Sparse Dynamic Programming I:

Linear Cost Functions

David Eppstein
Zvi Galil
Raffaele Giancarlo
Giuseppe F. Italiano

CUCS-471-89

Sparse Dynamic Progra.mming I:
Linear Cost Functions

David Eppstein ! Zvi Galil '?

Raffaele Giancarlo '? Giuseppe F. Italiano '+

! Computer Science Department, Columbia University, New York. NY 10027
2 Computer Science Department, Tel Aviv University. Tel Aviv, Israel
3 Department of Mathematics, University of Palermo, Palermo, Italy
4 Department of Computer Science, University of Rome, Rome, Italy

Abstract: We consider dynamic programming solutions to a number of different
recurrences for sequence comparison and for RN A secondary structure prediction.
These recurrences are defined over a number of points that is quadratic in the
input size; however only a sparse set matters for the result. We give efficient
algorithms for these problems. when the weight functions used in the recurrences
are taken to be linear. Our algorithms reduce the best known bounds by a factor
almost linear in the density of the problems: when the problems are sparse this
results in a substantial speed-up.

Introduction

Sparsity is a phenomenon that has long been exploited for efficient algorithms. For instance, most
of the best known graph algorithms take time bounded by a function of the number of actual
edges in the graph, rather than the maximum possible number of edges. The algorithms we study
in this paper perform various kinds of sequence analysis. which are typically solved by dynamic
programming in a matrix indexed by positions in the input sequences.

Only two such problems are already known to be solved by algorithms taking advantage of
sparsity: sequence alignment [27, 28] and finding the longest common subsequence [5. 12].

In the sequence alignment problem, as solved by Wilbur and Lipman [27, 28], a sparse set of
matching fragments between two sequences is used to build an alignment for the entire sequences
in O(n + m + M?) time. Here n and m are the lengths of the two input sequences, and M <
nm is the number of fragments found. The fastp program [16], based on their algorithm, is in
daily use by molecular biologists. and improvements to the algorithm are likelv to be of practical
importance. Most previous attempts to speed up the Wilbur-Lipman algorithm are heuristic 1
nature, for instance reducing the number of fragments that need be considered. Our algorithm
runs in O(n + m + M loglog min(M,nm/M))! time for lincar cost functions and therefore greath
reduces the worst case time needed to solve this problem, while still allowing such heuristics to be
performed.

The second problem where sparsity was taken into consideration is to determine the long.~t
common subsequence of two input sequences of length mm and n. This can be solved in O(nrn
time by a simple dynamic program. but if there are only M pairs of symbols in the sequenc .=
that match, this time can be reduced to O((M + n)logs) [12]. Here s is the minimum of m and

! Throughout this paper. we assume that logz = max(1.log, r).

Z

the alphabet size. The same algorithm can also be implemented to run in O(nlogs + M loglog n)
time. Apostolico and Guerra [3] showed that the problem can be made even more sparse, by only
considering dominant matches (as defined by Hirschberg [10]); they also reduced the time bound to
O(nlogs + mlogn + dlog(nm/d)). where d < M is the number of dominant matches. A different
version of their algorithm instead takes time O(nlogs + dloglogn). We give an algorithm which
runs in O(nlog s + dloglog min(d.nm/d)) and therefore improves all these time bounds. Longest
common subsequences have many applications. including sequence comparison in molecular biology
as well as to the widely used diff file comparison program [4].

We show also that sparsity helps in solving the problem of predicting the RNA secondary
structure with linear cost functions for single loops [23]. We give an O(n+ M log log min(M, n? /M)
algorithm for this problem, where n is the length of the input sequence, and M < n? is the number
of possible base pairs under consideration. The previous best known bound was O(n?) [13]. Our
bound improves this by taking advantage of sparsity.

In the companion paper [7] we study the case where the cost of a gap in the alignment or
of a loop in the secondary structure is taken as either a convex or a concave function of the gap
or loop length. In particular, we show how to solve the Wilbur-Lipman sequence comparison
with concave cost functions in O(n + m + M logM) and with convex cost functions in O(n +
m + M log Ma(A)). Moreover, we give a O(n + M log M log min(M.n?/M)) algorithm for RNA
structure with concave and convex cost functions for single loops. This time reduces to O(n +
M log M loglog min(M. n?/M)) for many simple cost functions. Again. the length of the input
sequence(s) is denoted by n (and m). Al is the number of points in the sparse problem: it is
bounded for the sequence comparison problems by nm, and for the RNA structure problems by n?.

The terms of the form log min(M, z /M) degrade gracefully to O(1) for dense problems. There-
fore all our times are always at least as good as the best known algorithms: when M is smaller
than nm (or n?) our times will be better than the previous best times.

Our algorithms are based on a common unifving framework, in which we find for each point
of the sparse problem a range, which is a geometric region of the matrix in which that point can
influence the values of other points. We then resolve conflicts between different ranges by applying
several algorithmic techniques in a variety of novel ways.

The remainder of the paper consists of five sections. In section 2 we present an algorithm for
the sparse RN A secondary structure, whose running time will be analyzed in section 3. Section |
deals with Wilbur and Lipman’s sequence alignment problem. In section 5 we describe how to get
a better bound for the longest common subsequence problem. Section 6 contains some concluding

remarks.

2. Sparse RNA Structure

In this section we are interested in finding the minimum energy secondary structure with no multiple
loops of an RNA molecule.

An RNA molecule is a polymer of nucleic acids, each of which may be any of four possihis
choices: adenine, cytosine, guanine and uracil (in the following denoted respectively by the letters
A,C.G and U). Thus, an RNA molecule can be represented as a string over an alphabet of four
symbols. The string or sequence information is known as primary structure of the RNA. In an

3

actual RN A molecule, hydrogen bonding will cause further linkage to form between pairs of bases.
A typically pairs with U, and C with G. Each base in the RN A sequence will base pair with at most
one other base. Paired bases may come from positions of the RN A molecule that are far apart from
each other. The set of linkages between bases for a given RNA molecule is known as its secondary
structure. Such secondary structure is characterized by the fact that it is thermodynamically stable,
i.e. it has minimum free energy.

Many algorithms are known for the computation of RNA secondary structure. For a detailed
bibliography, we refer the reader to {20]. The common aspect of all these algorithms is that
they compute a set of dynamic programming equations. In what follows, we are interested in a
system of dynamic programming equations predicting the minimum energy secondary structure
with no multiple loops of an RN A molecule. Let y = y1y2...yn be an RNA sequence and let z =
YnYn—1---Y1. Waterman and Smith {23] obtained the following dynamic programming equation:

D(i,j] = min{D[i - L,j = 1]+ b(i. j). H[i,j]. Vi, 5], E[i, 51}, (1)
where
Vi, j] = 01}1}12{ Dlk,j - 1]+ w'(k.7) (2)
H[i’j]:()r?ling[i_ L)+ w'(l.j) (3)
Efli,j]= | min D[k {]+w(k+1Li+J). (4)
0<i<i-1

The function w corresponds to the energy cost of a free loop between the two base pairs, and w’
corresponds to the cost of a bulge. Both w and w' typically combine terms for the loop length and
for the binding energy of bases i and j. The function (i,) contains only the base pair binding
energy term, and corresponds to the energy gain of a stacked pair (see [20] for definitions of these
terms). For the sake of simplicity and without loss of generality, we assume from now on that k
and ! in recurrence 4 are bounded above by i and j instead of { — 1 and j — 1.

The obvious dynamic programming algorithm solves recurrence 1 for sequences of length n in
time O(n*) [23]: this can be improved to O(n®) [24]. When w and u’ are linear functions of the
difference of their arguments. another easy dynamic program solves the problem in time O(n?) [13).
We discuss this case below. Eppstein et al. (6] considered cost functions satisfying certain convexity
or concavity conditions, and found an O(n® log® n) algorithm for such costs: this was later improved
to O(n*logn) [1]. We treat this case in the companion paper [7].

In recurrence 1, it may be that D is not defined for certain pairs (7. j): for RN A structure this
occurs when two bases do not pair. For the energy functions that are typically used, base pair
will not have sufficiently negative energy to form unless they are stacked without gaps at a height
of three or more; thus we can restrict our attention to pairs that can be part of such a stack [201
Further. the RNA structure computation really uses only half of the dynamic programming matrix
These factors combine to greatly reduce the number of possible pairs, which we denote by M, from
its maximum possible value of n? to a value closer to n?/128. If we required base pairs to form even
higher stacks, this number would be further reduced. The computation and minimization in this
case is taken only over positions (i,) which can combine to form a base pair. Such problems can
still be solved with the algorithms listed above, by giving a value of +c to D[i. j] at the missing

positions. However, the complexity measures of the previous algorithms for the problem do not
depend on the number of possible base pairs. but only on the length of the input sequence. \Ve
would like to speed up these algorithms by taking more careful advantage of the existence of the
missing positions, rather than simply working around them.

