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ABSTRACT

This paper is concemed with the parallel evaluadon of daralog rule programs, mainly by processors that are inter-
ccnnecied by a communication nerwork. We inoroduce a paradigm, called data-reducdon, for the paralle] svaluaden
or a general datalog program. Several parallelizaton strategies discussed previously in (CW, GST, W. WS] are spe-
cial cases of this paradigm. The paradigm parallelizes the evaluadon by partitioning among the orocessors the
instandations of the rules. After presenting the paradigm, we discuss the following issues, that we see fundamental
for parallelizadon sTategies derived from the paradigm: properues of the strategies that enable a reduczon in the
communication overhead, decomposability, load balancing, and application to programs with negation. We prove
that decomposability, 2 concept inroduced previously in [WS, CW], is undecidable.
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1. Iotroduction

A knowledge base is a reladonal database augmented with a rule-program, e.g. datalog (see MW7), In this
paper we continue the study of parallelization in knowledge bases, begun in (WS, W ,CW]. The emphasis in these
-vorks was on parallelizagon without communication overhead, namely pure parallelization. This type of paralleliza-
Hion is restricted in its applicability; only some classes of programs can be purely parallelized. To overcome this
timitarion, in (CW] we proposed a strategy that does incur an overhead, but can be applied to every single-rule pro-
gram without constants. We show that all the stategies discussed in our previoys works are special cases of the
dara-reducdon paradigm, that we introduce in this paper. It sdpulates that parallelization is obtained by having each
procassor evaluate the original program, but with less data. In extension to the strategies discussed in our previous

-works, data-reduction is applicable to datalog progrmns;fim muldple rules, constants, and negation.

A data-reducton strategy is obtained as follows. Every single-processor datalog evaluation method can be
regzarded as a sequenca of rule-instantadons; in each rule-instandation, the variables in the rule are replaced by con-
stants from the input. The purpose of dawa-reduction is ‘o partiticn the instandations among multiple processors,
such that if each procassor uses a single-processor method to evaluate the original program, then it processes less
dara, The works on the NC<omplexity of programs (e.g. (AP, CX, UV]) also partition the instandarions, but they
assign one instantiation 10 3 processor, assuming a polynomual (in the database size) number of processors. The
works identify the programs for which the evaluadon can complete in polylegarithmic dme. We, on the other hand,
assume a constant number of processors, and divide the instanuadons 1o achieve workload partigoning, and low
overhead.

Since this paper is devoted w0 dama-reduction issues, in the next paragraphs we explain the paradigm in detail,
and point out its relationship o other relevant wark. The database community observed that given massive amounts
of data, 3 declarative program, such as daralog, should be evaluated in a ses-oriented, rather than wple-oriented (a la
Concurrent Prolog (Sh]) fashion. The set-oriented, or relational, evaluadon of a program 2 amounts o iteradvely

computing a relatonal algebra expression for each rule of P, unal a fix-point is reached ([L7).

Example I: Consider the ransitive closure program P :

S y)=S(x:)AGY)
Slxy)=A(xy)
The ~aive 2valuauon of 2 iniualizes the reladon S 0 A and then computes the relauconal aigebra expression




[

(1) S{x.y)=S(x.y) U R\ (S (x.2) join A(z,y))
unul no new tples are added w0 5. O

Example 2: The program P;:

SO)=5@)A@y)

SO)y=A(a.y)
that finds all the nodes of a graph reachable from the node a (a constant). The semi-naive evaluation of £, initial-

izes AS and S to the tuples of A that have the constant g in their first position, and then it evaluates the following
expressions:

() ASO)i=m,(AS(¥) join A(z,y)) - S(¥)
SO)=50)uvasShy)
~iweratively, undl AS=2. O

A way of parttoning the rule-instandadons among the processors i3 the following. Assume that there are k
processors, all of which have access 1o the extensional database (it is sither replicated, or resides in some common
memory, or can be received from a processor that "owns” it). It is possible o partition the computatdon of reiadonal
algebra operations among the processors. For this purpose, one can use some technique from the existing literarure
on parallel evaluadon of relational operations (e.g. [BBDW]). However, we posuilate that the work partdtoning can
beuer be performed by appending some predicate i = j, 0 the body of each rule, where A is some hash function, and
J is the identificadon of some procassor. The function A gets as arguments a subset of the variables in the reladonal
expression, and it maps each instantiation of the variables into a unique processor of the set of processors
{P9.....2r-1}. The nexi paragraph motivates this poswlate.

Consider the relational algebra expression (1) of Example 1. Assume that the opumal way of joining § and A
on a single processor is by a nested loop, where § is the outer reladon, and A is the inner one; each block of S, in
sequence, is joined with the appropriate blocks of A. This is a likely siuation, considering that A will probably have
an index on the column z, whereas §, constructed dynamically, will probably not [n order to divide the work
bet'vesn (w0 processors we can use a hash funcdon (e.2. x mod 2) that maps each x-value inw either py or p,.
Assume that the hash funcaon maps half the x-values in § 0 pg, and the other half 10 p,, and the disuributon of S-

facis among the x-values is uniform. Then the compuution time is clearly split i half.




Suppose now that a single processor evaluation method is parallelized by parallelizing each join operation as
explained above (and possibly other reladonal algebra operations as well). This has two drawbacks. First, the k pro-
cessors must be synchronized at each join: they all complete the computation of the join in one iteraton, 2xchange
the newly generated wpies, and then begin the next iteradon. Second, as shown in our previous works (e.g. [WS1),
many tuples are wansmitted unnecessarily among the processors. However, the evaluation load can be partidoned
without the negatve side effects, by appending the hash functons to the rules from which the reladonal expressions
are derived, rather than to the expressions themselves. Then each processor evaluates the modified version of the
program, obuined in this fashion. The hash funcdon appended to each rule depends on the evaluation method
(semi-naive, Henschen-Naqvi, or another (see (BR])), and on the access plan for computing the relational algebra
expression for the rule. It is selected with the purpose of best dividing the processing load among the processors.

