1 abeg -

pswnsse s; 31|) c°pajen|tAs sem 91eb jeyi awil 3se| syl aduirs pabuey>
sey indui auo 15ea| 1e ydiym Joj sa3ieb asoyl w_co burienjena Aq (48212
10U si yonw moy Aq) paaocJdu) 2q Aew dwayds Siyl o Aduaidija syl

*peas 1snw J10ssad0ud

Joyioue jeyy onjea |eubis e Bujbueys Josssdoud e 4o Alr(1qissod Aue
343yl si Jou ‘anjea jeubis awes ayl abueyo o1 31dwalie o1 susossadoud
OM] 104 UOISEDD0 UB J2ADU S| 3J3y] -3jqe||eae >__mmo_m os|e

a1e (sanjea jeubis 1ndul Asewiad syl se |jsm se) indino 31eb yoses 1e
san|eAa [eubis 1uasand 2yl ‘Ajdejlwig 01 1no suej 3 saieb muu 01 pue
31 p@ass eyl saieb ayl o1 sisauiod ‘21eb yoses Jtoj ‘pue (sadAl 113yl
Yiim) saleb 40 3s1| e 3o SIsIsuod uoildiadsap ayy “°sJossadoud 3yl 4o
[1e 01 2[q1559208 SI pue “sIsixa 31NDJID 3yl jo uotidiuosep 3buis y

*pai1en|eAa @J4e [@ADd| Ix3u a3yl uo saleb ay3l ‘31

01 paubisse s21eb ayl 40 uorlenjead ayl peaia|dwod sey Jossadoud Ausas
uaym *sdossadoud ayy bBuowe A|jenba pauociiiised ase saieb ayl ‘|saay
yoea 1y *@o5uUanbas u) S|2A3| Iyl }delle ued am ‘walsAs bulssasoud
1211edJed e buisn *Jayloue BuO 40 Ajjuspuadepul |+] |BAB| UO

saieb ayy 4o [|® @21en|eAd 01 3|qissod Ajdejiwis uayl st 31 ‘paien|eas
us3q aAey saieb | [2A2] 3yl JO |[€ FdUQ °J3yloue Buo jo A|i1udpuadapu!
‘saieb | |9r3| 2yl 4o [|B jo sindino Iy Bien|eas o1 d[q!ssod

uayl st 11 *sanjea (eubis Indul AJewidd 3yl 40 {|e UBAID -1 |3AT|
uo st 31 buipaay aieb [aa3| umwcm_M 8yl 31 | [@A3| uo si aieb e

pue f| |@A3| uo aJe (saydie| 40) sindu; Alew)id AQ Ajuo pay saijeb ‘s
18yl ‘"siseq [2A3| © uUO d1BfNWIS Ol S| UINEl JAeY | eyl ydeoudde ayj

*uotridiaosap 31NDJLD

ayl 4o Adoo e aaey Jossadoud ydea umMu a4i1nbaa 01 a|qedlsapun aq p|nom
11 ‘palejnwis aq o031 24e s3indutd abue| J| *spunog I qeuoseIL UYL M
sjuawsJinbaa Alsowaw ayl buidaay u: Juelsodw) si juswaainbaus puodas ay]

*S$)%Se] IIeUIpJOOD

pue 21nq!J3S$1p O3 AJESS3DAU PPIYJI3A0 3yl ueyl Jaieasb A|jeijueisgns
9Qq 01 S| S30P Yo2e2a 1yl MJom [Njasn 3yl 41 °*3°1 ‘palojdws Aj[njasn
8q 01 9J4e s10sse204d a3yl J) AuesSssadau S| Juswadlinbad 3Isdiy ay)

*paienuwts Bulag s31:1ndu13 3yl 30 suorldiudsasp
3yl Aflediouyad ‘uollewdsojui paxij adeys ued siossadold 3yl (Z)

*540ss9204d J42ylo0 3yl WOJLy UO|IPWIOJU! 104
11em 01 Buraey 1noyiim yiom 4o Junowe |eiluelsgns e op ued yde3l (|)

:1eyl Jauuew e ysns ul suossadodd ayi buowe
pa1nq4isip 39 O3 XJOM 2yl SMO| (B 1Byl dwayds e dojsaap o1 s! [eob Ay