Before we start our discussion on how to compute recurrence 1, we outline an algorithm for
finding all the M pairs (7. j) for which we have to compute D. Assume that we are interested in
finding all pairs stacked without gaps at a height of k or more. This is equivalent to finding all
substrings z;r;11...7i4; and 742 j4.-1...2; of length & such that z;,, base pairs with Tipi—h
for 0 < h < I. We obtain such substrings as follows.

We find a sequence z* complementary to z and in the reverse order; i.e., if z; is A, C, G, or U
weset z;_;., equal to C, A. U. or G respectively. We then find all common substrings of length
k between r and z~. This task. and in fact the more general task of finding all common substrings
of length k between two any two sequences r and y (which we will use for the sparse sequence
alignment problem), can be performed in linear time by using the suffix tree data structure.

We outline the steps involved in such computation, pointing out the time bound for each of
them. The reader is referred to [17. 29] for a definition of suffix tree of a string z, as well as for an
algorithm that constructs it in O(|z]logs). where s is the size of the alphabet. In general s can be
taken without loss of generality to be less than |z[; however here s = 6 (we add two new endmarker
symbols to the four possible bases) and so the logs term vanishes.

We build the suffix tree for string 8, y8,, where 5; and S, are two different endmarkers which
match no symbol of z and y. Each leaf £; of the tree corresponds to a suffix of the string, starting
from position i in the string. Further, every node in the tree has a string associated with it, which is
the common prefix of all suffixes corresponding to leaves below the node in the tree. In particular,
given two leaves ¢; and ¢; corresponding to positions in z and y, the least common ancestor of
the leaves corresponds to the maximal common prefix of the two leaves, which is the maximum
common substring of the two strings starting at positions ¢ and j.

Thus to accomplish our goal we need only find each node u of the tree with the length {(u)
of the corresponding string satisfying I(u) > k; and for cach such node find all pairs ¢ and j with
i < nand j > n(so that i corresponds to a position in z, and j to a position in y). and with u
the least common ancestor in the tree of ¢; and ¢;. The first part of this task. finding nodes with
long enough corresponding substrings. is easily accomplished with a pre-order traversal of the suffix
tree. YWe mark these nodes, so that we can quickly distingunish them from nodes with corresponding
substrings that are too short.

Next observe that a node u is the least common ancestor of ¢; and ¢; if. and only if, ¢; and ¢,
descend from different children of u. Thus to enumerate the desired substrings corresponding to u.
we need simply take each pair v and w of children of u. such that v # w. and list pairs (7. 7) with
¢; a descendant of v with ¢ < n and ¢; a descendant of w with j > n. To speed this procedure u«
should consider only those v having descendants ¢; meeting the condition above, and similarly for
w; in this way each pair of children considered generates at least one substring, except for the pairs
v,v of which there are linearly many in the tree.

To be able to perform the above computation, at the time we consider node u we must have for
each of its children two lists of their descendant leaves, corresponding to positions in the two input

strings. By performing a post-order traversal of the tree. we can list the substrings corresponding
to each node u as above, and then merge the lists of leaves at the children of u to form the lists at
u ready for the computation at the parent of u.

Thus to summarize the generation of matching substrings, we first compute a suffix tree: next
we perform a pre-order traversal to eliminate those nodes corresponding to suffixes that are too
short: and finally we perform a post-order traversal, maintaining lists of leaves descended from
each node, to generate pairs of positions corresponding to the desired common substrings. The
generation of the suffix tree and the pre-order traversal each takes time O(n). The post-order
traversal and maintenance of descendant lists also takes time O(n), and the generation of pairs of
leaves corresponding to common substrings takes time O(M). Thus the total time for these steps
is O(n + M). For arbitrary input strings z and y taken from an alphabet of size s, the time would
be O(nlogs + M).

Now let us return to the computation of recurrence 1. As we have said, we assume in this
paper that w and w' are linear function of the difference of their arguments, i.e. w(s.t) =c-(t-s)
and w'(s.t) = ¢’ - (t — s) for some fixed constants ¢ and ¢’. In the companion paper [7]. we will
investigate the case when these weight functions are either convex or concave.

It can be easily shown that H[i, j] and V[i. j] can be computed in constant time for each of
the M pairs we are interested in. For instance. in the computation of H[i, j], we simply maintain
for each ¢ the value of I, with [< j, minimizing D[i — 1.!] — ¢’l, which supplies the minimum in
recurrence 3; then the minimum for j+ 1 can be found by a single comparison between the previous
minimum and D[i - 1,5] — ¢/j. Thus the difficulty in the computation is to efficiently compute
Efi, j] given the required values of D. We will perform this computation of E in order by rows.

For brevity, let C(k,l;i.j) stand for D[k.{]+ w(k + [.i + j). Define the range of a point (k./)
to be the set of points (i,j) such that i > k and j > [. By the structure of recurrence 4, a point
can only influence the value of other points when those other points are in its range. Two points
(k.1) and (k',!') can have a non-empty intersection of their ranges. The following fact is useful for
the computation of recurrence 4.

Fact 1: Let (i.7) bea point in the range of both (k.!) and (k’,!") and assume that C(k.![; t.)) <
C(k',1";i. 7). Then. C(k,l;z,y) < C(kK',I';z,y) for each point (z,y) common to the range of both
(k.1) and (K'.1"). In other words, (k.!) is always better than or equal to (k'.I') for all the points
common to the range of both.

Proof: The difference

(Dlk,]+ e (i + 1) = (k+ D)) = (DK V] + ¢ ((i + J) = (K + 1))
=(Dkd]—c-(k+ 1)) = (DKL) =c- (K + "))
depends only on (k,!) and (k'.I'). e

From now on we will assume that there are no ties in range conflicts. since they can be broken
consistently.

For the non-sparse version of the dynamic program. it can be further shown from the abn-
fact that the point (k,{) giving the minimum for (i.j) is cither (1 - l.j—1) oritis one of the port:*+

giving the minimum at (i — 1. j) or (i. j— 1). Thus at cach point we need only compare three values
to find the minimum of recurrence 4. This gives a simple O(n?) dynamic programming algorithm.
first pointed out by Kanehisi and Goad [13]. We now describe how to improve this time bound.
when A is less than n°, by taking advantage of the sparsity of the problem.

Let #1.%3,....1p. p £ M, be the non-empty rows of E and let ROW[s] be the sorted list of
column indices representing points for which we have to compute E in row 7,. Our algorithm
consists of p steps, one for each non-empty row. During step s < p, the algorithm processes points
in ROW/(s] in increasing order. Processing a point means computing the minimization at that
point. and, if appropriate. adding it to our data structures for later computations. For each step
s, we keep a list of active points. A point (i,.j') is active at step s if and only if r < s and,
for some maximal interval of columns (j' + 1, 4], (i, j') is better than all points processed during
steps 1.2,...,5 — 1. We call this interval the active interval of point (i,, j'). Notice that the active
intervals partition [1,n].

Given the list of active points at step s. the processing of a point (7,,j;) can be outlined as
follows. The computation of the minimization at (i, j;) simply involves looking up which active
interval contains the column j,. We will see later how to perform this lookup. The remaining part
of processing a point consists of updating the set of active points, to possibly include (i,, j;). This
is done as follows. Suppose (i,.j'), r < s, supplied the minimum value for (¢,, j;). Then the range
of (ir.J') contains that of (i,.j;). By Fact 1. if C(¢,.j'1i, + 1. g + 1) < C(is,Jg38s + 1,Jg + 1)
then point (i,, j,) will never be active. Therefore we do not add it to the list. Otherwise, we must
reduce the active interval of (i,. ') to end at column j,. and add a new active interval for (i,. j;)
starting at column j,. Further. we must test (i,,j,) successively against the active points with
greater column numbers. to see which is better in their active intervals. If (i,, j;) is better, the old
active point is no longer active. and (i,. ;) takes over its active interval. We proceed by testing
against further active points. If (i,.j;) is worse, we have found the end of its active interval by
Fact 1 and this interval is split as described above.