= The question of how 0 achieve this purpose algorithmically is outside the scope of this paper. However, we use the
semi-naive evaluation method for demonstrating our ideas.

We first introduce the paradigm for datalog programs without negation, and we discuss how it is specialized
to a particular parailel algorithm. Then we discuss some desirable properdes of swategies. These are single-source
and single-destination, and they enable a lower communication overhead. For a given stategy, we present a
sufficient condition for each one of these properties. Actually, the decomposability concept discussed [CW] is a
combination of the single-source and single -destinaton properties. Specificaily, the decomposable programs are the
ones for which there exist strategies that have both properties. Therefore we ask whether these programs can be
characterized aigorithmically. Unfartunately, we prove that it is undecidable w0 determine whether a program is
decomposable. We also point out that this result cannot be smaight-forwardly obtained from a Rice style theorem in
{GMSV]. Then we address the problem of load balancing. Particularly, we discuss changing the daa-reduction
strategy while the parallel evaluation is in progress. It tumns out that this change of smrategy can be performed more
efBciendy for a linear pmgram Finally, we discuss how 10 extend the paradigm to0 programs with stradfied nega-
tuon. The data-reduction paradigm for datalog without negadon, does not require synchronization among the pro-
cessors. However, the same paradigm requires synchronization when applied o programs with negadon. [t indicatas
that there 1s a relationship, that we fee! is fundamental in parallel computation, between monotonicity and synchron-

izagon. We also show that the single source and destination propertes, when present, enable the eliminaton of the

need for synchronization.



The rest of the paper is organized as follows. [n section 2 we inroduce the terminology used throughout the
paper, and in secdon 3 we present the paradigm. [n secdon 4 we discuss the variables of the paradigm that have ©
be fixed in order to obtain a parallel evaluarion aigorithm. In section 5 we discuss one imporant variable of the
paradigm, that determines the overhead, namely the ransmission set of tuples, between processors. [n secdon 6 we
discuss the single-source and single-destination properties, and in secdon 7 we prove the undecidability result. [n
section 8 we address the problem of balancing the load by strategy change. In sectdon 9 we discuss the applicadon

of the paradigm © datalog programs with stratified negation, in section 10 we conclude, and in section 11 we dis- -

cuss funure work.

2. Prelimiparies -

= In this section we define the basic terminology. A literal is a predicate symbol followed by a list of arguments.
An atom is a literal with a constant or a variable in each argument position. A coasians is any namral number. (The
resuits in this paper are applicable to characier smings as well, since their binary representation is a natural number.)
The other arguments of an atom are the variables. If an atom has a constant in each argument position, then it is a
jfact. An R -atom is an atom having R as the predicate symbol A rule consists of in atom designated as the head.,
and a conjunction of one or more atoms, designated as the body. We assume that a rule is range restricied, ie.,
every variable in the head of a rule also appears in the body of the rule. A datalog program (see [MW]), or a pro-

gram for short. is a finite set of rules whose predicate symbols are divided into two disjoint subsets: the exzensional

predicates, and the intertional predicates. The extensional predicates are disdnguished by the fact that they do not

-appear in any head of a rule.

For a rule, r, an arithmetic predicate (see (BR]) of the form A(x,.....x,), where x,,....x, are distnct variables,
each of which appears in -, is called a reszricring predicate. For example, for a rule that has variables x, and x4,
the predicate  (x, +x9)mod § >2  is a restricting predicate. A restricted version, r’, of a rule 7, is obtained by
appending to the body of r a restricting predicate. A restricied version of a program, P, is a collection of rules that
is obained by replacing each rule of P by a restricted versicn of it

For a rule, r, an arithmetic predicate (see (BR]) of the form A(x,,....x,), where xy,....x, are disunct variables,

each of which appears in ~, is called a resmicting predicats. For example, for a rule that has variables x, and x,.

the predicate  (r, -z;)mod 5> 2 is a restricting predicate. A resiricted version. r', of a rule r, is obtained by



.5

appending to the body of r a restricting predicare. A resuicted version of a program, 2, is a collection of rules that
is obtained by replacing each rule of £ by a restricied version of it We assume that only restricted versions of pro-
grams have arithmetic predicates; programs do not.

The inpwt [ :0 a program 2 is a finite set of R-facts, where R is some extensional predicate symbol. Let Q be
some intentional predicate in P. Given some input /, we define the Q-query, or the owpus for Q, and denote it
O (P.Q.0); it is the set of Q-facts that have a derivation wee in P given /. A derivadon tree for a fact, a, is a finite
Tee with the nodes labeled by facts: a is the root, the leaves are facts in /, and for each intemnal node, b, with chil-
dren by, ...,b;, there is an instandation of a rule of P that has b as the head and b,,....5,, as the body; if 7 is a
restricied version, then the instandadon must sadsfy the resticting predicate. The owpw of P is the union of the

outputs for all the inientional predicates. The set of input and output facts is called the database of the program P.

A predicate Q in a program P directly derives a predicate R if it occurs in the body of a rule whose head is a

R-awm. Q is recursive if (Q,Q) is in the nonreflexive ransitive closure of the "directly derives” relation. Predicate

Q derives predicate R if (Q,R) is in the refexive mansidve closure of the “directly derives” relation (partcularly,

every predicate derives itself). A program is recursive if it has a recursive predicate.

3. The Data-Reduction Paradigm

We frst describe the paradigm assuming that the database resides in a memory common to all the processors.
Then we consider the case in which there is o common memaory.

