Full-Text Indexing Based on
Lexical Relations

An Application: Software Libraries

CUCS-485-89

Frank Smadja
Department of Computer Science
Columbia University
New York, NY 10027
Smadja@cs.columbia.edu

Yoelle S. Maarek
IBM Thomas J. Watson Center
P.O Box 704
Yortown Heights, NY 10598
yoelle@ibm.com

August 1989
Proceedings of the 12th ACMgSIGIR. Cambridge, MA, June 1989.

Copyright © 1989 Frank Smadja

Frank Smadja was partly supported by DARPA under contract #N00039-84-C-0165 and NSF grant IRT-84-51438.



cucs-485— 39

Full Text Indexing Based on Lexical Relations
An Application: Software Libraries *

Yoclle S. Maarck

IBM Thomas .JJ. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598

Abstract

In contrast to other kinds of libraries, sollware libraries
need to be conceptually organized. When looking for
a component, the main concern of users is the func-
tionality of the desired component; implementation de-
tails are secondary. Sollware rcuse would be enhanced
with conceptually organized large libraries of soflware
components. In this paper, we present GURU. a (0ol
that allows automatical building of such large soltware
libraries from documented software components. We
focus here on GURU's indexing component which ex-
tracts conceptual altributes from natural language doc-
umentation. This indexing method is based on words’
co-occurrences. It first uses EXTRACT, a co-occurrence
knowledge compiler for extracting potential attribules
from textual documents. Conceplually relevant col-
locations are then seclected according to their resolv-
ing power, which scales down the noise due to context
words. This fully automated indexing tool thus goes
further than keyword-based tools in the nnderstanding
of a document without the brittleness of knowledge-
based tools. The indexing component of Gunru is lully
implemented. and some results are given in the paper.

Keywords: automatic indexing, soltware libraries,
software reuse, lexical relations, natlural language pro-
cessing., co-occurrence knowledge.

1 Introduction

Software reuse has been shown Lo improve soflware
productivity and rcliability, and therefore becomes an
issue of ever growing inlerest in software engincering
[Horowitz 84]. Unlortunately. not enough adequnate li-
braries of reusable softwarc componcnts are available.
Soltware libraries, in contrast to restricted domain 1i-

"In Proceedings of SIGIR'89. Twelfth [oternational Confer-

ence on Research and Development in Information Retrieval, ed.

N.J Belkin and C.J. van Rijsbergen, ACN DPress, pp 198-206,
Cambridge, MA, June 1989,

Frank A. Smadja
Department of Computer Science

Columbia University
New York, NY 10027

braries such as statistical or mathematical libraries,
need to be conceptually organized so as to facilitate
Iocaling as well as understanding components even in
the case of imprecise queries [Maarck 87).

We have designed and implemented a tool, GuRu,
that automatically assembles software libraries into con-
ceplual hierarchies. GURU extracts conceptual informa-
tion from the natural language documentalion associ-
ated with the software components to be stored. GURU
is articulated around two main components, the index-
ing component and the classilying component.

e Guru's indexing component extracts conceptual
attributes from natural langnage documentation.
The attributes characterize the document and
stand Tor a formal funclional descriplion of the an-
alyzed soltware units.,

o s elassifving component then incrementally
assermbles the indexed software units into a con-
ceptually structured library by using a conceptual
clustering technigue.

CGunru has heen fully implemented and is currently
tested on various domains. GuRry has been able to fully
auntonatically index and classify more than 250 soft-
ware components faken from the Uxix' environment.
In this paper. CGunt's indexing companent has been en-
riched by (he nse of EXTRACT. A complete description
of Gury can be fonnd in [Maarck 89].

TURG's indexing component makes use of a new in-
dexing scheme that is based upon the concept of lexical
relation due Lo Saussure [Saussure 49]. As the front end
of CGuru's indexing component, we have used EXTRACT
[Smadja 89]. a co-oceurrence compiler that produces
lexical relations from a given textual corpus. EXTRACT
was introduced or automated lexicography and natural
language generation purposes and produces the neces-
sary raw information for GURU to analyze and produce

TUNIX is a trademark of AT&T Bell Laboratories



indices. GURU's indexing scheme allows extracling con-
ceptual information from natural-langnage documenta-
tion. In contrast Lo classical indexing schemes, Guniu's
scheme does nol require any a priori information on the
context of the document to be analyzed, and provides
a conceptual representation of the document withont
attempting to actually understand it,

Section 2 presents some definitions and related work
in automated indexing and Section 3 explains how EX-
TRACT produces lexical relations. Section 4 describes
how to build indices fromn lexical relations. Finally,
Section 5 gives an example output of GuRU's indexing
component along with some results.