A detailed description of step s is as follows. Let ACTIV E denote the list of all active points
(leadery.cy),(leaders, ca). (leader,.c,) during step s. Therefore, each element in ACT/IV E is
composed of an information field (leader) and of a key field (column); the meaning of each pair
(leader|.c;), 1 < < u, is that the point denoted by the pair has active interval [¢; + 1,¢141). The
first and last pair are dummy pairs taking care of boundary conditions. Weset ¢; =0, ¢, = n and
leader, = leader, = 0. Moreover, we set C(leader,.c:i.]) = +x and C{leader,,cy;1,j) = — X

The list ACTIV E satisfies the following invariants which will be maintained by our algorithm

l.0=c1 <3 <...<cy=n;

2. (leader;,¢;), 1 <1 < u, has active interval [¢; + 1, ¢4y]:

3. All points (ir,jg), 7 < s. not in ACTIV E need not be considered for the computation of /
on row i, and beyond.

For a given j, in ROW/s], the computation of E[i,. j,] is performed as follows. Using tt.-
keys in ACTIV E, we look up which active interval j, belongs to. That is. we find an [such th.:
¢; < jg € cipr1. If ¢ = 0. then EYi,. ,] does not depend on any of the points processed in previo:.
steps and it is therefore set to the value given by the initial conditions in recurrence 4. If ¢; £ v

E(iy, j,) is set to C(leader;. ci5 15, Jq)- By definition of active point and the invariants 2 and 3 above.
Elis.j,) is correctly computed. We refer to the operation of obtaining for a given j, in ROW|s]
the int.erva.l which it belongs to as LOOKU P(ACTIV E,j,). Namely. LOOKUP(ACTIVE, j5)
returns the largest column number in ACTIV E less than j,.

Once we have all values of £ on row i,, we can compute the corresponding values of D.
Based on these latter values, not all the points in either ACTIV E or ROW(s] may turn out to
be active at later steps, because new range conflicts may now arise. We resolve such conflicts
between different points by first doing the following for each j, in ROW(s]. Let (leader;.c;).
1 < [, be the point that provides the minimum in recurrence 4 for (is,js). We check whether
C(leader cryis +1,J, + 1) < C(is. jgi is + 1. jg + 1) 1f this is the case, we delete j; from ROW (s]
since (iy, j;) cannot be active by Fact 1. Otherwise. we check whether j; = ci41. If this test is
negative, we do nothing and (is.j,) remains in ROW([s]. If the test is positive, we have that the
range of (i, j,) is completely contained in the range of (ii4+1.¢c141). Thus, one of the two points
must be deleted. Indeed, if C(leaderisy.cip1iis+1, jg+1) < Cis. jgsis+1, jo+ 1), wedelete (¢4, j,)
from ROW!/s] since it cannot be active by Fact 1. Otherwise, we will later delete (leaderiyy,¢i41)
from ACTIVE.

Let j{'.57,....J; be the column indices of the surviving points in ROW(s] (listed in sorted
order). Starting from jj', we discard all the column indices j; immediately following it such that
C(is, 315 is+1, 75 +1) < Clis, 4y is+1. 5 +1). When we find a point ¢’ such that C(is, ji's is+1, jg +
1) > C(is,jy 3 is+1, jg. +1), westop and repeat the same process for ¢'. As a result, we discard from
ROW/{s] all column indices Jp such that C(i,. jriis+1, jo+1) < C(is. jp; is+1,j,+1), for some p/ <
p. Again, by Fact 1, all discarded points cannot be active at later steps. The result is a list of points
(s,31)s-- -+ (is,j7) that must all be inserted in ACTI/V E. We refer to the process of obtaining
the sorted list (is,J1),...,(is,7}) from (is. ji').(45. 53), (i5.Ji') as REDUCE(ROW([s]). It is
implemented as a simple scan of a sorted list and therefore requires O(|ROW{s]|) time. As a
consequence of Fact 1, for each j; and j; in ROW{s], ¢ < I, we have that

Clis,Joris+ L+ 1)>C(ig, Jinis + L ji + 1), (3)

\We must now insert into ACT [V E the remaining points in ROW. However. the insertion
of such points may cause the deletion of other points in ACT IV E. We proceed by first deleting.
in increasing order by column, all points in ACT/IV E that cannot be active any longer. Then.
we insert points from ROW(s]. The detection of all points that must be deleted from ACT/V E
can be performed as follows. We start with the first column index j; in ROW. Let ! be such
that ¢; < j1 < ¢141. By “walking™ on ACTIVE, we find the minimal A. | < h < n, such that
Clis, 13ts+15en+1) > C(leadern.chiiy + lica+ 1) and Ci,, j1iis+ l.cg+ 1) < C(leadery.cq: 1, +
l,cqg +1),1 < ¢ < h. During this walk, we mark as deletable all points (leaderg,eq). | < q < K
from ACTIV E. We repeat the above process with j, starting at A, if j» < c,. Otherwise, we start
at an index ! such that ¢; < j» < cy4y. We iterate through this process with successive indices
in ROW([s] and ACTIVE until we reach the end of either list. Then. we remove all deletable
points from ACTIV E. We refer to the operation of deleting a pair (leader.c) from ACTIV E as
DEL(ACTIVE,c). By Fact 1 and inequality 5. all the deleted poiuts cannot be active in any of
the subsequent steps.

b

After this step, all the possible range conflicts between points in ROW and ACT IV E have
been examined and solved. Therefore. all the remaining points in ACTIVE and ROW will be
active for later computation. Thus we insert in ACT/V E all the points with column index in
ROW/{s]. We refer to each insertion as INSERT(ACTIVE. j).

Let NEXT(LIST,item) denote the operation that returns the element succeeding item in
LIST and assume that the last element in ROW{s] is a dummy column index, say n+1. Moreover.
let APPEND(LIST,item) denote the operation that appends item at the end of LIST. The
algorithm discussed above can be formalized as follows:

Algorithm SRNA:
ACTIVE ~ ((0,0),(0,n));
for s — 1 to p do begin
J — NEXT(ROW|s],0);
while j # n+ 1 do begin
/* compute E[i,, j] and decide whether to keep j in ROW [s] */
jdead — false:
(leader,c) — LOORUP(ACTIVE,j):
E[is, j] — D[leader,c] + w(leader + c. i, + J);
neztj — NEXT(ROW/(s].j);
if C(leader,cit, + 1.7+ 1) £ C(iy,jiis+ 1.j + 1) then begin
DEL(ROW(s],j);
jdead — true:
end;
c — NEXT(ACTIVE, c);
if (¢ = j) and C(leader,c;is+1,j + 1) < C(is,j54is + 1,7 + 1) then
if jdead = false then
DEL(ROW[s].});
j — nezxty;
end;
/* remove from ROW/s] the points no longer able to be active */
ROW|[s] — REDUCE(ROW/{s)):
/* delete elements from ACTIVE */
j — NEXT(ROW/[s]. ¢);
(leader,c) — LOORKUP(ACTIVE.j);
(leader,c) — NEXT(ACTIVE, c);
OLD — ¢;
while j # n+1 and (¢ # n) do begin
while C(leader.c;i, + 1.c+1)> C(is,jits, + 1.c+ 1) do begin
APPEND(OLD. c);
(leader.c) — NEXT(ACTIVE, c);
end;
j — NEXT(ROW|s}],j)
if 1 > ¢ then (leader.c) — LOOKUP(ACTIVE j):
end;
APPEND(OLD.n + 1);
/* delete points in OLD from ACTIVE */
c — NEXT(OLD, o).
while ¢ # n+ 1 do begin

DEL(ACTIVE c):
¢ — NEXT(OLD.c):
end;
/* insert points from ROW into ACTIVE */
j — NEXT(ROW . 9):
while j # n + 1 do begin
INSERT(ACTIVE,),
]~ x\"E‘\’T(ROlV[S]vj):
end;
end;

Theorem 1. Algorithm SRNA correctly computes recurrence 4,
Proof: By induction, using the discussion preceding the algorithm. e

In order to simplify the presentation of algorithm SRNA. we have assumed that each column
index is an integer between 0 and n. We remark that a slight variation of the same algorithm works
correctly if we label column indices to be integers between 0 and min(n.M). Such a labeling can

be clearly obtained in O(n) time.

3. Time complexity

In this section we analyze the running time of algorithm SRN A. We must account for a preprocess-
ing phase of O(n), which is also the time we need to read the input. Furthermore, it is easily seen
that there are no more than O(M) insertions, deletions and lookup operations on ACTIV E and
the rest of the algorithm takes just O(M). Therefore the total time of SRNA is O(n+ M + T(3M)),
where T (M) is the time required to perform the O(M) insertions. deletions and lookup operation on
ACTIV E. This time complexity depends on which data structure we use for the implementation
of ACTIVE.

If ACTIV E is implemented as a binary search tree [3. 13, 21]. we obtain an O(n + M log M)
time bound. However, we can obtain a better time bound by exploiting the fact that ACTIV E
contains integers in [0, min(n, Af)]. Indeed, if ACTIV E isimplemented as a flat tree [22] we obtain a
bound of O(n+ M loglog min(n, M)), since each operation on ACT /1" E costs O(loglog min(n, A)).
Even better, by using the fact that the operations performed on ACT/IVE are blocks of either
insertions or deletions or lookup operations, we can use Johnson's variation to flat trees [9] to
obtain an O(n + M loglogmin(AM.n*/M)) time bound. We now discuss such an implementation
as well as its timing analysis; this requires some care and some knowledge of the internal working
of Johnson’s data structure.

