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Abstract

Our problem is to compute an approximation to the largest eigenvalue of an
n X n large symmetric positive definite matrix with relative error at most e.
We consider only algorithms that use Krylov information [b, Ab,..., AFb) con-
sisting of £ matrix-vector multiplications for some unit vector b. If the vector
b is chosen deterministically then the problem cannot be solved no matter how
many matrix-vector multiplications are performed and what algorithm is used.
If, however, the vector b is chosen randomly with respect to the uniform distri-
bution over the unit sphere, then the problem can be solved on the average and
probabilistically. More precisely, for a randomly chosen vector b we study the
power and Lanczos algorithms. For the power algorithm (method) we prove
sharp bounds on the average relative error and on the probabilistic relative
failure. For the Lanczos algorithm we present only upper bounds. In partic-
ular, In(n)/k characterizes the average relative error of the power algorithm,
whereas O((ln(n)/k)?) is an upper bound on the average relative error of the
Lanczos algorithm. In the probabilistic case, the algorithm is characterized by
its probabilistic relative failure which is defined as the measure of the set of
vectors b for which the algorithm fails. We show that the probabilistic relative
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failure goes to zero roughly as /n(1 —e)* for the power algorithm and at most
as /m e~ (2*~1VZ for the Lanczos algorithm. These bounds are for a worst case
distribution of eigenvalues which may depend on k. We also study the behavior
in the average and probabilistic cases of the two algorithms for a fixed matrix
A as the number of matrix-vector multiplications & increases. The bounds for
the power algorithm depend then on the ratio of the two largest eigenvalues
and their multiplicities. The bounds for the Lanczos algorithm depend on the
ratio between the difference of the two largest eigenvalues and the difference
of the largest and the smallest eigenvalues.

1 Introduction

In this paper we address the problem of approximating the largest eigenvalue
A1 of an n X n large symmetric positive definite matrix A. We wish to compute
an approximation £ with relative error at most ¢, i.e.,|A\; — €| < € A;. Typically
the matrix A is sparse and it is reasonable to use Krylov information consisting
of k matrix-vector multiplications, [b, Ab,..., A¥b], for some unit vector b.
Examples of algorithms for this problem are the power algorithm which has
rather limited practical value and the far superior Lanczos algorithm. It is
well known that convergence of both algorithms depends on the distribution
of eigenvalues and on the angle between the vector b and the eigenvector
m corresponding to the largest eigenvalue, see Section 2 for references. In
particular, if the vector b is chosen deterministically and independently on
the matrix A then it may happen that b is orthogonal to #;. In such a case
the two algorithms fail to approximate the largest eigenvalue. It is easy to
extend this negative result by showing that as long as Krylov information is
used with a deterministic unit vector b, then there exists no algorithm which
can approximate the largest eigenvalue for all symmetric positive matrices, see
Section 2 for details. Also if Krylov information is replaced by any k matrix-
vector multiplications then the problem cannot be solved for all symmetric
positive matrices as long as k¥ < n—1 since all the vectors might be orthogonal
to 1, see Remark 7.1 of Section 7.

On the other hand, a closer look at the analysis of convergence of the
power or Lanczos algorithm yields the impression that it is very unlikely that
the position of the vector b will be so unfortunate and that it should not
really happen with a randomly chosen vector b. This is exactly the point
of departure of our paper. We assume that the vector b is chosen randomly
with uniform distribution over the unit sphere of n dimensional space. Then
we define the average relative error of an algorithm as the expected relative
error while integrating over the vectors b of the unit sphere. We also analyze
the probabilistic relative failure which is defined as the measure of the set of



vectors b for which the algorithm fails to approximate the largest eigenvalue
with relative error at most ¢.

For the average case we find sharp bounds on the relative error of the
power algorithm, see Theorem 3.1. Namely, no matter what the distribution
of eigenvalues of the matrix A, the relative error is bounded from above, for
large n, by roughly 0.564 In(n)/(k — 1). This bound is sharp in the sense that
for each k there exists a symmetric positive definite matrix A for which the
relative error is at least roughly 0.5 In(n)/(k — 1). Hence, the relative error
of the power algorithm tends to zero as k goes to +o0, although the speed of
convergence is quite slow. Observe that the dimension n of the problem affects
the speed of convergence only logarithmically.

For the Lanczos algorithm we are only able to present upper bounds on its
average relative error, see Theorem 3.2. We show that independently of the
distribution of eigenvalues of the matrix A, the relative error is bounded by
2.575(In(n)/(k — 1))? for k € [4,n — 1}, and that the relative error is zero if k
is no less than the total number of distinct eigenvalues. To check the quality
of this upper bound we performed many numerical tests. They are reported in
Section 6. Numerical tests for the matrix whose eigenvalues are shifted zeros
of the Chebyshev polynomial of the first kind of degree n seem to indicate that
the relative error of the Lanczos algorithm behaves like k=2, If so then the
factor In?(n) in our upper bound is an overestimate.

Comparing the two algorithms we see, not surprisingly, the superiority of
the Lanczos algorithm. The ratio of steps of the power and Lanczos algorithms
needed to achieve error at most € is roughly at least equal to 0.35¢~1/2, Thus,
the smaller € the more superior the Lanczos algorithm.

So far we have discussed the bounds for a worst case distribution of eigen-
values. We also study the behavior of the average relative errors for a fixed
matrix A and increasing k. For the power algorithm, we obtain formulas for
the rate of convergence which depends on the ratio p of the two largest eigen-
values and on their multiplicities, see part (¢) of Theorem 3.1. In particular,
the best rate is obtained if the multiplicity p of the largest eigenvalue is at
least 3 and then it is equal to p**~!}, For p = 1, the rate is p*¥~1. Observe
that for a deterministic vector b which is not orthogonal to the eigenvector 7,,
the rate is p?(*~1). In Section 3 we explain why for p < 2 the rate decreases in
the average case. For the Lanczos algorithm we obtain only an upper bound
on the ratio which depends on the difference of the two largest eigenvalues
over the difference of the largest and the smallest eigenvalues, see part (b) of
Theorem 3.2.

We now turn to the probabilistic case. As before, we find sharp bounds for
the probabilistic relative failure of the power algorithm which are independent
of the distribution of eigenvalues, see Theorem 4.1. The failure goes to zero
roughly as v/n(1 —¢)*. Note that now the dimension n affects the failure much



more substantially than in the average case. Although the failure goes to zero
exponentially, for small £ the speed of convergence is quite slow.

The failure of the Lanczos algorithm is zero if k is no less than the total
number of distinct eigenvalues, and is bounded by roughly 1.648 \/me~Ve(26-1)
for any k, see Theorem 4.2. Hence, we have the same dependence on the
dimension n, but the dependence on ¢ is much improved.

If we compare the number of steps needed to obtain a failure of at most
8, then the ratio between the steps of the power and Lanczos algorithms is
independent of § and is roughly at least 2¢~/2. Thus, in the both average
and probabilistic cases the ratio is proportional to e~/2,

We also study the probabilistic relative failure for a fixed matrix A and
increasing k. The rate of convergence of the power algorithm depends on mul-
tiplicity p and is given by pP(*~1), Hence, the rate increases with multiplicity.
On the other hand, the asymptotic constant for large p and small ¢ is huge,
see part(c) of Theorem 4.1. As before, for the Lanczos algorithm we only ob-
tain an upper bound on the ratio which depends on the two largest and the
smallest eigenvalues.

The proofs of theorems from Sections 3 and 4 are presented in Section 5.
It turns out that the proof technique for the power algorithm can be applied
for the Lanczos algorithm with the use of Chebyshev polynomials of the first
kind for the average case and of the second kind for the probabilistic case. We
think that getting a sharp lower bound on the error or failure of the Lanczos
algorithm will require a more sophisticated analysis.

In Remark 7.3 of Section 7 we briefly mention a modified power algorithm
which was analyzed in the probabilistic case by Dixon [83]. We extend his
analysis to the average case and conclude that the power algorithm is better.

In this paper we do not address the termination criterion. Termination is
inherently hard due to the negative result for deterministic vectors b. Further-
more, for the Lanczos algorithm a “misconvergence phenomenon” takes place
as indicated in Parlett, Simon and Stringer [82]. We also experienced this in
our tests as reported in Section 6. Nevertheless we hope that average and
probabilistic bounds can be useful in deriving a reliable termination criterion
for which one can prove how the algorithm works on the average or proba-
bilistically. It should be added that it is often the case in engineering that the
quality of the computed approximation ¢ can be verified for moderate n by
performing triangular factorization of {;/ — A and checking that no negative
pivot occurs. Here, £ is a computed upper bound on the largest eigenvalue
A;1. For example, if one believes that £ is an approximation to A; with relative
error at most € then Ay, < /(1 — ¢), and one can set § = £/(1 — ¢€)..

Of course, approximating the largest eigenvalue is only one of many in-
teresting eigenvalue problems. To list a few, we mention approximating the
mth largest eigenvalue, the smallest eigenvalue, or corresponding eigenvectors.



Since the negative result for deterministic vectors b extends also for these new
problems, it is quite natural to use random vectors and, hopefully, to get pos-
itive results on the average or probabilistically. In particular, it seems to us
that a similar proof technique can work for approximating the smallest eigen-
value and the condition number of a symmetric positive definite matrix. We
hope to report this in the near future.