Let P be a program with m rules, that we denote {7,...7o}. Let (po.....0¢~1 ) e a set of k> 1 processors. For
.each rule r;, we designate k restricing predicates, A;;(x1,....%,), for 0 S j S k~1. The arguments z,,....x, are the
same for all the k predicaies, and, by definidon, all the arguments are variables of ;. We require that for each
insiandation of the variables x,....z,,, the predicate ;) is true {or exactly one j. Denote by r,; the restricted version
of the rule ; having the restricting predicate 4,,(x,.....x,,) appended (o its body. Denote by P, the restricied version
of P consisting of the set of rules (r;11 SiSmj. The set (Py.....P, .} is called a daia-reduc:ion parallelizadon

stratezy. or, for short. a paraflelization strate gy for P. Far example, the set of resricted versions:

S(xy)- S(x.:2)AGY)LGE+y)mod k=

S(xy)y—A(yh(y+)modk =



for j =0,....xk -1, constitutes a parallelization strategy for the program of Example 1.

The set of processors (P o.....p-1} cooperate in evaluating £ in parallel as follows. The processors start with a
2lobal database, residing in common memory, consisting of the input. Processor p; performs the instandations of
the rules in the restricted version P; (ie. instandaticns that satisfy P;’s restricting predicates). [f the head of the
instandated rule is not in the database, but each one of the facis in the body is there, then the fact in the head is
added 10 the global database. The instandadons of p; can be perfarmed by using any single-processor evaluation
method on P;; however, the method has to be adjusted, 10 account for addidons to the database made by other pro-
cessors, not just p;. The paralle] aigorithm ends when none of the processors can perform an instandation of a rule
in its restricted version, such that a new fact is added to the database. Actually, the number of processors can be
smaller than the number of restmicted versions, in which case more than one restricted version is assigned 0 a pro-

cessor. This way the class of instantation-partitions can be extended. For the sake of simpliciry, the discussion is

resricied 0 the one-resaicied-version-per-processor case.

Now assume that the there is no global database, but a local one for each pocassor. Assume further that the
input is either replicated, or mansmined at the outset to all the processors. The message-passing, or shared-nothing
variation of the data-reduction paradigm is as follows. Each processor, p;, sarts with the local database consisting
of the input to the program, and performs the instandaticns of P; as befare. Processor p; transmits to each other pro-
cessor, p;, the set of tuples that p; computes. Actually, this set. denoted T, may be less than the whole set of wples

computed by p;. This issue is addressed in section 5. The processor p; also receives from each other processor the
set of wples the laaer computed. This way common memary is simulated. The communication among the proces-
sors is totaily asynchronous during the computadon, and the only synchronization requirement is reflected in the ter-
mination condidon, specifed below. In other words, carrecmess of the paradigm is independent of the time (rela-

uve to the computadon of each processor) at which messages containing tuples are sent and received by the proces-

sors. The algorithm performed by processor p; is some variation of the procedure below. The procedure is executed

iteratively, undl the teymination condition is satisfied.

DATA-REDUCTION:

1. Add to the local database new wples obtained by instanuations of rules of restricied version P,.




2. Transmit 1o some, or all, of the other processors the new wples computed.

3. Add w0 the local database new wpies obtained by instantiations of rules of restricted version P,.

4. Receive from some, or all, of the other processors new wples and add them o the local database.

The termination condition of the message-passing paradigm is the following: no processor can generate any
new wmples (i.e. tuples that do not exist in the global database for the common memory architacture, or in the local
database for the message passing architecture), by instantiating rules of its restricted version; also, there are no "in
ransit” wples, i.e., tuples that have been sent but not recsived. We shall say more about the dismibuted termination
protocol in the next section. Denote by S the relation for intendonal predicate S existng at p;, when the terminadon

“condition is satisfied. The output of the program for each intentional predicate, S, is:
L
§ i om inanaonad predicaie 1\-15.
4. Speciaﬁziﬁg the Paradigm to an Algorithm
Let P be a program. In order w0 obaain a parallel algorithm on k processors from the data-reduction paradigm,
the following four parameters have o be fixed: the resmicdng predicates that determine the smategy, the sets of

tuples T,; wransmiged among the processars (discussed in secdon 5), the evaluaton algorithm of each processcr

(including how it communicates with other processors), and the disaibuted termination protocol. In this secton we
discuss the last two parameters, starting with the svaluation algarithm.

In this paper we consider algorithms based on the semi-naive evaluation (see (Ban, Bay]) of each restricted
version of a strategy. [n [CW] we discuss an evaluadon algorithm for a single-rule program, P, without constants,
Communicadon among the processors is by message passing. Extended 10 an arbitrary datalog program, the algo-
rithm PSNE executed by some processor, p;, is given in Fig. 1. We use Ullman's notadon for the semi-naive

evaluation algorithm ([U]). EVAL-INCR(S:,R{....R.S1.....52.AQ ., ....AQ,.) is a functon that computes the

tuples of §; that can be obuained by the instandations of rules, given extensional reladons R, ...,R,, intentional

relatons S+, ....Sa, and differendal reladons AQ,,....AQ.. Similarly for the function EVAL. Steps 3, 13, i5.

and 19-21, consutute the modification o the well-known serial semi-naive evaluation algonthm. We shall denote

by PSNE this parallel version of semi-naive evaluaton. The algorithm PSNE can be seen as the following speciali-



PSNE for processar p;:

for i:=1 w m do begin;
ASi:=EVAL (Si.R ... R0, D, . . ., D); [* evaluation of resticted version P; */
S;:=AS,';

end;

send from the AS;'s the subset T, to each processar p,;

-

fori=! omdo;
AQ::=AS;; /*save old AS’s */
for i:=1 © m do begin:
10. AS;=EVAL-INCR(S; R0 RS 10 S AQ 1, - - ., AQ L) /* evaluation of restricted version Pj */
11. AS;:=4S5;-S;; /*remove "new" tuples that actually appeared before*/

12. end:
13. send from the AS;'s the subset T, to each processor p,;

14. feri:=l wmdo;
AS; « AS; v (Si—facts received the other processors during the last iteradon};

VW0~ b g~
o . B Pl

15,
16, §5;=5; v AS;
17. end:

18. unul AS;= for all {'s;
19, Wait undl terminadon detection, or until some tuples are reczived from other processors;

20. if wrminaton detection, then output the 2;’s and quit.
21, if wples reczived, then add them o the S;'s, initalize the AS;'s to them,and gotor.