Johnson’s priority queue maintains a set of items with priorities that are integers in the interval
{1,...,n}. Tt takes O(loglog (i) time to initialize the data structure, to insert or delete an item in
the data structure. or to look up for the neighbors of an item not in the data structure, where ¢/
is the length of the gap between the nearest integers in the structure below and above the priority
of the item being inserted, deleted. or searched for.

We need to know the following facts about Johnson's data structure. The items are kept
in n buckets. one for each integer in the domain {1..... n}. Fach bucket contains items of the

U

corresponding priority. Non-empty buckets are maintained in a doubly linked list sorted according
to the priority.

As for van Emde Boas’ flat trees, the idea is to maintain a complete binary tree with n leaves
and traverse paths in this tree using binary search. The leaves of the binary tree correspond in a
left-to-right order to the items in the priority domain. Each integer in {1,....n} and therefore each
bucket defines a unique path to the root of the tree. The length of such paths is at most O(logn).

These paths are dynamically constructed whenever needed. When an item has to be inserted.
a new path segment is added to the tree, while the deletion of an item implies the removal of a
path segment. In both cases. the length of the path segment involved is O(log G) in the worst case.
By constructing and visiting just a logarithmic number of nodes in each path segment, we get the
O(loglog G) bounds.

The following lemma was implicit in [9].

Lemma 1. A homogeneous sequence of & < n cperations (i.e. all insertions, all deletions, or all
lookups) on Johnson’s data structure requires at most O(k loglog(n/k)) time.

Proof: We first prove that it suffices to consider just sequences of insertions. In fact. k deletions
are just the reversal of the corresponding k insertions and therefore require the same time. On the
other hand, k lookup operations can be performed by performing the corresponding insertions.
then finding the lookup results by inspecting the linked list of buckets. and finally deleting the k&
inserted items. Thus the total time of k& lookup operations is bounded above by the total time of &
insertions. In the companion paper [7] we present an alternate proof of the time bound for lookups
that does not require the modification of the data structure.

It remains for us to bound the cost of &k insertions. Denote by t;. 1 < ¢ < k, the length of the
new path added to the data structure because of the i-th insertion. The total cost of k insertions
will therefore be O(Z:;l logt;). Let us now consider the total additional size of the resulting tree
after the & insertions, Zle t;. This will be maximized when the k items to be inserted are equally
spaced in the priority domain {1.....n}, giving rise to Zle t, < k + klog(n/k). By convexity of
the log function, Zle log t; is O(k log(1 +log(n/k)}))) and therefore the total cost of k insertions is
O(kloglog(n/k)). e

We are now able to analyze the overall time bound of the SRNA algorithm.

Theorem 2. Algorithm SRNA solves the sparse RN A secondary structure problem in a total of
O(n + M loglogmin(M.n%/})) time.

Proof: By the above discussion, SRNA requires at most O(n + A + T(A)) time, where
T(M) is the worst-case time of performing the O(.M) insertions, deletions and lookup operations
in ACTIVE. By implementing AC TV E with Johnson's data structure, T(M) is O(M log log (V)
and therefore O(M loglog M).

It remains to show that the time complexity of SRNA is bounded by O(n + 1M log log(n?/M)).
By lemma 1, the total time spent by algorithm SRNA onrow 1. 1 <1< p,is O(A; loglog(n/Af,)).
where M; < n denotes the number of points in row i. This gives a total of O(3°7_, M; loglog{n/M,)i
time. Define a; = n/M;, 1 < i < p. for each row 1. Then, the total time of SRNA is asympotically
bounded by 37_; Z‘J\Ll loglog a, subject to the constraint 3 °_ Z'}‘i‘l a, < n?. By convexity of
the loglog function. }_7_, Z)‘il log lowgar, < M loglog(n< /A).

Int
Therefore, SRNA requires at most O(n + M loglog min(.M, n?/M)) time. o

4. Wilbur-Lipman Fragment Alignment Problem

In this section we will consider the comparison of two sequences. of lengths n and m, which differ
from each other by a number of mutations. An alignment of the sequences is a matching of positions
in one with positions in the other, such that the number of unmatched positions (insertions and
deletions) and matched positions with the symbol from one sequence not the same as that from
the other (point mutations) is kept to a minimum. This is a well-known problem, and a standard
dynamic programming technique solves it in time O(nm) [19]. In a more realistic model, a sequence
of insertions or deletions would be considered as a unit. with the cost being some simple function
of its length; sequence comparisons in this more general model can be solved in time O(n?) [25)].
The cost functions that typically arise are convex: for such functions this time has been reduced to
O(n?logn) [6. 8, 18] and even O(na(n)), where a is a very slowly growing function, the functional
inverse of the Ackermann function [14].

Since the time for all of these methods is quadratic or more than quadratic in the lengths of
the input sequences, such computations can only be performed for fairly short sequences. Wilbur
and Lipman [27, 28] proposed a method for speeding these computations up, at the cost of a small
loss of accuracy, by only considering matchings between certain subsequences of the two input
sequences. Since the expected number of point insertions. deletions and mutations in the optimal
alignment of two random sequences is very low, especially for small alphabets, considering longer
subsequences has also the advantage of computing more meaningful alignments.

Let the two input sequences be denoted r = zyz2...2,, and y = yiy2...yYn. Wilbur and
Lipman’s algorithm first selects a small number of fragments, where each fragment is a triple
(1. 7,k) such that the k-tuple of symbols at positions 7 and j of the two strings exactly match each
other; that is, z; = y;,Ziz1 = Yj41.-- - Titk—1 = Yj+k—1. Wilbur and Lipman took their set of
fragments to be all pairs of matching substrings of the two input strings having some fixed length &.
Recall that in the description of the RNA structure algorithm. we gave a procedure for finding all
such fragments; they may be found in time O((n+ m)logs + M), where n and m are the lengths of
the two input sequences, and s is the number of symbols in the input alphabet; we will assume in
our time bounds that this is the procedure used to generate the fragments. However our algorithm
for sparse sequence alignment does not require that this procedure be used, and in fact it gives the
correct results even when we allow different fragments to have different lengths.

A fragment (¢, j', k') is said to be below (i.j. k) if i+ k < i and j+ k < J'; i.e. the substrings
in fragment (¢'. j', k') appear strictly after those of (i.j.k) in the input strings. Equivalently we
say that (i.j,k) is above (i', j',k'). The length of fragment (i, j, k) is the number k. The diagonal
of a fragment (i, j, k) is the number j — i. An alignment of fragments is defined to be a sequence of
fragments such that, if (i. j, k) and (', j', ') are adjacent fragments in the sequence. either (&',)'. &'
is below (i,j.k) on a different diagonal (a gap), or the two fragments are on the same diagonal.
with i > ¢ (a mismatch). Note that with this definition. mismatched fragments may overlaj
For instance if z =AUGCUUAGCCUUA and y =AUGGCUUAGAUUUA. a possible alignment
fragments is fi = (1.1.3), fo = (4.5.3), f3 = (6,7.3). fy = (11.12.3). which shows a gap betweon
f1 and fa, an overlapping mismatch between f> and f3 and a non-overlapping mismatch between f.

12

and f;. The cost of an alignment is taken to be the sum of the costs of the gaps, minus the number
of matched symbols in the fragments. The cost of a gap is some function of the distance between
diagonals w(|(J — ¢) — (J' = i')|). The number of matched symbols may not necessarily be the sum
of the fragment lengths, because two mismatched fragments may overlap. Nevertheless it is easily
computed as the sum of fragment lengths minus the overlap lengths of mismatched fragment pairs.

When the fragments are all of length 1. and are taken to be all pairs of matching symbols from
the two strings, these definitions coincide with the usual definitions of sequence alignments. When
the fragments are fewer, and with longer lengths, the fragment alignment will typically approximate
fairly closely the usual sequence alignments, but the cost of computing such an alignment may be
much less.

