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Abstract. We study the average case complexity of multivariate integration for the class
of continuous functions of d variables equipped with the classical Wiener sheet measure. To
derive the average case complexity one needs to obtain optimal sample points. This optimal
design problem has long been open. All known designs guaranteeing average case error «
lead to an exponential number of sample points, roughly ©(e~%). For d large this makes the
problem intractable for even the fastest computers.

Yet good designs have to exist since the average case complexity is bounded by O(«¢—32)
as can be proven by considering the Monte-Carlo algorithm. We just did not know how to
construct them.

In this paper we prove that optimal design is closely related to discrepancy theory which
has been extensively studied for many years. Of particular importance for our purpose are
papers by Roth [10, 11]. This relation enables us to show that optimal sample points can be
derived from Hammersley points. Extending the result of Roth {10] and using the recent result
of Wasilkowski [19], we conclude that the average case complexity is 8(e~! (Ine—1)(4-1)/3),

1. Introduction

The approximate computation of multivariate integrals has been extensively studied
in many papers, see (5-7, 17| for hundreds of references. We assume that multivariate
integrals are approximated by evaluating integrands at finitely many deterministic sample
points and by performing arithmetic operations and comparisons on real numbers. Assume
that the cost of one integrand evaluation is ¢, and that the cost of one arithmetic operation
or comparison is taken as 1. Usually ¢ 33 1.

We seek the computational complexity of multivariate integration, which is defined as
the minimal cost of approximating multivariate integrals with error at most ¢ for a given
class F of integrands, see [17]. How we define cost and error depends on the setting.

In the worst case setting, the cost of an approximation is defined as sup ¢ (¢ ni(f) +
n2(f)), where m(f) is the number of integrand evaluations and nj(f) is the number of
arithmetic operations and comparisons needed to compute the approximation for f € F.
The error of the approximation is defined as the maximal absolute difference between the
exact and approximate values of multivariate integrals over the class . The computational
complexity in the worst case setting is denoted by comp™°*(¢, F) and is known for many
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classes F. For example, if F = WP'"‘ is the Sobolev class of real functions defined on the
d-dimensional cube D = [0,1]¢ whose rth distributional derivatives exist and are bounded
in the L, norm by one, then for pr > d we have comp"°‘(s,W;"’) = O(c e=4/7), see (7]
for a recent survey. For d large relative to r, the worst case complexity is huge even for
moderate .

In the average case setting, the cost and error of approximations are defined as the
expected cost and error with respect to some probability measure on the class F. The
computational complexity in the average case setting is denoted by comp*¥8(¢, F'). In
contrast to the enormous literature for the worst case setting, the average case setting for
multivariate integration has been studied in relatively few papers, see {14, 7-9, 12-20].

We report briefly on what is known about comp*¥8(e, F). For the scalar case d = 1, let
F = CT be the class of r times continuously differentiable functions equipped with r-fold
Wiener measure. Then

comp**8(e,C") ~ ¢ (ae-l)ll(r“)

]

where a = \/|Bar+2|/(2r + 2)! and Bj,42 is a Bernoulli number. Furthermore, optimal
sample points and how to optimally combine the integrand evaluations at these points are

known, see (3, 15, 17].
For the multivariate case, d > 1, assume that F = Cy is the class of real continuous
functions defined on D = [0,1]¢ and equipped with the classical Wiener sheet measure w.

That is, w is Gaussian with mean zero and covariance kernel

(s, )% / £(5) £(8) w(df) = min(o, &y T mia(s; ¢

Jj=1
for any vectors s = [sy,...,84] and t = [t,,...,t4| from D.
Only upper and lower bounds are known for comp*¥8(¢,Cy). Papageorgiou (8] estab-
lished

comp**$(e,Cy) = Q(c e~!) and comp*'¥(,Cy) = O (e 5'2), vd>1. (1)

The proof of the upper bound is based on the Monte-Carlo algorithm using randomized
sample points. Therefore it does not provide a constructive way to find deterministic

sample points that achieve the bound O(c¢7?).

To obtain the average case complexity, one needs to find optimal sample points, i.e.,
sample points which lead to minimal average case error. It is known that optimal sample
points do not form a grid. That is, if one assumes that sample points form a grid

{[ilhl,...,i‘hd]: l) =1,...,mj, ]= 1,2...,d}



with h; = mj_1 for some integers mj, then Papageorgiou and Wasilkowski (8, 9], see
also [20], showed that ©(¢~¢) grid sample points are needed to achieve the average case
error €. For d > 2, this cost is worse than the upper bound in (1). This proves that grid
points are a pgor choice of sample points. Papageorgiou (8] slightly improved this result
by constructing ©(s~(¢"~4+1)/d) sample points for which the average case error is €. For
d = 2, these sample points reduce to those proposed by Ylvisaker [20]. Thus, for d = 2 we

have an improved upper bound
comp**&(e,Cy) = O (c 5'1'5) }

The average case complexity comp®'8(e,Cy) has been unknown due to the difficulty
of finding optimal sample points. In the statistical literature this is called the optimal
design problem for multivariate integration, see (20]. Micchelli and Wahba [4] conjectured
that Hammersley points should lead to an optimal convergence rate n™}(logn)?~! which
would imply that comp®¥8(¢,Cy) is ©(ce}(loge~1)4"!). This form of the average case
complexity has been also conjectured by Papageorgiou and Wasilkowski [9], based on their
work on the approximation problem.