M31AJBAQ -uoile|nuig 21607 |euolleuiquo) °Z

*24n1ny
pue ‘pado|andp 2aey | 1€Y1l

3yl ul op 03 asodoud | 1eym ajed
suo1129s burmo| |04 2yl u|

ipu
suylisob|e uortle|nuis 9yl Sq1UdSIP || IM

I
|
‘poads uo eiep [njbuiueaw MU:E piatA o3 ubnous 2bue| 1ou asue sa|dwexs
Aw Ing ‘€4y =241 uo swedsboud una saey | -Jossedoud (9| je.ed |enidoe ue
uo uni pnom sweabosd ayl 1sej Moy 01 SE UOIIPWJIOHUL 339a1p ou saaib
11 INg "JUDWUOLIAUD J0ssadodd |a||edsed e saie|nuwis 31 sduls ‘sweaboud
3yl jo >u_w_nmx;oz 2yl Burlsal sitwaad siyl “ydeW L42PpuUn |y 3yl uo
Suiuuny sweiboad yi1im pajuswa|dwt ud3qQ BABY BSAY} -uolle|NWIS 1ney
104 pue uotie(nuts 2160 jesauab Joy suwyriuob|e jo ssqunu e padojsasp
aaey | cJewuwns 1se| aduls siyl Isnl Bulop usaq aAey | ‘uolle|nwlS pue
yorleasusb 3 nes se yons ‘swyilsobje yg Ps1e{2Jd PUE UOI1E|NWIS [2A3|
2160| jo0 wajqoid syl o031 pai(dde sanbiuyds] buissedsodd |2[jeded yiIm
Builuswitadxa Joy paq 1581 [N}3SN B SEB 3AUBS UBD f4Y JOsSadoud g9 Y|

.mc_mmwuoha_m__mgma wo mm:mcumc_>mmum3ﬂ
3se1 e s! Syl Ajureissq -usindwodladns 1sebue| syl 1ng bulylhue

404 uolisanb ayl jo ino st ‘sdiyo abue| yons Joy uolie|nuls 3| NeS
*sJ231ndwod 1s23sey ayl uo awl) uolleindwos jo sunoy Auew 33l ued
3Z1S S1yl 40 swaisAs 3o uolie|nuis 2160| Adeuipig ‘SWyyY PuUB SIUSWS|D
abe101s y11m fsaiedb uvol|1w e JaA0 Duruieluod Aepol 1|1Ng

mc_mm 24e sdiyg *jsel |euolleindwod a|gepilwioj e paspul si paubisap
ulag A|3uaJduand saz|s 3yl 40 SIINDJID 404 uolle|nuis |aas| d1boq

uolianpou4lu| |

Le ~ELK Conn
A3isasalun elqun(o)
juswi sedag 2o5uai1dg 421ndwo)
Jabup *H uaydaag
H0SS3II0Ud 131TVH¥Vd £4Y IHL NO NOILVINWIS LIAVd ANV T3A37 319070

68/1€/8

F< < mmmsm— 8 :54201§ TGS ISPJOIIY ZL/A (3347 THTISSA :(29®)
BS:ET8T 68/TE/86 PIIuLLd LE[BB] 68/1E/86 :pajeas) (14

File Created: 08/31/89 18:07:37 Printed: 68/31/89 18:13:58
Label: V55191 Lrecl: V/72 Records: 551 Blocks: 8 —mgmmv > >A

that we are concerned with a sequence of primary input states.) |If

the input sequence can be so ordered that only a small fraction of the
input signals change at each step, then the overhead involved in
keeping track of which gates have active inputs would be small
compared to the amount of evaluation work saved. Evaluating this
possible enhancement is one of the objectives of the proposed research.

3. Sequential Circuit Simulation- Overview

It is useful to be able to simulate systems with memory, i.e. systems
that have RAMs, and/or storage elements such as latches, where the
outputs of these devices constitute some of the input variables. (It is
assumed in the following discussion that the systems simuliated are
clocked or synchronous. In order to extend the process outlined in
the previous section to cover systems with feedback, it is necessary
to introduce a phase of the simulation in which some of the output
signals are transmitted to the feedback inputs. It is also necessary
to arrange for the storage of state values of storage elements. |If
RAMS are to be allowed as circuit elements, then additional special
storage is needed for the contents of memory.