The method given by Wilbur and Lipman [28] for computing the least cost alignment of a set
of fragments is as follows. Given two fragments, at most one will be able to appear after the other in
any alignment, and this relation of possible dependence is transitive: therefore it is a partial order.
Fragments are processed according to any topological sorting of this order. Some such orders are
by rows (i), columns (j), or back diagonals (i + j). For each fragment, the best alignment ending
at that fragment is taken as the minimum, over each previous fragment. of the cost for the best
alignment up to that previous fragment together with the gap or mismatch cost from that previous
fragment. The mismatch cost is being taken care of by the total number of matched symbols in
the fragments: if the fragment whose alignment is being computed is f = (¢, j. k) and the previous
fragment is f' = (i = {.j — [.k'), then the number of matched symbols added by f is k¥ if f' and
f are non-overlapping and k — (k' —) otherwise. Therefore, in both cases the number of matched
symbols added by f is k — max(0.%' — [). For instance, in the example given above the number
of matched symbols added by f3 is 3 — max(0.3 — 2) = 2, while the number of matched symbols
added by fs is 3 — max(0.3 — 5) = 3. Formally, we have

~min D[i=1.j -1 K]+ max(0,k" = 1)
D(i,j. k) = —k + min (i=La=lk) . . (6)
min D" j' K+ w(l(J -) - (5" =)
(+.s'.k') above (i.j.k)

The naivedynamic programming algorithm for this computation, given by Wilbur and Lipman.
takes time O(M?). If M is sufficiently small. this will be faster than many other sequence alignment
techniques. However we would like to speed the computation up to take time linear or close to
linear in M this would make such computations even more practical for small M. and it would
also allow more exact computations to be made by allowing A to be larger.

We consider recurrence 6 as a dvnamic program on points in a two-dimensional matrix. Fach
fragment (7, ,k) gives rise to two points, (i,j) and (i + & — 1.7+ k — 1). We compute the best
alignment for the fragment at point (i, j); however we do not add this alignment to the datu
structure of already computed fragments until we reach (i + &k — 1.7 + k — 1). In this way. the
computation for each fragment will only see other fragments that it is below. We compute separatels
the best mismatch for each fragment: this is always the previous fragment from the same diagonal.
and so this computation can easilv be performed in total time of O(M). From now on we w:ili
ignore the distinction between the two kinds of points in the matrix, and the complication

14

the mismatch computation. Thus, we ignore k in recurrence 6 and consider the following two-

dimensional subproblem: Compute

——
-1
~——

Eli,j] = min DI, j')+ w(l(j = 9) = (J' =),

(i'.5") above (i,j)

where D[i.j] is an easily computable function of E[i. jl.

As in the RN A structure computation, each point in which we have to compute recurrence 7
has a range consisting of the points below and to the left of it. However for this problem we
divide the range into two portions. the left influence and the right influence. The left influence of
(i,7) consists of those points in the range of (i,j) which are below and to the left of the forward
diagonal j — i, and the right influence consists of the points above and to the right of the forward
diagonal. Within each of the two influences, w(|p — q|) = w(p — q) or w(|p — ¢|) = w(g — p): ie.
the division of the range in two parts removes the complication of the absolute value from the cost
function.

For brevity, let C(¢',j":4,7) = D[i', /] + w(|(j — ©) = (§' = i")]). We have the following Fact:

Fact 2: Let (¢,j) be a point in the left influence (right influence, respectively) of both (k1)
and (k'.!") and assume that C(k.l;4,j) — C(k',l';i. j) < 0. Then (k,1) is always better than (k'.{")
for the computation of recurrence 7 on all points common to the left influence (right influence,
respectively) of both.

Notice that if we had not split the ranges of points into two parts, we could not show such a
fact to be true. Since it is similar to the central one used in the RNA structure computation. one
would expect that the computation of recurrence 7 (and thus recurrence 6) can be performed along
the same lines of recurrence 4. Indeed. we can write recurrence 7 as

Eli,j] = min{LI[i.]. RIi,]}. ()

where

RI[i,j) = min DU) +w((j-0) - =) (9)
(*.,*y above (1)

J-i<i-i
and
LI[i.j] = min DU .Y+ w((j -')-(j-1). (100
o' above ()
j-i<y =4
Both recurrences 9 and 10 look very similar to recurrence 4, except that they must be put
together to compute recurrence 7. Thus, the order of computation of the points must be the same
for the two recurrences. Moreover, now we have two collections of influences that are eighth-planar
geometric regions while in the RN A structure computation we had ranges that were quarter-planar
geometric regions.
In what follows, we choose to compute the values at points in order by their rows. As a
consequence, we have that the computation of recurrence 9 is the same as (4). the only differenc e
is that here regions are bounded by forward diagonals instead of by columns. That is, algorithm

i+

SRNA can compute recurrence 9 provided that each point (iy,j), 1 < r < s, is represented in
ACTIV E by the pair (ir,j — i) and that each point (/,.J) is represented by j — i, in ROW{s].

If we could perform the minimization for left influences in order by columns, we would get that
SRNA could be adapted to compute recurrence 10. llowever this would conflict with the order of
computation for right influences. Instead we need a slightly more complicated algorithm. so that
we can compute recurrence 10 in order by rows.

We now briefly outline our approach to the computation of (10) by rows. We again maintain a
collection of active points, each of which is best for some of the remaining uncomputed points. As
a consequence, the matrix LI can be partitioned into geometric regions such that for each region
R there is a point (7,7) which is the best for the computation of (10) for points in R. Obviously,
R is contained in (2, 7)’s left influence. We refer to (7, j) as the owner of region R.

However, unlike in the computation of (9), the regions in which such points are best may be
bounded also by forward diagonals. according to the boundaries of the left influences. As a result,
each region is either a triangle or a convex quadrilateral, since the boundaries of each region are
composed of rows, diagonals and columns (see Fig. 1). Furthermore, it is no longer true that each
point will own at most one region: when we insert a new point in the set of active points it may split
a region into two parts. As a consequence, each point may own more than one region. However,
all regions owned by a point are disjoint.

There is one further complication: we do not know in advance the boundaries of these regions,
but we actually discover them row by row. Assume that in the computation of (10) we are processing
row . At this step, our algorithm has computed the partition of the matrix LI up to row ¢, but we
do not know the behavior of the currently active regions after row i. In fact, it can happen that a
new point (i'.j'), i’ > i. cointained in a region R active at i may split R into two parts. depending
on whether (7', ') is better than the owner of R in their common left influence. In such a case, we
wait until row i before deciding whether R should be split. Furthermore, when we have a region
bounded on the left by a forward diagonal and on the right by a column, we must remove it when
the row on which these two boundaries meet is processed. At this point we compare the two regions
on either side, to see whether their boundary should continue as a diagonal or as a column. Once
again, we will decide it when considering the row in which their boundaries meet.

A region R is said to be active at row i, 1 < i < m. if and only if R intersects row ¢&. While
processing row i, the active points are the owners of active regions. In our computation of (10) by
rows. we maintain a set of active regions under the updates required by the insertions and deletions
of regions described above.

Even though there are two types of border. it can be shown that the regions appear in a linear
order for the row we are computing, and this order can be maintained under the changes in the sut
of active regions required by the insertion of new points and by the removal of regions. Therefors
we may use a binary search tree to perform the computation in time O(.M log M). Because of the
two types of border, however. the points being searched for cannot be represented as a single set «f
fixed integers. Therefore the algorithm sketched above does not seem to benefit directly from the
use of the flat trees of van Emde Boas., or Johnson's improvement to flat trees. which depend o
the points being dealt with being unchanging integers. llowever, we can use two flat trees. one for
column boundaries and one for diagonal boundaries. The diagonal boundaries can be representes|

B!

as the integer numbers of the diagonals. and the column boundaries can be represented as the
integer numbers of the columns. Searching for the region containing a point is then accomplished
by finding the rightmost boundary to the left of the point in each flat tree, and choosing among
the two resulting column and diagonal boundaries the one that is closer to the point. Thus we may
perform the computation of fragment alignment in the same time bounds as for RNA structure
computation.

Let iy.is....,ip, p < M, be the non-empty rows of L/ in (10). Our algorithm for the compu-
tation of LI consists of p steps. Atstep s, we compute LI for row i,. Assume that we have g active
regions Ry, Ry,....R, listed in sorted order of their appearance on row i,. We keep the owners of
these regions in a doubly linked list OW VER. The i-th element in OW N ER is the owner of R;.
Initially, OW N ER contains the dummy point (A, A) that owns the whole matrix LI. OWNER
implicitly maintains the order in which active regions appear in row i,.

We maintain the boundaries of the ¢ active regions by means of two sorted lists C-BOUND
(column boundary) and D-BOUND (diagonal boundary). Each element in C-BOUND is a pair
(rightr,c), where rightr is a pointer to an element in OW.NER and ¢ is a column number. The
meaning of such pair is that column ¢ is the boundary of two active regions. The region whose
owner is pointed to by rightr is to the right of c. Pairs are kept sorted according to their column
number.

Similarly, each element in D-BOUND is a pair (abover.d), where abover is a pointer to an
element in OWNER and d is a diagonal number. The meaning of such pair is that diagonal d is
the boundary of two active regions. The region whose owner is pointed to by abover is above d.
Pairs are kept sorted according to their diagonal number.