2 Related Work: Keywords or
Knowledge?

Let us first define our terminology. Let D be the uni-
verse of textual documents and R be the set of pos-
sible representations (finite or infinite). A function
o : D — R that maps a document into its repre-
sentation is an indering function, and for d € D, o(d)
is called the description or descriptor ol d. The elemen-
tary constituents of a descriptor are called the indices,
or allribules of the documnent. We have distinguished
two approaches in automalic indexing: the keyward-
based approach and the knowledge-based approach.

In most keyword-based indexing systems. a list of
predefined keywords is provided and documents are an-
alyzed in order to check whether or not they contain
these keywords. Some systems refine the descriplion by
including adjacency or frequency information. In SinE
[Salton 83]. for instance, frequency information is added
to the inverted file, and is used to rank the results of
inverted file retrieval. Other systems, such as Satarr
[Salton 71,Salton 83]. usc a similarity measure between
documents based upon keyword-frequency, Keyword.
based systems, even when augmented with frequency
information, present a major drawback when dealing
with large textual databases: they lack granularity. In-
deed, the presence or absence of keywords is notl a sul-
ficient criterion for distinguishing belween documents
when they become too numerous. In large-scale ap-
plications equivalence classes defined by & become too
large to be of interest. Consequently, too many docu-
ments are often retrieved, which lowers the precision of
the retrieval system without raising its recall.

As keyword-bascd systems perform poorly on large
databases. supporters of the knowledge-based approach
claim that ecflicient retrieval from large databascs re-
quires underslanding the text as well as indexing it

[Flass 85].  As totlal understanding of a text is im-

practicable. the major trend in the knowledge-based
approach is the text-skimming approach. The latter
consists of skimming texts to determine their main
themes without necessarily paying atlention to each
word [Manldin 86.Mauldin 87]. Mauldin's system, Fer-
ret, allows understanding a text by using skelchy
scripls. Sketchy scripts are case-frame structures that
encode knowledge about the main themes of the texts,
t.c., common actions and events. For indexing a docu-
ment, a particular script has to be chosen in the script li-
brary and instantiated according Lo the results obtained
when skimming this docmnent,

The knowledge-based approach allows a deeper
understanding of the documents than the classical
keyword-hased approach. Ilowever, it is more context
sensitive. Indeed. scripts cannot be adequately instanti-
ated if they do not fit predefined relevant slots depend-
ing on the domaiu of the analyzed text. Scripts, though
lielping in the understanding, are a sonrce of brittleness.
Such an approach is applicable in restricted domains
where the knowledge encoded in the seripts can eas-
ily be circumscribed. Towever. it is prohibitive in the
conlex! of software libraries in which the domain is too
wide to he encoded beforchand.

In comparison to the knowledge-based approach, the
keyword-based approach is less context dependent, how-
ever, the main flaw, is that in concentrating on isolated
words, 2 lot of information is lost. In particular, infor-
mation on the relationships in which words are involved.
This information may be necessary for distinguishing
between texts having similar keywords, In this paper,
we propose extracting more information from textual
documents than single keywords, without introducing
a prior information such as in knowledge-based ap-
proach. by using a new indexing scheme. This scheme

is presenied in the next sections,

3 From Texts to Lexical Rela-
tions

3.1 Lexical Relations, Previous Work

It is widely accepted that indexing a text at a high
level of granularity requires nnderstanding it Lo some
extent. The ideal solution would be to use a full-fledged
natural-langunage understander to actually understand
the documents Lo be indexed, However, such a system
is still far from being at hand, the main problem be-
ing the semantic analysis. Until the combined efforts
ol linguistics and artificial intelligence provide us with
more powerful methods and tools, we propose to limit
ourselves to non-semantic knowledge. More than sin-



gle keyword distributions must be retrieved from the
natural language texts without actually understanding
them. f.e., without using semantic information.