In order to permit the accurate simulation of systems with multi-phase
clocking, it is also necessary to incorporate a convenient way of
specifiying the sequence of clock signals, and to allow this sequence
to be altered during the simulation. This can be done by allowing
suitably coded clocking specifications to be incorporated in the
stream of input signals. Such n_Onxmzm specifications are injected
only when the clocking sequence is to be changed. My simulation
programs include such features. A special application is to allow the
simulation of systems using LSSD. In particular, one of the primitive
elements | have implemented is a scan latch.

_ammmmmcamansmn n_onrmam manm1<m_mmqmmcmmmnmm3n_<_03mﬁ01_o:m-
path delays are sufficiently small) that the outputs of the circuits
reach stable conditions before the arrival of the next clock pulse.

It is also assumed that short-path delays do not cause any problems.
The general approach that | am using can be extended to give
information on signal path delays, and indeed some of my earlier
programs implemented this, but am postponing further work along this
line until later.

The simulator allows for unknown logic values, the high impedance
state ﬁnﬂmnmﬁmﬁm logic), and a variety of logic elements as primitives
{including MUX's, RAMS, and LSSD scan latches.)

4. Fault Simulation- Overview

The basic fault simulation problem is to determine which members of a
mm<m3 list of faults are detected by a given sequence of test vectors.
y basic fault simulation program works as follows: The first input
(test vector) is applied, and the outputs of all gates in the valid
circuit are determined and recorded. Each member of the fault list is
then injected into the circuit, one at a time, For each fault, the
simulator, starting at the site of the fault, determines which wmnm
values are affected. |f any of them are among the set of signals
specified as observable outputs , the fault is checked off as
detected, and is deleted from the list. After the entire list has
been processed in this manner, the next test vector is applied, and
the process is repeated. This continues until either the test
sequence ends or the list of undetected faults is empty. Note that,
during the simulation of the faulted circuits, only those gates with
at least one input changed as consequence of the fault are evaluated.
In practice, this means that only a small fraction of the gates (for a
circuit of any size) need be evaluated.

This scheme has been implemented both for a uni-processor and for an
RP3 type multi-processor. In the multiprocessor version, the fault
list is partitioned into n equal lists, one for each processor. After
the valid circuit has been evaluated for a test vector Acmm:m the ’
parallel processing technique outlined in Sections 2 and 3 above),
each processor, in parallel, then processes the circuit for each of
the faults on its list {one at a time). Faults not detected are
placed on one of the n members (in rotation) of a second set of fault
lists, to be processed for the next test vector, Each processor works
entirely independently of the other processors on the faults it has
been assigned. Processors share the circuit description, but maintain
private copies of the signal values for the faulted circuits, so that
they do not interfere with one another other than to read common
information. (Another, less frequent, form of contact may occur
during the placing of as yet undetected faults on fault lists.)

The most complex aspect of the program has to do with the simulation

- Page 2

File Created: 98/31/89 18:87:37 Printed: 08/31/89 18:13:58
Label: VS5191 Lrecl: V/72 Records: 551 Blocks: 8 IBMREP A

A1

of sequential circuits, particularly those including RAMs. Various
lists of previous values of stored signals must be properly maintained.

S. Results To Date

The ideas discussed above have been imﬁlemented in programs written in
C, using the Mach C-threads system. They are running successfully on
both the RT and on the RP3. he examples used thus gar are relatively
small circuits, the largest involving about 350 gates (most of them
are an order of magnitude smaller). “These_include sequential circuits
using small RAMs and also LSSD circuits. The results on the RP3 for
the two largest circuits run are as follows:

Circuit 38: 178 ?ate ALU (combinational logic) 21 inputs. 50 random
tests detected 418/1254 faults.

Number of Processors Time
) 699
2 376
4 221
8 164
16 128

Circuit 30: A small circuit (designated DCDEX) designed for the RP3 by
Rory Jackson. 354 ?ates (including 20 latches), 24 inputs. 45 random

tests detected 396/1380 faults.
Number of Processors Time
8 332
16 219
32 185

The efficiency of the algorithm in utilizing multiple processors is
obviously a function of the size of the circuit being processed. For
example, if the number of gates per level is relatively small, then
there is not much work for each processor to do relative to the
overhead involved in getting them into play. Thus, | would not expect
this program to be really e?fective on circuits with fewer than many
thousands of gates.

