Robot Active Touch Exploration:
Constraints and Strategies

Ienneth S. Roberts

Department of Computer Science
Columbia University
New York, New York 10027
roberts@cs.columbia.edu

Technical Report CUCS-480-89

Robot Active Touch Exploration:
Constraints and Strategies

Kenneth S. Roberts!

Department of Computer Science
450 Computer Science Building
Columbia University
New York. New York 10027
roberts@cs.columbia.edu

Technical Report CUCS-480-89
June 1989

Abstract

We investigate the problem of using active touch (“haptic”) exploration to recognize
a 3D object taken from a known set of models. What is new is that we combine
two approaches: (1) using geometric constraints between components to eliminate
interpretations, and interpretation tree methods for choosing the best active sensing
move; (2) exploratory moves made by tracing continually along the surface of the
object (and not through free space). We restrict ourselves to polyhedra, and give a
set of geometric constraints tailored for matching components acquired from haptic
exploration against components in the models. We present a new constraint using
pairs of line segments. We then give a set of active sensing moves, each with an
associated cost measure, and our strategies for choosing the next move.

1 Introduction

People usually find it easy to explore an object with their fingers and then identify
it, even if they cannot see it. Robot tactile probes and multi-finger mechanical
hands have also been applied to recognize objects. Such active touch exploration,
using both external tactile sensors and internal position and force sensors, is called
“haptic perception”. The problem is to choose the active exploratory moves, and

YThe author is an AT&T Bell Laboratories PhD Scholar. This work was also supported in part
by DARPA contract N00039-84-C-0165. NST grants DMC-86-05065, DCI-86-08845. CCR-86-12709,
IRI-86-57151, North American Philips Laboratories. and the AT&T Foundation.

utilize the resulting sensory data in the best way to recognize and localize the object
quickly and reliably.

The object is drawn at random from a set of fully known models of rigid, non-
articulated objects. It is placed in a random pose (where “pose” refers to both
position and orientation) in the workspace. In robot experiments, the object is
usually held fixed, while in human experiments the explorer may move it. The
two usual performance measures are percentage of successful identification, and
quickness of identification.

We are working to construct an autonomous robot system to perform this task. We
are using a Utah/MIT hand. with 4 fingers of 4 joints each, attached toa PUMA 560
6 degree of freedom robot arm [Allen et al., 1989]. We have attached Bell Labs /
Interlink tactile sensors to the fingertips. and have performed shape recovery [Allen
and Roberts, 1989] and haptic exploratory procedures [Allen and Michelman, 1989).
This paper describes work on another aspect of active touch perception system:
matching against a database of object models, and planning the next exploratory
move.

1.1 Previous work

Previous research has been along several lines: First, psychologists have studied
human haptic perception, with these main concerns: level of performance (especially
haptic vs. vision, and active vs. passive touch). and choice of exploratory procedure
[Gibson, 1966] [Klatzky et al.. 1985] [Klatzky and Lederman, 1986).

Some roboticists have built systems based on an awareness of the human haptic ap-
proach: tracing along the surface of the object. choosing an exploratory procedure
tailored to the type of feature or property being acquired [Bajcsy, 1985] [Allen, 1987]
[Stansfield, 1986] [Stansfield. 1987][Bay, 1989]. Other work in robot haptic recog-
nition has used a variety of approaches [Fearing, 1988] [Dixon et al., 1979] [Ivance-
vic, 1974] [Briot et al., 1978] [Marik, 1981) [Okada and Tsuchiya, 1977] [Stojilkovic
and Saletic, 1975] [Kinoshita et al., 1975).

Several researchers have considered the question of how to apply geometric con-
straints between pairs of components to find a unique interpretation, and also to
choose the optimal sensing move [Gaston, 1983][Gaston and Lozano-Perez, 1984]
[Grimson and Lozano-Perez, 198:] [Schneiter, 1986] [Grimson, 1986] [Ellis, 1987]
The paradigm here is that the sensor moves through free space until it contacts the
polyhedral object, where it acquires the position and surface normal within some
error limits. It is then removed from the object and can make another move-through-
free-space-until-contact move. The cost of sensing is measured as the number of such
moves it takes in order to recognize and localize the object. Geometric constraints
among planar surfaces are used to eliminate candidate interprctations. The problem

is to find the free-space path for the next move to maximize the expected number
of eliminated interpretations.