Finally we add a remark on using a gap ratio instead of the relative error
as the error criterion. The gap ratio is defined, see Parlett [89], as the error
criterion for which we wish to compute £ such that |A, — €| < e (A —A,.), where
A. denotes the smallest eigenvalue of A. Since the gap ratio for the Lanczos
algorithm is shift invariant. the bounds presented in this paper for the relative
error also hold for the gap ratio. Furthermore, in this case it suffices to assume
that A is symmetric and not necessarily positive definite. On the other hand,
the bounds for the power algorithm are not longer true since the gap ratio for
the power algorithm is not shift invariant. Details are given in Remark 7.5 of
Section 7.

2 Definition of the Problem

Let A be an n x n large symmetric positive definite matrix. Let A; = A;(A)
denote the eigenvalues of the matrix A, A;(A) > A(A) > ... > A,(A4) > 0.
We want to compute an approximation to the largest eigenvalue A\;(A). More
precisely, for a given (presumably small) positive number € we want to compute
a number § = £(A) such that the relative error between A;(A) and &(A) does

not exceed ¢,
A - Al 44
&( 2\1( )_( ) < e. (1)

Obviously, ife > 1, é(A) = 0 satisfies (1). To avoid this trivial case, we assume
that € € [0,1).

If n is large, say, of order 10%3 or 10** then it is prohibitively expensive
to use well known algorithms such as QR or QL. Instead, it is reasonable to
assume that the information about the matrix A is supplied by a subroutine
that computes Az for any vector z. If A is sparse, which often is the case,
the time and storage needed to perform the matrix-vector multiplication Az
is proportional to n.

We therefore assume that Krylov information consisting of £ matrix-vector
multiplications, & > 1,

Ni(A,b) = [b, Ab, ..., A*B], (2)

is used to compute the approximation £(A). That is, £(A) = ¢x(Ni(A, b)) for
some mapping ¢x : R™¥*!) — R. Here, b is a nonzero vector which, without




loss of generality, may be normalized such that ||b|| = 1, where || || stands for
the Euclidean norm of vectors.

Krylov information can be written as [21,22,...,2k41] With z; = b and
z; = Az;_;. This shows that it can be computed in time of k£ matrix-vector
multiplications.

Examples of algorithms that use Krylov information include the power and
(simple) Lanczos algorithms. For the power algorithm £7°* we have

(Az,z)
(z,2)

whereas for the Lanczos algorithm £1°* we have

£(A) = €P°¥(A, b, k) = with z = AF1p = 2z, (3)

£(A) = €5°"(A, b, k) = max {((fir_:;) : 0 # z € span(b,..., Ak'lb)} . (4)

The analysis of convergence of the power algorithm is straightforward and
may be found in most books on numerical analysis. The analysis of conver-
gence of the Lanczos algorithm is more complex and some of it may be found
in e.g., Wilkinson [65], Kaniel [66], Paige [71,72], Kahan and Parlett [76], Scott
[78], Parlett [80] and Saad [80].

In both cases, convergence depends on distributions of eigenvalues of the
matrix A and on the vector b. In particular, if b is orthogonal to the eigenvector
M, An1 = A7, then both algorithms fail to converge to A;. This means that
(1) cannot always be satisfied.

It is then natural to ask if there exists an algorithm using Krylov infor-
mation (with sufficiently large k) for which (1) is satisfied for some ¢ and for
all symmetric and positive definite matrices. It is easy to verify that, unfor-
tunately, this is not the case.

We now present a simple argument why this is so, see also Remark 7.1 in
Section 7, where further discussion may be found. For arbitrary A,b and k,
let

d = d(A, b, k) = dim span(b, Ab, ..., A*'b).

Clearly, 1 € d < min(k,n) and both bounds can be achieved. Let é(A) =
#x(Ng(A, b)), where ¢ is an arbitrary mapping. o

Assume that d < n — 1. Then there exists a matrix A, A = AT > 0, such

that £(A) = ¢(A) and )

£(A) — M(A)

‘ ) )

That is, £(A) does not satisfy (1) for the matrix A. The matrix A is of the

form A = A+ cuu”, where « is a positive constant and u is a nonzero vector




orthogonal to b, Ab,..., A¥"1b. Such a vector exists since d < n — 1. By
induction we get N '

A’b= A’b  for j:01 k.
Thus, Ni(A,b) = Ni(A,b) and therefore {(A4) = C( A). Observe that the trace
of A is given by )

trace(A) = trace(A) + a||ul|?
and it goes to infinity as @ — +o00. Therefore the largest eigenvalue A1 (A)
goes to infinity as well. We thus have

E(A) — M(4) , le (A4) = M ( A)‘
M (A)

1, as a— +oo.

Hence, there exists a positive a for which (5) holds, as claimed.

Observe that for large a, the largest eigenvalue A;(A4) of A is close to o and
the eigenvector corresponding to A; (A) is close to u. The vector u is orthogonal
to all but last vectors of Krylov information. Thus, Ni(A, b) contains almost
no information on the vector u and therefore no matter how ¢, is chosen,
£(A) = ¢x(Ni(A, b)) cannot approximate A;(A4) with relative error at most .

To prove (5) we needed to assume that d(A,b,k) < n —1. Observe that
this inequality holds for all A and b as long as £ < n—1. Thus, if one performs
fewer than n matrix-vector multiplications, there always exists a symmetric
and positive definite matrix A which shares the same information as A and for
which it is impossible to approximate its largest eigenvalue with relative error
at most . We stress that £ needs not be small. The only assumption is € < 1.

Clearly, if for any A we have d(A,b,k) = n then it is possible to satisfy
(1). Indeed, the vectors b, Ab, ..., A*"1b span the whole space and the matrix
A can be uniquely recovered from the computed Krylov information Ni(A, b).
Knowing A, we have, at least conceptually, enough information to recover the
largest eigenvalue A;(A) even exactly.

Can we thus guarantee that d(A,b,k) = n for some k& > n? Clearly,
not always. For any vector b, there exists a matrix A = AT > 0 such that
b is its eigenvector, say, Ab = ab. Then d(A,b,k) = 1 for all £, and no
matter how many matrix-vector multiplications are performed, (1) cannot be
satisfied for some symmetric and positive definite matrices. It can also happen
that d(A,b,p) = d(A,b,p+ 1) for some p, where 1 < p < n — 1. Then
d(A,b,k) = d(A,b,p) for all k > p, and still the problem (1) cannot always be
solved. We have

d(A,b,k) = n iff k> n and vectors b, Ab,..., A" 'b are linearly independent.

Observe that b, Ab, ..., A™ !b are linearly independent iff all the eigenvalues
of A are distinct and the projections of the vector b onto the eigenvectors 7; of
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the matrix A are nonzero. That is, (4,7;) # 0 fori = 1,2,...,n. This property
is guaranteed if, for example, A is unreduced tridiagonal and b = [1,0,...,0].

Although it is impossible to guarantee that (b,7;) # 0 for all i € [1,n],
it is intuitively clear that (b,7;) # 0 should hold for “almost all” vectors b.
This is definitely the case if the vector b is chosen randomly, say, with uni-
form distribution u on the n-dimensional sphere of radius one. The reader
may consult Knuth [81,p.130], where it is explained how such a vector can be
generated computationally. Then (b,7;) = 0 holds with probability zero and
d(A, b, k) = k with probability 1 iff A has at least k distinct eigenvalues.

The last fact follows by noting that [b, Ab,..., A*~1b] in the basis of eigen-
vectors of A is equal to the product of the diagonal matrix D whose entries are
components of b, and the Vandermonde matrix V' whose entries are powers of
eigenvalues of A. The matrix D is nonsingular with probability one whereas
the matrix V has rank k iff A has at least k£ distinct eigenvalues.

This discussion suggests that although (1) cannot be satisfied for all sym-
metric and positive definite matrices with a deterministically chosen vector b,
there is hope this problem can be solved by introducing a random initial vec-
tor b of Krylov information. That is, for all symmetric and positive definite
matrices we wish to have the average relative error with respect to vectors b
to be at most . Or we may wish to solve the problem with high probability,
i.e., for vectors b which form a set of measure close to one.

We now formalize this idea. Let u be a uniform distribution over the unit
sphere of R*, u({b € R™ : ||b]| = 1}) = 1. For any symmetric and posi-
tive definite matrix A, we select a random vector b according to the distribu-
tion u. Then we compute Krylov information Ni(A,b) and the approximation
£(A, b, k) of the largest eigenvalue A;(A) by the power or Lanczos algorithm
(3) or (4). Then

(£, A, k) = /

Hell=1

E(A, b k) — )
Ai(4)

denotes the average relative error. Let

A
Ao ©
A, b k) — A (A)

Prodg A k,g) = {bER": bl| =1, 4,8, ! e} 7
FE A k) = 1 oy (7
denote the probability that the algorithm fails to approximate the largest
eigenvalue with relative error at most =. We call (7) the probabilistic relative
failure of £.