At the input end, John Heaven has written some programs for converting
circuit descriptions generated via the SCALD graphics system to a form
that can be used by my programs. This would allow us to inteqgrate my
simulator into the current design environment at Hawthorne and to
handle larger circuits. He has also done some preliminary work (on
the uni-processor version) to improve the input interface, and also to
reduce memory requirements. | have not yet incorporated these ideas
into my programs.

6. Proposed Further Work
| would like to continue along the following lines:

(1) Thoroughly test the present version of my program on the RP3.
Inclﬁge tests on real logic chips, such as those used in the RP3
itself.

(2) Make measurements on the program to determine its speed and where
the bottlenecks are. Then determine how to eliminate them.

(3) Modify the program to make it more efficient. For example, it
would certainly be useful to control memory allocation to ensure
that the variagles used exclusively by a processor are assigned
to its local memory.

(4) Incorporate into my program some of the new features ment ioned
above (at the end of Section 5), particularly those pertaining to
the input interface.

(5) Simulate some large, real, circuits to get some good speed
measurements. This depends on the enhancement of my program so
that it can fit in with the input interface referred to above.

(6) Look into the problem of test vector generation.

(7) Consider incorporating timing measurements.

(8) Consider allowing simulation of multiple faults.

(9) Consider applications to asynchronous sequential circuits.

(10) Develop some ideas about program checking and debugging on an
RP3 type machine.

Page 3

File Created: 088/31/89 18:07:37 Printed: 08/31/89 18:13:58
Label: V55191 Lrecl: V/72 Records: 551 8locks: 8 lBMREP A

A1

{11) Determine what characteristics of the RP3 are impeding faster
operation of my program, and how might these be feasi8|y
improved.

{11) Evaluate various RP3 features and generate some ideas for other
new hardware and/or software features that would be useful and
practical. (For example, how can the wait operation best be
implemented?)

(12) Consider how to extend the ideas outlined here to systems using
built-in-test.

(13) Since this is a research proiect, fruitful ideas for further work
are likely to deveiop along lines not now evident.

7. Running Programs on the Current Version of the Simulator- Details

At present, circuit descriptions are in the form of a set of
assignment statements, specifying the gates and the inputs to each
gate. These descriptions are in files designated, for example as,
ckts/38t.c. (A1l are in the directory ckts, the integer refers to the
sEecific circuit, and the letters, such as "'t', refer to variations in
the description forms for various versions of the simulator. For
example, versions 13 and 14 of the simulator work with circuit
descriptions of type ''t'

The circuit description includes variables ninpts (the total number of
inputs- including feedback inputs), ngts {the total number of gates -
including latches), nmems {the number of feedback inputs), and ncl
(the numger of clock signals). Circuit elements are, in general,
multiple-input, sin?le-output devices, described by a structure
labelled ''gate (Tnput and clock signals are also specified as gate
structures.) The gates are organized in a I-dimensional array, g??]

with indexes running from O to ngts - 1. |Inputs are in an array i
with inf?xes ranging from 0 to ninpts - 1, and clock signals are in an
array ¢ with indexes ranging from] to ncl. {(This is true for the
latest 2 versions of the simulator; in earlier versjons all indexes
start at 1.) For gate g[i], the type is given by glil.fn. For
example, the statement gl3).fn = specifies gate 3 as a NAND-gate.
The statement gTBi.fanin = 4 specifies that 9?3? has 4 inputs. he

statement g{3]linp = new = ?en_ptr_array(h) creates a pointer to an
array of 4 pointers that will contain pointers to the % {nputs. These
are specified by further statements such as: *new = § Zi (indicating
that the first input is from ng], *(new + 1) = &i[17] (indicating
that the second input is from i[17] tc. A feedback input iTZZ]
receiving its signal from a latch 9[6 would be specified by [h
statements: i[22].inp = new = gen_ptr_array(1), and *new = &g 67.