Our scheme complements these two previous approaches. To the systems using
exploratory procedures to trace along the surfaces, it adds a scheme of geometric
constraints. and a method to find the optimal next move. To the work on optimal
free-space moves, it adds optimal surface-tracing moves. The goal is a recognition
system that will use both free-space and surface-tracing moves, and choose optimally
among them all.

2 Matching against models

2.1 Problem Statement

We are given a set of polyhedral model objects, each with vertexes vg,vy.va, ...,
edges Eyy.Ey 3, ..., and faces F{3 57y, F{7534). ... The vertexes, faces, and edges
are together called the “components” of the object. A model object need not be
convex, or even of genus 0, but the set of faces is assumed to form a single closed,
connected set in 3-space.

One of the models is randomly chosen as the object which is to be recognized and
localized. It is transformed by a rotation matrix R and a translation vector t which
are chosen randomly, and placed in the global coordinate frame of the workspace.
Any vector wg in the data object in the workspace is related to the corresponding
model] vector w,, by wy = Rw,, + t.

The problem is to find a pairwise correspondence between the components of the
data object, and a set of model components which are all from the same object; and
also to recover the pose given by R and t.

2.2 Representation

Our method for representing a 3D object can be described as a “winged-edge”
scheme [Baumgart, 1972, i.e. a graph whose nodes are face, edge, and vertex
components, and whose arcs are adjacency relations. There could also be a hierarchy
of object parts built on top of it, though we have not yet given any of our objects
any hierarchical structure.

A face is a plane segment, which we represent by (n. d). where n is the outward-
pointing surface normal, and d is the signed distance from the origin, so that the
plane is given by {w € R¥|n-w — d = 0}. There are also lists of pointers to
adjacent edges and vertexes.

An edge is a line segment, represented by (b, p, !), where p is the position of the
source vertex v 4, and b is the direction, pointing toward the destination vertex vg,
and [is the length. So the edgeis given by {w € R®|w = p+sb, 0< s <{}. There
are also pointers to the two endpoint vertexes. and pointers to the two adjacent faces,
which are distinguished as left and right. relative to the sense of b, as viewed from
outside the object.

A vertex is simply a position v. together with pointers to adjacent edges.

2.3 Procedure for matching

We assume that our module for executing sensor moves can extract face, edge,
and vertex components from the data. and report them to our “matcher” module.
For each newly recovered data component, the recovered parameters are reported
together with crror bounds, and also any known adjacency relations between this
and previously reported data components. For an edge, the reported length [is that
of the interval actually explored, and the position p is an endpoint of that interval,
and not in general the position of a vertex.

The matcher maintains a set of interpretations which are consistent with the data so
far. An interpretation is a correspondence between the data components acquired
so far. and components which are all from the the same model. We can represent
it as a sequence of pairs: {(D : Eg’g), (D> : vg])(Da : E£7]2)}’ a matching between
model 7 and the data components Dy, Dj, Ds.

All the interpretations may be arranged into a “tree” data structure [Grimson and
Lozano-Perez, 1984]). The root of the tree is the null sequence. The children of
the root are the model components which can be paired with D,, the first object
component acquired. As each new object component is acquired, a new level of
children can be added to the interpretation tree for that model. The new child
inherits the sequence of pairs from its parent, and augments that with a pairing of
the next new data component with a model component. The new child must satisfy
the constraints on matching given below. If an interpretation fails to generate any
valid children (or has all its children pruned away). then it is pruned from the tree.
The recognition process succeeds when only one interpretation remains (or all the
interpretations are from one model object. and are known to be indistinguishable).

The matching procedure is to visit all the leaf nodes on the interpretation tree, and
see which child data-model pairings should be generated. At each leaf node, the
procedure is:

1. Use adjacency relations to generate candidate model components. Go through
the list of data components reported as adjacent to the new one. For each one,
find the corresponding model component in this interpretation (i.e. among

the ancestors of this leaf node). Each such model component then checks
through the adjacency relations in its model object and gets the set of adjacent
components whose type (face, edge, vertex) matches that of the new data
component. The intersection of those sets is the initial candidate set of model
components.

2. Test the candidate model components for matching of intrinsic parameters
and properties with the new data component. Currently the only intrinsic
parameter is the length of an edge. and we require Iy < I, + €, where [y is the
length of the data edge as known so far. I, is the length of the model edge,
and ¢ is derived from data error bounds. In further work, intrinsic parameters
might include convex vs. concave vs. planar surface, texture quality, etc.