We notice that given two adjacent column boundaries in C-BOUND. it may happen that the
two regions bounded by those columns are not adjacent since regions bounded by diagonals may
be in between these two regions. A similar thing may happen to adjacent diagonal boundaries in
D-BOUND. Thus, we need to use both data structures to locate in which active region a point
(i,,jl) falls.

We also keep lists INTERSECT][r]. | <r < m, for each row of LI. Such lists contain point-
in which we must resolve a conflict between the two active regions meeting at that point. At step
s, we maintain the invariant that INTERSECT[r] = 0,1 <r < i, - 1. A column index ¢ is in
INTERSECT[c - d], ¢ —d > i,, if and only if ¢ is left boundary of an active region R and th~
region to the left of R has diagonal d as its bottom boundaryv. We refer to the point (¢ — d.c .-
an active intersection point. Equivalently, (¢ — d.¢) is an active intersection point if and only if ~
and d are boundaries of two active regions and neither ¢ intersects another diagonal boundary nar
d intersects another column boundary in any row from i, toc —d — 1.

Each column ¢ can be in at most one intersection list. We assume that each column in st
intersection list has a pointer to the item representing it in such list. We also assume that ea.
diagonal has a flag which is on when that diagonal is involved in an active intersection poin:
However, we will ignore the details of the update of the intersection lists and of the correspondi: ¢
pointers for columns and flags for diagonals.

Assuming that INTERSECT(r] = 0,1 < r < i, — | and that C-BOUND and D-BOl NI

correctly represent the active regions at step s, we locate the active region containing (i,, ji) -+

]

follows. We find a pair (rightr,.cy) in C-BOUND such that ¢, < j; € ¢y41 and we find a pair
(abover,.d,) in D-BOUND such that d, < j, —i{s < d.51. Consider the row ¢, — d,. in which
column ¢, and diagonal d, intersect. If ¢, — d, > t,. then (i,, J;) belongs to the region owned by
the element in OWN ER pointed to by rightr, (see Fig. 2a.) since column ¢, “hides” the region
bounded from below by d,, as well as the regions bounded by columns preceding ¢,,. If ¢, —d, < i,.
then (i,.7;) falls into the region owned by the element in OW . N ER pointed to by abover, (see
Fig. 2b.) since diagonal d, “hides” the region bounded by ¢, as well as the regions bounded by
diagonals preceding d,.

We refer to the process of finding pairs in C-BOUND (D-BOUND, respectively) for a given
(is, 1) in ROW([s] as LOOKU P(C-BOUND. ji;) (LOOKUP(D-BOUND, j), respectively).

We also denote the process of computing the owners of regions containing given (i,.j) in
ROW|[s] as WINNER(j;). Given the results of the two LOOKU P operations, WINNER(j;)
can be performed in constant time. Moreover, based on the results of WIN N ER, we can compute
recurrence 10 and then recurrence 6 (via (8)) in constant time for (i,, j;).

After computing D for row i,. not all points on this row may turn out to generate active regions.
Indeed, assume that (i, j;) provided the minimum in recurrence 10 for (i,, ji). The left influence of
(ir,Jq) totally contains the left influence of (iy, ji). I C(ir. jgits + 1,1+ 1) < ClisyJriis+ 1, i+ 1),
we can discard (i,. ;) since. by Fact 2, it will never own an active region. Consequently. we
discard all points in row i, that are dominated by the owners of their active regions. We refer to
this process as REDUCE(ROWI(i,]). It produces a sorted subsequence of the column indices in
ROW!|s]. Once we know the values of D for points in row i, and the outcomes of the LOOK ' P
operations, REDUCE can be implemented in O(ROW [s]|) time.

We must now show how to update C-BOUND and D-BOUND so as to include the boundaries
of active regions owned by points in ROW/[s] that survived REDUCE. Moreover, we must update
OW N ER. The insertion of these boundaries may also cause the insertion of new active intersection
points and the deletion of old ones. Thus. we have to update such lists as well.

Assume that we have correctly processed the first [— 1 points in ROW/[s] and let (i, j;) be the
next point to be processed. Let (rightry.cn) and (rightrasy.chey) be two pairs in C-BOUND such
that ¢, < ji < epq1- Similarly, let (abovery,d,) and (aboveriyy.disy) be two pairs in D-BOUND
such that dx < 71 — iy < dik41. All these pairs can be found by means of LOO KU P operation-
We now proceed as shown in the following cases.

a. Point (,, 1) falls in the region owned by the point in OV .V ER pointed to by rightry. [.n

this point be (i,,cy). We distinguish two subcases: cx4y > ji and cpyy = Jio

a.l cx41 > ji. The region owned by (i..cx) must be split into two and the region owned b
(is, 1) must be inserted between them (see Fig. 3a.). Thus. we generate two new entri~
for OWNER. ie. (i,,ji)and (i..cy), and we insert them (in the order given) in OWN F i+
immediately after the entry pointed to by rightr,. We insert also the pair (v.j) in ¢
BOUND and the pair (o.j; ~ 1,) in D-BGUND, where % points to (i,,j;) and ¢ points *.
the new occurrence of (i,.c,) in OW NER. The insertion of the region owned by (7,.
may cause the creation of an active intersection point, i.e. {cppy — (J1 —iy).Cap1). Indeed
if ch41 is not in any intersection list, we insert it in INTERSECT[cher — (51 — is)]-

i

a.2 cap1 = Jji- Point (i5.cn41) falls on the border of two active regions, one owned by (i,.ch)
and the other owned by (iq.chsr). where this latter point is pointed to by rightry4 in
OW N ER (see Fig. 3b.). Weknow that C(ip.chpriis+1l.chap1+1) S Clirseniis+lchpr+
1) and that C(is,chp1iis + 1icngr + 1) S Clir,cniis + 1 cngr + 1) We have to establish
whether (i,+.chy1) is better than (i, cxt1) in the left influence of this latter point. If this
is the case, we do nothing. Otherwise. (is,ch+1) conquers part of (ir, cat1)’s left influence.
The border between these two regions is diagonal ¢p41—1,. Accordingly, we insert the entry
(is,chs1) in OW N ER immediately before the entry pointed to by rightrpy;. We insert
also (0,ji—1,) in D-BOUND, with o = rightray1 and set rightrpyq in C-BOUND to point
to the newly inserted entry in OW N ER. The insertion of the region owned by (i5,ch41)
may cause the creation of an active intersection point, i.e. (cat2 — (Cas1 — is)-Chs2)-
Indeed, if chyo is in no intersection list, we insert it in INTERSECT[cat2 — (Chg1 — 1s))-

b. Point (i, j;) falls in the region owned by the point in OW .V ER pointed to by abover,. Let this
point be (i,,dw +i,), &' > k. We have three subcases: dy < j; — i, and cpp1 > Jiidk = J1 — 1,
and chy1 > Jis cht1 = Ji.
b.l1 dx < ji — is and cay1 > ji. The region owned by (i,,dx + i) must be split into two

and the region owned by (i,.7;) must be inserted in between them (see Fig. 4a.). The
details for the corresponding update of OWW.VER are analogous to the ones reported in
case (a.1) and are left to the reader. The insertion of the region owned by (i, ji) can
cause the creation of two active intersection points. (cpy1 — (Jt —%s),¢ne1) and (G — di. 71).
and the deletion of a possibly active intersection point, (cxy; — di.€p41). Indeed. if
column cpqy is in INTERSECT([chyy — dix] we delete it from there and insert it in
INTERSECT[chs1—(Ji—1,)]. Finally, we must insert column j; in INTERSECT{j;—dy]
b.2 dx = j; — i, and cay; > ji. Point (i, j;) falls on the border between two regions, one
owned by (i,,dx +i,) and the other owned by (i,..di + i,+). where this latter point is the
immediate predecessor of the element in O .V ER pointed to by abovery (see Fig. 4b.).
If Clir,de +ip5is + 1,50+ 1) S Cis, Jisis + 1. ji + 1), we can discard (i, ji) by Fact 2.
Otherwise, we insert the point (i,, 7;) in O .N ER immediately to the left of the element
pointed to by abover,. This is equivalent to creating a new active region. We insert the
pair (v,71) in C-BOUND, where v points to the newly inserted element. The insertion
of this new region may cause the creation of an active intersection point. (j; — dx_1. ;).
Indeed, if diagonal di_, has its flag off, we must insert j; in INTERSECT]j, — di-1).
b.3 cx41 = Ji- This case is analogous to case (a.2).

We notice that at most a constant number of lookups, insertions and deletions in C-BOI'ND
and D-BOUND is performed. Furthermore, the sum of the time taken by all the other operations
involved in the corresponding update of OVW'.V ER and the intersection lists adds up to a constant.
We have the following lemma.

