entries are
accessed and lexical choices made before the grammar is invoked.

In NIGEL [Mann & Matthiessen 83], the lexicon is only accessed after the grammar has completed its task.
Sets of semantic features are used where lexical items would occur and are sufficient for making syntactic
choices. Semantic features get added as the grammar systems make choices. After all syntactic choices have
been made, the lexicon is accessed to replace each set of features with a lexical item. A lexeme may be
preselected (by the deep generator for example) or directly chosen by the grammar (through a lexify
realization statement). In the latter case, it would provide constraints on other choices. Systemicists term
lexical choice as "“the most delicate” of decisions as it is represented at the leaves of grammatical systems.

As part of content declslons: Another class of generation systems positions the task of lexical choice as
occurring somewhere during the process of deciding what to say, before the surface generator is invoked. This



positioning allows lexical choice to influence content and to drive syntactic choice. Danlos [Danlos
87] chooses this ordering of decisions for her domain.> She makes use of a discourse grammar that identifies
possible discourse organizations along with the lexical choices that can be used for each organization. Thus
lexical choice and order of information are decided simultaneously before other decisions, such as syntactic
choice, are made. Systems using phrasal lexicons (e.g., [Kukich 83, Jacobs 85]) are similar in that they select
whole phrases fairly early on in the generation process and the phrases in turn control syntactic choice. In
these approaches, emphasis is on idiomatic phrases whose usage is very tightly tied to content in a particular
domain. For example, in the stock market domain in which Kukich works, the use of a particular phrase has a
very specific meaning and thus choice of a phrase can determine the content conveyed.

Other researchers advocate folding the lexicon into the knowledge representation. In this approach, as soon
as a concept is selected for the text, the lexemes associated with it in the knowledge base would automatically
be selected as well. One variation on this approach is presented by [Matthiessen 81] who represents the
semantic structure of the lexicon as intensional concepts in a KL-ONE [Brachman 79] style knowledge base.
His approach provides for links between the syntactic structure of the lexicon and the semantic structure,
showing how, for example, the semantic role of AGENT might function as the syntactic role ACTOR, if the
semantic concept for SELL were lexicalized using the verb “to sell.”

Speciftying Interaction: More recent work aims at specifying the type of interaction that can occur between
the two components, rather than merging them. For example, Hovy [Hovy 86] specifies five points of
interaction between conceptual and linguistic decisions; processing is controlled primarily by the surface
generator, with the conceptual component being invoked at predetermined points. Work presented at this
workshop [Rubinoff 88, lordanskaja et al 88, McDonald 88] also looks at the types of interaction that must
occur.

3.2 Constraints on Connective Selection

Before presenting our implementation of connective choice, we first describe the information involved in the
decision to use a connective and give an abstract model of the selection procedure. Connectives are
functionally defined as the class of words that express a relation between two (or more) utterances or
discourse segments. There are many types of relations that can hold between discourse segments, and a
given connective can often express more than one relation. In this paper, we look at two relations that
connectives can express: a relation between the argumaentative orientation of the conjoined utterances and the
functional status of the utterances. We limit our discussion to the connective “but.”

Traditional definitions of “but” [Quirk et a/ 72] indicate that the complex “p but q " expresses opposition
between p and q as illustrated in (1) below. However, whatever semantics is given to the concept of
opposition, it seems unlikely one would maintain that p and q of (2) can be in opposition, for it is well accepted
in our society that beauty deserves a high price. We are likely to agree that the fact that an object is beautiful
implies that it is expensive, thus indicating that p and q of (2) are more in “agreement” than in “opposition.”

SNote, however, that her analysis of interactions between constraints on lexical choice and other decisions leads her to conclude that no
general principles specify interaction between conceptual and surface decisions. For each new domain a new ordering mus! be

developed.
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(1) I want to buy it, but it is expensive.
(2) It is beautiful, but it is expensive.

Although we do maintain that “but" expresses an opposition between the two units it connects, the problem is
to determine exactly what is opposed in the two utterances and to define precisely what is meant by
“opposition”. Ducrot [Ducrot 83] offers some clues. In p but q, p is presented as an argument for a certain
conclusion ¢1 and q as an argument for another conclusion c2. It is these two conclusions that need to be in
opposition.

In our example, the opposition between p and q is Indirect and requires the identification of Implicit
conclusions. Such conclusions could be:

A: It’s beautiful — Iwantto buy it
B: But it’s expansive — ldon't want to buy it

We call the set of conclusions compatible with an utterance its argumentative orientation (A0).6 It is now
possible to rephrase the description of ‘but’ as: ‘but’ indicates an opposition between the AO of the units it
connects. If we consider the conclusions aimed at by utterances as formulae of a first order language’, we
can define opposition between the conclusions ¢1 and ¢2 each represented by single formula as simply:
oppose(cl,c2)=(c1 - —¢c2)= = (clac2) and between the conclusions AOT and AO2 each represented as sets of
formuia: oppose(AO1,A02)=(A01UAQ2) is inconsistent

In order to rank arguments so that comparisons can be made, we use the notion of argumentative
scale [Anscombre & Ducrot 83]. An argumentative scale is simply an ordering between propositions that can
be dynamically established during discourse. Naturally, several scales exist in a given situation. To allow
comparisons across different scaies, Anscombre and Ducrot [Anscombre & Ducrot 83] use the notion of topos
originally proposed by Aristotle. Topoi can be viewed as conventional argumentative scales underlying
communication. They can be represented as gradual inference rules of the form “the more/less P, the
more/less Q" where P and Q are arbitrary formula along a scale. Using these tools, Q can be determined to
provide a better argument than P if it falls higher on the scale. A very similar formal apparatus is described in

[Kay 87].

Functional status is another feature that we have found plays a role in connective selection. it indicates
whether the unit is directive (i.e., makes the primary point of the complex clause) or subordinate. The
functional status of individual units is an essential component of the representation of discourse structure as it
indicates how units are related. Different connectives constrain the functional status of the units they conjoin
in different ways. For example, in “P but Q" Q is the directive act, in “Although P, Q" Q is the directive act,

$To say that all utterances have an AQ is not a proposal (o cast all discourses as argumentative. The AO can be thought of as the sat of
inferences that can be drawn from a given proposition. For some utterances, the AO can be unconstrained by the linguistic form. The point
is that there are certain linguistic devices whose primary function is to constrain the AO of an utterance. Therefore, the notion of AO is
necessary to describe the semantic value of these devices. For example, the role of words ke 'even’ [Fraser 71, Anscombre 73, Nolke
83, Kay 87),'almost’ [Sadock 81), ‘only' [Hom 69), ‘let alone’ [Fillmore, Kay & O'Connor 87] or of many of the connectives we have studied
can be described as adding constraints on the AQO of the sentences they modify.

“Note that conclusions are not utterances or sentences of a natural language. They are part of the meta-language used to describe the
meaning of an utterance.
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and in P because Q,” P is the directive act.®2 Other features also play a role in the selection of a connective,
- but we do not discuss them here. See [Elhadad & McKeown 89] for a full description.