In this paper we show that optimal sample points are indeed related to Hammersley
points and that the average case complexity is O(c e~} (loge~!){4-1)/2), This will be done
by showing that the optimal sample points problem is related to the L; discrepancy. The
discrepancy in L, and other norms has been extensively studied in the literature and deep
relations with number theory have been established. The reader is reffered to excellent

surveys by Niederreiter (5, 6] with about 500 references. The L; discrepancy has been
studied by Roth {10, 11] who proved in 1954 that the L; disrepancy of n points has to be
at least of order n~!(logn)(4=1/2 and in 1980 that this bound is sharp.

2. Main Result

Fort = (t),...,t4) € D = [0,1]%, define [0,t) = [0,¢;) x --- x [0,¢q). Let X[o0,s) be the
characteristic (indicator) function of (0,t). For z;,...2, € D define

n
Ra(tiz1,...,2a) =n"! ZX(O.!)(ZD) - hiy--lg

k=]
as the difference between the fraction of the points z; in [0,t) and the volume of [0,¢).
The L; discrepancy of z,..., 2z, is defined as the L; norm of the function R(:; zy,..., zn).

Roth [10, 11] proved that
: / 1/2
inf (/ R3(t; zl,...,z,,)dt) -8 (n-‘ (log n)(4-D72). (2)
LS D
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The points z{,...,2z5 with L; discrepancy of order n™! (logn){4=1)/2 are related, as
indicated below, to Hammersley points. Let p,p;,...,pa~1 be the first (d — 1) prime
numbers. Any integer k > 0 can be uniquely represented as k = Z‘-n:g k] a; p§- with‘ integers
a; € [0, pj—1). The radical inverse function ¢,; is given as ¢,.(k) = E!L"g kg p;'~'. The

sequence {ux} of (d — 1) dimensional vectors for k = 0, +1, £2,... is defined by

uk = [@p,(k), bp,(k), ..., 0p,_,(K)], k=0,1,..., M —1,

with M = (p1p2 -~ -pd_l)n°3 "l and by Uk+M = Uk, Vk. Then there exists a real number
t* such that the points 2{,..., 2, are given by

{z3,....25} = {[(k+t)n™ " ux] : 0<k+¢" <n}. (3)

For t* = 0, they are Hammersley points. Thus, the points z{ are obtained by adding t*/n
to the first component of Hammersley points.

We are ready to show how the results on L, discrepancy can be used to derive optimal
sample points and average case complexity. In what follows, we use the word “optimal”
modulo a constant which may depend on d but is independent of .

Let n = ©(¢~! (loge~!)(4=1)/2) be chosen such that the L, discrepancy of the function
Ra(-y2{,...,2%) is at most &. Letting 1= (1,1,...,1], we define

p=1-2], k=1,2,...,n (4)

We approximate the integral of f from Cy4 by the arithmetic mean of its values at z,

10 [ s ~ v Y s, vrecs (5)

k=1
Clearly cost(U), the cost of computing U(f), is (¢ + 1) n. The average case error of U is
defined as (fc‘(I(f) = U(f))? w(df))!/?. We summarize the main results as a
THEOREM.
(i) comp*'$(e,Cq) = © (ce" (loge“)(‘-”n) :
(i1) T1,23,..-,25 Siven by (4) are optimal sample points,
(iii) U given by (8) is optimal, i.e., the average case error of U is at most ¢ and

cost(U) = ©(comp**¥(e, Cy)).

SKETCH OF THE PROOF:
An upper bound on comp**8(¢, Cyq) is cost(U) provided we prove that the average case
error of U is at most €. This will be done by exhibiting the indentity which relates the

average case error of U with the L; discrepancy.
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LEMMA 1.

[ - vu? uta) - [ R e
Cq D

To prove Lespma 1, we use
‘ d
[ rtpu@) =3 ad [ rpi@ueen = [a0- v =, )
Cq Cq i=1

From these formulas we compute the left-hand side of Lemma 1,

d n
- 2 = - - 1 : - =
LHS =37¢ — ~ Z Hrk’,-(l —z3,/2)+ -z Z min(z}, 73),
k=1i=1 k,p=1
where z} = [z} ,,..., 2} 4]. The right-hand side of Lemma 1 can be directly computed,

2 o . 1 <« . .
RHS = /;t%t?‘ dt— ;Z /Dtl td X[O.t)(zk)dt+ ;2‘ Z /;x[o',)(zk)x[o,,)(zp)dt
k=1 k

p=1
2 n d 1 — Z; 2 1 n d
—d 1) - -
e IS T L S [T max i)
k=11i=1 k,p=1i=1
We complete the proof of Lemma 1 by substituting z{; = 1 — z} ; and noting that 1 —

max(1l — a,1 — b) = min(a, b).