Lemma 2. The total number of active regions is at most 2.\ .

Proof: Each point (i, j) inserted for the first time in OV N ER introduces a new active region
and splits an old one into two. Since there are at most M points that can be inserted in OW N E it
the bound follows immediately. e

i3

In order to finish step s. we must process all active intersection points in between rows i and
ts+1 — 1. Assume we have processed intersection lists for rows i,. ..., t — 1. Here we show how to
process INTERSECT[t], t < is41.-

If INTERSECT(t] is empty, we ignore it. Thus, let INTERSECT[t] # ¢. We first bucket
sort the indices (column numbers) in such list. Proceeding in increasing order, we find (rightr. j;)
in C-BOUND and (abover,j; — t) in D-BOUND for each j, in INTERSECT[t]. This can be
performed using LOOKNUP. As a result. we obtain two sorted lists of pairs, one from C-BOUND
and the other from D-BOUND. We process these lists in increasing order taking a pair from each
list. Assume that we have processed the first / — 1 pairs in both lists. This corresponds to having
processed the first { — 1 points in /INTERSECTt]. We now show how to process (rightr,j) and
(abover, j; — t). This is equivalent to processing (¢, j;).

Since (¢, ;) is an active intersection point, three active regions meet there (see Fig. 3). Namely,
the active region having diagonal j; —t as an upper boundary. let it be R”. the active region having
ji — t as lower boundary, let it be R’. and the active region having column j; as its left boundary,
let it be R. Moreover, let (ip/,j; — t+ i), (i,,¢'} and (ir. Ji) be the owners of regions R"”, R' and
R. respectively. We can find those points in OW N ER by using either rightr or abover.

R' cannot be active any more since (i,.c') is worse than (i . 51 —t+ir+) ((ir, j1). respectively)
for points in R"” (R, respectively). We delete its owner from OW N ER. Next, we have to decide
whether R” gets extended to the right of column j.

UCGrJit+1,7+1) <Clirn. ji—t+irmit=1.ji+ 1), R" does not extend to the right of j.
Thus, we remove (abover. j; — t) from D-BOUND since j; — t is not bottom boundary of any region.
The removal j; — ¢t may cause the creation of a new active intersection point between column j
and some diagonal boundary d, d < j; — t. It may also cause the deletion of one active intersection
point. This involves the update of intersection lists with row number greater that t. The possible
intersection points to be inserted or deleted can be easily located as explained above. Each insertion
in the intersection lists can be accomplished in constant time. As for the deletions. we defer the
actual removal of the items from the intersection list to the time when the list is considered and
bucket sorted. This will give a constant amortized time complexity also for each deletion.

Otherwise, R" gets extended to the right of j,. We sct abover = rightr and delete (rightr, ;)
from C-BOUND since R" and R now share a diagonal boundary. Again, the removal of column j,
may create a new active intersection point between diagonal j; — ¢ and some column boundary ¢.
¢ > Ji. Again, this involves the update of intersection lists with row number greater than t. which
can be accomplished as explained above.

We remark that the bucket sorting of INTERSECT]t] is not really required for its processing.
Indeed, there is a more complicated processing of the points in /NTERSECT](t] that avoids the
bucket sorting of the points. However, it achieves no gain in time complexity.

We have the following lemma.

Lemma 3. The total number of active intersection points is bounded above by 4.

Proof: The algorithm creates active intersection points either when inserting a point .u
OWNER for the first time or when processing an active intersection point. Each new point
inserted in OWNER can create at most 2 active intersection points. Thus. no more than 2./
active intersection points can be created while updating OW .NER.

1y

Each new active intersection point introduced during the processing of intersection lists may
be amortized against an active region being deleted. Thus, by lemma 2, no more than 2\ new
active intersection points may be created during this phase. o

Let ITEM(LIST, pointer) and PREVIOUS(LIST. pointer) denote the operations that re-
turn the item in LIST pointed to by pointer and the item in LIST preceding it. respectively.
Furthermore. let ESSENTIALS be a list which contains all the boundaries of active regions
generated by points in ROW(s]. The above algorithm can be formalized as follows.

Algorithm Left Influence:
OWNER — (A, A);
for s — 1 to p do begin
J — NEXT(ROW([s].o):
while j # n+ 1 do begin
/* compute LI[i,, j] and decide whether to keep j in ROW[s] */
(rightr.c) — LOORNUP(C-BOUND, j);
(abover,d) — LOORUP(D-BOUND, j);
(i.el) — WINNER(j):
LI[iy, j) = Dli.el] + w((cl = i) = (j - i)
if C(i,cliis +1.j+ 1)< C(ty. jiis, + 1.7+ 1) then
DEL(ROWT(s].))
else APPEND(ESSENTIALS, (rightr, ¢).(abover.d));
j = NEXT(ROW(s],j):
end;
/* insert the boundaries of the active regions owned by points in ROW[s] */
j = NEXT(ROW/[s].o)
(rightr, c) — NEXT(ESSENTIALS. 3):
(abover,d) — NEXT(ESSENTIALS, (rightr, c)):
while j # n+ 1 do begin
if ITEM(OWNER, rightr) = WINNVER(J) then
update C — BOUND. D - BOUND, OWNER.
and INTERSECT following case (a):
else update C — BOUND, D - BOI'ND. OWNER,
and INTERSECT following case (b);
end;
J— NEXT(ROW{s],j):
(rightr.c) — NEXT(ESSENTIALS (abover.d)):
(abover,d) — NEXT(ESSENTIALS. (rightr.c)):
end;
/* remove active intersection points between rows 1, and i, */
for t — i, to 7,4, - | do begin
if INTERSECT[t] # o then begin
INTERSECT(t] — BUCKETSORT(INTERSECT][t]):
j — NEXTUINTERSECT[]. 0):
while j # n + | do begin
(rightr.c) — LOOKUP(C-BOUND, j):
(abover d) — LOOKUP(D-BOUND,)
APPEND(ESSENTIALS (rightr. ¢).(abover, d));
J — NENT(INTERSECT(t].)):

ZU

end;
APPEND(ESSENTIALS (A.n + 1))
(rightr.c) — NEXT(ESSENTIALS. 0);
(abover.d) — NEXT(ESSENTIALS, (rightr. ¢)):
while (rightr.c) # (A\.n+ 1) do begin
(i". "y — PREVIOUS(OWNER, abover):
(1.J) — ITEM(OWNER. rightr);
/* remove the region no longer active */
DEL(OWNER, abover)
HCH. i +1,j+1)<CU" . ¢":t + 1,5+ 1) then begin
DEL(D-BOUND, j - t):
update intersection lists;
end else begin
DEL(C-BOUND, j):
update intersection lists;
end:
(rightr,c) — NEXT(ESSENTIALS, (abover,d));
(abover.d) — NEXT(ESSENTIALS . (rightr,c));
end:
end:
end:
end;

We have the following theorem.

Theorem 3. Algorithm Left Influence correctly computes recurrence 10.
Proof: By induction. using the discussion preceding the algorithm. e

The time complexity can be analyzed as follows.

Theorem 4. Wilbur and Lipman’s fragment alignment problem can be solved in a total of O(m +
n + M loglog min(M,nm/M)) time.

Proof: The problem can be solved by computing recurrence 6. As we mentioned. this can be
reduced to the computation of (8), (9) and (10). Recurrence 9 can be computed using algorithm
SRINA and therefore by theorem 2 in O(.M loglog min(.M.nm/M)) time.

To bound the overall time required to compute recurrence 10. we need to analyze algorithm
Left Influence. By the above discussion, the time required by this algorithinis O(m + n + M +
T(M)), where T(M) is the total time required to maintain the lists C-BOUND and D-BOUND
and to bucket sort each INTERSECTION list.

By lemma 2 and by lemma 3. there can be at most O(.M) insertions. deletions and lookup
operations in C-BOUND and D-BOUND. Furthermore, Left Influence requires that for each row
at most a constant number of homogeneous sequences of these operations (i.e., all insertions, all
deletions. or all lookups) is performed. [f we use Johnson's data structure to support them. an argu
ment completely analogous to the proof of theorem 2 gives a total of O(.M loglog min(M.nm/ M)
time.

As for bucket sorting the INTERSECTION lists, assume there are ¢, points to bucket
sort at row ¢, 1 < i < m. If we use again Johnson's data ~tructure [9], this can be done

]

in O(c;loglogmin(Af.n/e¢;)). Therefore the total time is O(Y . _, c.loglogmin(M.n/e,)). By
lemma 3. Y12, ¢i < 4M. Again. a total of O(M loglog min(.}M. nm/A)) time results by convexity
of the log log function.