We represent a connective as a relation between the features of two consecutive utterances. Therefore, in
order to produce a connective, a generator is provided with a set of features for each utterance as input. I
these utterance features satisfy a relation, the corresponding connective can be produced. It must be noted
that in this modet, we go from connectives to relation, and not from relations to connectives: we do not need to
establish a classification of possibie relations between discourse segments, but consider only those relations
that can be realized by certain connectives. Note also that this approach provides a multi-dimensional
description of the types of relations that can be expressed between discourse segments.

As an example, consider the description of ‘but’. It is a set of constraints between the features of two
utterances Pand Q. For the argumentative and functional status part, it specifies that:

+ The argumentative orientations of P and Q must include ordering constraints involving the same

scale, and the proposition mentioned in P must have a lesser degree on this scale than the one
mentioned in Q. (P;ofc) € AO(P) and (O]- ofa) e AO(Q) and (P; <, O}) where o is a scale.
If this is not the case, it is difficult to explain why the locutor supports the conclusions of Q. For
example, if there is no scale in common between the argumentative orientations of P and Q, the
opposition is difficult to understand, as in “John is hungry but he is short.” If there is a scale in
common, but Q has a lesser degree than P then the preference of the locutor is difficult to directly
understand, like in “John is starving but Mary is hungry."®

e The topoi used for P and Q must have their right-hand sides of different polarities: if Topos(P) =
(.... +0) then Topos(Q) = (..., -0) and vice-versa. This explains the opposition between the
argumentative orientations of P and Q. For example, in “this car is nice but it is expensive,” one
interpretation would use the topoi “+nice,+desirable’ and ‘+expensive,-desirable".

e P must have a subordinate status and Q a directive status. This constraint accounts for the fact
that one must link on Q and not on P after the complex P but Q. For example, the combination
“this car is nice, but it is expensive. Therefore | will buy it” is (in most situations) not acceptable,
because “therefore” links on the argumentative features of P and not on Q.

3.3 An Example of Constraint Interaction

An example of interaction between internal constraints occurs in lexical selection. Many adjectives are
conventionally associated with argumentative scales (e.g., “small” is associated with the scale of size).
Similarly, verbs often ‘project’ an argumentative aspect on their actants (e.g., “steal” positions its actor on the
scale of honesty, as described in [Raccah 87]). These features of words are described in a lexicon. When a
connective is chosen, the values of the argumentative features (AO and Topos) are constrained. As a
consequence, the verbs and adjectives chosen in the connected clauses are also constrained.

8Note that the notion of directive vs. subordinate does not coincide with the more classical notions of coordination vs. subordination (cf
[Quirk et al 72] for a grammatical definition of the gradient coordinationvsubordination), or to the systemist notion of taxis [Halliday 85].
For example, the compiex “p but q" is grammatically a conjunction and is defined in [Halliday B5] as a paratactic relation. But in our
analysis, in "p but q,” p and q do not have the same functional status. In the structure of the discourse, q is more accessible than p - and
for example, “p but q, therefore c" is only possible if ¢ is argumentatively compatible with q, not with p.

®The opposite case “Mary is hungry but John is starving." could be interpreted using a scale along the degree of hunger. The two
propositions would be connected using a topos such as “the more X is hungry, the more X has priority for food™ and the opposition
appears between the two specializations of the right-hand side “John has priority for food” and “Mary has priority for food.”
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For example, consider the case where a text generation system wants to convey that a transaction has
occurred between two participants, a construction company and the mayor, involving an exchange of money in
return for a permit to build. Suppose, furthermore, that the system wants to convey its opinion that the two
participants acted dishonestly (i.e., that the transaction was in some way not legal). The propositional content
for such an utterance and the AO might be represented as shown in Figure 6. If this utterance is to be
generated in isolation, the AO must be realized through appropriate lexical choice, for example resulting in the
choice of “bribe" for the exchange predicate as in sentence (3).

(3) A&C Builders bribed the Mayor with $10,000 to recaeaive a license for the new
construction site.

On the other hand, if this utterance is to be conveyed as part of a discourse segment where the AO is
attributed to someone other than the system (i.e., someone thinks the participants have acted dishonestly'?),
and is followed by the statement that the transaction is, in fact, legal, then the system can choose to express
the AO through the selection of the connective “but”. In this case, the lexical choice for exchange is no longer
constrained to be semantically loaded. The system can choose a more neutral verb to express the exchange
such as “buy” as in sentence (4).

(4) A&C Builders bought a license for the new construction site from the Mayor
for $10,000, but their intentions ware honest.

In this sentence, the inference that the exchange could be considered illegal is triggered by the use of “but”
since this connective indicates opposition between the AOs of P and Q.

Lexical choice in P is therefore affected by the decision to use a certain connective. The decision about what
verb to use in an embedded clause is determined in part by the decision about a constituent to the right of the
verb. Thus decision making must not be purely left to right. Conversely, if it happens that the lexical item
“brihe” must be used (e.g., the propositional content of the clause contains the predicate illegal-exchange in
place of exchange), that can in tum have an influence on the decision to generate a complex clause or two
single ones. Thus constraints between these two constituents are bidirectional.

Furthermore, constraints made in selection of the connective may in turn place constraints on generation of
content by a deep planner. For example, the use of “but” in the previous example allows the generation of
different follow-up sentences than would have been the case if “although” had been generated. Since Q is
directive in “P but Q”, we can use a follow-up sentence such as “We should use them.” following (4) above.
In contrast, P is directive in “P although Q" and this explains the awkwardness of the sequence “A&C Builders
bought a license for the new construction site from the Mayor for $10,000 although their intentions were
honest. We should use them.” A comprehensive analysis of the interaction between the features we use for
connective selection and both deep and surface generation remains to be done. The point is that a given
linguistic device (e.g., @ connective) introduces more constraints on a discourse than those that
motivated its use. Thus, in selecting a linguistic device, a surface generator must be able to generate
constraints on content that will be fed back to the deep generator.

100ther features of our definition of “but” account for the fact that the propositional content of Pin P but Q can be attributed implicitly to
someone other than the speaker(see [Elhadad & McKeown 88| for detaile).
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Propositional content for (3):
(pc ((cat clause)
(process-type action)
(concept Exchange)
(benef/init ((lex "A&C Builders")
(concept A&CB)
(np-type proper)))
(banef/react ((lex '"Mayor")
{(np-type common)
(concept Mayor)
(definite homophora)))
(medium/init ((concept cash)
(gquantity 10000)
(unit $)))
(medium/react ((head ((leax licensae)
(concept license)
(np-type common})))
(qualifier ((prep === for)
(concapt CSite)
(haad === gite)
(classifier === construction)
(describer ((lex new)
(defining yes)))))))))

Argumentative Orlentation for (3):
(ac ((scale dishonest)
(conclusion
( (process-type attributive)
(carrier ((concept A&LCB)))
(attribute ((concept disheonest)))))))

Figure 6: Sample input with argumentative constraint

3.4 Implementation

‘To illustrate how our FUG implementation accounts for this interaction among constraints, we present a
simplified version of our full grammar, restricted to ‘but’ and ‘atthough’. It expects as input an FD of category
discourse-segment. A discourse segment, following [Roulet et al 85, Sinclair & Coulthard 75] is represented
as a hierarchical structure, characterized by a directive act and subordinate acts. The directive act is a single
utterance, while the subordinate acts recursively form a complex discourse segment. In this paper, for
simplicity, we restrict subordinate acts to simple sentences.