Figure 1. The parallel semi-naive evaluation algorithm, PSNE, consists of multiple procedures as above, one for

2aCh processor.

zation of the data-reducdon paradigm. In step | of paradigm, one iteration of semi-naive evaluaton is perfcrmed
for the reswicted version P,; in step 2, a subset of the newly computed tuples in step 1, i.e. of the differentials (A's)
for all the intentional predicares, are Tansmited to all the other processors (which subset, will be discussed in sec-
“tion 5): in step 3 no evaluation takes place, and in step 4, all the tuples received from other processors during the last
iteration are added 10 the database, and (o the differentials, If at this point the differentials are empty, then processor
p: waits undl terminagon is detected, or some tuples are reczived.

Another variatoa of the paradigm is that in step 1, semi-naive evaluation is performed untl a (temporary)
fix-point is reached. Then data-reduction is continued as apove. The algorithm of Fig. 1 is modified as follows

redect this variadon. Step 5 is removed, step 13, referring 10 §; rather than AS;, is moved to between steps 18 and

19, and step 15 is removed.




Sull another variation of the paradigm is to execute siep 4 of the paradigm, namely incorporation of twples
reczived from the other processors, only when a temporary ix-point is reached. The algorithm of Fig. 1 is modified
0 redect this variation, by removing Step 15.

The above algorithms do not assume any synchronous operation of the network, or that messages, or tuples,
are recaived in the order in which they are sent

Another parameter to fix in order to tun the data-reduction paradigm into a parallel algorithm is the distri-
buted termination algorithm. However, for this purpose, one has only to select an algorithm from the many pub-
lished in existing literamure ([CM, F, M1, M2]). There, the distributed termination problem is defined as follows.
Lzt pg,....0- be a fnite set of processors, communicating by messages. A processor is either idle or gctve. Only

;ac:.i.ve processors may send messages, a process may't;hangc from acdve to idle ar any tme, and a process may
change from idle 1o actve only upon receipe of a message. The algorithms provided in the literanure superimpose a
termination detection algorithm on the computation. In cur terminology, a processor is idle if it reaches a temporary
ix-point, otherwise it is acdve. A processor reaches a temporary fix-point if by instantiating rules of its restricied

version of the program, new wples, i.c. wples that do not exist in the local database, cannot be generated.

5. Transmission Sets

The message-passing version of the data-reduction paradigm transmits between processors more wples than
necessary. In simulating common memory, there is no point in ransmiuaing (o some processcr wples that will cer-
tainly be eliminated by its resmricting predicates. To illustrate this, consider the the following.

. Example 2: (continued from the introduction). Denote by 4 some hash funcdon, A: z — (0.....k-1}. Suppose that
there are £ processors, and each p; evaluates the program:
Py: SO)-S@)A(ny)AG)=i
SOi-Aay)a(@) =i

We shall make three observations about this example. First, assume thar the reladon A has an index on the
second atribute, S does not have an index, and the optimal way of joining S and A is by a nested loop, where S is
the outer relation, and A is the inner one. Then partitioning the work by the above smategy will probably result in an
optmal speedup, i.c. £. Second, in a wide-area disgibuted environment, assume that the relation A (2,y) is horizon-

wally partitioned on the frst column; for exampie processor ( stores the tuples for which A(:)=i. Then, the require-
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ment that each processor has the whole input at the outset can be relaxed. Third, which demonstrates the topic of
this section, in order 0 ensure that each output wple is computed by at least one processar, p; has o ransmit © p;
only the wples §(y) that it computes, and for which A (y) = j. a
Formally, given an input / 0 a program P, we detine the set of tuples T;;, that processor p; sends © p;. Let §
be an intendonal predicate of the program P, and A a parallelizaton strategy of it. The set of S-facts transmitted
from p; 0 p;, denoted ST;; consists of the intersection of (wo other sets, denoted SR; and SC;. First we define the set
SR;. An S-fact. f, is in SR, if and only if:
(Condition K 1) there is some rule of the program P, say r;, such that fis not in r,, but there is an instantiation of it
that sadsfies the predicate A,;, and f appears in the body _of the instantiated rule.
_In other words, a wple fis in SR;, if there is an instantiation for which pj is in charge, that uses f. Determining
whether a given fact is in SR; can be done in constant time, under the following assumptons.
(1) The size of the program is constant (this assumption is also made in other works, e.g. [UV]).
(Z) For any restrictng predicate A;;(x,...,X,). it can be determined in constant dme, for any instantiation of any
subsat of the z;'s, whether or not the rest of them can be instantiated by constants, such that the predicate is true.
Next we define the set SC;. In contrast to the set SR, the set SC; does depend on the input. Intuitively, it is the
set of facts computed by procassor p;. Formally, a producive instantiation of a rule at procassce p; is an instandation
for which, when performed by p;, the head is not in the database at p;, but all the facts in the body are there. A fact
is computed by p; if it is in the head of a producdve instanuation. Note that the same fact may be computed by more
than one procassor. Furthermore, it may be computed. and later received from another processor, Let SC; be the set
. of S-tacts computed by p;. Then S§T;;, the S-ransmission set from i w j, is SR, N SC,. We define

r,= v ST, The set T;; is called the ransmission set from p; t0 p;.
S ir am iniennonal predicess

