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ABSTRACT

Mohar has shown an interesting relationship between graph imbed-
dings and certain boolean matrices. In this paper, we show some
interesting properties of this kind of matrices. Using these prop-
erties, we give the distributions of nonorietable imbeddings of
several interesting infinite families of graphs, including cobble-
stone paths, closed-end ladders for which the distributions of

orientable imbeddings are known.
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1 Introduction

Gross and Furst [GF] have introduced a hierarchy of genus-respecting par-
titions of the set of imbeddings of a graph into a closed orientable surface.
Chen and Gross [CG] have generalized the idea to include the distributions
of the set of imbeddings of a graph into a closed nonorientable surface. More-
over, the distributions of orientable imbeddings of several interesting infinite
families of graphs have been computed (see [FGS], [GRT] and [Mc]) by de-
riving and solving proper recurrence relations. However, as pointed out by
Chen and Gross [CG], these techniques seem not proper for computing the
distributions of nonorientable imbeddings of graphs because the interaction
between orientable and nonorietable imbeddings gives us much more com-
plicated recurrence relations which seem not easy to solve. This has forced
us to look for new techniques for computing distributions of nonorientable
imbeddings of graphs.

Mohar [Mo] has shown a very interesting relationship between graph
imbeddings and so called overlap matrices. He showed that given a rotation
system R(G) of a graph G, we can construct a boolean matrix M(R) such
that the genus (if R(G) is an orientable imbedding) or the crosscap number
(if R(G) is a nonorientable imbedding) of R(G) is closely related to the rank
of M(R).

More formally, let T be a spanning tree of a graph G and let R(G) be a
rotation system of G such that all edges of T have type-0. Let the co-tree
edges of G (w.r.t. T) be e;,€2,--+,e,,. We construct a m X m symmetric
matrix M(R) over GF(2) as follows (call it the overlap matrix corresponding
to R(G)): the (i, j) element of M(R) is 1 if either i # j and the subrotation
system of R(G) consisting of T and the edges e; and e; is non-planar (here
we assign all edges in the subrotation system to be of type-0, regardless of
the original edge type assignment in R(G)), or i = j and the edge e; is of
type-1. Mohar’s main theorem is as follows:

Theorem 1.1 (Mohar) Let G, R(G) and M(R) be defined as above, then:
(1). If R(G) corresponds to an orientable imbedding, then the genus of
R(G) is equal to trank(M(R)):
(2). If R(G) corresponds to a nonorientable imbedding, then the crosscap
number of R(G) is equal to rank(M(R)).

Gross has interpreted the distribution of orientable imbeddings of cob-
blestone paths in terms of the overlap matrix [Gr]. In this paper, we show
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some interesting properties of overlap matriecs. Using these properties, we
give the distributions of nonorientable imbeddings of several interesting in-
finite families of graphs, including cobblestone paths and closed-end ladders
for which the distributions of orientable imbeddings are known [FGS].

Our terminology is compatible with that of Gross and Tucker [GT], and
of White [Wh].

Given a subset S(G) of the set R(G) of all rotation systems of a graph
G. Suppose there are ag rotation systems in S(G) corresponding to planar
imbeddings of G, a; rotation systems in S(G) corresponding to orientable
imbeddings of genus ¢ of G, and b; rotation systems in S(G) corresponding
to nonorientable imbeddings of crosscap number j of G. By two well-known
theorems in topological graph theory, there are two integers I and J such
that a; = 0 and b; = 0 for all ¢ > I and j > J. We define:

I,(S(G).z) = Zaz I(8(G),y) = Zb,y

and call I,(S(G),z) the “genus distribution polynomial of G with respect
to S(G), and I,(S(G),y) the “crosscap number distribution polynomial of
G with respect to S(G)". If S(G) = R(G) then we write I,(R(G),z) as
I,(G,z) and call it “the genus distribution polynomial of G”. Similarly we
define “the crosscap number distribution polynomial of G” I,(G,y).