The connective grammar i8 shown in Figures 7-10. In Figure 7, the grammar for discourse segments is shown
and it specifies the possible orderings of the clauses and connectives. Whether a connective can be used
freely in the initial position (e.g., “atthough P, Q") is a property of the particular conjunction used. This is
represented in the part of the grammar handling conjunctions (Figure 8). The feature position has a value of
middie when the conjunction must be in between the two clauses it connects (e.g., ‘but’) and of free
otherwise. In the grammar for discourse segments, the feature connective is introduced and specitied as
category connective. This category is in turn defined in Figures 9 and 10. It expects two utterances P and Q
as features, and describes the relation that must hold between them when the complex PcQ can be realized. it
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is at the heart of our selection procedure. The clause section presented in section 2 is used for the generation
- of each simple clause.

To describe the relation that holds between P and Q, the connectlive grammar contains a separate alternative
(alt) for each class of features. Functional Status (FS) forms one class and argumentative orientation (AQ)
and Topos forms the class, argumentation. The use of alternatives encodes the fact that there is no natural
priority in the model between the different features. Furthermore, constraints from one class (e.g., FS) can be
stated independently of those from another (e.g., argumentation). Again, the FUG implementation allows us to
distinguish between the different types of constraints, and to localize related constraints in the same alt. This
separation of constraints of different natures in different regions of the grammar is similar to the distinction we
have in the clause grammar presented in section 2 between syntactic and semantic features. It allows intemal
flexible ordering of decision making mentioned on page 8. Constraints from functional staius are represented
in the first alt (Figure 9) and these generate most of the constraints on the ordering of the complex clause (i.e.,
whether P or Q is the first embedded clause). While the discourse-segment section of the grammar
expresses all possible orderings, this section selects one based on which clause can be directive as govemed
by the particular conjunction. Conversely, if constraints on the ordering are generated by the deep planner,
they are taken into account by the FS feature constraints. Figure 10 presents the part of the grammar
handling argumentative features. We represent opposition between two AOs using topoi: two AOs are
opposed if their respective scales appear in a topos with opposite signs (the feature sign-right of P must be
the opposite of sign-right of Q).

..
tr

;: CAT DISCOURSE-SEGMENT —————========m-=— o —— o ——mm e e

((cat discourse-segment)
(directive ((cat utterance) (FS directive)))
(subordinate ((cat discourse-segmant) (FS subordinate)))
(alt
(((connective ((cat connective)
(P (* ~ directive))
(Q (» ~ subordinate))))
(alt
({(pattern (directive connactive subordinate)))
((pattern (connective subordinate directive))
(c ((position free)})))))
{ (connective ((cat connective)
(P ( ~ subordinate))
(@ (~ ~ directive))))
(alt
(((pattern (subordinate connective directive)))
((pattern (connective diractive subordinate))
(0 ((positica free))}))))))

Figure 7: The CATegory Discourse-segment
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.
]

77 CAT CONJ —---s-m oo o e e e e e —— -

((cat conj)
(alt
(((position frea)
(alt
(((lex "although"})
((lex "since"))
{(lex "because")))))
((position middle)
(lex "but")))))

Figure 8: Grammar for CONJunctions

;7 CAT CONNECTIVE -——— === - === m e e e e e
((cat connective)

;: The parts common to all connectives

(pattezn (c))

(¢ ((cat conj)))

;; Themes must intersect

(TEST (FD-intersection @8(~ ~ P Th) &(* ~ Q Th)))

; Tirst alt: Functional Status
;: Tor but: 8-D order, all other, D-8 order.
(alt

(((P ((F8 subordinate)))

(Q ((F8 directive)))

(c ((lex "but"))))

((P ((FS8 directive)))

(@ ((FS subordinate)))

(alt (((o ((lax "although")))
({c ((lex "bacause"))))
((c ((lex "sincae"))))}))

)
M)

Figure 9: The Connective FUG -- Section 1

A sample input to the grammar is shown in Figure 11. Note that this input contains an argumentative constraint
stating that the clause realizing this proposition must argue for the conclusion that A&C Builders and the
Mayor were involved in a dishonest transaction. The rest of this input FD is primarily a description of the
propositional content (the value of the feature pc). Note that the lexical specification for the verb is not given,
but only specifies that the concept to be expressed is “exchange.” Part of the task of the grammar is to choose
a verb that will express this concept.

Figure 12 shows a fragment of the lexicon that helps map concept to verb. The fragment shows that the verbs
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;; Second alt: Argumentaticn

;; AO has 2 (main) features: conclusion and scale.

;; Topos has 4 (main) features: sign and scale/left and right.

;; For ‘‘although’’, Topos(P) must be none,

;; because the opposition baetwaeen P and Q must be direct,

;; following a pattarn (P, P arg -Q) and not through an implicit

;; conclusion reached through a topos in P like in (P arg C, Q arg -C)
; which is possible with ‘'‘but’’

(alt
(((? ((Topos none)))
(alt
(((Q ((Topos ((scale-laft (* ~ ~ Q AO scala))
(sign-right -)
(scale-right (~ ~ ~ P AO scale))))))
(¢ ((lex "although"))))
<...other connectives...>)))
((P ((Topos ((scale-left (~ ~ ~ P AO scale))
(scale-right (» ~ *~ Q Topos scale-right))))))
(Q ((Topos ((scale-left (~ ~ ~ Q AO scale))))))
;; sign-right of Topos (P) and Topos (Q) must be opposed
(alt
(((P ((Topos ((sign-right +)
(Q ((Topos ((sign-right -) )
((P ((Topos ((sign-right -)
(@ ((Topos ((sign-right +)
;7 The AO of P and Q is justified
(P ((AO ((justified yes)))))
(Q ((AO ((Justified yes)))))

N
))
))
))) )))))

N
))
})
))
by the use of the connective

Figure 10: The Connective FUG -- Section 2

“buy,”“bribe" and “seli” all can express the concept of “exchange”, but “bribe” adds the desired
argumentative orientation (i.e., the transaction was dishonest) to the clause. Figure 13 shows how the
argumentative constraint given in the input can be satisfied by the choice of verb. The first fragment is taken
from the grammar for verbs. It shows how the verb's argumentative feature from the lexicon, when there is
one, is sent up to the clause using the feature (justified yes) in the AO description. The second
fragment, taken from the clause grammar, indicates that the AO feature of a clause must eventually be

justified.

When the simple clause C1 is unified with the grammar, the concept “exchange” is first mapped to the verb
“buy.” But the entry for “buy” contains no AO and the feature justified remains unbound. Thus, this first
unification fails, the unifier backtracks and tries the verb “bribe.” Since the lexical entry for “bribe” contains an
AO, the feature justified is set 10 yes, and the argumentative constraint of the input is satisfied. The
grammar eventually produces the sentence “A&C Builders bribed the Mayor with $10,000 to receive the
license for the construction site.”

