459- 89

An Abort Mechanism
for Nested Distributed Transactions

Dan Duchamp
Computer Science Dept.
Columbia Univ.
New York, NY 10027

Abstract

A transaction processing facility must have a mechanism for aborting transactions on
requesl. This paper describes a mechanism for aborting transactions that can be ar-
bitrarily nested and/or distributed. The mechanism consists of an “abort protocol”
plus an adjustment to the commit protocol. The abort protocol locates and terminates
as many of the transaction’s operations as it can. If after the protocol has finished it
is still possible that orphaned operations exist, then a simple check during the
prepare phase of the commit protocol ensures that no orphan commits.

The mechanism has many advantages: provided that the communication subsystem
provides prompt failure detection, there will be no orphans: a site can abort
unilaterally: there is litle overhead on transaction-operation messages, and relatively
[ew and relatively minor restrictions on the transaction facilily: no information need be
maintained in stable storage: and the abort protocol never blocks. The primary dis-
advantages of the mechanism are that the abort protocol must be synchronous, that it
may over-abort in some cases. and that — if the communication subsystem does not
provide prompt failure delection — there is no limit on the extent or lifetime of or-
phaned computations.

Copyright © 1990 Dan Duchamp

This work was supported by IBM and the Defense Advanced Research Projects Agency. ARPA
Order No. 4976 (Amendment 20), under contract F33615-87-C-1499, monitored by the Air
Force Avionics Laboratory, Wright Aeronautics Laboratories, Wright-Patterson Air Force Base.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied. of any of the
sponsoring agencies or of the United States Government.

i

Table of Contents
1. Introduction
2. Assumptions and Restrictions
2.1. Execution Model
2.2. Assumptions and Non-assumptions
2.3. Required Restrictions
2.4, Communication Subsystem
2.4.1. Crash Detection
2.4.2. Information Accumulation
3. Protocol Description
3.1. Overview
3.2. Defining Victims
3.3. Locating and Undoing Victims
3.4. Further Refinements
3.4.1. Returning to the Caller
3.4.2. Increasing Message Reliability
3.4.3. Pruning Extra Kill Messages
3.5. Abort Protocol as Exception Mechanism
3.6. Aborting Top-Level Transactions
3.7. Preventing Orphans Entirely
4. Informal Correctness Arguments
4.1, Safety
4.2. Liveness
5. Evaluation
5.1. Overhead
5.2. Efficiency
5.3. Speed
5.4. Special Liveness Guarantees
5.5. Effect of Restrictions
6. Related Work
7. Summary
8. Acknowledgements
I. Required Information

@O U dDWNNN -

1. Introduction

Measurements of some single-sile database applications indicate that about 3% of
all transactions abort by request [5]. Common reasons for aborting include bad user
input and system detection of conditions such as deadlock. This paper describes a
mechanism for the explicit abort of transactions that can be nested and/or dis-
tributed. The mechanism consists of an “abort protocol” plus an adjustment to the
commil protocol. The abort protocol locates and terminates as many of the
transaction’s operations as it can. Il alter the protocol has finished it is still possible
thal orphaned operations exist, then a simple check during the prepare phase of the
commit protocol ensures thal no orphan commits. This mechanism has been im-
plemented within the Camelot transaction processing facility [4].

The primary advantage of the mechanism is the low overhead it imposes on the nor-
mal processing ol transaction operations: there is no need ever to place extra abort-
related information in stable storage, and little extra processing needs to be done on
inter-site messages. The main disadvantage of the mechanism is that the abort
protocol must be run synchronously. Interestingly. these properties define an abort
mechanism that is nearly the dual of that used by Argus [12]; Section 6 discusses the
contrast.

The body of the paper is organized as follows. Section 2 explains the assumptions
that underlie the work. Section 3 develops a specification of the mechanism as a
series of refinements, while Section 4 provides informal arguments that the
mechanism is both safe and live. Sections 5 and 6 evaluate the mechanism in ab-
solute terms and relative to previous work, respectively.