2 Some Properties of Overlap Matrix

Let M? be an n x n symmetric matrix over GF(2) of the following form:

0 1
1 0 1 0
1
MQ =
0 1 0 1
1 0

That is, M2 is a tridiagonal matrix such that the diagonal elements are all
0. all elements in the two semidiagonals are 1, and all other elements are 0.
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Lemma 2.1

n if n is even
rank(M,?):{ 01 i’;ﬂ s odd }:2@/2]

PROOF.
Straightforward induction. [J

Now let X = {z;.22,---.2n} € (GF(2))". We define

I 1
1 2 1 0]
. 1 I3 1
.\I;.‘\ =
O 1 Tn-1 1

1 In

Then what is the rank of MX? In fact, we are more interested in the
distribution of ranks of MY when X varies in the region (GF(2))".

Theorem 2.2 Let RX be the number of matrices MZX with rank k, where
X € (GF(2))". Then we have for n > 0:

(1).
RO=R =-..= R*?=0

n

(2).
pn-1 _{ (2" +1)/3 if n is odd
" T ) (2" -1)/3 ifn iseven
(3).
R = 2"+ 1)—1 ifn isodd
n %(‘2" -1)+1 ifn iseven

If we define a function round(r) to be the closest integer to the real number
r, then we can write in a netter way 1:

R = round(2"/3) R" = round(2™*'/3)

'For people who do not like this notation, we point out that the round function can be
expressed by a more common-uesd function: round(r) = r +0.5]
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PROOF.
Again we use induction on n.
It is a routine to check that the theorem is true for the cases n = 1 and
n = 2. Now we suppose that the theorem is true for all n < k, where k > 3.
Suppose n = 2m. The matrix M can be written as

I 1 6]
. 1 1
M ,{\ = xl2
o} MXn2

Where X = {xl,mg’.- c,zn} € (GF(2)". Xn-2 = {z3,24,--.Za} €
(GF(2))*"%. and ;\I,’,\_"g" is the corresponding (n — 2) X (n — 2) lower-right
corner submatrix of MX.

There are two cases:

(1). z; = 1. Then performing the standard matrix operations (see, for
example, [BW]) on the first two rows and the first two columns of MX, we
can convert M2 into the following matrix without changing the rank of the

matrix:

10 o)
0 1 + ) 1
M) =
M = .
o MXns

When (z2,23,++,2n) varies through (GF(?))"—I, (1 + z2,z3,--+,2y) also
varies through (GF(2))"~'. Now in the 2"~! possible lower-right corner
(n — 1) x (n — 1) submatrices of MM, by the inductive hypothesis, there
are (2"~! +1)/3 of them of rank n — 2, and 4(2"~! + 1) — 1 of them of rank
n — 1 (note that n — 1 is odd). Since the first column of MY s linearly
independent of all other columns in the matrix, we conclude that there are
(2" '+1)/3 of MM, thus MX’s, which are of rank n—1, and (2"~ 1+1)-1
of M,f"s which are of rank n, if we restrict that z; = 1.
(2). z; = 0. Similarly, we can convert A into the following matrix
without changing the rank of the matrix:
0 1 o
1 00
(2)
MY = 0
Xn-
O Aln_2 2
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By the inductive hypothesis, there are (2"~2 — 1)/3 of Mf_"{”s of rank

n -3, and %(‘2"‘2 —1)+1of Al,‘}l‘z‘z’s of rank n — 2. Now since the first two
columns of 1\1,&2) are linearly independent of all other columns in the matrix,
we conclude that there are (2"~2 — 1)/3 of M®’s which are of rank n — 1.
and %(2"‘2 -1} +1 of M,(,z)’s which are of rank n. Finally, note that each
M,(tz) corresponds to two different MX’s by setting either z = 1 or z; = 0.
We conclude that there are 2(2"2 — 1)/3 of MX’s which are of rank n — 1,
and 3(2""2 - 1)+ 2 of MX’s which are of rank n if we restrict that z; = 0.
Combining these two cases, we conclude:

Rl =2 +1)/3+ 2272 -1)/3=(2"-1)/3

2 4 2
R} = 5(2"-‘+1)—1+§(2“-2—1)+2=5(2"—1)+1

This completes the proof for the case n = 2m.
For the case of n = 2m + 1, we can similarly get:

Ry = (2 - 1)/34+ 2277 +1)/3 = (2" + 1)/3

4 2
R? = (2"—‘—1)+1+§(2"'2+1)—2=5(2"+1)—1

WiN

a

Let X = {-’Ulyl‘z»”'sIn} € (GF(2))n and let Y = {ylsy'lv"'vyn—l} €
(GF(2))""!. Define

T N
B oI2 Y2 o
, Y2 I3 Y3
A»f,?'y =
(0] Yn-2 ZTn-1 Yn-1

Yn-1 In

Furthermore, let §, = {MXY | X € (GF(2))" and Y € (GF(2))""'}.
We are interested in the distribution of ranks of matrices in S,.