Figure 14 now shows the same proposition, with the same argumentative constraint but embedded in a
complex clause. This complex input represents a type of concessive move: the locutor concedes that A&C
Builders “exchanged” $10,000 for a license and that this exchange can be an argument for dishonesty of
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Ci=
((cat discourse-segment)
(directive
((th ~(A&CB License CSite Mayor $10,000 Exchange))
(1 ((force assaert)))
(ao ((scale dishonast)
(conclusion ((process-type attributivae)
(carrier ((concept A&CB)))
(attribute ((concept dishonest)))))))
(pc ((cat clause)
(process-type action)
(concapt Exchange)
(banaf/init ((lex "A&C Builders')
(concept A&CB)
(np-type proper)))
(benaef/react ((lax "Mayor")
(np-type common)
{(concept Mayor)
(definite homophora)))
(madium/init ((concept cash)
(quantity 10000)
(unit $)))
(medium/react ((head ((lex license)
(concept licensae)
(np-type common)))
(qualifier ((prep === for)
(concept CSite)
(head === gite)
(classifier === constructicn)
(describer ((lex new)
(defining yes})))))))))))

((cat discourse-segmant)
(directive
((th ~ (A&CB Exchange Honest))
(if ((force assert)))
(ao ((scale honest)
(conclusion ((process-type attributive)
(carrier ((concept ALCB)))
(attribute ((concept honest))))})})
(pc ((cat clause)
{(process-type attributive)
(carrier ((head ((concept intentiocn)))
(number plural)
(determiner ((possessive yes)
(np-type pronoun)
(prenoun-type personal)
(concept ALCB)
{(number plural)
(person third)))))
(attribute =me= honest))))))

Figure 11: Sample input with argumentative constraint

A&C, but states a stronger belief that A&C acted honestly in the directive move.
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Lexicon =
(alt (((concept Move) ...)

;; Different verbs to express the Concept Exchange

;: For each verb, map the concept specific roles to more
;. general semantic roles accepted by the grammar.

;: Also preselect the governing prepositions if needed.

;: to buy: BI buys MR from BR for MI.
((concept Exchange)

(lax "buy")

(agent (* benef/init))

(madium (* medium/react))

(instrument (* medium/init))

(banef (* banef/react))

(instrument ((prep === for)))

(benaf ((prep === from))))

;; to bribe: BI bribes BR with MI in order to possass MR.
;; is alsoc marked on its argumentative function
((concept Exchange)
{lex "bribe")
(AO ((conclusion
((process-type attributiva)
(carrier (»# # ~# * pc agent))
(attribute dishcnest)))
(scale dishonest)))
(agent (~ benef/init))
(medium (* benef/react))
(instrumant (* medium/init))
(purpose ((cat clause)
(concept Possess)
(agent (* * agent))
(medium (4 * medium/react))))
(instrument ((prep === with))))

;: to sell: BR sells MR to BI for MI.
( (concept Exchange)
(lex "sell")
(agent (* banef/react))
(nedium (* medium/react))
(instrumeant (* medium/init))
(benef (* benef/init))
(instrument ((prep === for)))
(benef ((prep === to))))
vee))

Figure 12: A fragment from the lexicon

The unitication of C2 leads to the generation of “A&C Builders bought a license for the construction site from
the Mayor for $10,000, but their intentions were honest.” The first step of the unification will go through the
discourse-segment category of Figure 7 where the pattern SCD will be chosen. Next, the unifier applies
the constraints from functional status and argumentation. At the end of this first sweep through the connective
category, all the constraints that can be derived from the input on the features have been verified or added to
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In grammar for verb:

( (cat verb)

(alt (((ao (» ~ ~ ao))
(ac ((3ustified yas))))
((ac none)))))

The AQ of the verb can justify the AO of the clause if the verb is argumentatively loaded.
In grammar for clauses:

({(cat clause)

(a0 (Justified any))))

The AO of a clause must be justified by one of the linguistic devices realizing the clause.

Figure 13: Fragments from the grammars for verbs and clauses

C2 and the modified input will be as shown in Figure 15. The unifier then proceeds to the unification of the
clauses. The argumentative constraint given in input to the subordinate clause is now satisfied by a constraint
coming from the choice of the connective “but.” When the lexicon is reached, the default verb “buy” is chosen,
and the choice need not be reconsidered, since the input constraint is already satisfied.

This example demonstrates how complex interaction between lexical choice in the clause and connective
selection can be implemented by the FUG without requiring the grammar writer to explicitly express the
interaction. Similary, if the deep planner had any constraints on lexical choice, they would be inciuded in the
PC feature of the discourse segment. The argumentative constraints implied by the lexical choice would be
reflected at the Discourse-segment level by the argumentative part of the category biscourse-segment
in the grammar (not presented in the figure). Therefore, if one of the features is “preselected” at any level, the
constraint it implies are enforced at the highest possible level immediately.

4 Comparison with Other Formalisms

In this section we compare order of decision making in FUG with order of decision making in two of the parsing
formalisms we have used, the ATN and the DCG. Because there are a number of similarities between the
two, we focus on the ATN showing how order of decision making would occur for both the sample syntactic
grammar and connective choice. We then point out where processing in the DCG diverges from the ATN,
allowing an added degree of flexibility. Both the ATN and the DCG, however, favor a syntagmatic mode of
grammar organization, while FUGs allow a paradigmatic organization. Generation is more concemned with
choice based on the paradigmatic axis. Therefore, when order of decision making follows the syntactic
structure of the utterance being produced, we run into problems both in the degree of flexibility and in the
representation of constraints.

Finally, we tum to two formalisms that have been used for generation, the systemic formalism [Mann
83, Patten 88] and MUMBLE [McDonald 86].
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C2=
((cat discourse-segment)
(subordinate
((directive
((th ~(A&CB License CSite Mayor $10,000 Exchange))
(if ((force assert)))
{(ac ((scale dishonest)
(conclusion ((process-type attributive)
(carrier ((concapt A&CB)))
(attribute ((concaept dishonest)))))))
(pc ((cat clause)
(process-type action)
‘concept Exchangae)
(banef/init ((lex "A&C Buildars")
(concept A&CB)
(np-type proper)))
(benef/react ((lex "Mayor")
(np-type common)
{(concept Mayor)
(definite homophora)))
(madium/init ((concept cash)
(quantity 10000)
(unit $)))
(medium/react ((head ((lex license)
(concept license)
(np-type common)))
(qualifier ((prep === for)
(concept CSite)
(head === gitae)
(classifier === gonstruction)
(describer ((lex new)
(dafining yes)))))))))))))
{({directive
((cat discourse-segment)
(directive

((th ~ (A&CB Exchange Honest))
(if ((force asserxt)))
(ac ((scale honest)
(conclusion ((process-type attributive)
(carrier ((concept A&CB)))
(attribute ((concept honest)))))))
(pe ((cat clause)
(process-type attributive)
(carrier ((head ((concept intention)))
(number plural)
(determiner ((possassive yes)
(np-type pronoun)
(pronoun-type personal)
(concept ALCB)
(number plural)
(parson third)))))
(attribute === hcnest))))))))

Figure 14: Sample input for connective
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Argumentative features added to C2:

((directive
((AO ((conclusion ((process-type attributive)
(carrier ((concapt A&CB)))
(attribute ((concaept dishonast)))))
(orientation -)
(scale dishonesty)))
(Topos ((scale-left honasty)
(sign-laeft +)
(scale-right dishonesty)
(sign-right -}))))
(subordinate
((AO ((conclusion ((process-type attributive)
(carrier ((concept A&CB)))
(attribute ((concept dishonest)))))
(oriantation +)
(scale dishonesty)))
{(Topos ((scale-left Bribe)
(sign-left +)
(scale-right dishonesty)
(sign-xight +))))))

Figure 15: Argumentative features added to C2

4.1 Using an ATN for Generation

Difficulties arise in using the ATN for language generation given the depth first traversal of the network and the
need to synchronize in lock-step the influence of different constraints as syntactic structure is constructed.
The traversal algorithm means that production of leftward constituents can not be influenced by decisions
made in producing constituents towards the end of the sentence. Furthermore, it can be difficult to allow for
complex interaction between constraints since different constraints must be coordinated as the .system
traverses the network. To show why this is the case, we first describe how generation is done in the ATN and
then show through examples of a simple grammar and a grammar for connectives how decision making is
constrained.