3. Test geometric relations between components that are adjacent, or are adjacent
to the same face. These tests are described in the next section. For a face, we
take each pairing with a data face known to be adjacent to this one (sharing a
common edge), and apply the face pair test. For an edge, we take each pairing
with a data edge such that both edges are adjacent to a common data face,
and do the edge pair tests. There is no special test for a vertex, but detection
of a vertex tightens up the edge pair tests by constraining the position of the
edge.

Each model component which passes all those tests is paired with the new data
component to form a new node in the interpretation tree, and made a child of the
current leaf node.

2.4 Geometric constraints

For a pair of adjacent faces. we use only one constraint. the angle between the
surface normals [Grimson and Lozano-Perez. 198]:

| arccos(ng; - ngy) — arccos(Npmy *Nm2)| < €

where ng; and ng, are data normals, and n,,; and n,,2 are the normals from the
corresponding model components, and € is derived from data error bounds.

For a pair of edges which are adjacent to the same face, we have several tests. But
first we temporarily modify the sign of some of the edge directions so that they are
all consistent with each other. We require that cach edge direction b point clockwise
around the common face, as viewed from outside the object. If the common face
is the left adjacent face in the representation for the edge, then the edge direction
must be reversed. (Whether an face is left or right can be derived from the sign
of the determinant formed from face normal, edge direction, and relative position
of face and edge.) We also move the edge position vector p to the other endpoint,

so that the line segment is still in the b direction {rom it (thus p := p + /b and
b := -b).
Suppose we are given two data edges. (bgy, pai. la1) and (bga, pd2, la2), with cor-
responding model edges (b1, Pmi. 1) and (b2, Pm2. Im2). The edge angle con-
straint is:

| arccos(bgy « bgz) — arccos(by,y «bme)| < €

where ¢ is derived from error bounds.

The next test is new, and powerful in eliminating interpretations, Let
d¢ = pPs2 — Pa dn = Pm2 — Pm1
Then compute the distance from each edge position p to the point of nearest ap-
proach of the line of this edge to the line of the other edge in its pair (see Figure 1).
If the lines are actually coplanar, then they intersect, and we could simply solve for
this single intersection point. But given data and numerical accuracy considerations,
it is better to use a robust method which can handle non-intersection:
sy = dg-by — (bay -bar)(dg-bar)
L =
1 — (bg - bay)?

with corresponding calculations for s¢3. $p3. and sp2. (This result can be derived
by observing that the line segment connecting the two points of closest approach
must be perpendicular to each of the two lines), Now the constraints are:

Sm1 — Im1 — € < sq1 — Iy and Sd1 < Smy1 + €

with corresponding constraints for sq. This means simply that no position in the
known portion of the data edge may lie outside the endpoints of its model edge. as
the two are laid out on the line from their intersection points with the other edge in
the pair (see Figure 1) within data error bounds. (If a vertex endpoint for the new
data edge is known. then these constraints can be tighter, since the distance from
the intersection to that point is known exactly in the model, so there is no longer
an interval, except for that provided by the error bound e.)

We also check for the special cases in which the edges are parallel (arccos(b, -
bn2) < €) or anti-parallel (# — arccos(bm; - bma) < €). Here we first test the
distance between the parallel lines:

| ”dd - (da- bd)bd” = lldm — (dm - b)bmll |
We also require that the relative positions of the known intervals two data edges
be possible according to the relative position of the model edges, within data error
bounds. If the edges are anti-parallel (the much more likely case, given the clockwise
consistency requirement), the constraints are:
dm by — (Imi +1lm2) — ¢ < dg-bg - (I + l32)
dy-by < dp by + ¢
where by = (byg — ba2)/||ba1 — bazl-

2.5 Simulation results

We have verified this overall matching procedure and the geometric constraints, by
implementing them in a system which takes input from a simulated sensor move
execution module. The data components are generated by selecting components
from the correct model, rotating and translating them, and then introducing small
errors by hand, ad hoc.

Some of the object models are shown in Figure 2. All the constraints described in
this section were implemented and tested on those objects. The system was able
successfully discriminate each of them from short sequences of data components: 3
or 4 faces and 2 or 3 edges.