Observe that £(A, b, k) = (A, ab, k) for all a # 0 and &(A, b, k) does not
depend on signs of b;.. This and the use of polar coordinates yield that (6)
and (7) remain the same if we integrate over the unit ball B, with respect to

normalized Lebesgue measure, see Remark 7.2 of Section 7 for details.




3 Average Case

In this section we present bounds on the average relative error (6) both for
the power and Lanczos algorithms. Proofs are given in Section 5. To simplify
some estimates we assume that n > 8. We begin with the power algorithm.

Theorem 3.1 Let £7°% be the power algorithm defined by (3).
(a) For any symmetric positive definite matriz A and for any k > 2 we

have
Inn

k-1’
where 7712 < a(n) < 0.871 and for large n, a(n) ~ r=1/2 = 0.564... .

e*9(EP° A k) < afn)

(b) For any k > 1+ } In(n/Inn), let A be any symmetric matriz with
ezactly two distinct eigenvalues A; > 0 and A; = A(1 —In(n/In n)/(2(k — 1)),
fori=2,3,...,n. Then for large n and k,

Inn

eI (€7, Ak) 2 0.5

(1 +0(1)).

(c) For any symmetric positive definite matriz A, let p, p < n, and q denote

the multiplicities of the two largest eigenvalues Ay and Apyq. Then

i e2vI(EPv, A, k) _ q (1 _ f\l+_1> for p> 3
k—+oo (’\p+1//\1)2(k_1) p—2 A = 9%
. eavg({pow’ A, k) A3 /\1
kE-Ii-noo e = ¢ 1 — T In 1. for p= 2,
(k—1)(As/A) 1 3

. eaug(gpow’A’k) _ WM _A—2 or p =
k_l_{inoo (Az/)\l)k_l = V7 T(q/2) (1 ,\1) forp=1.

Part (a) of Theorem 3.1 states that no matter what the distribution of
eigenvalues of A nor how poorly the dominant eigenvalue is separated from
the next largest eigenvalue, the average relative error of the power algorithm
is bounded by 0.871 In(n)/(k — 1). For large n, the constant 0.871 can be
replaced by roughly 0.564.

Part (b) of Theorem 3.1 states that this upper bound is essentially sharp
since for each k there exists a matrix A = AT > 0 with only two distinct
eigenvalues for which the average relative error of the power algorithm is at
least roughly 0.5 In(n)/(k —1).

The average relative error of the power algorithm depends only logarith-
mically on the dimension n. Thus, even for large n, the constant 0.564 In(n)



is quite moderate and the error is a modest multiple of (k — 1)~!. Of course,
(k—1)~! tends to zero slowly and to guarantee

eI A k) <e VA=AT >0

we have to perform roughly & = [1 4 0.564 In(n)/e] steps. For small €, such
a number of steps cannot be realistically done. As we shall see in Theorem
3.2, the Lanczos algorithm is, not surprisingly, much better and therefore the
power algorithm is of limited value in numerical practice.

We now comment on the paper of O’Leary, Stewart and Vandergraft [79).
They analyzed the power algorithm for fixed eigenvectors 7,,72,...,7, and for
a fixed vector b, ||b]| = 1. They showed that for a worst case distribution of
eigenvalues, the power algorithm takes roughly k = In(7)/e steps to compute
an e-approximation to the largest eigenvalue. Here 7 = tan |0|, where 6 is the
angle between b and 7,. If all b; = (b,7;) are more or less equal then 7 ~ /n
and k ~ %In(n)/e. Hence, also in this case In(n)/e exhibits the behavior of
the power algorithm.

We turn to part (c) of Theorem 3.1 which explains the asymptotic behavior
of the average relative errors of the power algorithm. The rate of convergence
depends on the multiplicity p of the largest eigenvalue. We assumed that
p < n. Note that the case p = n is not interesting since then A is proportional
to the indentity matrix and one step of the power algorithm recovers exactly
the largest eigenvalue.

The worst rate is for p = 1 and in this case is proportional to (Ay/A ) 1.
This should be compared with the deterministic case for which the rate is
proportional to (A2/A;)**~!) whenever b; = (b,m,) # 0. More precisely, for
any vector b, let pp(b) = (A — EP¥(A,b,k))/ M. As before, let b; = (b, ;).
Assuming that b, # 0 we have

AQ 2(k-1) bg + o+ b3+1 Ag /\2 2(k-1)
pk(b) = (x) bg 1- x + o x ’

where ¢ is the multiplicity of the second largest eigenvalue.
To explain the difference in the rate of convergence, note that the average
value of py(b) with respect to b cannot be proportional to (A3/X;)**~?) since

b2 4.+ b2
Ab”—l s p(db) = +oo.

b
The complete analysis shows that we loose a factor (Az/A;)¥~! when integrating

px(b), and therefore the average value of p(b) is proportional to (Az/A;)*!,
as claimed in part (c) for p=1.
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For p > 2, the situation is different since

(b) = Apt1 2(k-1) by +... 402, 1_,\19+1 o At 2(k-1)
PEOT =N b+...+b2 M N

whenever b2 + ... + b2 # 0. For p > 3, the integral

b2 + ...+ b?
ptl Ptq  (db) <
/Ilbll=1 b2 +...+062 p(db) +00

which explains why the rate of convergence is proportional to (Ap4q/A; ) 251,

For p = 2, the integral above is “barely” infinite and the complete analysis
shows that we lose the factor In(Az/A;)¥*=1) = 2(k — 1) In(A3/A;) when
integrating px(b). As claimed in part (c) for p = 2, the rate of convergence is
therefore proportional to (k — 1) (Aa/X2)3*~1).

Part (c) of Theorem 3.1 shows that the asymptotic constant depends also
on the multiplicity g of the second largest eigenvalue and on the ratio Ap1/A;.
The multiplicity ¢ may depend on the dimension n, and it can happen that
g = n — p. In this case and for A,41/A; not too close to one, the asymptotic
constant is huge.

We wish to add that a similar analysis may be performed for a modified
power algorithm £™P°%, where

EmPU(A, b k) = (A*b,0)%, |8 = 1.

For the modified power algorithm, In(n)/(k—1) is a sharp upper bound on the
average relative error which is roughly 1.8 times worse than the corresponding
error bound of the power algorithm. Unlike the power algorithm, In(n)/(k—1)
is also a sharp upper bound on the asymptotic behavior of the average relative
error of the modified power algorithm. This shows that the power algorithm
is superior to the modified power algorithm. Details are presented in Remark
7.3 of Section 7.

We now proceed to the Lanczos algorithm. The analysis of this algorithm
is much more complex and we are able to present only upper bounds. We
verify some of our estimates by numerical tests which will be reported here
and in more detail in Section 6. Obviously

eauy(éLon’A,k) S eaug(épow’A,k) VA and k. (8)

Therefore one can apply estimates of the power algorithm also to the Lanczos
algorithm. Of course, since the Lanczos algorithm is much more powerful than
the power algorithm we hope to get much better estimates of convergence.
This will be confirmed by the following theorem. To simplify some formulas
we assume that £ > 4, and (as before) that n > 8.

11



Theorem 3.2 Let £L°" be the Lanczos algorithm defined by (4).

(a) For any symmetric positive definite matriz A, let m denote the number
of distinct eigenvalues of A. Then
for k > m,
eavg(ELan’A, k) =0,

fork € [4,m—1],

— 1y4)\? 2
eavg(éLan’A.‘ k) S 0.103 <%1_)_)) S 2.575 (klnnl) .

(b) For any symmetric positive definite matriz A, let p, p < n, denote the
multiplicity of the largest eigenvalue A, and let A,y1 and XA, be the second
largest and the smallest eigenvalue of A. Then

k-1
1=/ = A1)/ (M = '\n))
L+ /(1 = A1) /(M1 = An)

ev9(glen A k) < 2.589/n (

Theorem 3.2 states that the Lanczos algorithm converges in m steps, m <
n, which confirms our intuition that it can fail only on a set of vectors b
of measure zero. For k essentially less than n, the average relative error of
the Lanczos algorithm is roughly bounded by 0.1 (In(n)/k)?. Since In(n)/k
is a sharp estimate of the average relative error of the power algorithm, we
see that the Lanczos algorithm is far superior. If we want to guarantee that
e®¥9(£, A, k) < e, then the power algorithm needs to perform roughly k7" =
0.564 In(n)/e steps, whereas the Lanczos algorithm will take roughly kle" <
1.605 In(n)/+/ steps. Thus

kpow > 0.35
kLan — \/E '
As already indicated we do not know if the upper bound for the Lanczos

algorithm presented in part (a) is sharp. We verify the sharpness of this bound
by many numerical tests. These tests seem to indicate that

e*rs(glen, A.k) = O(k)

with the constant in the © notation independent of n. If this is the case
then the bound in part (a) is an overestimate by the factor In?n. Details of
numerical tests are reported in Section 6.

Part (b) of Theorem 3.2 yields a non-asymptotic estimate in terms of the
two largest eigenvalues and the smallest eigenvalue of A. Observe that the
bound in part (b) is better than the bound in part (&) if (A; — Apt1)/ (A1 — An)
1s not too close to zero.
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4 Probabilistic Case

In this section we present bounds for the probabilistic relative failure (7) for the
power and Lanczos algorithms. Proofs are given in Section 5. As in Section 3
we begin with the power algorithm.