Observe that the definition of T;; requires that each processor, p;, knows the whole strategy, not only its own
reswricted version. Furthermore, note that the T,,'s are not necessarily disjoint. For example, if in the body of some
rule of P appears the atom S (y), and if the variable y is not an argument of a resmicting predicate, then any procas-

sor that computes a fact S(a), must ransmit it to all the other processors. Moreover, it is possible that § (a) is com-

puted by more than one processcr.
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(Opumization O1): An algorithm based on the dats-reducton paradigm may perform the following opdmiza-
tion, to send less than the whole set T,;. It may eliminate a fact, £, from T;;, if it was received at p;, before the lartar
Tansmitted £'to p;. In other words, it is possible that p; has computed f, included it in T;;, but has not performed the
actual wansmission (a possible reason is that it waited to ill up a buffer). If at this point f is being received at p;,

then fcan be eliminated from T;;. The reason this optimizaton does not violate correcmess is that the processor that

sent /10 p; must have also sent it o p;.

6. Unique Source and Destination Properties

Let P be a program, and {pg.....p;-;} @ set of processors, for some parallelizadon strategies for P, each possi-
ble mple of an inendonal reladon, §, is transmitted 10 a unique-processor. This is a desirable situation, since it
rcd_ucss communication among the processors. Fonna-lly. the parallelization strategy A has the unique destinarion

property with respect 0 the intentional predicate S, if each S-fact belongs 0 a unique SR;,. This means that each §-

fact, f, is ransmitted 10 only one processor, by any processor that computes f. For example, the strategy:

S(xy):- UP(2.2),5(2,w),DOWN | (w,y),(z+w) mod k& = j
S(zy)~UPy(2,2).5(2,w),DOWN 3(w,y).(z+w) mod k =

S(xy)— FLAT {z,y),.x mod k = j.
has the unique destinadon property with respect to S. For instance, assuming that there are three processors,

{pa.0:.p2}, the wple 5(5,3) is only wansmited 0 p;, Now consider the strategy identical with the one above,

except that the restricting predicates of the second rule are x mod £ = ;. This strategy does not have the unique desd-

nation property.
. When does a panallelization strategy have the unique destnation property? This question is impartant because
it should be taken inw consideration in selecting one, from several candidate parallelizadon strategies by which o

evaluate P.

Theorem 1: Let P be a program, and let H = (P,,....P, ;) be some parallelization szategy of . The stategy A

has the unique desdnanion property with respect W0 intentional predicate S, if there is a set of argument positions
ty,...,t, of the predicate 3, such that

(1) if 84 is an S-atom in the body of some rule, 7,, of P, then the variables denoted 1y ,... .x,,, i.2., the arguments of

the resuricdng predicates k;,, appear in posidons ¢y, . . . .1, of §¢, respectvely (and consequendy v = g,).
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(2)  if r, and 7, are two rules of P that have an S-atom in the body, then for every sequence of consants, a,....4a,,

and for every m, Au{a1,....a,) is rue if and only if A, (a,,....a,) isque. []

Another important property of a sgategy is the unique-source property. It ensures that any S-fact, £, is wansmited
from (rather than t0) a unique processor. Again, this property reduces communication. Formally the parallefization
strategy A has the unique-source property with respect o the intentional predicate S, if each S-fact, f, can belong w©
a unique CT,,. In other words, if fis in the output of the program P, then it is computed by the processor pj, , and

only by this processor. Far example, the strategy:

S (x,y):- UP,(x,2),5 (2.w).DOWN {(w,y).x mod & _=j
] S (x,y):- UP5(x,2),5 (x,w),DOWN 2(w,y),x mod £ = §

S(xy):— FLAT (z.y).x mod k=
has the unique source property with respect to S. Consider the strategy identical with the one above, except that the

restricting predicates of the sacond rule, are z mod £ = j. This strategy does not have the unique source property.
The next theorem, giving a sufficient condition for a swategy o have the unique-source property, is idendcal

Theorem 1, except that it refers 1o S-atoms in the head. rather than body, of rules.

Theorem 2: Let P be a program, and let 4 = (P,,....P,_;) be some parallelization strategy of £. The straegy A

has the unique source property with respect 10 intentonal predicaie S, if there is a set of argument positions
S 1, of the predicate §, such that
if ¢ is an S-atom in the head of some rule, r;, of P, then the variables denoted x4 ,....%,,, i.¢., the arguments of

the restricting predicates A;;, appear in posidons ¢y, ..., £ 0f §o, respectively (and consequendy v = q:)-

2) ifr; and 7, are two rules of P that have an S-atom in the head, then for every sequence of constants, ay,.nddy,
and for every m, Rq(a),....a,) is true if and only if An(a;,....a,) is que. ]

Assume that a strategy has both, the unique source and destination properties with respect some intentional
predicate, S, and furthermore the sourc: and destnation coincide. i.e. are the same processor, for each §-fact. Then

each S-fact is produced during the evaluadon by a unique processor, and no S-fact has to be ransmized among the

procsssors.

7. Decomposable Programs
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For some programs there exists a strategy that has a coinciding source and destnation property for everv
intentional predicate of the program. Such programs are called decomposable. The processors cooperating in the
evaluadon of a decomposable program do not have to transmit any wples, and the output produced by sach proces-
sor is disjoint from the output of ¢ach other processor. The advantage of communication-freedom is obvious, and
ourput-disjoinmess implies that two processors do not duplicate the effort of producing the same facy this is appeal-
ing since it means that work-partitioning is abstracted, independendy of implementation details, such as the inner
and outer relations of a nested loop join. For example, the following parallelizadon swrategy for computing the wan-
siave closure (a decomposable program) has the communicaton-freedom and output-disjoinmess advantages.