Circuit descriptions are compiled separately into object code and
linked later to the compiled simulator programs. A shell script,sim,
is used to compile and run. |t calls on various make files to ensure
that up-to-date versions are produced. Sim has 4 parameters. The
indicate whether the program is to run on the RT or on the RP3, which
version of the simulator is to be used, how the faults are to be
supplied, and what circuit is to be tested. Thus, the command sim rt
14 m 38 would run version 14 on the rt with circuit 38. The parameter
m specifies that ''most' faults are to be generated, meaning that both
stuck-at-0 and stuck-at-1 (abbreviated here as 80 and 81) will be
generated at the outputs and inputs of each gate, but there will be no
uplication of the same fault at the output of a gate wjth fanout |
and the input of the gate it feeds. Other optjons are '‘a', which does
not eliminate the redundancy described above, 'd'', which does not
inglﬁ?ﬁ a fault if all tests for some other fault also test for it,
an ,

which calls for a user su glied list of faults. (These are
taken from a file tflts/38, where 5

is the circuit number.

In all cases, the test vectors are taken (for circuit k) from file
tsts/k. A preface file, called tpref/k (pref/k for versions of the
simulator prior to 13), corresponds to each circuit. The first line
of this file, is a y or n, indicating whether or not detailed
printouts are desired. The next line specifies the number of
processors to be used. Next comes a list, termjnated by a que with a
woar Oof gates whose outputs are to be printed (if the first line is a
5, and, then comes a similar list, also terminated by a . of the
observable gates (i.e. observable for fault detecftion pur oses). The
sim shell concatenates tpref/k, tflts/k {for the "'I" case), and tsts/k
into a file called inpt., The executable program is placed in the file
simprog. Where the RT was specified, sim causes simprog to be
executed, with inpt redirected to it _and the results redirected to
res/k (where k is the circuit number). When the first argument given
to sim is rp3, it is necessary for the user to ftp simprog and inpt to
the RP3 and then telnet the appropriate command to call for execution.
In my RP3 file, | have a shell called rrpd which causes simprog to be

Page 4

File Created: 08/31/89 18:87:37 Printed: 08/31/89 18:13:58
Label: V55191 Lrecl: V/72 Records: 551 Blocks: 8 _mgxmv > >A

executed with inpt as the input, and the result redirected to outpt.

The shell sim expects to find a make file for each combination of its
first 3 arguments. Thus, for example, there is a makefile mk-rt-i4m
associated with the command sim rt 14 m k, (k is a circuit number).
In order to ensure proper recompilation when different circuits are to
be processed, there is a dummy file and a circuit number file
associated with each make file. For example, dum/rtll4m and cn/rtlim
are associated with mk-rt-14m. dum/rtl4m is touched whenever the
circuit designation is changed (as indicated by the contents of
cn/rt1hm) so as to force the recompilation of the file that becomes
simprog. Constants are in the file constants, and

definitions are in the file glbldefl.h. (Versions prior to 13 use
glbldef.n, and still earlier versions use other files. All these are
in the directory simulators/.)

8. Fault Simulation of Combinational Logic Circuits- Closer Look

There is a block of storage with the structure ''fit' associated with
each fault {(see the file glbldefi.c for definitions of the key
stuctures such as gate and flt). For combinational logic, the only
information that is contained in this block is the description of the
fault: namely the type, the specification of the terminal involived,
and the value Amw which the faulted node is stuck). For example, a €0
fault at input | :~ would be described by specifying the type

as an input fault (type 1), the index of the input {in this case :w.
and the value (in this case 0). A @1 fault at input 2 of gate g[5
would be described as a stuck fault at a gate input (type 2), gate
index (5), gate terminal (2), and value va. A 99 fault at the output
of gate mﬂm is similarly specified (the type is 3 for such a case).
Where faults are presented to the simulator in lists generated by the
user (in a file tflts/k) by giving the type, value, terminal and index
in that order. For example,the preceding 3 faults would be entered
as: 100,2, 212,5, and wom.m. respectively.