The ATN generator we use makes the following assumptions:
« Input to the ATN interpreter is a list of case roles, such as prot, goal, predicate, etc. Registers are
initially filled with the values for these case roles and can be accessed when traversing the
grammar.

« The generator works by traversing the net, producing a word whenever it encounters a cat arc. On
traversal of a cat arc, the special register * is set to contain the word produced.

» The same grammar can be used for both interpretation and generation provided:

1. Rather than building a tree structure from registers at pop arcs, the grammar strings
registers together in list form to construct the sentence produced.

2. The grammar writer provides arbitrary LISP functions associated with each category that
access specified registers to determine the word or words to generate for the category at
this point in the sentence. A cat arc can be traversed if the associated LISP function can
select a word for the given category. For example, the grammar writer might provide
functions produce-adj, produce-det, and produce-noun which would access specified input
registers when the cat det, adj, and noun arcs are traversed to determine if a word in
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those categories can be produced.

3. The grammar writer may choose to add actions to any arcs to manipulate input registers.
For example, when attempting to construct the subject of a sentence from the input prot
register, one common action would be to send the value of the prot register down to the np
network. Simiiarly, one could send the value of the goal register down to the NP network
when constructing the object of the sentence. This allows the NP network to access a
single register when constructing a NP whose content varies depending on its context in
the sentence.

The ATN interpreter for language generation makes decisions in two ways. Decisions are made about what to
produce each time the system has a choice of arc to take next. Constraints on this type of choice can be
represented as arbitrary LISP tests on the arc. Allernatively decisions can be made on traversal of a cat arc
by its associated function. This function may decide whether a word of the specified category may be
produced at all, and if so, what word will be produced.

4.1.1 Simple Syntactic Grammar

1 2 : 7
Push NP/ Push Vgroup/ Jump Cat adj Pop

1. TEST: if focus = Prot or Carrier

ACTIONS: (sendr (find-subject) input-np)

(setr subject *)
FIND-SUBJECT: if Process-type=action --> (getr Prot)
if Process-type=attributive --> (getr Carrier)

2. ACTIONS: (sendr Process-type) (sendr Verb) (setr Verbgroup *)
4. TEST: if Verb-class=bitransitive and if no Dative-prep in Verd

ACTIONS: (sendr (find-iobject) input-np) (setr iobject *)

FIND-IOBJECT: if Process-type=action --> (getr Benef)
5. TEST: if Process-type=attributive ACTIONS: (setr object *)
6. ACTIONS: (sendr (find-object) input-np) (setr object *)

FIND-OBJECT: if Process-type=action --> (getr Goal)

if Process-type=attributive --> (getr Attribute)
7. RETURN: Subject Verbgroup Object if Transitive
Subject Verbgroup [object Object if Bitransitive

8. TEST: if Dative-prep in Verd .

ACTIONS: (sendr (find-iobject) input-np) (sendr Dative-prep input-prep) (setr Dative *)
9. RETURN: Subject Verbgroup Object Dative

Figure 16: Sample network
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To compare order of decision making in an ATN with order of decision making in FUG, consider a sample
network shown in Figure 16 which is one way to translate the sample FUG of Figure 1. Syntactic structure of
the constituents of the sentence is built by traversing subnetworks. Order of the constituents is also
determined by order of arc traversal and by the bulldq action on pop arcs.!! Assignment of semantic roles to
syntactic ones is done by complex actions on the arcs.

The important point to note in this grammar is that decisions are made in building the syntactic structure of the
sentence, top-down and left-to-right. Mapping of semantic roles to syntactic roles, building of syntactic
structure, and ordering of roles all occur simuitaneously. For example, using T2, Figure 4 as input, traversal of
the network would begin with arc 1 since focus is on the prot. At this point, assignment of the semantic role
prot to the syntactic role subject would be made as part of the sendr action. In addition, a decision to
produce an active sentence would have been made by the test. This arc would produce the NP for the
subject, “John" and place it in the subject register.

This ATN grammar is but one way of translating the FUG. There are a variety of other possibilities. Since the
ATN is turing machine equivalent, it would be possible to follow the FUG more exactly. One couid use 3
stages in the ATN, where the first two stages resulted in the setting of registers used for features
corresponding to FUG attributes and in the final stage only, would the sentence actually be produced. This
grammar would only use test and jump arcs and would not correspond to the normal use of ATNs. Most of the
work for generation would be done in the LISP functions used as actions or tests on the arcs. Clearly, this is
not a desirable solution.

4.1.2 Characterization of Ditferences

In the ATN version of the FUG that we presented here, the ordering of constituents in the resulting sentence is
conflated with the assignment of syntactic structure to constituents while in FUG these tasks were represented
in two separate sections of the grammar. The necessity to mix different sorts of information as well as the
depth-first traversal algorithm of the ATN results in these primary differences:

Left-to-right Traversal: In the ATN version, decisions about embedded constituents will get made before some
top-level decisions. In the example, the subject “John" is fully determined before syntactic ordering decisions
such as where the indirect object is placed. In FUG, all decisions that can be made at the top level are made
before producing constituents. The ATN’'s order of decision making will cause problems for the case of
connectives whers a decision made early on in the sentence depends on a decision further to the right.

Synchronization of different types of constraints: An ATN must synchronize in lock-step the influence of
different constraints as it proceeds through the construction of syntactic structure of the sentence. It can be
difficult to coordinate these different constraints and it means that the grammar writer must know in advance
exactly when these constraints will come into play in producing the sentence.

"Actually, a more sophisticated ATN interpreter might construct linear order of constituents in the sentence simply by tracking order of
arc traversal thus allowing the user to omit the bulidq statements.
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4.1.3 Implementation of Connective Choice

Since the form of an ATN must follow the syntagmatic structure of the sentence, the network to perform
connective choice is made of roughly four parallel paths corresponding to the orders ScD, c¢DS, D¢S and ¢SD.
The input to the ATN interpreter is a list of registers, containing the values of all features present in a
discourse-segment. Note that the input does not have the structured aspect of an FD, as all features, at all
levels, must be put in different registers.