Figures 5and Gshow a test run using a database of only two models, BOX01 and
WEDGEO0L. After the database of models is loaded, the first sequence of data
components is given. The matcher builds an interpretation tree, which shows 30
interpretations which are consistent with the 5 data components. Then another
2 data components are given, and now the matcher is able to prune away all the
interpretations but one for WEDGEOL.

Of course, for objects with symmetry, such as the boxes, a unique interpretation of
the pose is not possible. BOXO01 has 4 possible poses.

BOZXO1N is non-convex, and is successfully distinguished from BOX01P.

An interesting result is that the system can successfully distinguish between mirror
pairs, such as the tetrahedra in Figure 3. When given data from the TETRAOLL,
the system will reject TETRAOIR.

2.6 Discussion

We have tried to choose and tailor the constraints particularly for this task of recog-
nition by surface tracing, with its sparse, concentrated, and connected data. The
primary place of adjacency constraints follows from the connectedness of the data.

Our emphasis on edge constraints comes from several considerations:

o An edge can be acquired by an active touch sensing system in several ways:
(1) edge detection “vision™ processing of tactile array data; (2) sudden po-
sition. velocity, and force changes; (3) intersection of faces detected by the
segmentation procedure.

s Without vision. it is not easy to reliably get the position and size of a face.
How do we know when we have done enough exploration of a data face in
order to justify rejecting a certain model face on the grounds that its diameter
is too large?

¢ Edges give more precise position information, and therefore produce tighter
positional constraints than faces. (Assuming orientation is known and a single
position on the component, a face has two remaining positional degrees of
freedom, an edge only one).

o A pair of edges can define a complete coordinate frame transform, position
and orientation. When the direction signs are forced to be consistent, then
the rotational frame is unique, which is why the mirror tetrahedra can be
distinguished.

The key insight in getting edge pair constraints to work was in seeing both the need
and the method for forcing consistent direction senses between the data and model
pair. This is done by appealing to a known common adjacent face,

Although the geometric constraints were developed for adjacent and near-adjacent
components, they easily apply to the non-adjacent cases. The face angle constraint
obviously does not depend on adjacency, since the face normals must have consistent
senses because of the requirement that they point physically outward. For the edge
pair constraints. the way to solve the sense ambiguity problems is to require two
known adjacent faces, one for each edge in the pair. Then a consistent clockwise
sense can be enforced on all the edges, and all the constraints apply as before.

One difference is that the two edges will in general be skew (i.e. their lines do not
intersect). But this is no problem for the constraints already given above, since those
make no assumption of intersection. And this non-intersection adds an additional
constraint which can be tested: The data and model pairs must agree on the distance
between the lines at their points of closest approach. within data error bounds.

bml X bm2

bd X bd
. z '(sz—pdl)—m'(Pm2—Pm1) < €
m m

Ibar X baz]|

3 Strategies for choosing moves

A very interesting question in active touch perception is how to choose the next
exploratory move. Qur objective is to choose the move which can be expected to
eliminate the most interpretations with the least cost of exploration. Since there are
multiple infinities of physically possible paths for an active touch sensor, we must
have some approach which reduces them to a class which we can handle. Our scheme
is to consider only a small class of explorative “primitives” (where each primitive
is a motion path together with a termination condition). And there will be only
three sequences of these primitives which are admissible as a “move” for purposes
of evaluating cost and benefit for planning.

3.1 How much does a move cost?

Previous work on free-space strategies assumed that each move-through-free-space-
until-contact move cost an identical amount. This was reasonable, since there was
only one kind of move, and there was no simple way to know how much it cost to get
from one path to the next (considering robot inverse kinematics, collision avoidance,
etc). But for surface tracing moves, we know the path because part of the problem
is to choose that path; so we do have a more refined measure which is reasonable:
the distance travelled along the path. \Ve can multiply the distance by a difficulty
factor, since we might find. for instance, that more care must be used in following
an edge than in tracing a straight path across a plane. For other actions, we can
assign a constant value, such as for moving just far enough to acquire the surface
normal of a plane.

Here are some sensing and movement primitives which we want to use (with their
associated cost in parentheses). s refers to the distance travelled, and the ¢ values
are constants.

e trace a path in a chosen direction along a face (cy s).

e trace along an edge in a chosen sense (c. s).

e trace a circular path in a chosen sense around a vertex (¢, 8).
o while moving on a face. detect contact with an edge (c;).