As a solution lo this problem we have used here lex-
ical relations as basic indexing attributes. A lexical
relation between two units of language stands for a
correlation of their common appearance in the uiter-
ances of the langnage [Saussure 49]. The observation
of lexical relations in a text have been shown to re-
veal a lot on both syntactic and semantic levels, and
provides us with a powerful way of taking context into
account [Smadja 89]. Tn our context, considering lexical
relations allows keeping track of contextual information
and thus go beyond the keyword barrier.

Lexical relations have been of interest for a long
time in various ficlds of study such as linguistics, lex-
icography and information retrieval. Linguists such as
Saussure, [Saussure 49]. lalliday [Halliday 66] and later
Mel ¢uk [Mel'@uk 73] have investigated on the issue and
have come up with a more and more precise definition
of lexical relations. Their efforts have resulted in sev-
eral models reflecting their various interests, [lalliday
followed Saussure's early incentive and investignted the
interactions of lexical relations with syntax and seman-
tics; he forcefully indicated the pervasiveness of the phe-
nomenon. Mel'éuk went lurther and integrated lexical
relations into his full fledged linguistic model.

At the crossroad of lexicography and psycholin-
guistics, Rodale [Rodale 47] compiled a dictionary re-
stricted to an extensive listing of multiple word com-
binations. More recently, Benson el al. proposcd a
semantics based model of lexical relations and effec-
tively used it in their combinatory dictionary, the BBI
[Benson 86]. The BBI is currently the most complete
account of co-occurrence knowledge and accurately lists
several thousands of collocations.

In informalion retricval, collocations have been
widely used. Karen Sparck Jones [Sparck Jones 86] in
her recently published 1964 IP’hD) thesis extensively in-
vestigates the importance of lexical relations in the con-
text of semantic classification. She defines semanlic
primitives in terms of the textual behaviors of words. In
her work, Sparck Jones is however more concerned with
paradigmatic lexical affinities. In contrary, in this pa-
per, we are only inlerested with syntagmatic lexical re-
lations. Out of concerns of information retrieval and au-
tomated lexicography. Choucka [Choucka B8] praposes
several implemented algorithms for retrieving colloca-
tions from large corpora. Choucka is more interested in
the retrieval of newly-coined expressions such as Presi-
dent Reagan, home run, Uniled Nations than true lex-
ical relations. 1is work can be scen as an essential
first step to automated lexicography and develops a
useful methodology for the handling of large corpora.

Although we are net interested in the same kind of col-
locations, our extracting method is clearly related to
Choueka’s methodology.

3.2 The Extracting Tool
3.2.1 [xrTnracT, Presentation

The extracting tool we are using in this paper, EXTRACT
[Smadja 89] (See Section 3.3.). was originally developed
out of concerns for language generation and lexicogra-
phy. EXTRACT deals with what IHalliday terms “lexico-
grammaticalness™ and its original goal was to retrieve
lexical relations invelving modifier-modified syntactic
unils.  For instance, EXTRACT retrieves lexical rela-
tions such as: commil-suicide, make decision, answer-
quesiion.

In this paper, we will reler back to the original
definition introduced by Saussure and consider that
two words are bound by a lexical relation il their co-
occurrences in a given syntactic unit are correlated. We
actually restrict ourselves to open-class words? as mean-
ing bearing, whereas lexical refations involving closed-
class words are not. Lexical relations relating open-
class words can be classified according to the syntactic
relation between them. For instance, lexical relations of
type subject-verb. verb-direcl object, verb-indirect object.
ctc. In order to identify lexical relations, pairs of words
joined by such syntactic links must first be retricved.
Consider the lollowing sentence,

“‘Hormally each line found is copied to the
standard ountput,’’

Same af the potential lexical relalions in Lhis sentence

arc:
e lexical relation of type verb-direct-object, e.g.
(find 1ine). (copy line).
e lexical relation of type verb-indirect-object. e.g.
(copy ontput).
o lexical relation  of iype noun-adjective. e.g.

(standard output).

Among these lexical relations, some correspond to ab-
stractions of the considered document. and some do not.
Since we are interested here in the indexing of textual

2Closed class words refer to small syntactic categories, such
as nrticles, prepositions etc. Tn contrast, open clnss words are
nouns, adjectives nnd adverbs and are therefore much more nu-
merous. Closed class words are somehow reachable by gram-
mnr rules wherens apen class words are dealt with in the lexicon

[Huddleston Rt].



documents, we are going to differentiate the stalisti-
cal distribution of open-class words across several doc-
uments. Tt has been demonstrated that the lrequency
of occurrence of a term within a document is related Lo
the importance of the word in a text [Luhn 58]. This is
also true for the common appearance of pairs of words
and a fortior: for lexical relations. The next section ex-
plains how lexical relations are identified in the corpus.
Section 4 presents how indices are produced from thein,
and how only conceptually rclevant lexical relatious are
kept.