2. Assumptions and Restrictions

2.1. Execution Model

The model of transaction execution is quite general. A single application process
slarts a transaction, invokes (he operations exported by other processes called servers,
and then initiates commitment. A transaclion may consist of any number of opera-
tions that call servers at any number of sites. Servers — unlike applications —
manage segments of recoverable storage; they may also start and execule transaclions
in the course of servicing an operation. Abort can be requested by any process at any
time up to the moment when the top-level transaction becomes prepared to commit.

Each site has a transaction manager. which is part of the transaction facility and
which has two primary functions. First, it maintains bookkeeping information about
which transactions are active at local servers and which have made operation calls to
servers at other sites. Second. il cooperates with transaction managers at other sites
lo execute the commit and abort protocols that ensure multi-site atomic behavior.
Whenever a site recovers from a crash. the transaction manager aborts all trans-
actions that were active at the moment ol the crash. These transactions are then im-
mediately forgotten.

The nesting model is the [ollowing variant of the Moss model [15]:

¢ A transaction can spawn one or more nested transactions in parallel or in
sequence. A parent is prohibited from accessing any of its locked data so
long as any child is running.

» A descendant can inherit locks held by an ancestor.

» When a child commits, its locks — both inherited and newly acquired —
are given (anti-inherited) lo the parent.

e When a child aborts, its newly acquired locks are dropped. and its in-
herited locks are anti-inherited.

* The elfects of a committed child are made permanent only when the top-
level transaction commits.

 Aborting a transaction implies aborting all transactions nested within it.

* A “commitled” nested transaction can be aborted. Aborting a committed
nesled transaction implies aborting all transactions up to and including
its lowest active ancestor.

The entire collection of nested transactions is called a family. The usual tree terminol-
ogy is used to refer to transactions within a family. This model is implemented by
both Camelot [3, chap. 4] and Argus [11].

2.2. Assumptions and Non-assumptions

The failure model is ordinary: processes are [ail-stop: siles may crash and lose their
volatile memory; and the network can lose or duplicate messages and can partition.
but may not manufacture or undetectably garble messages.

No assumpliion is made about the nature of the commit protocol for nested trans-

3

actions: indeed. is it not even necessary that one exist.! The abort mechanism is de-
pendent upon the characteristics of the top-level commit protocol only insofar as there
must be a “prepare” phase during which siles may vote to abort the top-level trans-
action. The topology of the protocol and the presence or absence of phases before or
after the prepare phase are of no consequence (o the abort mechanism.

The mechanism is likewise independent of the methods for concurrency control and
recovery.? Keeping the abort mechanism [ree of any assumplion about the recovery al-
gorithm creates a subtle but severe restriction: nested transactions must be undone
from the bottom up, and any particular nested transaction can be undone only once.
That is. the minimum assumption one can make about the capabilities of the recovery
process is that it is able to undo transactions in reverse order of creation.

2.3. Required Restrictions
Besides the recovery restriction mentioned above (which is really the consequence of

a non-assumption), five additional restrictions must be imposed upon the transaction
facility.

First. commitment must be synchronous: a transaction may not commit until all of
its operations have been completed or aborted and all its child transactions have been
commitled or aborted. Additionally, applications and servers must aborl the trans-
action enclosing any operation call that fails to respond. These restrictions simply en-
sure well-defined transactions.

Second. there must be a site (the commit source) which is responsible for even-
tually initialing the commit protocol. It is assumed that there will be no attempt to
commil the top-level transaction if the commit source crashes. The commit source is
typically the creation site of the top-level transaction and the site running the applica-
tion.

Third, the transaction identifier (TID) must encode the address ol the creation site(s)
of both family and transaction. This is easily accomplished with the classic technique
ol producing unique identifiers by concatenating the host-id and a monotonic integer.
TIDs need not encode nesting information, implying they need not be variable-length.