1 Push Clause/

Cat Conn 4 Push Clause/ 5

Cat Conn

3
Push DS/

1. (setr Conn *)

2. (sendr Directive input-clause) (setr Clausel *) (setr Dir T)

3. (sendr Subordinate input<clause) (setr Clausel *) (sex Sub T)

. [F Conn empty, (setr Conn *) (setr Middle T)

. [F Sub, (sendr Directive input-clause) (setr Clause2 *)

. [F Dir, (sendr Subordinate input-clause) (setr Clause? *)

. (setr Simple T) (sendr Directive input-clause) (setr Clause! *)

. [F Simple,. return Clause1, ELSE [F Middle, return Clause! Conn Clause2,
ELSE return Conn Clause! Clause2

[+ BN Mo NV

Figure 17: Top level Network for Complex clause

Figure 17 shows the top level of an ATN that could be used for connective selection. For an ATN interpreter,
the Utterance category is realized as a clause. Therefore, on the arcs directive and subordinate we push to
the clause subnetwork, and there is no utterance subnetwork. All the actions performed by the category
utterance in the FUG implementation must therefore be done on the actions of the arcs.

The most natural way to perform connective selection is to associate a procedure to each connective (e.g.,
produce-but, produce-although). The procedure will do all the testing required by the description of the
conjunction. This means that the selection procedure must be implemented in Lisp. An alternative approach is
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to write only one procedure implementing the whole selection procedure.

it is therefore the responsibility of these procedures to behave either as testers or as generators when one of
the registers being tested turns out to be empty. If the procedures are to work as generators, the grammar
writer must basically rewrite the unification algorithm in each procedurs.

The difference between the two approaches is that in the FUG implementation, the part of the grammar
handling connective selection does not need to be aware of the source of a constraint on a feature: it just tries
to unify the feature with possible values. In contrast, the ATN grammar writer must explicitly describe the types
of interaction that can occur: what register can affect the value of each feature, and test for all of them. This
complexity is derived from our desire to leave order of decision making unconstrained. If, on the other hand,
we accept a specification of priorities between the features involved in the selection, then the ATN
implementation can be made much simpler. All the procedures can work as tests only, testing more ‘primitive’
features first, and assigning values to less ‘primitive’ values as a result. This is, however, the type of rigid
interaction we want to avoid.

4.2 DCG

DCGs share with ATNs the characteristic of favoring a syntagmatic mode of grammar organization. Typically,
a DCG encodes the structural properties of a language in context free rules having both a left and right hand
side. These are augmented by extra conditions on the rules. For generation, these tests would make any
context sensitive tests required. For example, a rule stating that OBJ --> ADJ might have the test that
process-type is attributive since action process-types do not have adjectival objects. In addition, pragmatic
information could be tested to determine certain syntactic choices. For exampie, focus might be tested as part
of a rule that determines the active form be used.

Mapping of semantic roles to syntactic roles is achieved through the use of arguments to rules. For example,
the DCG we use in one of our generation systems [Derr and McKeown 84] contains the rule shown in Figure
18. This rule builds syntactic structure for a sentence (nplist followed by vb_phrase) and maps the semantic
roles provided in input (verb, prot, goal, beneficiary, focus) to syntactic roles such as subject and object by
passing them to subconstituents of the sentence (e.g., focus is passed to nplist to be used as the subject of
the sentence).

sentance (clause (Verb, Prot, Goal, Bane, Focus, Advs Mods)) —->
{tzximcore},
nplist (Focus, subj),
vb_phrase (Verb, Prot. Goal, Bane, Focus, Advs),

mods (Mods) .
Figure 18: Sample DCG Rule

As in the ATN, then, the resuit is a conflation of ditferent types of constraints into individual rules. Mapping of
semantic roles to syntactic roles, building of syntactic structure, and ordering of syntactic roles based on
pragmatic constraints are represented as synchronized decisions that occur in lock-step as the sentence is
produced. Furthermore, as in the ATN, processing of rules is top-down, left-to-right meaning that a constituent
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to the left in the sentence will be fully determined before other decisions get made.

Unlike the ATN, the DCG uses unification as the mechanism for processing rules and this results in two types
of added flexibility. Through unification of arguments, some constraints can be expressed at a higher level
and passed down to lower leve! constituents. More importantly, constraints are necessarily bidirectional
precisely because of the use of unification.

4.3 MUMBLE

Order of decision making in MUMBLE [McDonald 86] is quite different from order of decision making in FUG.
First, it is determined by the incoming message and not by the grammar. To produce a sentence the incoming
message is traversed, replacing each plan unit of the message with a possibly partial syntactic tree structure,
until a full tree is produced. The second main difference is McDonald's commitment to a linear algorithm. All
decisions are indelible. As far as we can tell, this means that bidirectional constraints can not be accounted
for.

To compare order of decision making more directly, consider how MUMBLE would generate our example
sentence “John gives a blue book to Mary.” MUMBLE expects as input a realization specification for the text,
which is a plan represented in semantic and pragmatic terms. A realization specification for this sentence
might be as shown in Figure 1912,

(transfer-svent
(main-event #<transfer John Mary indefinite-book>)
(particulars #<attribute book color blue>))

Figure 19: Realization Specification for
“John gives a blue book to Mary"

MUMBLE's generation process consists of three subprocess: Attachment, Realization, and Phrase Structure
Execution (PSE). While these levels are organized as separate modules, they are not strictly ordered in the
overall process. Rather, they are interleaved processes that pass information and partially refined structures
between themselves. Flow of control is in part dictated by the input plan and in part by programmed
knowledge dictating when to invoke the next component. Attachment is responsible for assigning plan units to
positions within the surface structure tree that MUMBLE builds. At any point in the process, the surface
structure contains “attachment points” to which new structures can be added. Initially, the first plan unit is
assigned to the only available attachment point, the node dominating the first sentence. Attachment is
interleaved with PSE. As soon as a partial tree is constructed, PSE takes over and does a depth-first traversal
of the tree. PSE invokes procedures indicated by labels of the tree to perform transformations or enforce
syntactic constraints. Words undergo morphological analysis and are produced when the leaves of the tree are
reached. PSE re-invokes Attachment if it arrives at a node that is an attachment point (e.g., any noun phrase
would allow the attachment of qualifying clauses) to check if there are additional plan units that can appear at

2we hypothesize about the primitives of this exampie. Papers on MUMBLE do not specify the primitives for the specification language.
We base our choice of primitives on an exampie from [McDonald and Pustejovsky 87]
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ihis point. PSE invokes Realization when it encounters plan units in the surface structure.