Ideally. lexical relations are extracted from a text by
parsing it. Two words arc involved in a lexical relation,
il they belong to the same syntactic conslituent, e.g.,
noun phrase, verb phrase, sentence, etc. lHowever. in
real life, free-siyle texts contain a lot of non-standards
features over which aultomatic parsers would stumble,
Morcover, since we are dealing with numerous compo-
nents containing numerous modules, large and numer-
ous samples of texts have to be scanned which would
strain resources of the machine on which the parser
would run. As an alternalive, simply taking note of
the neighborhood of appearance of open-class words is
more than satisfactory in our context.

3.2.2 The Extracting Technique

It has been shown that 98% of lexical relations relate
words separated by at most five words within a single
sentence, [Martin 83]. Tn other words, most of the lex-
ical relations involving a word w can be retrieved by
examining the neighborhood of w. wherever it occurs,
within a span of five words (-5 words and +5 words
around w).

To retrieve the lexical relations from a document, we
use here the front-end of the EXTRACT co-occurrence
compiler described in [Smadja 89). EXTRACT allows
identifying co-occurrences within a document. [t ap-
plies the scanning technique described above. EX-
TRACT’s [ront-end takes as input a document d, a span
parameter (in our case, five) and a dictionary speci-
fying closed-class words, and produces a list of tuples
(w1, we, f). where (wy. wy) is a lexical relation hetween
two open-class words identified in d, and [ is the num-
ber of its occurrences in d. The retrieval process consists
of the following three steps for each lexical entry, un

1. Scan: Scan the whole text for cach appearance of
w.

2. Compile: For each sentence containing w, make
a note of its collocates®. All collocates are stored

3By collocate, we mean the nearby open-class lexical item.

along wilth their synlactic category and their fre-
quency ol appearance.

3. Lemmatize A basic morphological analysis of ev-
ery word involved in a lexical relation is per-
formed. ‘I'he morphological analysis is built on
top of the UNIX spell program. Each word is
mapped into its morphological root! using simple
inflectional transformations. This inflectional in-
formation as well as the primitive procedures used
for the mapping arc derived from the UNIX spell
program, ‘The lemmatization is not perlect, am-
bignous words remain ambiguous, but this does not
greatly weaken our indexing scheme since the same
leinmatization procedure is applied for queries.

EXTRACT is Mlly implemented and has been tested on
a 300,000 word corpus taken from the UNIX news net.
In spite of the small size of the corpus. we have been able
to make uselul lexicographic observalions. EXTRACT is
currently being tested on a more than 2,500,000-words
corpus taken from the archives of The Jerusalem Post.
The corpus consists of several thousand articles that
have been recently published in the newspaper. Those
two corpora have allowed us to identify several hundred
lexical relations, among them many corresponding to
lrequently used co-occurrence relations that are unpre-
dictable in terms of syntax or semantics. EXTRACT is
currently heing used in the framework of language gen-
cration work using specialized corpora. Experiments
nsing EXTRACT can be found in [Smadja 89).

In the context of GURY. EXTRACT is used as the lexi-
cal relation identifier. EXTRACT produces a set of lexical
relations from natural language documentation. Once
extracted, these lexical relations must be filtered out
by Guirts in order to identifly the conceptually relevant
ones.

3.3 Noise in Single Words vs Noise in
Lexical Relations

The frequency of acenrrence of a word within a docu-
ment reflects the importance of the concept(s) it stands
for in the text. [t should be noted however that the im-
portance of a word does not iucreases linearly with its
frequency of appearance. As explained by Luhn, nei-
ther low-frequency nor high-frequency terms are mean-
ing bearing [Luhn 5R]. Iligh-frequency terms within a
document are also referred to as the noise in the doc-
ument. Only those terms appearing in a middle range
have a high resolving power, where the resolving power
of a word is the ability of a word to characterize a doc-
umenl. For instance. the word “the” which is the most

'Let us note that we do not extract the absolute morphological
stem of any word but rather the inflectional stem.



frequent in almost all the documents analyzed has, in
most conlexts, a very low resolving power.