Once the value of LI[i,] and RI[i.j] are available, the computation of E[i.j] and D[i. j} can
be performed in constant time.

Therefore the total time required to solve the fragment alignment problem is O(m + n +
M loglogmin(M.nm/M)). e

5. The Longest Common Subsequence Problem

In this section we describe how to solve efficiently the longest common subsequence problem. We
assume that the reader is familiar with the algorithms of Apostolico and Guerra [5].

Recurrence 4, used for the computation of RN A structure with linear loop cost functions, can
also be used to find a longest common subsequence of two input sequences. The differences are
that now we are looking for the maximum rather than the minimum, and that D(i, j] depends only
on E[i,j]. Indeed, D[i,j] = E[i,j] + 1 for pairs of symbols (i, j) that match, and D[i.j] = E[i. j]
otherwise. The cost function w(z.y) is always zero (and therefore linear). Thus any bounds on
the time for solving recurrence 4 will also apply to the longest common subsequence problem. As
we have stated the solution. the time bound applies with M being the total number of matching
positions between the two input strings.

Apostolico and Guerra [5] cleverly showed that the problem can be made even more sparse,
by considering only dominant matches. They give an algorithm which runs in O(nlogs+ mlogn +
dlog(nm/d)), where d is the number of dominant matches. A different version of this algorithm
can be also implemented in O(nlogs + dloglogn) time. We now outline how to achieve a better
time bound, by modifying their algorithm to take advantage of our techniques.

The key observation is to replace the C-trees defined and used in [3] with Johnson's data
structure [9]. Apostolico and Guerra showed that their algorithm performs at most O(d) insertions.
deletions and lookup operations on integers in {1,...,n}. Furthermore. their algorithm can be
implemented in such a way that for each step insertions, deletions and lookup operations are never
intermixed on the same priority queue. Therefore we can apply lemma | and the same argument
of theorem 2 to obtain an algorithm which runs in O(dloglog min(d. nm/d)).

As in the algorithm of Apostolico and Guerra, and other similar algorithms for this problem.
our algorithm also includes a preprocessing phase; this takes time O(n log s). where s is the alphabet
size (without loss of generality at most m + 1). We must also initialize O(~) search structures.
with total cardinality of at most n; using Johnson's data structure this can be accomplished in
O(sloglog(n/s)) time which is dominated by the O(nlogs) term.

Therefore the total time is O(nlogs + dloglog min(d,nm/d)).

6. Conclusions

We have shown how to efficiently solve the Wilbur-Lipman sequence alignment problem, the m:n
imal energy RNA secondary structure with single loops and the longest common subsequencr
problem. Our approach takes advantage of the fact that all the above problems can be solvesd
by computing a dynamic programming recurrence on a sparse set of entries of the correspondine

3N
~

dynamic programming matrix. We have also assumed that the weight functions involved are lin-
ear. In the companion paper [7] we will analyze the case where the weight functions are either
convex or concave. Our algorithms have time bounds that vary almost linearly in the density of the
problems. Even when the problems are dense, our algorithins are no worse than the best known
algorithms: when the problems are sparse. our time bounds become much better than those of
previous algorithms.

We remark that all our algorithms are independent of the particular heuristics used to make the
input sparse. This is especially important for the Wilbur-Lipman sequence alignment algorithm,
where such heuristics may varv depending on which application the algorithm is used for.

References

[1] Alok Aggarwal and James Park. Searching in Multidimensional Monotone Matrices, 29th
FOCS, 1988, 497-512.

[2] Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter Shor, and Robert Wilber, Geometric
Applications of a Matrix-Searching Algorithm. Algorithmica 2. 1987, 209-233.

[3] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The Design and Analysis of Computer
Algorithms, Addison-\Wesley, 1974.

[4] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, Data Structures and Algorithms,
Addison- Wesley, 1983.

[5] A. Apostolico and C. Guerra. The Longest Common Subsequence Problem Revisited. Algo-
rithmica 2. 1987, 315-336.

(6] David Eppstein, Zvi Galil, and Raffaele Giancarlo. Speeding Up Dynamic Programming, 29th
FOCS, 1988, 488-496.

[7] David Eppstein. Zvi Galil. Raffaele Giancarlo and Giuseppe F. Italiano, Sparse Dynamic Pro-
gramming II: Convex and Concave Cost Functions, manuscript.

[8] Zvi Galil and Raffaele Giancarlo, Speeding Up Dynamic Programming with Applications to
Molecular Biology, Theor. Comput. Sci.. to appear.

[9] Donald B. Johnson, A Priority Queue in Which Initialization and Queue Operations Take
O(loglog D) Time, Math. Sys. Th. 15, 1982. 295-309.

[10] D.S. Hirschberg, Algorithms for the Longest Common Subsequence Problem, J. ACM 24, 1977,
341-343.

[11] D.S. Hirschberg and L.L. Larmore. The Least Weight Subsequence Problem. SIAM J. Com-
put. 16, 1987, 628-638.

[12] J.W. Hunt and T.G. Szymanski. A Fast Algorithm for Computing Longest Common Subse-
quences, C. ACM 20(3). 1977. 350-333.

[13] M.I. Kanehisi and W.B. Goad. Pattern Recognition in Nucleic Acid Sequences II: An Efficient
Method for Finding Locally Stable Secondary Structures, Nucl. Acids Res. 10(1). 1982. 265
277.

[14] Maria M. Klawe and D. Kleitman, An Almost Linear Algorithm for Generalized Matrix Search-
ing, preprint, 1987.

[15] Donald E. Knuth, The Art of Computer Programming. Volume 3: Sorting and Searching.
Addison-Wesley, 1973.

[16] D.J. Lipman and W.L. Pearson. Rapid and Sensitive Protein Similarity Searches, Science 2.
1985, 1435-1441.

[17] E.M. McCreight. A Space Economical Suffix Tree Construction Algorithm. J. ACM 23, 1974
262-272,

(18] Webb Miller and Eugene W. Myers, Sequence Comparison with Concave Weighting Functions
Bull. Math. Biol., to appear.

(19] S.B. Needleman and C.D. Wunsch, A General Method applicable to the Search for Similaritie
in the Amino Acid Sequence of Two Proteins. J. Mol. Biol. 48. 1970. p. 443.

24

(20] David Sankoff. Joseph B. Kruskal. Sylvie Mainville. and Robert J. Cedergren, Fast Algo-
rithms to Determine RN\ Secondary Structures Containing Multiple Loops. in D. Sankoff
and J.B. Kruskal, editors, Time Warps. String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison, Addison-Wesley, 1983. 93-120.

] Robert L. Tarjan, Data Structures and Network Algorithms, SIAM, 1985.

[21
[22] Peter van Emde Boas, Preserving Order in a Forest in Less Than Logarithmic Time, 16th
FOCS, 1975. and Info. Proc. Lett. 6. 1977, 80-82.

(23] Michael S. Waterman and Temple F. Smith, RNA Secondary Structure: A Complete Mathe-
matical Analysis, Math. Biosciences 42, 1978, 257-266.

[24] Michael S. Waterman and Temple F. Smith, Rapid Dynamic Programming Algorithms for
RN A Secondary Structure. in Adv. Appl. Math. 7, 1986, 455-164.

[25] Michael S. Waterman, Temple F. Smith, and W.A. Beyer. Some Biological Sequence Matrices.
Adv. Math. 20, 1976. 367-387.

[26] Robert Wilber, The Concave Least Weight Subsequence Problem Revisited, J. Algorithms 9(3).
1988, 418425,

[27] W.J. Wilbur and D.J. Lipman. Rapid Similarity Searches of Nucleic Acid and Protein Data
Banks, Proc. Nat. Acad. Sci. USA 80. 1983, 726-730.

[28] W.J. Wilbur and David J. Lipman, The Context Dependent Comparison of Biological Se-
quences, SITAM J. Appl. Math. 44(3). 1984, 557-367.

[29] P. Wiener, Linear Pattern Matching Algorithms, 1-{th Symposium on Switching and Automata
Theory, 1973, 1-11.

is

dv+l
dy
(i, Jp
(a)
jl Cu+l
Cu
: dv+1
dy
i)
(is’Jl
(b)

,
Figure 2

is

s

Ch j1 Ch+l

L 1 [

L) L{ 1
(irscp)
(is’jl)

(Cher- U1-1¢) Chel)

(a)

Ch §1=Ch+1 Ch+2
1

[

1] 1

(ir"ch+1)

(ir,Ch)

(i) Ch+1)

(Che2- (Chat- ig) . Cha2)

(b)

Figure 3

(Che1- Q17 1s) » Chat)

(a)

Figure 4

(p.c)
(i) -t+ip)
(ir’jl)
: N\
R" \R ‘ R
(t.j,)

Figure 5