Realization is responsible for all choices that have to be made during language generation. It selects an
appropriate word or phrase to “realize” a plan unit. There are two types of realization classes: domain
dependent classes, which are essentially dictionary entries that list possible word choices for plan elements,
and linguistic classes, which identify transformation families for a particutar syntactic constituent. For example,
McDonald defines a linguistic realization class for transitive verbs that can be nominalized that identifies seven
syntactic choices for realizing any verb of this class (e.g., active, passive, gerundive with subject, gerundive
passive with subject, etc.). Thus, grammatical decisions are made by two components: by realization classes,
which make syntactic choice, and by procedures, which enforce syntactic constraints and are invoked by tree
labels encountered by PSE during traversal.

in generating from the example input (Figure 19), MUMBLE's first step would be to attach the first plan unit
(main-event) to the node dominating the first sentence in the surface structure (shown in Figure 20). PSE
would then be invoked to traverse the tree. Almost immediately Realization would be called to realize the
main-event. Realization can be done incrementally; its first decision may be to select the verb and construct a
new tree under the S node, that includes the verb and its syntactic choice and assigns the remaining plan
arguments to syntactic roles (see Figure 21). Realization would also denote which of the new nodes were
active attachment points (in this case, there would be three, the subject head, the object head, the recipient
head and the next clause). PSE continues and when it encounters the attachment point for subject would
re-invoke Attachment, only to discover that there were no new plan units that could be incorporated as
modifiers or qualifiers of the subject. Realization would be invoked to realize the subject as “John” and this
word would be output. Similarly, the verb would next be conjugated and output. On encountering the object,
Attachment would be invoked again and this time the plan unit specifying attributes of book wouid be folded
into the surface structure. This new subtree would be traversed and the phrase “the blue book” produced.
The recipient label might be responsible for adding the 10" preposition and finally, the phrase “to Mary” would
be produced completing the sentence.

Text

Sentence

#<transfer Jo/Mary indefinite-book>

Figure 20: Surface Tree after 1st Attachment

As can be seen in this example, order of decision making in MUMBLE has the effect of separating out the
representation of different kinds of constraints. Constraints dictating how syntactic structure is built are
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r Telxt

Sentence
Subiect Aciivel-verb Ob}'ed ReciFient
NP NP NP NP
i I i i
John Give indefinite-book Mary
Figure 21: Surface Tree after 1st Realization

invoked during PSE and are represented as procedures invoked by node labels. Attachment also plays a role
in building syntactic structure and represents constraints on how smaller trees can combine to form larger
ones. Constraints on ordering of constituents are represented in linguistic realization classes. They are
represented somewhat more declaratively in the class entries, but they still invoke procedures to camy out
construction of the tree representing ordering. The mapping from semantic input to syntactic roles is done in
the domain dependent realization classes. Thus, like FUG, MUMBLE supports a separate representation of
different kinds of constraints. Unlike FUG, however, each type of constraint is represented differently (e.g.,
some in procedures, some in realization classes). Furthermore, the separation of constraints is fixed by the
flow of control. In FUG however, one could decide to add additional classes of constraints in yet another layer
of grammar that is unified with results from earlier layers.

MUMBLE's indelibility constraint is the main significant difference. Decisions get made in a fixed order and
this preciudes the possibility for constraints to be bidirectional. As we understand, this means that MUMBLE
would not be able to handle the interaction between selsection of connective and the generation of the
embedded clause. We can only speculate about how connectives might be produced, since there is little
published material about the generation of complex sentences (but see [McDonald 86}). We suspect that there
would be separate plan units for the propositional content of the two clauses to be conjoined. Since MUMBLE
proceeds left to right through the message to generate the first of the clauses (we suspect that the ordering of
the clauses would be governed by the message), Attachment would add the second clause to the tree only
after the first clause is generated.'® As a result, while decisions made in the production of the clause can
influence the connective, the selection of a connective can not influence the clause.

13 The statemant “..attachment is interieaved with Phrase Structure Execution so that most earlier units will have been realized and their
taxt spoken before the last one [plan unit] is positioned.” [McDonaid 86] leads us to believe that this is the case. However, a second
possible interpretation arises from the statement “With the realization of the first unit, the attachment possibilities for the second can be
considered.” If “realization” here refers to the Realization phase and not to the full traversal of the surface structure, it is possible that all
attachments are considered immediately after a tree structure replaces a plan unit, but before PSE continues. This seems unlikely as this
would mean attachment of all plan units would be possible before PSE continued and anything was produced. Since this is what
McDonald wants to avoid it seems unlikety.
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4.4 Systemic Formalisms

There have been two recent major implementations of systemic grammar for generation, NIGEL [Mann
83] and Patten's system [Patten 88], each of which uses a different control strategy for processing. The
grammar is represerted as an interconnected set of systems, where the lowest levels represent the most
delicate decisions (e.g., lexical choice) and the highest level systems the least delicate (e.g., clause type).

NIGEL is part of the PENMAN system, which in addition to the surface grammar, includes a lexicon, an input
specification language (called SPL), and the most general part of a knowledge base (called the “upper
model”). NIGEL as a surface grammar expects an extremely rich input, represented as a set of features.
Within the PENMAN system, the SPL interpreter allows the user to enter specifications in a much simpler way
and to only partially specify the features that must be expressed. Figure 22 shows a possible SPL
specification that might be used as input to generate our example “John gives a blue book to Mary.” All the
features that are not specified in the SPL input are given a default value. SPL and defaulting are described in
[Penman 88].

((GIVEl / GIVE ;; GIVELl is an instance of GIVE in the domain model
:actor JOHN1
:destination MARY1
:object BOOK1
:tense PRESENT
: speechact ASSERTION)
(JOHN1 / PERSON
:name John)
(MARY1 / PERSON
:name Mary)
(BOCK1 / BOOK
:determiner A
:relations ((Cl / COLORING
:domain BOOK1
:range BLUE)))
(BLUE / COLOR))

Figure 22: Input to NIGEL for “John gives a blue book to Mary”

Note that in the SPL input, the values of the slots refer to entities in a knowledge base (the domain model).
When needed, NIGEL will query this knowledge base to make a decision through a mechanism using special
functions called inquiry and choosers.

In NIGEL a sentence is produced by “traversing” the grammar systems, starting with the least delicate. In
each system, a choice I8 made by invoking the chooser function associated with the system, which in turn
invokes one or more primitive inquiry operators. These functions will query the domain model of the system for
information needed to make the choice. Depending on the results of the choice and the selected system,
different systems will be invoked next in the overall process of producing the sentence. Features can be
preselected, however. In preselection, a “leaf”'4 teature is input which means that the path from higher level

4 All quoted terms in descriptions of NIGEL are our own terms and may not correspond 1o the terminology used by the NIGEL group.
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- systems to that lower level feature can be avoided in processing.

CLAUSE-ELLIPSIS

CLAUSES CLAUSE-CLASS

CLAUSETTE

RANK GROUP-PHRASES

WORDS

MORPHEMES
Figure 23: Top level systems in NIGEL

For example, Figure 23 shows the top level systems of the NIGEL grammar. When going through the root
system, the grammar will decide the rank of the expression to generate. To make this decision, NIGEL will
determine whether the input includes a speech-act. As our example does contain a speech-act, the next
system, CLAUSECLASS is entered. Next, NIGEL needs to determine whether the speech-act has a
propositional parameter (that it, if it is applied to a proposition). The answer to this query will determine
whether the generated clause will be a full clause or an exclamation or a greeting (which correspond to
speech-acts without propositional content). Since our input includes a propositional content, the next system,
CLAUSEELLIPSIS, is then selected. NIGEL needs to decide whether the clause is an answer to a question, in
. which case it can use ellipsis, or not, in which case the clause must be fully expanded. Fiow of control
continues in the same fashion through all the systems of the grammar, from the most general to the most
specific (in what systemists call order of “delicacy”).

The selection of connectives in NIGEL follows Halliday's description of clause complexes. Note that the
decision to produce a single clause or a clause complex (that is, several clauses, connected in some way) is
one of the first decisions made in NIGEL. Figure 24 shows the top level systems controlling connective
choice.