Let us show how using lexical relations as atomic unit
instead of single words reduces the noise problem and
thus increases the recall of the reirieval system. Noise
mainly originates from the following Lwo sources:

1. Closed-class words that are used very often and do
not actually bear meaning. Such words are likely
to be rectrieved in a lot of document descriptlions
and thus weaken indexing power.

2. Words that are very often used in a particular con-
text also bear no meaning. When dealing with spe-
cialized documents, a lot of words relevant (o Lhe
general context are likely to come across without
bearing any supplementary meaning. For instance,
if processing a car engine manual, the word “en-
gine” is likely to appear often. In the UNIX man-
ual, the word “file” is among the most frequent
and does nol provide much addilional information
on specific functionality.

By taking only open-class words into account, closed-
class words, which are the major source of noise in [re-
quency observations, are automatically removed. In ad-
dition, the other source of noise is greatly reduced, com-
pared to keyword-based approaches. I'or example, when
analyzing a document from the UNIX manual, instead
of getting too many occurrences of the word “file”, we
get lexical relations such as (write file), (delete
file), that arc meaning bearing, with much smaller fre-
quencies of appearance. The next section shows these
results on the rm manual page of the UNIX program-
mer's manual.

3.4 An Example Output, the rm Man-
ual Page

Table 1 presents in its sccond column partial entputs
of EXTRACT applied to the UNIX manual page of rm
(See Figure 1). The lexical relations are ranked by fre-
quency order and are compared to the most frequent
single words of this manual page. In order to make n fair
comparison, we have removed closed-class words from
the single words list®. This comparison reveals that the
most frequent lexical relations bring much more knowl-
edge on the [unctionality of the function rm than single
key words.

As we see, in the lexical relations list, crucial concepts
such as (delete file) or (file removal) are among

5The closed-closs word “the” appears the most often in rm with
a number of occurrences equal to 19, the second most frequent
being file with 13.

RAM(1) UNIX Programmer’s Manual

RM(1)

NAME

rm, rmdir - remove (unlink) files or directories
SYNOPSIS
rm [[){-c][-1][-]file..
rmdir dir ...
DESCRIPTION
R removes the entries for one or more files from a di-
rectory. Il an entry was the last link to the file, the file
is destroyed. Removal of a file requires write permission
in its directory, hat neither read nor write permission
on the file itself.

Il a file has no write permission and the standard input
is a lerminal, its permissions are printed and a line is
read from the standard input. If that line begins with
‘v’ the file is deleted, otherwise the file remains. No
questions are asked and no errors are reported when
the -f (force) option is given.

If a designated file is a directory, an error comment is
printed unless the optional argument -t has been used.
Tn that case, rm recursively deletes the entire contents
of the specified directory, and the directory itself.

If the =i (interactive) aption isin effect, rm asks whether
to delete each file, and, under -r, whether to examine
cach directory.

The null uption - indicates that all the argnments fol-
lowing it are to be treated as file names. This allows
the specification of fle names starting with a minus.
imdir removes entries for the named directories, which
must be empty.

SEE ALSO
rm( 1), unlink(2), rmdir(2)

Iigure 1: The rm manual page [rom Lhe on-line UNIX
documentation



Keywords list | Lexical Relations

13 file 3 delete file
8is 3 file file
6 rm 3 file permission

3 file wrile

2 file require

4 are 2 flle removal
3 write

5 directory
4 rmdir

2 file name

2 file link

2 entry remove
2 direclory write
2 directory specify
2 destroy flle

3 permission
3 oplion

2 removes
2 standard

2 unlink

Table 1: Keywords and lexical relations classified by
frequency in the rm manual page

the most frequent, whereas the keyword remove isin a
relatively remote position in the keyword lrequency list.
This has the double effect of reducing the noise prob-
lem and raising the recall of the GURU retrieval syslem.
However, the noise problem is not totally climinated by
using lexical relations. Some lexical relations, such as
(file file), are not very significant in spite of their
high frequency. In the next section, we sce how it can
yet be scaled down by using a mcasure for evalnating
the resolving power for lexical relations.

4 From Lexical Relations to In-
dices

When analyzing a document, a lot of lexical relations
are identified. These lexical relations are more or less
significant. As seen in Table 1, [requency of appearance
is a good indicator of relevance. However, some noise
still exists which is mainly due to words appearing too
often in a certain context. In order {o reduce the in-
fluence of such words. we propose to select among Lhe
lexical relations identified, only the most representalive
ones, I.c. those containing the more information.