Fourth. a server must eventually abort any transaction that has been active [or too
long. It is easy to lift this restriction, as discussed in Section 3.7, but doing so re-
quires support [rom the communication subsystem that for now we do not assume ex-

!Camelot and Argus both use “lazy commitment,” in which the commitment of a nested 'lransaction
consists of no more than having its local transaction manager make note of the fact m.volaule memory.
Locks are later anti-inherited only if they are requested by a transaction in the same family.

2Although this paper is written as if the recovery method is logging and lhe.conCL}nency coplrol
method is locking, these conventions are adopled only in order to be precise in discussing the actions
required at various times.

ists.

Filth, the inter-site communication subsystem must support transaction manage-
ment by performing two services beyond simple message transport: crash detection
and piggybacked information accumulation. Performing crash detection means
guaranleeing the abort of an operation that is directed to a site that had earlier per-
formed an operation for the same family but then crashed and recovered. Performing
piggybacked information accumulation means intercepling outgoing operation mes-
sages. adding transaction management information to them. then having the destina-
tion intercept the (incoming) message. strip off the extra information, and merge it
with information received on previous messages. Information accumulation is used as
a mechanism to implement crash detection. These services are discussed next.

2.4. Communication Subsystem

2.4.1. Crash Detection

Crash detection is important in controlling orphans, which in turn is a key goal of
any abort mechanism. If a server crashes, all transactions aclive at that server must
abort. A transaction system must guard against this sequence of events:

1. Transaction T does operations at several servers. including some at a
server al site S.

2. Site S crashes and recovers quickly. As part of recovery. T is aborted at
that site. Other sites do not learn of the abort. No memory ol T is
retained at site S.

3. A second operation of T is directed to a second server at site S, rees-
tablishing transaction T at the site.

4. Transaction T commits at all sites, including S.

The transaction should abort because of the crash. but instead is partially committed
and aborted. violaling atomicity. There musl be some way of always detecting the
server crash of step 2, so that step 3 is prevented.

If inter-site communication is done via reliable connections over which “keepalive”
messages regularly travel. then crash detection is provided free by a lower layer and
the technique discussed here is unnecessary. This section presupposes that inter-site
communication is via datagrams, and that the transaction facility is responsible for
crash detection. We assume that a transaclion manager can detect the death of local
server processes and will reliably initiate abort in that case. If so, then the problem of
detecting server crashes becomes one of detecting site crashes.

The method used is an adaptation ol a proposal [9, pp. 40-43] which was intended
for an environment that did not include nested transactions; assuming that calls are
synchronous and all initiated at the comnmit source:

 Each site maintlains a timestamp generator. It may be a clock value, or —
if the resolution is not fine enough — a “Lamport Clock™ [8] whose value
increases with every message sent or received.

e The limestamp of the arrival of the first request by a particular trans-

5

action at a particular sile is called the low water mark (LWM) [or the
transaction at that site.

* Piggybacked onto every response message is the LWM of every site used
in servicing the request.

* The creation site of the transaction is the repository for the LWMs of all
sites involved in the transaction: this is feasible because all unaborted
calls eventually return to it. Also, no harm is done if the repository
crashes and the LWMSs are lost: the transaction will never try to commit.

 The transaction manager processes every response by comparing a site's
LWM as listed in the message with the corresponding LWM in its memory.
If it does not have a LWM for that site, it records (in memory only) the
LWM given by the message. If a previous LWM is recorded and it does not
match the one in the message. then one of the two sites has crashed. and
the transaction must be aborted.

* A site that crashes and recovers loses all recorded LWMs, and will
generale a new, higher LWM if a transaction returns to it.
The basic idea is that two things are needed: something should be different about a
site before and after a crash, and there must be some certain way of detecting the dif-
ference. For detecting the difference, the memory of the transaction creation site is
the logical place: every non-aborted call returns there, and if it crashes, commitment
will not take place.