[t is easy to check that for € = 0, the probabiiistic relative failure of the
power algorithm fP™5(¢P°% A k,0) = 1 for all matrices A with at least two
distinct eigenvalues, and fPm*(£P°% A, k,0) = 0 for all matrices A having only
one distinct eigenvalue. That’s why we assume in Theorem 4.1 that ¢ > 0. The
probabilistic relative failure of the power algorithm depends on the function g
defined by

(L—e)*2 (1 —1/(2k — 1))

— . k>2. (9
V(1 —e)2=1 (1 — 1/(2k — 1))**7D 4 2(k — 1)e ©

g(E,‘, k) =

Note that

gle k) < (1—e)/2

_ _\k=1/2
gle, k) = L&(l+o(l)) as k — +oo for € > 0,

V2e ve(k —1)

with a negative o(1) term.

Theorem 4.1 Let {7 be the power algorithm defined by (3) and let € > 0.

(a) For any symmetric positive definite matriz A and for any k > 2 we
have

9(e,k)
[ (€7 A ke) < 0.824\/5/0 (1 — ¢2)(n=1)/2 gy
0.354

velk=1)

(b) For any integer k > 2, let A be any symmetric matriz with two distinct

eigenvalues Ay > 0 and A\; = A\ (1 —€)(1 —1/(2k = 1)) fori = 2,3,...,n.
Then

max fr(EPY, A ke) = f(ERV, A ke)

A=AT >0

< min {0.824,

} V(1 —e)k 12,

(e)
> 0.797/n (1 - 1/n) /g (1= 2)n-1/2 gy,
0

and for large n and k,
n (1 —¢e)k1/?

frse, Akie) = a 2 S (L o),

13



where a = 1/\/me = 0.342.. ..

(c) For any symmetric and positive definite matriz A, let p, p < n, and
q denote the multiplicities of the two largest eigenvalues Ay and Apyr. If
/\p+1/)‘1 <l-—c¢ then

o e Ake) 21— = A /M) T((p+9)/2)
k—too (A4 / A )Y per/? T'(p/2) T'(q/2)

Parts (a) and (b) of Theorem 4.1 present sharp bounds on the probabilistic
relative failure of the power algorithm. The failure tends to zero with the rate
of convergence roughly (1 — €)¥=1/2. For small ¢, this is quite unsatisfactory.
On the other hand, if one is interested in a rough estimate of the largest
eigenvalue, say ¢ = 0.5, then the rate is quite good.

The dependence of the probabilistic relative failure on the dimension n is
through /n. This shows that the dimension n affects the probabilistic case
for the power algorithm in a much more substantial way than the average case
which depends only through In n.

Consider now the minimal number of steps needed to get

fprob(fpow’ A, k,E) <6, VA= AT >0,

where § denotes the measure of a set for which the power algorithm may fail.

Then k =~ In(n/6%)/(2¢). Hence, the dimension n and the parameter 6
affect the number of steps only logarithmically. Even for huge n and very
small 6, the factor In(n/§%)/2 is quite moderate. The dependence on ¢ is
much more crucial since k goes linearly to infinity with e~!. Observe that the
dimension n and the parameter ¢ affect the number of steps in the same way
in the average and probabilistic cases.

Part (c) of Theorem 4.1 presents the asymptotic behavior of the probabilis-
tic relative failure of the power algorithm. The rate of convergence depends
on the multiplicity p of the largest eigenvalue, and the rate improves as p in-
creases. On the other hand, the asymptotic constant gets huge for large p and
small €.

Part (c) holds under the assumption that the ratio of two largest eigenvalues
is not too close to one, Apt1 /A < 1 —e. Of course, this holds for sufficiently
small e. If, however, Ap41/A; 2> 1 — ¢, then we do not know the asymptotic
behavior of the probabilistic relative failure of the power algorithm and we
suspect that its behavior may be quite different from that presented in part (c).

We wish to add that the modified power algorithm in the probabilistic case
was analyzed by Dixon [83]. In Remark 7.3 of Section 7 we present his result.

14



We now turn to the Lanczos algorithm. As was the case for the average
case we are able to present only upper bounds. Also in the probabilistic case
we have

frrob(glan A k,e) < fP(EPY, A k,e) VYA and k (10)
and upper bounds of Theorem 4.1 can be used for the Lanczos algorithm. The
following theorem presents some better bounds.

Theorem 4.2 Let €64 be the Lanczos algorithm defined by (4) and let € €
[0,1).
(a) For any symmetric positive definite matriz A, let m denote the number
of distinct eigenvalues of A. Then
for k> m,
fProb(é-Lan’ A, k,E) — 0’

for any k,
Frrob(elen A k) < 1.648 \/m e~ VER),

(b) For any symmetric positive definite matriz A, let p, p <n, denote the
multiplicity of the largest eigenvalue Ay, and let Appy and A, be the second
largest and the smallest eigenvalues of A. Then for e > 0,

k-1
m (1= (A = A1)/ (M1 = An)
frrob(glen Ak e) < 1.648/— ( ) ,
( ) \/: 1+ \/(/\1 = dpt1)/(M — An)

Theorem 4.2 states that also in the probabilistic case the Lanczos algorithm
converges in m steps. For any k and for small € the probabilistic relative failure
of the Lanczos algorithm is roughly bounded by \/n exp(—+/€(2k — 1)). This

should be compared with a sharp bound for the power algorithm given by
\/TT/_E(I —¢)*/Vk. Once more we see the superiority of the Lanczos algorithm.
If we want to guarantee a §-failure, fProb(€, A, k,e) < &, then we have to
perform roughly k?% = In(n/(6%))/(2¢) steps by the power algorithm and
roughly kX" < In(n/6%)/(4+/€) by the Lanczos algorithm. Thus

kpow 2

kLan 2 \/E
Observe a weak dependence on é which only logarithmically affects the number
of steps. The dependence on ¢ is much crucial.

As in the average case, part (b) of Theorem 4.2 presents a non-asymptotic
bound on the probabilistic relative failure of the Lanczos algorithm. Observe
that the bound in part (b) is better then the bound in part (a) if (A —
A1)/ (A1 = Ap) > e

15



5 Proofs of Theorems

In this section we present proofs of theorems from Sections 3 and 4. We begin
with the first theorem which deals with convergence of the power algorithm in
the average case.

Proof of Theorem 3.1

Let A be any symmetric positive matrix with eigenpairs (A;, 1), where the
eigenvectors 7; form an orthonormal basis of R® and A; > A2 2> ... > A, > 0.

That is,
Ar); = /\; ¢, (7),',7]]') = 5,"_]‘, i,j = 1,2, NP (8

Let b= Y"1, b;n;. From (3) we get
€Y = €PU(A, b k) = ) BEATT ST,
=1 i=1

Let z; = /\;//\1 € (0, 1]. Then

L D D Y :r?(k_l)(l - ;)

1=2 Y1 ¥

M Ry, e

From Remark 7.2 of Section 7 we know that the average relative error can be
defined through the integration over the unit ball B,,

1 A — EP°¥(A, bk
ef?V = eI(EPV, A k) = — / L AR g, (11)
Cn n /\1
where ¢, = ©"/2/T'(1 + n/2) is the Lebesgue measure of the unit ball B,.
Since Lebesgue measure is orthogonally invariant we can integrate in (11)
with respect to b;,

1 - db .
pow _ 1 2 2=V _ . / 1
€5 Cn /g i T ( 1-) b3<1-(Ibl13 _, b% + 30,0 z?(k_l) db

1=2 Y~y

-

n n "1/2

= 3‘/ S 2210 _ z)) (Z b? x?(k_l)) arctan (h(b)) db,
Cn JB' =2 i=2

where B’ is the (n — 1)-dimensional unit ball, |[5]]2_, = X%, 42, db stands for

dby - dbn and A(b) = V/(1 - [1b][3-1)/ S, 67 =17V,
Schwartz’s inequality for sums, S0, y; z; < (20, v2)/? (T, 22)'/%, with
yi = bz and z; = b; z571(1 — 1), yields

n 1/2
el < c% /B , (Z, b2 21 (1 — z.—)’) arctan (h(b)) db.
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Using now Schwartz’s inequality for integrals we get

N . 12
e = 2 (/ db) (/ S8t :r?(k"l)(l — z;)? arctan® (h(b)) db)
B’ B i=2

Cn
_ 2¢p1 1 2 2 2(k-1) 2
= arctan® (h(b)) Z b; r; (1 —x)
Cn Cn—-1 ! iz <p

1/2
+ 3 Het R - xf)Z) dz?) ,
x>0
for any number 8 € [0,1]. Here, cooy = #(*"U/2/T(1 + (n — 1)/2) is the
Lebesgue measure of the (n — 1)-dimensional unit ball.