Due to the choice of n and the construction of z!, the average case error of U is at
most €. This completes the proof of the upper bound on comp*¥8(e, Cy).

To derive a lower bound on comp**8(e, Cy), we use a proof technique from (17]. First take
any nonadaptive sample points z,,...,z, from D. Since w is Gaussian and the average
case error is defined in the L, sense, it is known that the approximation U* with minimal
average case error is the mean of the conditional probability, given f(z1),..., f(zn). Since
the mean depends linearly on f(z;), U* takes the form U*(f) = 3 1., cef(zs), Vf € Cq,
for some numbers ¢;. Using similar calculations as in the proof of Lemma 1 we get

LEMMA 2. -

n 2
/c‘(f(f)—U'(f))’ w(df) = /d(;cmm,e)(f—n) - tl"'td) dt.

[t is possible to extend the proof of Roth [10] to show that the lower bound of (2) holds

for all cx. More precisely we have



LEMMA 3. There exists a positive number v4 such that

2
[(ZCk X[o,:)(f—tk) - tl"'td) dt > v4n~? (logn)*™!
a

k=1

for all n, ¢;y and z;.

From Lemmas 2 and 3 we conclude that the a.vérage case error of U* is bounded by ¢
only if n = Q(e~! (log e ~*){(4=1)/2). Therefore the cost of approximating I(f) with average
case error € must be at least cn = Q(ce ! (loge~!)(4-1/2),

Consider now adaptive sample points z;,z2,....Zq(s). That is, the choice of z; may
depend on the already computed f(z,),..., f(zi-1), and the number n(f) of sample points
may also be adaptively chosen. For Gaussian measures adaption may help only by varying
n(f). We now draw on Wasilkowski’s theorem, see {19], which states that adaption can
help only by a multiplicative constant if the squares of the minimal average case errors
rn of n nonadaptive sample points can be bounded by two convex sequences a, and 8,
such that a, < r, < B, and a, = 6(8,). In our case, r, = 8(n"%(logn)?~!) and we can
take ap, = ¢; n"%(logn)?~!, B, = czn"%(logn)?~! for some positive constants ¢, and cj.
Thus, adaption does not help much and comp*¥8(s,Cy) = Q(ce~!(loge~1)(¢-1)/2), This
completes the proof of (i) and the rest follows easily from (i).

3. Final Remarks

A. The definition (4) of optimal sample points is not fully constructive due to the un-
specified constant t* in (3). It would be interesting to determine the constant ¢* explicitly.
On the other hand, if one takes the classical Hammersley points

zi=[kn—l»¢’1(k))"'a¢p4_1(k)]a k=1a"'an’

then Halton prowed, see e.g. [5], that even the L, discrepancy of the points z; is of order
n~!(logn)4-1, Then the approximation U(f) = n~! 30, f(z4) with z, = I - z; has
average case error at most ¢ provided that n = ©(e~(loge~!)4!).

Observe that the definition of z, (as well as z} in (4) ) depends on the total number n
of samples. Sometimes it is better to use an infinite sequence {Z;} in which the definition
of Z; does not depend on the specific value of n. For instance Z, can be given by

2 =1 = [, (k), p,(k),-.. 05, (K)], k=1,2,...,
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where p;, ..., pqg are the first d prime numbers. The L, discrepancy of n points T— % isat
most of order n—l(log n)d, see [5], and therefore the approximation U(f) = n! Z:=l f(Z%)
has the average case error at most ¢ provided that n = ©(¢~!(loge™1)4).

In both cases, we see that the use of zx or % leads to a slight increase in the average
case cost. More precisely, instead of the minimal average case cost @(c e~ (loge~1)(4-1)/2),
we approximate multivariate integrals at average case cost O(ce~!(loge~!)¢"!) using the

sample points z, or O(c e~ }(loge!)?) using the sample points ;.

B. We have shown that the minimal number of sample points n(e) to guarantee average
case error ¢ is of order £ ~!(loge~!)(4~1)/2 with the constant in the © notation dependent

only on d. An open problem is to ascertain if there exists a constant a4 and, if so, to find

a4 such that
n(e) = age™? (loge_l)(d-l)/2 (1+0(1)) ase — 0.

C. It would be interesting to extend the results of this paper for smoother classes of
functions equipped with folded Wiener sheet measures.

D. Do similar relations to the one we have utilized here between discrepancy and mul-
tivariate integration, hold for other problems such as approximation of functions of d

variables?
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