Let iy,i5,---.i, be r positive integers such that #; + i3+ --- + i, = 7.
Suppose we choose a particular ¥; € (GF(2))""! such that Vi, = Yiy+ip =
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cer = Y iggetir, = 0, and all other y;’s to be 1. For this particular 1,
we have
M, 0]

AN~ M,

o M,

where cach My is of the form M;\*. with X, € (GF(2))*. Note that
each of these submatrices is independent of all others. Let X vary through
(GF(2))". then each X varies through (GF(2))"". Therefore, the distri-
bution of ranks of M XY1 when X varies througll (GF(2))" is the convo-
lution of the distributions of ranks of these M "’s when each X, varies
through (GF(‘Z))”‘. If we define, similarly as for the distributions of graph
imbeddings, the distribution polynomial D(S,y) of ranks of a set S of ma-
trices, i.e., we say the distribution polynomial of a set § of matrices is
D(S,y) = =% iy’ if there are precisely ¢; matrices in § of rank 1 for each
i, then the above discussion gives us the following relations:

D(S(n.Y1),y) = [] D(S(in),v)
h=1

where §(n.Yi) = {MXY | X € (GF(2))"} and $(in) = {M/* | X» €
(GF(2))*}. By theorem 2.2 we know that

D(S(in),y) = round(2*/3)y™ ! + round (2! /3)y™
thus

.
D(S(n,Yh),y) = 1-[(ron.1nd(2""/3)‘1,/""_l + round (2% /3)y™)
h=1
Since each selection of the set of positive integers 1,17, -, 1, satisfying
iy + i+ -+ 1, = n gives a unique ¥; € (GF(2))""!, thus a unique
decomposition of MX"1 into the above form. and vice versa, we get finally
the distribution polynomial of the set Sn:
Theorem 2.3
fy+igtetir=n r
D(Smy)= 3, [I(round(2/3)y" " + round(2+!/3)y™)
i1,onir >0 A=1
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3 Distributions of Nonorientable Imbeddings of
Graphs

Suppose that every edge of the n-vertex path is doubled, and that a self-
adjacency is then added at each end. The resulting graph is called a cobble-
stone path of length n. written as J,. The following picture is a cobblestone
path of length 6.

Fix a spanning tree T of J,_1 (which must consist of edges which connect
each pair of adjacent vertices). In the above figure the tree edges are shown
as thicker lines. Each co-tree edge determines a unique cycle in the graph
and two co-tree edges can overlap only if their corresponding cycle have
a vertex in common. This implies, in the case of a cobblestone path, that
only adjacent co-tree edges can overlap. Given a rotation system R(J,_;) of
Ja-1, we construct the corresponding overlap matrix M, for R(J._1). M,
is an n X n matrix. Organizing the rows and columns of the overlap matrix
My, so that consecutive rows (columns) correspond to adjacent co-tree edges.
Then M, must be of the following form:

I n
n T2 Y2 0]
Y2 I3 Y3
Mn,=MXY =
o Un-2 ZTn-1 Yn-1

Yn-1 Iy

where X = {31,32,"‘--?7;} € (GF(Q))" and Y = {ylvy'Zy"'vyn—l} €
(GF(2))""'. Note that each variable y; corresponds to a unique vertex
of the cobblestone path J,_; and has value 1 if and only if the two co-tree
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edges incident to that vertex overlap, and each variable z; corresponds to
a unique co-tree edge of Jo_1 and has value 1 if and only if the edge is
“twisted”. Mohar’s theorem says that if R(J,—;) corresponds to a nonori-
entable imbedding of J,—;, then the rank of Af, is equal to the crosscap
number of R(J,_;). Now if we fix a pure rotation system R,(Jn-1) of Jn_1
(i.e., fix the cyclic ordering of edges adjacent to each vertex of J,_;), and
consider all possible twistings of co-tree edges. This corresponds to fix-
ing Y = {y.y2,"*.Yn-1} in the above matrix M, = MXY and letting
X = {z1,22,-+ .25} vary through (GF(2))". Let S(R,) be the set of the
2™ these kind of rotation systems of J,_; and let S(Af,) be the set of the
corresponding 2" matrices. By theorem 2.3, the distribution polynomial of
the set S(M,) is