The quanlity of information of a word w in a given
textual universe is defined in [Salton R3] as:
INFO(w) = — log, " {w])
where PP{w} is the measured probabilily of occurrence
of the word w in the considered universe.

Based upon this definition of the quantity of infor-

mation for single words, we define the quaniity of in-
formation of a pair of words (wy,wy) in a given textual
universe as follows,

INFO((wry. wp)) = —logy(P{w). w2})

where I’{w,, wy) is the probability of occurrence of the
pair of words (my.w2) in the textual universe,

To simplify the compulation of this factor, in the rest
of this work. we consider words within the textual uni-
verse as independent variables. This assumption repre-
sents only an approximation since words in English are
definitely nol independent, but are rather distributed
according to the rules of the language. However it is a
valid starling approximation that is currently used in
corpus based linguistics [Garside 87}, [Martin 83]. This
precisely allows to single out exceptions, that is cor-
related words or dependent variables. Dependent vari-
ables would account for purely lerical affinitics® between
words. We are not intercsted in identilying such lexi-
cal relations here. Our primary concern is rather to
identify conceptual aflinitics within one specific part of
the corpus. Given this assumption, we can express the
quantity of information of a lexical relation,

INFO((wy. wq)) = — logo(PP{un} x P{wa})

where I'{w } and P{w} arc the probabilitics of occur-
rence of the words wy and wy in the textual universe.

Then, we deline p the resolring power of a lexical
relation within a docunment d as follows:

Let (w0, urg, f) be a tuple retrieved while analyzing a
document d, where (my, wg) is a lexical relation appear-
ing f times in d. The reqnfring power® of this lexical

relation in d is defined as:

(e way £)) = [ x INFO((wy, w))

The higher the resolving power of a lexical relation
is. the more characteristic of the document it is. The
resolving power, as defined above, allows cvaluating the
importance of a lexical relation within a text, by tak-
ing into account both its frequency of appearance in
the text and the quantity of information of the words
involved. Thus, even if it appears 3 limes in a man-
nal page, the lexical relation (file file) will have a

SEXTRACT's original goal is to retrieve this sort of lexical co-
occurrences, i.e., lexical relations that cannot be nccounted for
on purely semantic grounds. For example, one says, “to commit
a murder” ns well ns “to perpefrate a murder”, but one only says,
“la commit suicide”. Commil-suicide is what we call a lexical
co-ocairrence relation,

TThis notion is related to that of mutual information [Ash 65].



lexical relation p

permission wrile 66.712204
rmdir unlink 58.712599
file permission 53.760002

delete flle

file write

flle removal
directory file
entry remove
destroy file

inputl permission
directory remove

50.979298
49.116001
44.747799
43.998001
43.306801
40.747799
10.297101
38.820801 |

Table 2: Most significant lexical relations of the rm man-
ual page

small resolving power. simply because the quantity of
information of the word file is low.

By selecting the lexical relations with the highest re-
solving power, we obtain a characteristic description of
the document analyzed. The number of lexical rela-
tions to be kept depends on the size of the library to
be built. The Jarger the library, the more numerous the
lexical relations sclected in order to avoid two distinct
components having the same o-representation. In our
test case. the UNIX library, we have empirically verified
that keeping the 10 most significant lexical relations of
each document is largely sullicient.

We define the o-representation of a docnment as fol-
lows. Let D be the universe of natural language doc-
uments, /7 be the set of possible representations (finite
or infinite), and n a user-given parameter depending on
the size of the library. To each document d in D, is
associaled a sel LRy of tuples (w. w'. p) lormed by the
extracted lexical relations and their corresponding re-
solving powers. Our indexing scheme is defined by the
function ¢ : D = R where a(d) is the subset of L1ty
consisting of the n lexical relations having the highest
p values.

5 Evaluation

As an example, we consider the UNIX manunal page for
the rm function, given in Figure 1. Table 2 presents its
eleven most significant lexical relations.