Consider the function H(t) = (1 — t)?t**~). The maximum of H is at-
tained at to = 1 — 1/k and H is increasing in [0,%0]. Let 8 < to. Since
arctanz < m/2 and arctanz < z, then

arctant (h(5) 35 B0zt < (T) Laae0 -

I8 z.<ﬂ =2

arctan® (h(b)) Z 221 — )2 < b)2b2 k-1 _ g2

1z, >0 1=2

(1 =1bllA) (1 - 8)%

Combining these bounds we obtain

2c 1 2\
e’ < :-"—_1( (l—ﬂ)Q(—IIsz_ AHED 4 (1 — |1bl17 1)) db)

Cn Cn-1

2¢q 1 T 12
= ==l - — | =p¥-1) b||2_, db 1) )
==t ﬂ)(cﬂ(4ﬂ )/B,llll_l +

Recall that for any measurable function f : [0,7] — R, we have

o e, P b= i [T 67" f0ya, (12

where ¢; = #/3/T(1 + i/2), see e.g., Gradshteyn and Ryzhik [80, 4.642]. For
f(t) =t we get

/ I1BI[2_, db = c,,_l.
From this we have
2cn 1 -1 2 2cn-1 \/ 2
pow _ 2(k-1) (1- —f2(k-1) + -
i —, (-5 ﬂ n+1+n+1_ ﬂ) B
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*(®) 33ed jo jooid oy seja[dwod goigm

P2
tepegig = % ~ (u)o

aA®y am ‘019z 03 8908 |_,u/1 pue xZ/u/M T “0/1-% adulg

1-3 _u o pA(I-y)g Yo
u uf (u)D-E+zu/ u uf P Tugg ~ med?

pue vu/I > (l—q)zg
wyl ‘uu[u[/T+T=oYim ((1 — ¥)z)/uu; o — 1 = ¢ ey ‘u adre[ Jog
g S ufe10] 1280 > (u)o 1eyy sasoid sy,

-y - I—-¥ 8 _u up A (1— )T %2 —
“UIIL80>UU"[8+H‘/\D_E+Z_M —— u/\.08>mod9
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We have 1 — z; = a/(2(k — 1)) and 8 = 22*°" = In(n)/n(1 + o(1)). For the
matrix A, (11) takes the form

1 a B, b? 4 b2 — b?
avg( gpow k — I 1= l db
€ (é ,As ) Cn 2(1(3 _ 1) B b'z + ﬂ Z'_z 2

1 « 52
- Zz(k—l)( /Ianb2+52,2xdb)

_ e . _ 576 4
e 20k—1) \" JB. B1BE+ T, 2 .

Since 87! > 1 then

1 a bt
avg( cpow > — — -87! -
(7 AR) 2 cn 2(k-1) (Cﬂ g Bn Ly b db)

N ci =) (e -872)

— —1“2((’;/1111;‘) (1 _ L1yl Tnor(ll)) =0.5 ,:n_”l (1 +0(1)),

as claimed.

We proceed to prove part (c) of Theorem 3.1. Recall that p and g are
multiplicities of the two largest distinct eigenvalues of A. From (11) we can
write

2(k-1

)
1-— —

ezow _ L / $p+1 ( 1P+1) Zx p+1 ( db (1 +O(1)) as k — +00.

x—l i p+l c-p+l x

Let a = a:iffl Vo= ()‘p+1//\1)2(k_1) and a = (1 — zp41)a. Integrating with
respect to bptq41,. .., by we get

db,

(n—p-q)/2
er” _ QCnpg / Z.-p-n i (1 - bz)
1+ 0o(1) Cn Bptq bl +a Z.—-p-n b?

where B; is the :-dimensional unit ball and ¢; is its measure. We rewrite the
last integral as an integral over the unit ball B, and the ball Z,_pﬂ b?

1 - ,_1b2 Let t; —b/(l— 02 fori = p+1,...,p+q and let
6] = £5, 82, [1t]]? = T8, ¢ " Then we have
e’ Cn

1+0(1) acn_pyq

[ [ QIR 2 - O )
o, Js T6TF + (1~ Bl TP
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Using (12) first for the second integral and then for the first integral we get

eP°v b l+(n r)/2 131 (] — ¢2 (n—p—q)/2
k — / / I ” > ( > 2) dtdb
1 +0o(1) Bp 16112 + a (1 — [|6][2) ¢
(1 — z? 14+(n=p)/2 7p—1 4a+1 (] _ $2)(n—p-q)/2
o Jo :z:"~’+a(1—:z:2)t2

where 71 = (@ qCnp—q ¢q)/Cn and Y2 = (@ PG Cnop—q CpCq)/Cn.
Consider now the case p > 3. Then the last double integral is finite even
for a = 0. Recalling the definition of the beta function,

L'(:) I'(4)

— 14
T(i+ ) s
see e.g., Gradshteyn and Ryzhik [80,8.380 and 8.384], we have

ep ! 2\14(n—p)/2 ..p-3 ! 2\(n—p—q)/2 4941

= 72(/(1—3:) PI2 gP d:z:) (/(1-—t)("”)/ ¢et dt)
0 0

1+ 0(1)
B p— 2n q n—p—g
= 4B( 5 +2)B(§+1,————2 +1).

1 R .
B(i,j)=2/0 £1(1 = 21 dt =

Expressing c!s and B’s in terms of the gamma function we finally get

el _apgT(-1+p/2) _ (1 _ Am) (/\m 2=
1+ o(1) 4 T(Q1+p/2) A A

p-2

which proves part (c) for p > 3.
Assume now that p = 2. Observe that for a — 0 we have

1 1-— 2\n/2
/ z( z) dz
o z2+a(l —2?)1t?

: z dz+o( [ = d
B /o (1 — at?)z? + at? Tt (./o (1 — at?)z? 4 at? z)

! d ! 1 2 2\ 1
= /‘)——dz+0</0 :z:d:z:)=§ln(x +at)|0+0(1)

24 at?

- (tf)+0( )

Therefore we have

1:-"0(1) - /Ol 9+ (1 — m"—'?'—' In (%) dt
‘;_2 “(\/LE) B(2+1 - )(1+0(1)),
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where now v, = (2q a cn—q-2 ¢; c2)/cn. This yields

pow

ek

1 A\ [ As\2*Y A1
T+o(1) " Va q( Al) (/\1) ( ) "

which proves part (¢) for p = 2.
Finally assume that p = 1. Then for a — 0 we have

1 (1_$2)(n+1)/2 1 1
i = [
/(; z? +a(l — z?)t? ’ ) $2+at2dm+0(l)

1 T |
_t\/Earctan m|o+0(1) = t\/_2+0(1)

Thus, we have

er / 2\(n-q—1)/2
tq 1 —t - dt
T+o(1) 2f

724\7;_ (Q+1’n ;’+1)=ﬁ<1—§—f) (%)‘ r((g(:/z))/z)’

with 5 = (@ g ¢n_q-1 ¢4 1)/cn. This completes the proof of Theorem 3.1.

Proof of Theorem 3.2

The Lanczos algorithm takes the maximum of (Az,z)/(z,z) for 0 # z €
span(b, Ab, ..., A*"1b), see (4). This means that z = P(A)b for a nonzero
polynomial from the class P, of polynomials of degree < k — 1. We have

ity 62 X P(A)
Ty 0PN

ghe EL‘"‘(Abk)—ma.

The relative error of the Lanczos algorithm is given by

_ ¢lLan n 12 p2(\. — X
g TR BP0 (- M)
A PeP, ?:1 b? P2(/\,)

Using a continuity argument we may restrict ourselves to polynomials P such
that P(A;) # 0. Let Q(t) = P(A1t)/P(A). Then Q € P and Q(1) = 1. Let
Pi(1) denote such polynomials. Thus, for z; = X;/A; € (0,1] we have

—g L R, b0z (1 -3

AL . S 15
A QeP(1) b} + T, 02 Q%(zi) (15)




As for the power algorithm, we conclude that the average relative error of the
Lanczos algorithm is given by

o T, Q%z) (1 — =)
n Qelgk(l) 62 + z:_2 bZ Qz(il:;) db- (16)

ay n l
efon = ega(elm Ak = —

Assume first that ¥ > m. This means that the set {z;,z2,...,2.} contains
m distinct elements {t;,t2,...,tm} with t; = 1. Take

Q@) = [ - )/ - 1.

Then Q € Pix(1) and the integrand in (16) vanishes for b, # 0. Since b, = 0
for a set of measure zero, we have e,’;“" = 0, as claimed.