Each such description, referred to as a fault descriptor, is pushed
onto one of nproc stacks, where nproc is the number of processors to
be used by the simulator. The fault descriptors {the abbreviation
fault' will be used where the meaning is clear) are assigned to these
stacks in round robin fashion. There are actually two fault stacks
associated with each processor ({,e, processor n w he 2 stacks
pointed to by pointers ﬁoommﬁxﬁouﬁzu and novmmnrﬁ_wm:Mv. The initial
set of faults is distributed among the ©-stacks. When a processor has
simulated the results of the first input for a fault on its O-stack,
if the fault has not been detected, then it is, again in round robin
fashion, pushed onto the l-stack of some processor. (Otherwise it i
discarded.) For the next input, the processors work on the faults i
their l1-stacks, pushing undetected faults onto O-stacks, etc.

S
n

_3ﬁymﬂoCnﬁammzoqr.uﬂonmmm01:uvm:m_mamano*mmnmmnnm<mmmc_n
stack, pointing to it with mmc_nunﬂwam. and then nm__maw the routine
procfault to process it. Procfault calls injfit to analyze the fault
description, and set the stage for procfault to call the routine
checkfault. Among other things, it injects the false value for an
input stuck fault (if it differs from the valid value) and calls the
routine updlevf to determine which gates receive signals from the
faulted input and must therefore be evaluated. Those to be evaluated
are placed on an ''active gate sga ﬂ: for the appropriate logic level,
called (for processor n) mnnonmwam Ivli]. |t uses the routine updlevf
for this purpose.

Checkfault determines the low end (fltlev) of the range of logic
levels that must be processed and calls on the routine eval to
evaluate, in proper order, the appropriate gates. |t analyzes the
results of each evaluation to determine (calling on updlevf for this)
what other gates must be evaluated, and whether the fault has been
detected. t passes the results of its efforts back to procfault.
Procfault records the results (printing out if specified), and calls
wcm:mmc_n to place the fault on the appropriate stack if it has not
een detected. It then calls on restorez to restore to the valid -
values any gate outputs in processor n s copy of the gate outputs
(signal designated, for example, as mm_m_.Nws_v that 1t changed as a
result of the fault simulation. Restorez also cleans up other data
changes made during the simulation of the current fault. Aba order to
mmnmﬂmnmnm the restoration process, a stack called ‘'changed is
maintained by checkfault of all gates whose outputs it has changed.)

Appropriate statistics are gathered at each stage, and, when all
processors have worked through the members of their fault stacks, the
next input is entered to the valid circuit, valid gate values
determined (and distributed to each processor), and fwork called again
to oversee the checking of the faults now on the alternate stacks,

The program terminates when there are no more inputs or when all

Page 5

File Created: 08/31/89 18:087:37 Printed: 68/31/89 18:13:50 |BMREP A

Label: VS5191 Lrecl: V/72 Records: 551 Blocks: 8

A1

faults have been detected.

9. Fault Simulation of Seguential Logic Circuits- Closer Look

!f a circuit has memory, in the form of storage elements such as
latches, or FFs, then the fault simulation process must take this into
account by keeping track of faulty states of such devices. Suppose
that, as a result of some input acting on a cirucuit with a stuck
fault at some gate terminal, no observable output is changed (so that
the fault is not detected), but the states of one or more latches are
affected (i.e. are different from their valid circuit values as a
result of the existence of the fault). Then it is possible that a
subsequent input, in conjunction with these false signals may
propagate a false signal to an observable output, hence revealing the
fault. In order to simulate this behavior, the fault descriptors,
introduced in the preceding section, include pointers (fltchstk; to
stacks listing latches (references to latches also apply to FFs) whose
values become false due to the original fault.

The checkfault routine pushes onto a stack, called newltchstk, latches
whose values have been changed from their valid values in the manner
outlined above. For faults not yet detected, procfault attaches
newltchstk to the fault descriptor. |Injflt copies the stack of
latches with false signals (if such exists as part of the descriptor
of the fault currently being processed) onto a stack called
oldltchstk. The latches involved are pushed onto the appropriate
actgstks. Injflt then treats the corresponding feedback inputs (if
any) as though they were terminals with stuck faults. Checkfault
takes into account the existence of such latches when determining
fitlev (lowest level of gates to process). Procfault and restorez
free memory allocated to these stacks when no longer needed.