¢ while moving on an edge, detect contact with a vertex (cg).

e move on a face just far enough to acquire an estimate of its surface normal
(cn). This might call for tracing a non-straight path.

e move on an edge just far enough to acquire an estimate of its direction (cy).

4 Admissible moves for planning

Rather than consider every possible primitive at every decision point, we will restrict
our planner to certain sequences of primitives, to limit the searching. We will call
these admissible sequences simply “moves”. Here are the three moves, together with
the new data each is expected to acquire, and the costs each is expected to incur.

1. Face move. Beginning on or near a face, trace across the face in a chosen
direction until reach an edge. Move just far enough on the edge to acquire
its direction. Move just far enough out onto the face beyond this edge to
acquire its normal, and then end up near that edge. Assuming that we had

already acquired the face which the sensor started on, this move should yield
a new edge (and its direction) and a new face (and its normal). Its cost is
cgs+ cj+ ¢+ cn. (See Figure 4a.)

2. Edge move. Beginning on or near an edge. move along it in a chosen sense
until a vertex is reached. This yields a new vertex for the edge. Its cost is
CeS + ck. (See Figure 4b.)

3. Vertex move. Beginning near a vertex and near a known edge, move on a
circular path around the vertex in a chosen sense until the next edge is reached.
Move just far along the edge to acquire its direction. Then move onto the next
face just far enough to get an estimate of its normnal. and then end up near the
new edge and still near the vertex. This yields a new edge (and its direction)
which is not parallel to the starting edge, and a new face (and its normal). Its
cost is ¢,8 + ¢; + ¢ + ¢n. (See Figure 4c.)

The guiding ideas for constructing these moves are that alter moving across a face
to reach an edge, it does not cost that much more to acquire its direction; and after
that it does not cost much more to acquire the normal of the (planar) face that lies
on the other side of the edge (i.e. ¢, and ¢, are small relative to ¢ss). Also, it is
good to “stop” and plan the next move while the sensor is near an edge or near
a vertex, since more options are available there — which is why each of the three
sequences ends with one of those conditions obtaining.

4.1 Strategies for each kind of move

To choose the next move, we first find out which of these conditions are true: near
a face, near an edge, near a vertex. (“near” means simply that the distance from
the current sensor position to the closest point on a data component of the specified
type is less than some arbitrary amount. “Near a face” is always true by definition
of a polyhedron. and “near an edge” is always true when “near a vertex” is true.)
These are the pre-conditions of the face, edge. and vertex moves, respectively. The
candidate moves are the ones whose pre-conditions are satisfied.

For each interpretation, we will have a known model-to-data coordinate frame trans-
form. This is because prior moves were chosen to guarantee that the interpretation
would contain a non-parallel edge pair. (See further below on how to handle the
initial problem position). As noted above in the section on geometric constraints, a
correspondence of data and model non-parallel edge pairs implies a unique coordi-
nate frame transform for the object pose. Actually, the explicit rotation matrix R
and translation vector t are not needed. This is because all that matters for pur-
poses of matching and planning are the relations between the sensor position and the
nearby edges and faces. These can easily be derived from the edge pair, if two values

10

are remembered from the edge pair constraint test in the matching procedure, and
the move execution module keeps track of the relation between the current sensor
position and the data position of the most recently contacted edge.

Since the model-to-data transform is known (implicitly) for each interpretation. we
can predict the results of each candidate move in the hypothetical world of that
interpretation. E.g.. “If interpretation Q312 is true, then if we move along edge
E, 5, we will reach a vertex after travelling a distance of 2.3 plus or minus the
data error bounds”. So for each candidate move, we can assemble all the predicted
outcomes, one from each interpretation in the tree. The results from the actual move
will be consistent with only some of the predictions. and the other interpretations
will be eliminated.

The “efficiency” of a candidate move is the expected number of interpretations
eliminated per unit of move cost. (The details of how to do this for each move type
are described further below.) The move with the highest efficiency is chosen as the
best move, and is then executed.

A special case is the initial problem position. where no transform is known which
can be used for the prediction of move outcomes. The way out of this is not to do
any planning in the initial situation. Instead, we can execute a fixed sequence of
initial moves. which will guarantee that when it is completed, and the matching is
done on the resulting data, each valid interpretation will have a known transform.
One such sequence is this: Beginning with the sensor in a general position on the
interior of a face, execute a face move, then an edge move, and then a vertex move.
This will yield a non-parallel edge pair and a vertex, and three faces, which are more
than sufficient to determine the transform.