Assume now that k € [4,m — 1]. We find an upper bound on ef*" by
changing the order of integration and taking the infimum,

1 . b} Q*(z:) (1 — z)
Lan < — 1 2 i
= cn oégf(l) B b} + T, 0¥ Q%(xi) @

Observe that to estimate the integral we can repeat the same reasoning as for
the power algorithm with the polynomial Q instead of z*~!. Therefore, for
any S € [0,1] we have

Lan 26"-1 : ( 2
< — f b Q -z;)?
©k - Cn Qelgk(l) Cn-1 4 ',zz:(ﬁ 1 z) db
1 1/2

+ (=B [ (1 llblls- l)db)

Let
2
w(B) = Jof = max Q*(z)(1-2)" (17)

Then

1
elon < a1 (ﬁw(ﬂ) ; W-BY _ﬂ)z) 2

Cn 4 n

and using (13) we have

el*" < 0.412\/r2nw(B) + 8(1 — B)2 (18)

To get an upper bound on ef*" we thus need to find an upper bound on

w(f) and select a proper B, see also Remark 7.4 in Section 7. Take

Q(z) =Ter ((2/B)z - 1) [ Th-a ((2/8) - 1),
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where Ti_, is the Chebyshev polynomial of the first kind of degree k— 1. Then

2(k-1)
v-v(ﬂ)sTk‘_ﬂ((z/ﬂ)—1)9(1;—\/__H “i:") < 1V (19)

Let y =1 -8 €[0,1]. Then

ef‘"‘ < 0.824 \/7r2ne'4("'1)" + 294

Note that for k—1 < +/0.103 In(n(k—1)*), part (a) of Theorem 3.2 trivially

holds since
In n(k — 1)%\?
k-1 )

Assume thus that £ — 1 > v/0.103 In n(k — 1)*. Take now

el <1<0.103 (

1 128 w2 n(k —1)*
4(k - 1) " (In n(k — 1)4)*

¥ =

Since 12872 < (In n(k — 1)*)* for n > 8 and k > 4, we have v < 1. Clearly,
~ > 0. A simple calculation yields

In n(k —1)* )’

ef*” <0.103 ( —

as claimed in part (a).

To prove part (b), define i = A.fA; and B2 = Apy1/A1. Repeating the
same reasoning that led to (18) we conclude that the sum for z; > B of the
upper bound on ef*" disappears and

Lan < 0.412 /72 nw(B, Ba),

w(p1, B3) = er (1) ﬁlf?aqh (1)(1 —5’3)

For B = (Aps1 — An)/ (M1 — An) take

where

0(z) = Tss (2—;—:5—) . 1) / Tour ((2/8) - 1)

Then w(B, B2) < T2 ((2/8) — 1) and using the second inequality of (19), we
get part (b). This completes the proof of Theorem 3.2
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Proof of Theorem 4.1

We need to find the measure of the set

np2 2kl gy
7 = beR": Hb” =1, i=2 0i Ly (uk—lz;) > €
b%+2?=2b?$!

{b eRr™: ||p|=1, S_b¥(1l—c— z) oY > sbf},
=2

where, as before, z; = Aif 1.

Note that H(z) = (1 — € — z) z2*-1 for z € [0,1] attains its maximum
value at z* = (1 —¢) (1 — 1/(2k — 1)) and H(z*) = (1 —¢€)*1(1 - 1/(2k -
1))?*-V/(2k —1). Then

S B (1—e— i) 2260 < H(z™) Y8,

=2 1=2

and Z C Z*, where

Z" = {beR": ol = 1, S b7 >ab§}

=2
with
o= e (2k —1)e

T H(z®) (1—e)*1(1-1/(2k— 1))2-1)"

Obviously,
Frreb(Erv, A kye) = p(Z) < p(Z7).
We have
9
1—u(Z%) = —
wZ’) c,,/; / g b2 <min{1-b} a b} db

2¢._y f1
- oot / min{l — t?, at?}(*" /2 dt,
cn Jo

Observe that min{l — t3,at?} = at? for t < 1/V1+a = g(k,¢), see (9) for
the definition of g, and min{l — t?,at?} = 1 — t? for t > g(k,¢). Therefore

(kvz) . 1 .
1 —u(Z%) =~ (/0, (atz)’dt+/g(ke)(1—t2)’dt)

1 a \’ Lo 9(k.e) "
(o (s + - v [ -eva)
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where j = (n — 1)/2 and v = 2¢n_1/cq. Since ¢, = 2¢a-q fo(1 — t2)(""1/2 4t
we get

. 2¢n- 9(k.e) o\ (ne k,e a \(n-1)/2
wZ7) = cnl(/o (1 — %) l’/2dt—g(n )(1+a) ) (20)

From (13) we have v < 2.0641/n/(27) and

(k<)
u(Z%) < 0.824 /n /g (1= )mD/2 4t < 0.824 Vmg(k,e).  (21)
0

This and (9) complete the proof of part (a).
We proceed to part (b). It is clear that

fPrb(eP A ki) = u(Z%) = max  fPP(EPY, A, k,€).

A=AT>0

To estimate u(Z*) from below, note that v > \/2n /7 due to (13), and

g(kve) (03 (ﬂ_]‘)/2
1 — )12 g > g(k, ( ) :
[a-n > g(k,e) (15—
Therefore
1 (k,!)
u(Z7) > 0.797/n (1 - ;) /g (1 — ?)("= D2 4g
0

as claimed. The asymptotic formula follows from the estimates of (9).
To prove part (c), note that we need to find the measure of the set

W:{beR": l16l| = 1, Z B(l—e—zp)ziy ) >e Zb’}

1=p+1

since fP(£7¥, A, k,e) = p(W)(1 + o(1)) as k — oo.

Denote by B = €/((1 — € = Zpp1) s )y ap = iy b2, apyg = TET 8,
a, —Z_p“b We have
1
1—p(W) = — / / / db
Cn Jap<1 Jap,<min{1-ap.Bap} _pﬂ“b,q aptq

= g“:ﬂ/ / 1 — a, — a.){m=P-9/2 gpy
Cn ap<l a;,fmin{l—cp.ﬁa,,}( P p) ,
where dV = db, - - - dbyy,. Using (12) twice we get

Cq Cn—
1 — u(W) _q.,_p___q_

i —-ag,0a 1/2
/M{l P20l e (1 — a, — t?)(r=P-0)/2 g4

ap<l
2}1/2

min 22 T
= w / P! / o 971 (1 — 22 — ) (" P 92 4t dg,
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with w = pgcycq Crop-g/Cn-
Observe that by formally setting 8 = +oo0 we get u(W) = 0 and

1 V=22
w/ zP~! (/ 1971 (1 - 2? — 7)) dt) de=1.  (22)
0 0
‘e thus have for h(t,z) = t971(1 — 2% — t?){("=P-9/2 and a = (1 — u(W))/w,

a =

1/4/1+8 V1=z2
/ :c”—l/ 4 h(t,z)dtdz + 7! h(t,z) dt de
0 0

1/\/1+ 0
1 Vi=z2 1/4/1+

- / :rp—l/ h(t,:p)dtd:c—/ g
0 0 0

1-

-/;\/E h(t,z)dtdz.

Due to (22) we get

1/4/1+8
=w / P!
0

o 19711 — 22 — ?) (P2 gy g,

wW) = —/::\/E

Changing variables by v = z /1T + §, we obtain

1- u?/(1+0 2 (n—p-9)/2
/ 9=t (1 — - t’) dtdy.
v/BI(1+6) 1+p

Note that 8 — +00 as k — +00. Therefore we have

_"_(ﬂ — -p/? ! p-1 ! 9-1 2\(n-p-9)/2
e = @8 /ou /ut (1-8) dt dv

= uﬂ"’/z/l (/tu”'l du) 971 (1 — ¢2) (P02 gy
o \Jo

= et /1 tP+q—1(1 - t2)("-}’-9)/2 dt

W) = g

pBP/? Jo
_ w ptqn—-—p—gq )
© 2ppr? (2’ 2 +1)
the last equality due to (14). To complete the proof it is enough to observe
that
iB(P*"I n—p—q+1) _ _pet(1+n/2)T((p+q)/2) T()
2p 2’ 2 2pT(1 + p/2)T(1 + q/2)T(7)T(1 + n/2)

qI((p+49)/2) _ 2 T((p+9)/2)
280(p/2)£T(q/2) p T(p/2)T(q/2)’

where j =1+ (n—p—q)/2.
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Proof of Theorem 4.2
We need to find an upper bound on the measure of the set
Z={b: ||| =1, \y — €A, b,k) > e\ ).
Due to (15) we have

= : = 1 - 2 2 { — — T 2
Z={b: ||b|] 1,06135(1)2213,@(@)(1 e—z;) > be).

Obviously
f}fan — fprob(ELan.‘ A, k,E) — ;L(Z)

Assume first that £ > m. Asin the proof of Theorem 3.2, {z1,z2,...,2,} =
{t1,t2,...,tm} with distinct ¢; and ¢; = 1. Setting Q(z) = [12,(z - t.)/(1 — t;)
we get Z = 0. Thus ff*" = 0, as claimed.

Take now an arbitrary k. For € = 0, the remaining bound of part (a) of
Theorem 4.2 trivially holds. (In fact, it is easy to see that for k£ < m, we have
frrob(¢ten A, k,0) = 1.) Assume thus that € > 0 and let

: 2
= l1—¢—2zx). 23
o = ol R @R —e ()

Then .
ZcZz = {b:|b|=1,Y 8 > dlc/uy}
=2

and fEo" < u(Z7).
Observe that an upper bound on the measure of the set Z* was found in

(21),
Lan ] __n
" < 0.824Vng(k,e) = 0.824, [+ Y. (24)

where now g(k,e) = 1/v/1 + a with a = ¢/wix. We prove that

2k-1 2k-1\ ~2
— 1 —
W = 4e 1 \/E 1 - ( \/E) .
1+ e 1++E
Let Us(x—1) be the Chebyshev polynomial of the second kind of degree 2(k — 1).
Consider

Q(z) = Uap-1y(yz/(1 — €)) [ Upe—ny(1/V1 =€), z €[0,1].