Para
Taxis Hypo

Raports
Projection Ideas
Facts
Logical Additive
Extension Alternative
Expansion Elaboration Contrastive
Enhancement

Figure 24: Top level systems describing clause connections
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In order to arrange two clauses to produce a single clause complex, NIGEL determines the type of
connections to express in the complex along two dimensions: taxis and logical. The decisions concerning
taxis and logical can be made in any order, and are mostly independent of each other.

Taxis determines the syntactic status of each clause within the complex. In a paratactic relation, the two
clauses have the same syntactic status (this roughly corresponds to the traditional notion of co-ordination); in
an hypotactic relation, one clause is presented as a modifier of the other, and thus has a lower status (this
corresponds to subordination).

The logical system attempts to describe the types of semantic relations between clauses that can be
expressed in language. Once the logical and taxis dimensions are determined, NIGEL can choose a
connective compatible with the decisions taken. For each combination of features on the taxis and logical
systems there correspond one connective. For example, “but” corresponds to the features paratactic and

expansion:extension:contrastive.

The default order of decision making for choosing a connective is therefore: (1) determine the type of
connection between the clauses, (2) choose the connective, (3) realize each clause. Note that when the type
of connection is determined, all relevant features in each clause get pre-selected. For example, if a hypo-
tactic relation is chosen, the feature dependent will be selected in the dependence system - thus forcing the
subordinated clause to be realized in a certain manner. Therefore, the flow of control in NIGEL is usually
top-down, with the choice of the connective constraining the realization of each clause, both to the right and to
the left of the connective.

In summary, as implemented in NIGEL, decision making is primarily top-down and is not inherently
bidirectional. A systemic grammar gives priority to the functional status of language. Since systems are
organized around the paradigmatic axis, order of decision making is very different from either of the parsing
formalisms discussed so far. For example, top-level decisions will send constraints down to lower level
decisions and order of decision making is not governed by left-to-right construction of syntactic constituents.
We note that NIGEL is not a finished product, but is continually under development, and order of decision
making as currently implemented is not a theoretical claim of its developers.

The mechanism to enforce the bidirectional influence we have mentioned in FUG, where a choice in the
clause constrains the choice of the connective, is apparently not implemented in NIGEL. However, Patten’s
implementation of systemic grammar allows for successive back and forth sweeps through the grammar to
deduce all possible choices given a set of preselected features. This control strategy seems to capture the
bidirectional constraints for which we have argued in the FUG. Lower level decisions can influence higher
level decisions and vice versa. In other respects, decision making is similar to NIGEL as it is guided by
functional aspects and not syntactic structure.

5 Conclusions

The strong points of the FUG formalism we have identified for connective selection are the partial specification
of the input and flexible order ot decision making, both internal and external, that a FUG naturally implements.
The FUG formalism also allows organization of the grammar along the different types of constraints involved.
The localization of constraints of the same type in separate regions permits the grammar writer to identify the
effect of constraints in an efficient and readable manner. This organization is not enforced by the formalism,
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but can be used as a guideline to lay out FUGs in a readable way. A side benefit from the type of organization
we advocate is that it is easy to detect and remove duplication of constraints across similar cases.

5.1 Problems with FUG: Representation and Use of complex constraints

FUG does have problems in representing certain types of constraints. The types of constraints we want to
express when implementing the connective selection procedure are: equality of one feature with a constant
(e.g., P must have a directive status), equality of two features (e.g., P and Q must have the same utterer),
limiting the possible values of a feature (e.g., the thematization of P can be propositional, illocutionary or
reinterpretation), and the negation of the previous types. We also need 1o express set relations: test the
intersection of two sets (e.g, Th(P) and Th(Q) are not disjoint), membership (e.g., (P; as in o) is a member of
AQ(P)). Other types of constraints can occur (e.g., the right-hand side of the topoi are of opposite signs).

The FUG formalism directly encodes constraints of the first types: equality with a constant is expressed as
(attribute constant), equality between two features is expressed as (attribute1 <path to attribute2>). To limit the
possible values of a feature, an alternation can be used: (attribute (alt (vall ... vain)}). Negation is not part of
the basic unification formalism, but has been added to many unifiers { [Shieber 86, Karttunen 84]). it can also
be simulated using the special value none. More complex constraints can be expressed as composition of the
previous types. For example, to express the constraint on the signs of the topoi, the following expression can
be used:
(alt (((dl-p ((sign-right +)))
(dl-q ((sign-right -))))
((dl-p ((sign-right -)))
(dl-q ((sign-right +))))))

Constraints on sets are more problematic. It is difficult to express anything about sets using the standard FUG
formalism. FDs allow values to be either atomic or FDs. It is possible to write grammars to deal with sets or
lists; we actually have written such a grammar to compute the append of two lists, test for membership, or
compute the intarsection of two lists. Such grammars are, however, terribly inetficient and not very readable. It
is more productive to acknowledge the limitation of the formalism, and to add facilities to express more
compiex constraints [Elhadad 89].

We have addressed these problems by introducing a special attribute into the formalism, test, that has a
special unification behavior. This adds to the existing special attributes pattern, cset, and ait. The value of a
test attribute can be an arbitrary predicate represented by a Lisp expression, containing, if necessary,
references (paths) to other features in the FD being unified. The unification behavior of a test feature is to
ensure that the predicate is true in the FD resulting from the unification. In practice, the Lisp expression is
evaluated at the end of the unification and when it fails, the unifier backtracks.!> At a more abstract level, a
test feature enforces a complex constraint on an FD. For example, the following grammar fragment insures
that the themes of P and Q are non disjoint:
((cat connective)

.(Test (FD-intersection 8(~ ~ P Th) @(* ~ Q Th))))¢

SA more efficient strategy to choose the moment when the constraint must be evaluated is being implemented.

8The symbol '@’ indicates that the following expression is a path refeming to a value in the FD.
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Partial specifications on values: The test feature allows us to achieve an acceptable level of performance for
testing complex constraints. Unfortunately, it also has a major drawback: the regular unification algorithm
does not make a distinction between testing a constraint and adding a constraint. When testing against a non
specified value, the unifier can just add the constraint. The test feature, in contrast, does not indicate how the
constraint it enforces should be added. In other words, test is not bidirectional.

5.2 Summary

We argue in this paper that the FUG formalism is a natural choice for the task of text generation. As the scope
of text generation extends to include more decisions, of different nature, using different information, the
problem of order of decision making becomes more acute. We have distinguished two aspects of this problem:
internal - how decisions interact within the surtace realization component - and external - how decisions in the
surface realization component interact with its environment. Because language imposes arbitrarily complex
constraints on any decision, these interactions can be quite complex. They cannot be handled by a module
that is not be aware of the linguistic intricacies. Since constraints cannot always be strictly ordered, it is natural
to let the linguistic component deal with interactions in the most flexible way.

We have illustrated how FUGs allow for that flexibility by examining the task of connective selection. FUGs
allow for flexible internal order of decision making, and provide tools for organizing the grammar without
duplicating constraints, and allow a clear grouping of similar constraints to increase readability. They allow for
flexible external order of decision because unification is bidirectional, and the constraints expressed in the
grammar can both generate and test values.
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