4.1.1 Efficiency of an edge move

If the sensor is on an edge. then it has two candidate edge moves, one in each
directional sense (unless it is already at one of the vertex endpoints, in which case
it has only one direction available). Consider an edge move in a direction toward
a vertex which is not yet known. Suppose there are five interpretations, and their
predicted distances to the vertex are 1.0.2.8,3.0,3.2,5.0. If the data error bound for
distance along an edge is £0.2, then the number of interpretations eliminated if the
specified interpretation is true are 4.3,2,3,4. (These results are not strictly correct,
since the distance acquired from the data may be different from that predicted by the
interpretation, due to error. So the number of interpretations actually eliminated
might be greater or less than the amount given.) If ¢ = 2.0 and ¢; = 0.4, then the
cost under each interpretation is 2.4,6.0.6.4,6.8.10.4. The efficiency is the expected
interpretations eliminated per expected unit cost: 1.67,0.5.0.31,0.44,0.38. so the
efficiency for this move is the average of the five. 0.66.

11

4.1.2 Efficiency of a vertex move

The efficiency of a vertex move is measured in basically the same way, except that
edge angle is used to eliminate interpretations. and that distance is measured along
a circular path. One additional wrinkle is that because the vertex move acquires a
new face as well as a new edge, there is another constraint available to eliminate
interpretations. This means that if two interpretations are not distinguishable by
the edge angle constraint, we can check to see if they would be by the face angle
constraint. If yes, we can increase the expected number of interpretations eliminated
by one.

4.1.3 Efficiency of a face move

It is more complicated to evaluate the efficiency of face moves. First, there are an
infinite number of them available (and that is only counting the ones with straight
line paths). Second, there are three constraints available: edge pair angle, edge pair
distance, and face pair angle. We simplify by considering only straight line paths,
and only at discrete intervals in the domain of possible direction angles.

For each such candidate straight-line path. have each interpretation predict the
distance until an edge is reached. Then calculate efficiency as for the edge move,
except that when two distances cannot be distinguished, can also try to distinguish
the two interpretations by edge angle, and then by face angle constraints.

4.2 Discussion

We have implemented the procedures for finding the admissible candidate moves,
and for evaluating the efficiency of edge moves and choosing the best one; and
have integrated these into our matching system. We have not yet implemented the
efficiency measure for the vertex and face moves. So we have not yet demonstrated
the system planning the entire sequence of sensor moves to recognize an object,
though we moving quickly toward that goal.

5 Conclusion and further work

We have presented our work toward matching and planning modules for our robot
active touch system. One thing we have not dealt with is the “multi-finger” aspect of
our Utah/MIT hand. The matching part is essentially unchanged. but the planning
gets far more complicated than for a single touch sensor. As a first step toward
multi-finger strategy, we have implemented an algorithm for how to coordinate the
multiple fingers and arm to reach simmultaneously multiple specified locations, or

12

say if they are unreachable [Roberts, 1989]. The set of admissible moves, and the
cost and efficiency measures presented in this paper should remain relevant to the

multi-finger problem.

13

References

Allen, P. K. 1987. Object Recognition Using Vision and Touch, Kluwer.

Allen, P. K. and K. S. Roberts. 1989. “Haptic Object Recognition Using a
Multi-fingered Dextrous Hand,” Int! Conf Robotics Automation.

Allen, P. K. and P. Michelman. 1989. “Acquisition and Interpretation of 3D Sensor
Data from Touch,” Workshop on Interpretation of 3D Scenes, Austin TX.

Allen, P. K., P. Michelman, and K. S. Roberts. 1989. “An Integrated System for
Dextrous Manipulation,” Intl Conf Robotics Automation.

Bajcsy, R. 1985. Shape from touch. In Advances in Automation and Robotics, ed.
G. Saridis, JAI Press.

Baumgart, B. G. 1972. “Winged-edge polyhedron representation,” Stanford
University T.R. AIM-179.

Bay, J. S. 1989. “Tactile Shape Sensing via Single- and Multi-Fingered Hands,”
Intl Conf Robotics Automation, pp. 200-295.

Briot, M., M. Renaud, and Z. Stojilkovic. 1978. “An approach to spatial
pattern recognition of solid objects,” JEEE Systems. Man, and Cybernetics,
vol. SMC-8, pp. 690-694.