Since Uy(x—y) is even, Q is a polynomial of degree k — 1. Clearly, Q(1) =1, so
Q € Pi(1). Let

H(z)=V1-e—zQ(z), z€[0,1—c¢]
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For t; = (1—¢) cos? %&%, i =1,2,...,k, the extremal points of Up(x—1) yield

vi-¢

yiel
U2(k—l)(1/\ﬁ—5)( D

H(t,‘) =

Note that
1-
<a:= H
we S ai= max H(z)= U2, 1)(1/\/1—_5

where ¢ = ((1 = V&)/(1 + V=) )* 1.

Assume that wi < a. Then there exists a polynomial P € Pi(1) such that
maxzefo,1] P?(z)(1 — € — ) < wy. The sign of the function

h(l)=v1—€—$(Q($)—P($)), fEE[O,l—E],

alternates at t; for 1 = 1,2,..., k. Thus, @ — P has at least k — 1 zeros in
[0,1 — ). Since £ = 1 is also a zero of @ — P we conclude that @ = P, which
is a contradiction. Hence wy = a, as claimed.

From this and (24) we finally get

=4ec(l —c)?,

o < 0.8241/4n/(4 4 (1 - ¢)?/c)

< 0.824y/4n/(2 + 1/c) < 1.648 \/cn.

Part (a) follows by noting that /c < exp(—+/z).
To prove part (b), let 8y = A./Ay, B2 = Aps1 /M and

u(f, B2) = Q (z)(1 —e—z).

QET’k(l) ﬁ1<x<53
(Observe that u(0, 8;) = wy for B > 1 —€.) Then

Zc{b: [|b]l =1, sz > ble/u(Br, Ba) }

=2

and flon < 0.824\/n/(1+5/u(ﬂ1,ﬂ2)) < 0.824y/nu(p,B2)/e. We need to
estimate u(f;, f2). Changing the variables z = (1 — 8,)t + 5 we get

u(f,B2) < max_Q%*t) VQ € Pi(1),

0<t<1-A\"

where A* = (A; — Apy1)/(A1 — An). We can use now the estimate (19) with

B =1-— A" to get
1_\/; 2(k-1)

which yields part (b) and completes the proof.
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6 Numerical Tests

We have tested the Lanczos algorithm for several matrices and many (pseudo)
random vectors b. We report numerical results for one matrix A for which
the relative errors of the Lanczos algorithm were the largest. The matrix A
was chosen as follows. Observe that for any orthogonal matrix @ we have
L (QT AQ, QT b, k) = €X°™(A, b, k). This shows that without loss of gener-
ality we can restrict ourselves to diagonal matrices while testing the Lanczos
algorithm. Therefore the matrix A was taken as diagonal. We chose the
dimension n = 250 and the eigenvalues of A as

2i—lm

Ai=1 + cos o™

, t=1,2,...,n.

That is, the eigenvalues of A are shifted zeros of the Chebyshev polynomial
T, and A\ = 1 +cos(7/(2n)) ~ 2. (The shift by 1 is needed to guarantee that
A is positive definite.)

We have performed numerical tests for this matrix with 30 pseudo-random
vectors b uniformly distributed over the unit sphere of R*. To get such a dis-
tribution we used the fact that if X = (X, Xz,...,X,) is a random variable
whose components are independent random variables with a normal distribu-
tion N(0,1) then X/||X|| is uniformly distributed over the unit sphere, see
Knuth [81, p.116]. The normal distribution was in turn generated from the
uniform distribution over (0, 1) using the formula Z = (-2 In R;)*/? cos 27 R,,
where R, and R; are independent random variables uniformly distributed over
(0,1), see Box and Muller {58]. The variables R; were produced using a num-
ber generator similar to that one used for testing EISPACK procedures, see
Smith et al [74].

For each pseudo-random vector b we performed the Lanczos algorithm for
k=1,2,...,k", where k* was chosen as the minimal k for which the relative
error (A, — £%"(A,b,k))/A; was no greater than e. For some tests k* was
around 150. We compared the relative error with k=2. For all tested b and &
we obtained
A — €57(A, b, k)

Ay

In fact, in most cases (A, — £X9™(A, b, k))/A, k? was between 0.286 and 1.25.

In the table below we report the average errors achieved after k — 1 steps
of the Lanczos algorithm for ten different values of k which are listed in the
first column. The second column contains the average errors defined as

0.1241 < k? <1.62.

1 &N —glen(A, by k)
® T3 2 " ’

=1



where b; is the ith pseudo-random vector. The third column presents upper
bounds on the Lanczos errors from Theorem 3.2, i.e.,

e"? = 0.103 (

k-1

In(n(k — 1)4))"’

We compute the ratios between the observed errors and their upper bounds in
the fourth column, r, = e*?/e%*. The last column displays how r; is related
to the possibly unnecessary factor in the theoretical bound,

ro = ri/ In®(n(k — 1)%).

ave

k—1 3 evp ™ T2
10 [0.011862 | 0.2235 | 18.84 | 0.843
20 |0.002928 | 0.0789 | 26.95 | 0.853
30 |[0.001327 | 0.0419 | 31.57 | 0.838
40 |0.000756 | 0.0265 | 35.06 | 0.828
50 |0.000472 | 0.0185 | 39.18 | 0.847
60 | 0.000322 | 0.0137 | 42.49 | 0.860
70 |0.000236 | 0.0107 | 45.30 | 0.868
80 | 0.000183 | 0.0086 | 46.67 | 0.853
90 | 0.000146 [ 0.0070 | 48.25 | 0.847

100 | 0.000124 | 0.0059 | 47.61 | 0.806

The last column of the table seems to suggest that the error of the Lanczos
algorithm for the matrix with Chebyshevian distribution of eigenvalues be-
haves like k2 and the factor 0.103 In*(n(k — 1)*) is probably an overestimate
of the upper bound.

In the next table we indicate how many steps were needed to achieve rel-
ative error no greater than € for six different values of €. The values of ¢ are
displayed in the first row of the table. The second row of the table shows the
average number k°** of performed steps with k°*v* = T3 k(A,b;)/30, where
k(A,b;) was the number of steps needed for the pseudo-random vector b;. The
third row gives the minimal k£ = kP such that

In(n(k — )9\’
0.103 (T) S €,

which is one of the two theoretical bounds for the Lanczos algorithm, see part
(a) of Theorem 3.2. The fourth row presents the ratios between these two
numbers, r = k¥P/k%V°,

£ 5.010 —4 2.510 -4 2.010 -4 1.510 —4 1.010 —4 5.010 -5
kv 35.27 48.03 53.13 62.27 76.33 110.67
kvP 428 638 724 853 1075 1591

r 12.13 13.28 13.63 13.70 14.08 14.38
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As we see the theoretical bound exceeds the actual value by a factor of at
most 15. This indicates once more that the factor In*(n(k — 1)*) may be an
overestimate in the theoretical bound. Observe also that all k“Ps are greater
than the dimension n = 250 and the second bound of part (a) of Theorem 3.2
gives a better estimate.

We complete this section by reporting an interesting property of the com-
puted sequences & = £L9"(A, b, k) of the Lanczos algorithm. In some cases
they have a “misconvergence” phenomenon, see Parlett, Simon and Stringer
[82]. That is, before reaching the largest eigenvalue A;, the sequence & re-
mained constant (within to a machine accuracy) for some consecutive steps,
& = €kp1 = ... = €kye and the value of ¢t was sometimes quite large. The
misconvergence phenomenon occurred when the sequence ¢, approached the
second largest eigenvalue A; and sometimes even when §; passed the third
largest eigenvalue A3. For instance, for some vectors b the sequence & stabi-
lized close to A, for 28 consecutive steps. The table below shows the percentage
(p) of the vectors b for which the misconvergence phenomenon occurred before
the relative error reached ¢.

£ 2.510 —4 210 —14 1.510 —4 1.010 —4 5.010 -5
0 6.67 46.67 80 100

7 Remarks

Remark 7.1

As we know from Section 2 it is impossible to compute an e-approximation
to the largest eigenvalue by algorithms using Krylov information with a de-
terministically chosen vector b. One may interpret this by saying that Krylov
information is poor and hope that more general information may lead to a
positive result. Indeed, using matrix-vector multiplications we may compute
(Az1, Azg, ..., Az), where z; = b and z; can be an arbitrary function of the
already computed Az, Az,,...,Az;_;. Is it possible to define vectors z; such
that ¢(Azy, Az, ..., Az;), for some @, yields an e-approximation to the largest
eigenvalue of any symmetric positive definite matrix A? The answer is still no
as long as k < n—1, see Traub, Wasilkowski and Wozniakowski [88, p.183-186}
for this and related results. Thus, Krylov information as well as any other de-
terministic information with £ < n — 1 does not supply enough knowledge of
A to compute an e-approximation to the largest eigenvalue.

On the other hand, if we are willing to settle for an e-approximation to
any eigenvalue, which is not necessarily the largest, then it can be done by
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using min{n, [¢"}]} matrix-vector multiplications. This can be achieved by
using deterministic Krylov information and the generalized minimal residual
algorithm, see Kuczynski [86]. The number min{n, [¢7']} is within a factor
of at most 2 of being minimal as shown by Chou [87] whose analysis is based

on Nemirovsky and Yudin (83].