Let us compare the results given in Table 2 with the
permuted index of Tm manual page. The permuted in-
dex is the index system currently used in UNIX in or-
der to locate a particular [unction or command. The

permuted index file is generated by the ptx function
provided by Unix. The permuted index system is a
primitive keyword-based indexing system. We consider
it here as a comparison mainly because it is widely used
(together with grep) by the UNIX users, and because
it does not make use of context-dependent information.
It can be scen as a semi-manual indexing tool since the
manual page much be lormatted such that the RAHE sec-
tion represents the key concepts of the document. The
uscr can thus locate an object as soon as s/he knows (or
gucsses). one of the keywords appearing in the BAHE sec-
tion. This method presents many drawbacks as soon as
the size of the library increases, because of its low level
of granularity. Too many components may be classified
under the same keyword. However, we do not deal here
with the problems that may occur al retrieving stage
but rather with the nature of the description. We ar-
gue that by using a lexical-relation based approach a
much richer o-representation is produced. In particu-
lar, key concepls and synonyms of these concepts can
be identified in absence of any thesaurus.

Thus, if we compare the index represented by the
most significant lexical relations of the rm manual page
(See Table 2) and the permuted index of tm, (Sec BAHE
section in Figure 1) we notice that key concepts such as
(delete file) or (destroy file) are present among
the lexical relations and totally absent from the per-
muted index. even in keyword form.

Using an lexical relation-based indexing method al-
lows including more knowledge in descriptions than sim-
ple kexywords. As a conscquence. our indexing scheme
is more exhaustive than any keyword-based language.
As a tradeofl. as soon as a language gains in cxhaustiv-
ity. there are risks that it looses in specificity. Tn other
words, achieving a high recall may lower the precision
of the IR system. This drawback is avoided in GURU
by selecting lexical relations with high resolving power.
Both high recall and high precision rates are thus ob-
tained.

An experiment has been conducted that allowed us
to evaluate the retrieval effectiveness of GURU as com-
pared to that of man -k, with the UNIX manual as our
testhed ® We have analyzed the first section of the UNIX
manual which comprises more than 120 000 words. The
indices produced have been directly fed to the GURU
classifying tool, but could as well be used in the context
of varions other library systems. We have conducted a
comparalive test between GURU and man -k by mea-
suring their respective recall and precision rates. The
results of this tesh revealed that GURU was significantly
better than man -k both in terms of recall and preci-
sion. The results of this test depend not only on the

*man -X can be scen as the complete IR system provided with
the UNIX environment, ptx representing ils nssocinted indexing
component.



quality of the indexing component but also of the clas-
sifying component and are therefore not to be presented
here. The complete evaluation of GUrU's effeclivenecss
can be found in [Maarck 89).

6 Conclusion

GuRu is a tool that antomatically builds large soltware
libraries from the natural language documentation gen-
erally associated with them. We presented here the in-
dexing method of Guru. GURU's indexing mcthod is
centered around the concept of lexical relation and the
notion of quantity of information. For producing indices
oul of natural language documentation, GURU firsl ex-
tracts lexical relations and then selects the conceplually
relevant ones by measuring their resolving power.

The method proposed here is purely structural and
thus can be performed automatically. Classifving re-
trieved lexical relations according to their resolving
powers allows us to define an indexing function out-
performing both simple and augmentied keyword-based
approaches without introducing the brittleness of the
knowledge-based approach. GuRru has been successfully
tested on the context of the UNIX software library. More
detailed results and evaluation of GURU can be found
in [Maarek 89}, and a complete description of EXTRACT
can be found in [Smadja 89].

Acknowledgements

Dan Berry helped a lot on the conceptual develop-
ment of GURU's indexing scheme. Yaacov Choucka gave
knowledgeable advice to F.Smadja during his stay at
Bar-llan University. John Justeson read earlier versions
of this paper and made uscful criticisms and sngges-
tions. Y. Maarck performed most of this work while
at Technion, Tsracl Institute of Technology. Isracl. I,
Smadja performed part of this work while visiting at
Bar Ilan University. Department of Knglish Lingnistics,
Israel, and part of this work while supported by DARDPA

grant N00039-84-C-0165. and NSF grant TRT-81-5113R,

References
[Ash 65 R. B. Ash. Information Theory. Inicr-
science Tracis in Pure and Applied Math-

emalics, No. 19, Interscience Publishers,

New York. 1965.