S(xy)—-S(x:)AEy), xmodk =j -

= TS(xy)k-A(xy), xmodk=.
The data-reduction paradigm is a syntactic concept. However, as we shall show, decomposability is a seman-

tic property, and in this secdon we study it in this way. Specifically, we ask the following questdon. Can we algo-
rithmically identify the programs for which there is a parallel evaluation method (whether or not a specializaton of
the data-reducdon paradigm) that satisfies the above conditions, namely, work disjoinmess, and communication
freedccm. In [CW] we have taken this semantc approach, defined the decomposability property and provided neces-
sary and sufficient conditions for decompesability of a single-rule program. These conditicns can be checked algo-
rithmicaily. In this section secdon we first extend the decomposability definition to arbitrary datalog programs; this
is necessary since in {CW] the definiticn was reswricted o single-rule-programs. Then we ask whether there exists
an algorithm that determines whether or not an arbimrary program is decomposable, and answer negagvely.

We start with some preliminaries, that pave the way 0 the decomposability definition. A program is Q-
minimal if every predicate in the program derives Q. We shall assume without loss of generality that when evaluat-
ing a Q-query, the program is Q-minimal; otherwise rules can be omiaed from the program, for answering the Q-
query. Let P be a Q-minimal program, for some intentional predicate Q. The owpws domain of P, denoted O, is the
se: of all R-facss, for all intentional predicates, R. [n other words, the output domain is the infinite set { R@ | Ris
an intentional predicate, and @is a sequence of constants }. A set of two or more sews, M y,....M,,..., is a @-parution
of the output domain of P, if the following requirements are satisfied.

1. the M;’s are pairwise disjoint, and

2. each M, contins u least one Q-atom (otherwise the member is useless for the evaiuation of a Q-query), and
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3. each Q-fact in the ourput domain belongs to some M;,

Lzt D be a Q-partdon of the oupur domain for the program P, and let M; be a member of D. A Q-fxct. g, in M; is
proper, if: for every input / such that g is in the output O (P,Q,[), the fact g has a derivation wee in which all the
intentional-facts are in M;. In other words, assume that each processor assumes responsibility for producing the Q-
facts belonging to one or more members of D. Then, for deriving a proper Q-fact, a processor does not need 0
receive facts derived derived by other processors, regardless of the input. The program P is Q —decomposable if it
has a g-paruton for which every (-fact in the output domain i3 proper. Then, the set D is called an
eligible Q -partition of P. '

For example, consider the program P 1 below:

Q (x.y.2):= Q (z.y.w), A (w,z)
= Q(x.y.2):— R (y.x2)
R(z.y.2):- R(z,y.,w), B (w,2)
R(z,y.2)- C(z.y,2)
The program is Q-decomposable. One example of an cligible Q-partdon is the following. M, consists of the Q-

ard R- facts in which the sum of the constants in the first two positions is odd, and M, consists of the ones in which
the sum is even. Actuaily, the program P 1 has an infinite Q-partition: M, consists of the facts in which the sum is
1. .M, consis:s of the facts in which the sum is 2, eic. When the program has a single intentional predicate, it is 2asy
1o see that the decomposability definition above reduces to the definition in [CW].
Decomposable programs are also interesting for sequendal processing. Once a fixpoint is reached within 3
member of the partition, all the facts of the member can be removed from the intentional refations, reducing their
sizes for further processing. For exampie, consider the program P1 above. If at some iteration of semi-naive evalua-
tion, the differental does not contain any intentonal facts in which the sum of the first two positions is 3, (but prior

iterations it did), then all such facts can be removed from the intendonal relations, reducing their size for further

iterations.

We prove that for an arbitrary datalog program, P, and a predicate Q of P, the problem of determining Q-
decomposability of 2 is recursively unsolvable. First, let us point out that the resuit cannot be obtained Fivially from
(GMSV, Theorem 8). That result is a Rice style theorem, that implies that many interesting properties of datalog

programs are undecidable. Specifically, theorem 8 in {GMSV] states that any semandc property that contains bound-
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edness, and is strongly nontriviai is undecidable. A property = contains boundedness if every bounded! program has
the property x. However, decomposability does not contain boundedness. In fact, there are nonrecursive programs
that are not decomposable. For proof we will show that the following nonrecursive program, P 2, is not decompos-
able.

Q (x.y):= E(x.w), R (w,v), F(v.y)
R(z.y)—-G(x.y)
Assume, by way of conaadicton, that P2 is Q-decomposable, and consider two members, M; and M j» of an eligible

Q-partition. Cbserve that, since every member of the Q-partition contains a3 Q-fact, every member must also contain
an R-fact. Let Q(a.5) be in M;, and R(c,d) be m M;. Then Q(a,b) is not proper, since ‘for the input

_(E(@.c).G (c.d).F (d.b)] the fact O (a,b) has a single derivation tree, and R (c,d), a fact in this tree, is not in M;.

In [WS] we have shown that every nonrecursive single-rule program (a program with one intendonal predi-
cale and two nonrecursive ruies), is decomposable. Actually, a program with an arbitrary number of rules is decom-
posable, provided that it has a single intentional predicate. However, the program P 2 above has two.

Theorem 3: The problem of determining whether a given program is Q —decomposable, is recursively unsoivable.
Proof idea: The theorem is proven by a reduction from the problem of determining equivalence of two datalog pro-
grams, shown undecidable in [S]. Given two programs, 7, and P,, we construct a third, P, that has a new predi-
¢ate, Q, such that P is Q-decompesable, if and only if 7, and P, are equivalent. J

The negative result in this section is “cushioned” by a sufficient condition far decomposability, discussed in

"[WS]. There we defined a syntactic condition, called pivodag, that is sufficient for a program to be decomposable.