Remark 7.2
As before B, is the unit ball of R*. Let f : B, — R be a measurable

function such that f does not depend on the norm of b, f(b) = f(ab), Ya > 0,
and f does not depend on signs of b;, f(s1b1,52b2,...,8abn) = f(b1,b2,...,b5)
for all s; € {—1,1}. As indicated in Section 2, the error of the power or
Lanczos algorithm as a function of b satisfies these properties.

For such functions f, the average value of f over the unit sphere is the
same as the average value over the unit ball, i.e.,

1
/”6”21 70 (dt) = A fe)a,

where ¢, is the measure of the unit ball in R".
Indeed, using the polar coordinates b = ¢(t) = [¢1(t),..., dn(t)] with
t=[rty,...,ta1] €[0,1] x [0,7]*"! and
$1(t) = r costy costy---cost,_y,
¢iy1 = rsint;costipy---costp_y, t=1,2,...,n—1,

we have |det(#')| = r™~'|cos t; cos?t3---cos" 2 t,_;| = r*~! g(t) and
= [ fya= [ n-1
acoi= [ SO = [ FO)" ot)dr dir,

where dt(,) stands for dt, - -dt,_;. Since f(#(t)) does not depend on r, we
can integrate over r to get

1

ncy

a=

Jo s £ (0 dtr.
Change the variables once more by setting b; = ¢;(t)/r for i = 2,3,...,n.
Then for b = /1 — £, b? we have

f(8(t) = f(S(t)/r) = f (b, bay...,b0) = f (b, ba,..., bn)

and
db(n) = dby - --db, = |costy cos® t--- cos™ ! tn_1| dt(n).

Therefore g(t) dt(n) = |costy - -costa_i| ldbmy = (1 — LT, b?)‘lndb(,,) and

— 2 f( 1— ?=2b?,b2,...,bn)
= ncy v/bg+...+b'7‘$1 \/1 _ ?.—-2 b? db(“) - /”b”:l f(b) I‘(db),
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as claimed.

Remark 7.3
The modified power algorithm is defined by

£mP(A, b k) = (A*b, b)V5, |[bl| = 1.
We show that

I'(n/2)T(0.5+1/k) Inn
QUG LMPOW A BY . oOUG(LMPOW gx LY | _ ~
JSup (e, ALG) = (ST ALK = L T R 05) © k

where A" is a symmetric matrix with eigenvalues A; > 0, and A; = 0 forz > 2.
Indeed, for any A = AT > 0 with z; = Aif A1 we have

(e AR = 1= [ (3 B Eu(dD) < (g A K) =
=1 =1

2 /B (1=b2—...—62)k-%db,---db, =

ncy,

b '/||b||=1 bf/k p(ddb) =1 -

1
1 —2a/ t"-2(1—t2)%"%dt=1—a13(
0

[(n/2)L(0.5 + 1/k)
"~ T(n/2 + 1/k)[(0.5)’

n—ll+1>_
2 'k 2/

where o = (n — 1)ca—1/(ncy). For large k and any a we have

Ma+i/k) | D@L
T T e Rt (1)).

For a = n/2 and a = 1/2 we have from Gradshteyn and Ryzhik [80, 8.360,
8.362 and 8.366]
[(n/2) I'(1/2)

m:lnnﬂ, T(1/2) =—-C-2Iln2=-1.9635...,

where C is the Euler constant. This implies the error behavior In(n)/k, as
claimed.

Comparing this bound with parts (a) and (b) of Theorem 3.1, we see that
the power algorithm has an error bound roughly 1.8 times smaller.

One can also compare the algorithms 7% and £™"% asymptotically. As-
sume for simplicity that the largest eigenvalue is of multiplicity p = 1. Then
part (c) of Theorem 3.1 yields that the rate of convergence of the power algo-
rithm is exponential and proportional to (A;/A;)*~!. For the modified power
algorithm it is easy to show that the rate is only linear and roughly equal
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to In(n)/k. Thus, the power algorithm is far superior asymptotically in the
average case to the modified power algorithm.
We now turn to the probabilistic case. The modified power algorithm was

analyzed in this case by Dixon [83] who proved that
sup  fPON(EM™PV Ak g) = fPrEmPY A% k,e) < 0.8/n (1 — )*2.

A=AT>0

For large n and k we have
g, A% kye) = \/2/m Va (1= )2 (14 0(1)),

and {/2/m = 0.7978....

This should be compared with the power algorithm whose rate of conver-
gence is roughly the square of the rate of the modified power algorithm.

It is easy to check that the asymptotic behavior of £™" does not depend
on the distribution of eigenvalues but depends on the multiplicity p of the
largest eigenvalue,

n—p (1 +n/2)
n (1 +p/2)L(1+(n—p)/2)

For the power algorithm with A,41/A; < 1 — ¢, the asymptotic rate of conver-
gence is proportional to (Apy1/A;)P*~1) which obviously tends to zero faster.

Frrob(EmPY A kye) = (1 — &)P*3(1 + o(1)).

Remark 7.4
For 3 close to one it is easy to find the exact value w(f), see (17). Namely,
we have

_ 1 sin’(n/(2k))  x?
vB=ma ¥ cos(r/(2k))2 ~ 16 k*
for B € [cos?(/(2k))/ cos®(m/(4k)), 1].
Indeed, let (& = cos(7/(2k)) denote the largest zero of T;. Take

1 Ti((¢x+ 1)z —1)
z—1 (G+1)Ti(C)
Note that Q is a polynomial of degree < k—1and Q(1) = 1. Fori =1,2,...,k,
let z; = (1+cos(in/k))/(1+(x) = cos®(iw/(2k))/ cos?(w /(4k)). Then z; € [0, 8]

and

Q(z) =

_ Ti(cos(iw/k)) _ (—1)" sin(w/(2k))
(G + 1)T{(C) 1+ cos(m/(2k)) k '

Suppose there exists P € P.(1) such that

(zi — 1) Q(z:)

p? 1—z)? 2 _ )2
Mnax Pi(z)(1-2)* < Jnax Q%(z)(1 - 2)
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Then h(z) = (1 —z)(Q(z) — P(z)) has a double zero at one. Since sign h(z;) =
(—1)%, h has at least k—1 zeros in [0, 3). Thus h = 0, which is a contradiction.
Hence,

) . e sin®(7 /(2k)) 1
w(B) = zIE[%,)filQ SUCRE (1 + cos(r/(2k))? k2’

as claimed.

Remark 7.5
We now consider a gap ratio, see Parlett [89], instead of the relative error
as the error criterion. That is, we wish to compute £ such that

[M(A) =€l < e (M(A4) - Aa(A4)),

where, as before, A\;(A) and A,(A) denote the largest and the smallest eigen-
values of A.
The gap ratio is a natural error criterion for the Lanczos algorithm since

A+ al, b k) = €L"(A, b k) + o and

M(A+al)— €™ A+al b k) M(A)—£="(A,bk)
MA+al) - (A+al) M(A) - M(A)

Thus, the gap ratio for the Lanczos algorithm is shift invariant.
[t is easy to see that the bounds for the Lanczos algorithm presented in
Theorems 3.2 and 4.2 also hold for the gap ratio. This follows by noting that

/\I(A) - €Lan(A1 ba k) _ ’\1(3) _ fLan(B: b’ k)
A - (A % (B) ’

where B=A — A, and B= B*2>0.

Although B is not positive definite, a continuity argument yields that we
can use estimates of Theorems 3.2 and 4.2 for the matrix B. Parts (a) of these
theorems will give estimates independent of eigenvalue distributions of B (or
A). Parts (b) present estimates which are shift invariant and therefore are
the same for the matrix B as well as for the matrix A. Observe also that for
the gap ratio we need only to assume that A is symmeric but not necessarily
positive definite.

The gap ratio for the power algorithm yields different results since, in
general, éPY(A+al, b k) # £7°¥(A, b, k) + a. To derive bounds for the power
algorithm under the gap ratio, consider the average case and the matrix A
from part (b) of Theorem 3.1. That is, A has exactly two distinct eigenvalues
A1 and A\, = A\ (1 — In(n/1n n)/(2(k —1))). Then the estimate of part (b) of
Theorem 3.2 yields for large k£ and n,

/ A — €P°Y(A, b, k)
Il]}=1 Ay — A,

e*v9I(EPv, A, k)
T /A

u(db) = =1+ o(1).
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Thus, no matter how many matrix-vector multiplications are performed, there
exists a matrix A for which the average error of the power algorithm under
the gap ratio is about 1.

Similarly one can check that in the probabilistic case, the failure of the
power algorithm under the gap ratio for the matrix A with the two distinct
eigenvalues A\, and A; (1 — 1/(2k — 1)) is equal to 1 4 o(1).

Obviously, the asymptotic bounds for the power algorithm under the gap
ratio can be easily obtained from parts (c) of Theorems 3.1 and 4.1. For
the average case, the only difference is to multiply the asymptotic constants
by 1 — A./A1, whereas for the probabilistic case, € should be replaced by
g (1 — /\,,/A])
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