D(S(M,),y) = 1_I(round(?i"/3),l,/""'l + round(2»+1 /3)yir)
h=1

where the integers #;,i2,---,i, correspond to the zero elements in ¥ =
{¥1,Y2," " -Yn—1}, as we have described in the previous section. There
is only one matrix in S(A,) corresponding to an orientable imbedding
of Jn—1 (the one with all z; = 0). By lemma 2.1, this matrix has rank
c(iy, -+ i) = 2 hoy 2lin/2). Therefore, the crosscap number distribution
polynomial of J,_; with respect to S(R,) is

I.(S(Ro).y) = H(round(gih/3)yih—1 + round(2ih+1/3)yih) _ yc(ih...'g,_)
h=1

Each vertex of J,_; has degree 4 and, thus, there are 6 possible rotations
at each vertex. Of the six rotations, exactly two require the incident co-
tree edges to cross each other. It follows that in Y = {y1,y2,"**,¥n-1},
there are two ways to set each y; to 1 and four ways to set each y; to
0. Therefore, let S(iy,---,i,) be the set of all rotation systems of J,_;
whose corresponding overlap matrix is in S(A,), then the crosscap number
distribution polynomial of J,_; with respect to S(iy,--,i,) is

R(S(i1, -+ ir),y) = 47712220 (S(R,), y)

= 2""‘"2( ]:[(x'ound(2""/3)‘1/""_l + round(2i“+1/3)y‘") — yc("’ """"))
h=1
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Now consider all possible pure rotation systems of J,_,, which corre-
sponds to all possible choices of ¥ = {y1,y2,+++.yn—1} in (GF(2))"".
Summarizing all these together, we get the crosscap number distribution
polynomial of J,—; as follows:

In(‘]n—h y) =
i eir=n r ‘ _ _ _
= Z antr=2 ]_—I(round(‘Z"‘/S)g,/”‘"l + round(2'**1/3)y*)
i1,eir >0 h=1
it4etie=n
_ Z 2n+r—2yc(i1 RSP |
;'1"..','r>0

The last term Z:i**xf;(,:" 2m+r=2yeliieie) corresponds to the orientable
imbeddings of J,,_;. which is known [FGS]. Also note that the rank of an
overlap matrix is 2 times the genus of the corresponding orientable imbed-
ding. Therefore, if we let the genus distribution polynomial of J,_; be
Io(Jn=1.z), then the last term can be expressed by I,(Jn—1,¥?). Finally we

get:

In(Jn—l, y) + Io(Jn—lv yz) =

f14ti,=n r . R R ,
= Z gntr-2 ]__I(round(2"‘/3)y""1 + round(2*++! /3)y*)
N h=1

Another interesting infinite family of graphs is closed-end ladders. A
n-rung closed-end ladder L, can be obtained by taking the graphical Carte-
sian product of a n-vertex path P, with the complete graph K>, and then
doubling both its end edges. The following picture gives a 4-rung closed-end
ladder:
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Let us consider the crosscap number distribution of an (n = 1)-rung
closed-end ladder. If we select the spanning tree as shown by the thicker
lines in the above picture, and notice that now there are 27=1 different
rotation systems for the selected spanning tree, but once a rotation system
for the spanning tree is fixed, there is a unique way to set each y; to 1 and
a unique way to set each y; to 0. A completely similar analysis as that we
have given for cobblestone paths gives us the crosscap number distribution
polynomial of a (n — 1)-rung closed-end ladder L,_; as follows:

In(-Ln—lv y) + IO(Ln-—l, y2) =

fyedir=n r

=271 3" ] (round(2/3)y»~1 + round (2% +1/3)y™)
i,dr >0 h=1

where I,(L,_y,z) is the genus distribution polynomial of the closed-end
ladder L,_; which has been know [FGS].
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