3. Load Balancing

In the exposition so far, we assumed a fixed set of restricting predicates, determining a priori the resmicted
version executed by each processor. Clearly, even the best functions will fail to evenly balance the load for some
inputs. Then Icad balancing has w occur. We shall not discuss the problem of determining when 0 balance the
load, but only how 0 do so. The way we propose is for some processor, p;. 10 change the parallelization strategy
used. in order w balancs the load. Presumably, p; is a processar that is idle for more than some prespecified amount

of ame. Or, p; knows that there are idle processors, although p; itself is not idle. How should the strategy be

A program is bounced ¢, for sach query fredicate, U produces the 1tibe CUAA 11 3 NCNFECUrIIve program, iven the same nput
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changed? We suggest the following protocol.

There is a processar, ¢.3. po. designated as the “leader”, at the outset. When some processor decides t0 change
the parailelization swaiegy, it selects the set of reswictng predicates of the new swalegy (possibly the next set in a
list of candidate strategies), and sends this set 10 the leader, requesting a change. The purpose of this stap is for the
leader w0 be able w select a single “successful” processor if multiple processors are simuitaneously acempdng a
sorategy-change, each with a different set of restricting predicates. Before changing a strategy, X, the leader verifies
two things. First, that ail the processors have received X, and second, that at least one processor has generated new
tuples using X. The purpose of the first verification is to ensure that when the algorithm ends, all the processors use
the same swategy; this in mn ensures completeness. The purpose of the second verification is to prevent an infinite
loop of stralegy-changes, without making any progress in the computation of the ouput. Only after the two

verifications complete posidvely, the leader sends the new strategy to each processor.

When a processor, p;, receives a new resuicted version from the leader, it ransmits from its local database, 0
2ach other processor, p,, the subset that sadsfies condidon K1 (see definition in secdon 5), according to the new
sgategy. Then, p; simply proceeds with its computation using the new resticted version. The PSNE algorithm of

rig. 1 is adapted to0 change the strategy dynamically, by adding the following siep between steps 6 and 7.

6.1 if a new stalegy is requested, then send 0 each processor, p,,, from each one of the inendonal relarions S, the
subset that is also in SR, (defined according 10 the new strategy); then change the resmicting predicates according to
the new stategy.

In the full paper we demonstrate the mmgy-c!m}igc procedure, and prove that it is correct, namely that no
output is lost. Assume now that the program being evaluated in paralle] is Unear, namely a program with at most
one intentional predicate in the body of each rule. Then we can apply the following optimization of the load balanc-
ing scheme. At step 6.1 of the PSNE algorithm, p; should transmit to each other processor, p,, only a subset of the
fac:s it mansmits in the general case. For each intenuonal predicate S, it is the subset of the last differendal, AS,
(instead of all the S-facts in the current database) that sarisfies condition K1 according to the new szategy. Note
that this reduction in the size of T, has two posidve effects. First, it reduces the number of tples ransmitted
among processars. Second, it reducss the amount of work performed by the receiving processor, p,, since the size

of both, the differsntial AS, and the reladon S, shrinks. .In the full paper we prove the correctness of the optimization
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for linear programs, and we demonstrate that it is incorrect if the program is not linear.

9. Extension to Datajog with Negation
In this section, we discuss the application of parallel algorithms based on data-reducton, 10 dataiog programs
for which the rules are defined as before, except that some of the atoms in the body of a rule may be negated. We
shall assume safe negation, namely that each variable in a negated atom also appears in a non-negated atom in the
body of the same rule. Furthermore, we shall assume that the programs are stratified (see [ABW]). This means that
there is no path in the dependency graph' from R o Q, if there is a ruie whose head is an R-atom, and a negated Q-
atom appears in its body (namely - @ defines R). Such a program has a stradfication, ie. a nonnegatve numbering
of the predicaie symbols, such that if § is defined by ° T:then T has a lower number than §, and if S is defined by T,
then T has a lower or equal number than 5. The output of such a program is defined as the set of tples obuained by
evaluating the straza one by one, in increasing order, using the complement of a relation § as the set of fac:s in the
database, for the atom ~ § appearing in the body of some rue. A dawa-reduction algorithm of the type discussed in
the previous sections, can be used for the evaluation of each stramum.

Therefore, a parallelization strategy for a program with ¢ swra@ consists of ¢ parallelizaton stategies each one
evaluated by k processors. Suppose that intendonal predicate S is at stratum b. At the completien of the evaluaton
of stramm b, each processor, p; tansmits o all the other processors, the S-facts that are in p;’s database, assuming
that the atom § appears (possibly negated) in higher strata. Actuaily, p; does not have o wait unal the compledon of

stratum evaluation, but can transmit the S-facts as they are evaluated by p;. Furthermore, only a tple, £, that sausfes

the following condition should be transmited 0 p;.

Condition (K1N): There is some rule, 7,, whose head is at stratum b or higher, such that fis not in r,, but there is an

insiandation that satisfies the predicate A,;, and fappears, possibly negated, in the body of the instanuated rule.

Therefore, the mansmission sets are defined in terms of the currenty evaluated statum, as well as higher ones.

Now suppose that intendonal predicate § appears negaied at soratum s, and the stratum of Sis 4, 4 < 5. Then a
processor, p;, Cannot start the evaluation of swatum 5 before all the processors have completed the evaluaton of soa-

tum u: otherwise, facts it computes may be “invalidated™ by S-facts received later. In other words, there are inputs,

1. l;nphzhxm;ﬁcpmdimrymbdxum:ocda,mdmucS—-chr:u.Hpu.rS.Txum'ngzhcmillnnewhmhadisxﬂ
atom, ind n S-alom acpears 1 13 dody
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and relative computaton speeds (and communication delays), for which invalidation of wples may occur. There-
tore, in general, the processors have © be synchronized at each stratum. Synchronization means that each processor
has o0 wait unal all the processars have completed their evaluation, and there are no tuples “in wansit”, before

proceeding to the next stratm.