(Benson 86] M. Benson, E. Benson, R. llson. The

BBI Combinalory Dictionary of English,

A Guide to Word Combinations. John
Benjamin Publishing Company, Amster-
dam/Philadclphia, 1986,
[Blair 85) D.C. Blair and M.E. Maron, An Evalua-
tion of Relricnal Effectiveness for a Full-
Tert Document-reirieval Systermn. Commu-
nications of the ACM 28:3. pp 289-299,
March 1985,

[{Choucka 88] Y. Choucka, lLooking far Ncedles in a
Haystack. In Proceedings of the RIAQ,
p:609-623, 1988,

[Flass 83) P.R. Flass, Technical Correspondence.
Communications of the ACM, 28(11), pp
1238, November 1985,

[Garside B7] R. Garside, G. Leech and G. Sampson,
(eds). The Computational Analysis of In-
glish: A Corpus Based Approach. Long-
man, London, 1987,

[Halliday 66] M.A.K. Halliday. Leris as a Linguis-
tic Level. In C.E. Bazell, J.C. Catford,
M.AK Halliday and R.JIT Robins (eds.),
In memary of L.R. Firth, L.ongmans Lin-
guistics Library, pp 148-162, London,
1966,

[Horowitz R4] I%. Horowitz and J. Munson, An Ezpen-
aive View of Software Rense. TKEE Trans-
acltions on Software Fngineering, Vol SE-
10, September 1984,

[Huddleston R4] R. Iluddleston, Introduction to the
CGrammar of Fnglish. Cambridge Text-
books in Linguistics, Cambridge Univer-
sity Press, 1984,

[Luhn 58] \. Luhn, The Aulomatic Crealion of Lil-

cralure Absiracts. 1BN Journal of Re-

search and Development. Vol. 2, No. 2,

pp 159-165. April 1958,

[Maarek 87] V.S, Maarck and G.F. Kaiser, On the Use
of Conceplual Clustering for Clasaifying
Reusable Ada Code. ACM SigAda Inter-
national Conlerence on the Ada Program-
ming Langnage, pp 208-215, Boston. MA,
December 1987.

[Manarek 88] V.S, Maarck, Using Clunster Analysis for
Aassisling Maintenance of Large Software
Systems. In Proceedings of the IEEE Is-
racl Confercnce on Computer Systems
and Softwarc linginecring. pp 178-186, Tel
Aviv, Isracl. June 1988.



[Maarck 89]

[Martin 83]

[Mauldin 86]

[Mauldin 87]

[Mel’¢uk 73]

[Rodale 17]

[Salton 71]

[Salton 83]

Y.S. Maarek, Using Structural Informa-
tion for Managing Very Large Software
Systems. D.Sc. Dissertation. Compuler
Science Department, Technion, Israel In-
stitute of Technology, Israel. January
1989.

W.L.R. Martin. B.P.I. Al and P.J.GG van
Sterkenburg, On the processing of a lexl
corpus: from lextual dala to lexicographi-
cal informalion. Lexicography: Principles
and Practice, Ed. R.R.K Hartmann, Ap-
plied Language Studies Series, Academic
Press. London. 1983.

-

1. Mauldin.
Information Retricval by Tert Skimming.
Thesis Proposal, Carnegie-Mellon Univer-
sity, Pittsburgh. May 1986.

M. Mauldin, J. Carbonell and R. Thoma-
son. Knowledge-Based Information Re-
trieval. In Proceedings of the 29th Annual
Conference of the National Federation of
Abstracting and Information Services, [Jl-
sevier Press, 1987.

I.A. Mel'éuk, Lerical Funclions in Lerico-
graphic Description. In Proceedings of the
Berkeley Linguistics Sociely, 8, 1973,

J.1. Rodale, and Staff, The Ward Finder.
Rodale Books, Inc. FEmmaus, Pennsylva-
nja, 1947.

G. Salton, The SMART Retricval Sysiem
- erpertment in Aulomalic Document pro-
cessing. Prentice-Hall, New Jersey, 1971,

G. Salton and M.l MNcGill. Iniroduc-
tion lo Modern Informalion Retricval. Mc
Graw Hill Computer Series. Me Graw
Hill. New York, 1983.

[Saussure 49} F. De Saussure. Cours de Linguistique

[Smadja 89]

Generale, Qualriéme edition. librairie
Payot. Paris, France, 1949,

F.A. Smadja, Lexrical Co-occurrence: The
Missing link. Submitted to the Journal of
the Association for Literary and Linguis-
tic computing, 1989.

[Sparck Jones 86] K. Sparck Jones, Synonymy and Se-

mantic Classification. lidinburgh Univer-
sity Press, Scotland, 1986.