Suppose that, during a faulty circuit evaluation of a latch, it is
found that the clock input to that latch is 6. Taen the output of
that latch should be the same as the output it had during the previous
input. But how is that value to be found? |If the latch is on
oldltchstk, then the entry on that stack will contain the required
value. But if the latch is not on oldlitchstk, the proper value is the
valid output of the latch during the previous input. gut the present
value of the valid output of the latch (which is the result of the
present input) may be different from the past value (the clock input
for the valid circuit may be a 1, as opposed to the 0 for the faulty
circuit). In order to take care of this situation, the data structure
for a gate includes oldz, the value of the valid output after the last
input, and a stack, chltchstk, of latches whose values were changed by
the current input is maintained during the simulation of the valid
circuit. The routine updtoldz is part of this process. (| believe
that oldz can be eliminated and the old latch value can better be kept
on chltchstk.)

10. Fault Simulation of Logic Circuits Containing RAMs

Since RAMs {usually of modest size) are sometimes included in logic
circuits, it is useful for the simulator to be able to treat them as
gates during simulations. This does, however introduce some
complexity into the process of fault simulation.

For the valid circuit simulation, 3 memory location is reserved for
the contents of each memory location of each RAM. These are
maintained in a straightforward way during the valid circuit
simulations. (RAMS are treated as multi-input, single output gates,
in 3@ manner similar to the way latches or NBR-gates are handled.) For
reasons similar to those motivating the need for the stack of changed
latch values (see preceding section), it is necessary to maintain a
stack (chmemstk) of RAM locations whose values have changed (along
with the old values).

In order to handle fault simulation of such circuits, some further -
additions to the data structure are needed. Each fault descriptor
must contain a pointer (fmstk) to a stack of faulty memory locations
(the index of the RAM, the local address within that RAM, and the
faulty value are all stored on that stack for each false value in a
RAM, whether due to a stuck fault in memory or to the consequences of
other faults). During fault simulation, injflt generates a pointer
(oldfmstk) to this stack, whose contents may be altered during the
simulation. In addition, a new stack (newfmstk) of memory locations
that acquire false values for the current input is Rroduced by
checkfault. If the current input does not detect the fault, then
oldfmstk and newfmstk are concatenated in procfault, and the result
attached to the fault descriptor via fmstk, so it becomes the oldfmstk
for the next input.

Page 6

File Created: 88/31/89 18:67:37 Printed: 08/31/89 18:13:50
Label: V55191 Lrecl: V/72 Records: 551 Blocks: 8 |BMREP A

A1

When faults are entered by list (the | option) memory faults are
entered in a special form (see the file crfltlistb.c). For example,
mi2,3,0 specifies a memory fault in which location 3 of the RAM gle]
is P0. This description is converted by the program to a form
analogous to that for the other faulit tgpes. Its internal form
beginnin? with a 0 for the type, would be 000,12, and there would be a
pointer fmstk to a stack of false memory values that would have, as
its first (bottom) entry, a structure (mvalstk) with components
indicating false value {mfval), gate index (gtindex), address (mloc),
and a pointer to the next item on the stack (nxt- initially NULL).

A1l RAMs with false memory contents are placed on the actgtstk by
injflt. When eval is evaluating the output of a RAM during a faulty
circuit evaluation, a number of situations must be taken into account.

(1) If the operation is neither write nor clear, then the function
chkvmw is called to determine if the valid circuit simulation changed
any memory bits in this RAM. |f so, a false memory value listed on
oldfmstk might have been corrected or changed, in which case an
element of oldfmstk is deleted or changed (if it does not correspond
to a stuck fault). |f the memory location is not on oldfmstk, then a
new false memory entry must be created and put on newfmstk.

(2) If the faulty circuit simulation is executing a read operation,
then rdfm searches oldfmstk for the location involved; if it is there,
then the output is the associated false value. Else it is the valid
contents of them memory location.

(3) If the operation is write, and the value t to be written differs
from the valid circuit value stored at the specified memory address,

then Ermfch is called to see if that location is on oldfmstk. [f it
is, then prmfch updates the value on that stack if necessary.
Otherwise prmfch adds a new item to newfmstk. If t is equal to the

valid contents of the memory location, then another function, prmnfch,
is called to search oldfmstk for an entry at this location and to
delete it if it exists {(and is not a stuck fault). In both cases,
chkvmwb is called to determine if the valid circuit simulation wrote
at diffeent location of the same RAM. |If so, then it may be necessary
to add a new fault to newfmstk.

Page 7