Dixon, J. K., S. Salazar, and J. R. Slagle. 1979. “Research on tactile sensors for an
intelligent robot,” Proc. 9th ISIR, pp. 507-518.

Ellis, R. E. 1987. A Tactile Sensing Strategy for Model-based Ob ject Recognition,
PhD thesis, U. Massachusetts.

Fearing, R. S. 1988. “Tactile Sensing for Dextrous Manipulation,” Workshop on
Dextrous Robot Hands (ICRA Philadelphia, April 24).

Gaston, P. C. 1983. Robotic Tactile Recognition. S.M. thesis, MIT EECS dept..

Gaston, P. C. and T. Lozano-Perez. 1984. “Tactile Recognition and Localization
Using Object Models: The Case of Polyhedra on a Plane,” IEEE Transactions
on Pattern Analysis and Machine Intelligence. vol. PAMI-6, no. 3, pp. 257-266.

Gibson, J. J. 1966. The Senses Considered as Perceptual Systems, Houghton
Mifflin, Boston.

Grimson, W. E. L. and T. Lozano-Perez. 1984. “Model-based recognition and
localization from sparse range or tactile data.” Int. J. Robotics Research,
vol. 3, no. 3, pp. 3-35.

14

Grimson, W. E. L. 1986. “Sensing Strategies for Disambiguating Among Multiple
Objects in Known Poses,” IEEL J Robotics Automation, vol. RA-2, no. 4,
pp. 196-213.

Ivancevic, N. §. 1974, “Stereometric pattern recognition by artificial touch,”
Pattern Recognition, vol. 6. pp. 77-83.

Kinoshita, G.. S. Aida. and M. Mori. 1975. “A pattern classification by dynamic
tactile sense information processing.” Pattern Recognition, vol. 7.

Klatzky, R. L., S. J. Lederman, and V. Metzger. 1985. “Identifving objects by
touch: An “expert system”.” Perception & Psychophysics, vol. 37, no. 4,
pp- 299-302.

Klatzky, R. L. and S. J. Lederman. 1986. “Hand movements; a window into haptic
object recognition,” U. Calif Santa Barbara Cognitive Science Technical
Report 8606.

Marik, V. 1981. “Algorithms of the complex tactile information processing,” Int.
Joint Conf. Artificial Intelligence, pp. T73-774.

Okada, T. and S. Tsuchiya. 1977. “Object Recognition by Grasping,” Pattern
Recognition, vol. 9, no. 3. pp. 111-119.

Roberts, K. S. 1989. “Coordinating a Robot Arm and Multi-finger Hand.”
Columbia University Computer Science technical report CUCS-481-89.

Schneiter, J. L. 1986. “An objective tactile sensing strategy for object recognition
and localization,” Int! Conf Robotics Automation, pp. 1262-1267.

Stansfield, S. A. 1986. “Primitives, features, and exploratory procedures:
building a robot tactile perception system,” Intl Conf Robotics Automation,
pp. 1274-1279.

Stansfield. S. A. 1987. “Visually-aided tactile exploration,” Intl Conf Robotics
Automation, pp. 1487-1492.

Stojilkovic, Z. and D. Saletic. 1975, “Learning to recognize patterns by Belgrade
hand prosthesis,” Proc. 5th ISIR, pp. 407-413.

D\(mys@»n:

volpisad “o LPUIbLY SU oD Mod, wﬁom

Mb FIPOW WL JRA0 yqbnoay
| ud>,>v_7€ Iy s Mad 3 pW

C 1

AR sL_ﬁ“

D F

‘o1 WEDGEG !
BO
PYR@1
@ X
BOX@LN F(lwri 2“
TETRAO1L TETRAO1 R

Mirror “etrahedra

soxp1p f

(=) Face move

(‘3) Ea‘ge WMo Ve

(C) \Verfex move

/’;ju\rﬁ 5
EXF(OFO\”HOV\
Mgfﬁ UV

F3

sk 5

Pathe For The

A ﬁjdw@ 6.

i;; Loading source file "modelsOl.lisp"

;7:; Loading source file "objects/box0l.lisp"
;:; Loading source file "objects/wedge(0l.lisp"
> object_list

(BOX01_OBJ WEDGEO1 OBJ)

> (explore "data/wedge0l1l 01")

/:: Loading source file "data/wedge0l_01.lisp"

(next_data_set
(

(FO 0))