Howevez, this is not always necessary. For example, consider the following strategy for parallelizadon of the

program that computes in § the ransitve closure of A, and in T the tuples of the wansitive closure of B, that are not
in §:

T(y)=T(x:).B(zy). S(xy). xmod k =
T(x.y):-B(xy),"S(x.y), x mod k = j
Sxy)=S§xz)A(y), xmod k= j

S(xy)~A(xy) xmod & = j
for j =0,....c~1. In this case there is no wple that has o be ransmined among the processors, and in partcular the

orocessors do not have o be synchwonized at the beginning of each swamm evaluaton. A way of lcoking at this, is

that the only'S-faczs that can “invalidate” T-facts computed by some procsssor, p;, are S-{acts that are also computed

by pi.

In general, it is possible that for a parallelization strategy, the processors have (o be synchronized at the begin-
ning of the evaluation of some, but not all, of the strata of a program. Such strata are called syncAronous, in conuast
to others, that are asynchronous. (Actually, it is possible that for a parallelization sarategy, a swatum is asynchro-

nous for some processors, but not for others. However, for the sake of simplicity, we omit this subdety from the

present discussion.) For example, if 10 the strategy above we add the rules:

Uzy)-C(zy). T(zy), xmod k = j
for j=0,....k~1, then the third stramum is synchronous.

A sufficient condition for a stratum o be asynchronous is the following, Let 2 be a program, and let 4 be a

parallelization strategy for the evaluation of P. Let s be a swratum, and denote by S, ...,Sa the intendonal predi-

cates that appear negated a stamum 5. Dencee by G the set that consisss of §,...,5,, and the intentonal predi-
cates that derive any of the S;'s. Denote by ¢ be the highest stracum below s, that is synchronous, or, if there is none,
then ¢ = 0. Disregard any rules of the strategy that define predicates at a sgratum higher than s, and examine the fol-

lowing. If each intendenal predicate that is in G, and is at a stratum between ¢ and s-1, has a coinciding unique
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source and destination property, then s is asynchronous.

10. Coaclusion

In this paper we intoduced the data-reduction paradigm far evaluating datalog programs in parallel. It con-
sists of the evaluation of a parallelization strategy, i.e. a partition of the rule-instantations, such that each processor
performs the insmandations in a partition member, and adds the newly generated tiples to a common database. The
common database may be simuiated by message passing.

We proposed a protocol for dynamic changing of strategies derived from the paradigm. This is required for
load balancing. For semi-naive evaluation of a linear program, load balancing can be performed more efficiendy,

since it is necessary (o redistribute only the differentials, rather than the whole output produced so far.

= We also discussed the extension of the results o damlog programs with swratified negation. The asynchronous
mode of parallel computation is not guaranteed when the paradigm is exiended 1o this type of programs. Some stram
may be synchronous, ie. require synchronization of the processors, before the svaluation begins. Others may be
asynchronous. [t s out that the synchrony of a stratum is related to two other impormnt properdes of paralleliza-
don strategies, namely unique source and destination. They enable a lower communication overhead far programs
with and without negation, and we provided a sufficient condidon for each property. Programs for which there is a

parallelization strategy that has both propertes are called decomposable, and we have shown that it is undecidable

to determine whether or not a program is decomposable,

11. Future work

We intend 0 condnue the exploration of the data-reduction paradigm, and will concentrate in the immediate
future on distibuted environments. The main deviation from our model is that in such an environment it may not
practcal to assume that all processors have access 1o the whole input. However, as we have pointed out in example
2 at the beginning of secton S, this only means that different considerations may dictate the selection of the restrict-
ing predicates,

Specifically, we intend w0 apply the data-reduction paradigm (0 rule-processing in databases for network
management. Net-mate, 3 project currenty under development at Columbia University (see (SDSY]), aims o
develop a software environment for management of very large (hundreds of thousands of interconnecied computers)

communication networks. A fault in such a network is a failure or an overlcad condidon, and an impertant zcal in
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network management is © automatically detect and recover from uis condition. Rule based programming can be
employed 10 armin this goal, but two faciors combine w0 complicate this approach. First is that detecdon of the fault
may require the analysis of very large amounts of statisical and configuration data, and second is that this dara is
usuaily disoributed. One soluton is to mansmit the data, and analyze it in a cenmral location. However, this would
place an unacceprable communication load on the network, and an unacceptable computation load on the single pro-
cessor. Another solution i3 to run a ruie based program at multiple processors in the network, with each analyzing
the data produced locally. However, in this approach, the global view that is often required for proper fauit detec-
ton, i3 lost. The right solution seems w0 require one rule program that has access to the dat in the whole network.
For the rule programmer, this will hide the complexity introduced by distribution, and enable concepialization of

_the fauit detection problem as being centralized. How.cvcr. for performance reasons, the program should be pro-
cessed at many processors in the network, while minimizing communication overhead. Data-reduction satisfies
these requirements perfectly, It speeds up the evaluation of a rule-based program by using multiple processors (the
nodes in the network), each working on a different subset cf the database (the data stored locally at the node), while
minimizing the required communication among the processors.

Data-reduction should also prove helpful in the distributed processing of triggers. Far example, assume that
the netwark-configuration database is partiioned among many processors in the nerwork, and consider the follow-
ing wigger: "if the delay on 20% of the communication lines exceeds 5 seconds, then execute a certain alarm”™. Con-
tinuousiy collecting the twples represendng the lines that satisfy the condition, would place an unacceptable com-
municadon and computarion Joad. Processing of the trigger under the data-reduction paradigm will hopefully con-
sist of local Tigger-evaluation (counting the number of culprits stored in the processor), with minimal communica-

tion among the processors (ransmission of the count rather than the tuples).
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