(E0/3 (adjacent EQ0/3 FO0))
(F1 (adjacent F1 EO0/3))
(E5/3 (adjacent E5/3 F1))
(F2 (adjacent F2 E5/3))

))

;¢ Build the Interpretation Tree, one node at a time.
(this ITnode = NIL NIL) ---> t
(this_ITnode = DATAQ2_F0 BOX01 _FO0_RIGHT) ---> t
(this_ITnode = DATAQ2 _EO0/3 BOX01 _E1/5) ---> ¢
(this_ITnode = DATA02_F1 BOX0l F4 FRONT) —---> t
(this_ITnode = DATAQ2_ES5/3 BOX01l_E4/5) ---> t
(thls ITnode = DATAQ2 _F2 BOX01 _F2_TOP) ---> t
(this_ITnode = DATAO2_EO0/3 BOX01l E5/6) ---> t
(this_ITnode = DATAOZ_FI BOXOl_FZ_TOP) -—->t
(this_ITnode = DATAQ2_ES5/3 BOX0l1 _E6/7) ---> t
(this_ITnode = DATAO0Z F2 BOX01l F1 BACK) ---> t

(this_ITnode = DATAQ2_FO0 WEDGEOl_F4 FRONT) ---> t
(this_ITnode = DATA02_E0/3 WEDGEOl E0/3) ---> t
(this_ITnode = DATAQ2_F1l WEDGEOl F3 LEFT) ---> t
(this_ITnode = DATA02_ES5/3 WEDGEO1 _E3/5) ---> t
(this_ITnode = DATAO2 F2 WEDGEO1l F2 _TOP) ---> t
(this_ITnode = DATA02_E0/3 WEDGEO1 _E3/4) ---> t
(this_ITnode = DATAO2_F1 WEDGEOl_F2 TOP) ---> nil
(this_ITnode = DATA02_EO/3 WEDGEO1l E1/4) ---> nil
(this_ITnode = DATA02_EO/3 WEDGEO1l_E0/1) ---> t
(this_ITnode = DATAO2_F1 WEDGEO1l_FO0_BOTTOM) ---> t
(this_ITnode = DATA02_E5/3 WEDGEOl E0/2) ---> t
(this_ITnode = DATA02_F2 WEDGEO1l F3 LEFT) ---> t

interpretation count = 30

Itree = (EC‘M\‘QG

NIL
BOX01_FO_RIGHT

BOX01 E1/5 T—QS% AN O &&O\"&?&LQSQ

BOX01 F4_ FRONT
BOX01 E4/5
BOX01 F2_TOP ‘F ROXK 01 W EDGOL
BOX01_ES5/6 C)
BOX01 F2 TOP
BOX01 E6/7
BOX01 F1 BACK

WEDGEQ1_F4_ FRONT

WEDGEO1 EO0/3
WEDGEQ1_F3_LEFT
WEDGEO1_E3/5
WEDGEO1_F2_TOP
WEDGEO1_EO0/1
WEDGEO1_FO0_BOTTOM
WEDGEO1_EO0/2
WEDGEO1_F3_LEFT

(next_data_set

(
(E5/4 (adjacent E5/4 F2))

(F3 (adjacent F3 E5/4))
))

Build the Interpretation Tree, one node at a time.

v

(this_ITnode = DATA02_F2 BOX01l_F2_TOP) ---> nil
(this_ITnode = DATA02_F2 BOX01l F1 BACK) ---> nil
(this_ITnode = DATA02_F2 WEDGEOl_F4_ FRONT) ~---> nil
(this_ITnode = DATA02_F2 WEDGEOl_FO_BOTTOM) ---> nil
(chis_ITnode = DATAQZ_F2 WEDGEOl_F2 TOP) ---> t
(this_ITnode = DATA(02_ES5/4 WEDGEO1l_E4/5) --->t
(this_ITnode = DATA02_F3 WEDGEOl_F1 BACK) ---> t
(this_ITnode = DATA02_F2 WEDGEO1l_F3_LEFT) ---> nil

interpretation count = 1

Itree =
NIL
WEDGEQ1l_F4_FRONT
WEDGEO1 E0/3
WEDGEO1l_F3_LEFT
WEDGEOl_E3/5
WEDGE(Q1_F2_ TOP
WEDGE(O1 E4/5
WEDGEQO1_F1_BACK

Fjju&re 6/ cowtinued