This method is trivially extended for accommodating nested transactions. The com-
mit source is used as the repository. Every response should contain the LWM for the
Jamily for every site used during the call. A detected crash results in abort of the
whole family, even though strictly speaking abort need be done only up through the
least uncommitted ancestor of each transaction that was active at time of crash.
Abort of the particular nested transaction that established the family LWM has no ef-
fect: all that is needed is a way of denoting a difference across crashes. This approach
to crash detection requires a timestamp mechanism at every site, adding timestamps
to every response, storing LWMs at the commit source. and — for every response
received at that the commit source — comparing the LWMs in the message with those
already stored. If LWMs are also placed in request messages, then in certain cases
LWM mismatch can take place earlier. when the request is received.

2.4.2. Information Accumulation

The list of sites visited by various transactions must be accumulated for later use by
the commit and abort protocols. The crash detection algorithm likewise depends upon
the accumulation of LWMs. Adding information Lo response messages provides back-
ward accumulation; adding to requests provides forward accumulation.

Three kinds of information are backward-accumulated:

1. The sites used by the transaction during the call. The abort protocol re-
quires knowing the sites visited by a particular transaction. So that the
abort protocol can track down in-progress calls. the call destination
must be regarded as a “used site” at the moment the request goes out.

6

2. The siles used by the transaction and all its descendants during the call.
The list accumnulated at the commit source, minus duplicates, lorms the
list of sites that must participate in the commitment protocol.

3. For each site used during the call, the timestamp of the [irst arrival of
any transaction in the family at that site.
The first type of information is associated with a particular transaction. the second
with a particular family, and the third with a particular site. Figure 2-1 illustrates ex-
actly where and when extra information is added to messages. The list of sites used
by a transaction and all its descendants during the call must be [orward-accumulated:
the orphan protection mechanism uses this list as described in the next section.

It may be convenient to implement forward and backward accumulation in a form
slightly different from the design described above, for two reasons. First, the list of
sites used by a transaction and its descendants of course subsumes the list of siles
used by the transaction alone. Second, implementing the design exaclly requires sup-
porting a notion of “call” that transcends the notion of transaction, since a single call
may use many transactions. Adding the notion of a “call” to an inherently connection-
less message system would be inconvenient, perhaps extremely so. Further, handling
requests and responses differently is inconvenient. Consequently, every request and
response message may be loaded with the same extra information:

1. The identity and timestamp of every site used by the transaction, ever.

2. The identily and timestamp of every sile used by the family, ever.
This information is a superset of thal required by the design. The expense of this im-
plementation would be prohibilive only if a transaction scaled to a very large number
ol sites.

Site A Site B
1 3
6 4
2
TranMan TranMan
5
1,2, 3: 4, 6: 5:
trans. 1033 trans. 1033 trans. 1033
X request X reply X reply
argument 95 result 42 resulit 42
site B
site B
B:19:25:32.77

Figure 2-1: Information Accumulation

A client at Site A calls a server at site B. and the message is intercepted by the transaction managers at
both sites. The format of the each message is shown below the message flow diagram. Messages 1, 2,
and 3 are all requests, and all have the same format. The first field lists the transaction (1033). The
second field indicates that the message is a request for operation X. The third field is the one argument
that operation X requires; its value is 95, The response has fields identifying the transaction, the type of
message. and the result. The message transmitted between the two transaction managers (message 5)
has a fourth field listing the sites used by the family. and a fifth field listing the siles used by the
transaction. Also, there is a timestamp indicating at what time the family first reached each site listed in

the fourth and fifth fieids.

3. Protocol Description

Several factors complicate the design ol an abort mechanism for the target environ-
ment. Aborting a single nested transaction may require aborling many others, and
aborting these transactions should not prevent the remaining parts of the family from
commitling. Further, distributed transactions that are to be aborted may still be
spreading Lo new sites and/or creating new descendants while abort is proceeding.
Last, a site crash will result in the loss of the information that describes the spreading

and nesling initiated at that site. There are two consequences of losing this infor-
mation.

First, an abort mechanism has limited ability to retain state. For inslance, it cannot
wait for acknowledgement from another site that particular transactions have been
undone there, because that sitle may have crashed and lost its memory. Second.
orphans may be created. An orphan is any operation, finished or still being per-
formed, that must be aborted bul which cannot be located. Orphans are created by
crashes because the record of which sites call which others is kept in memory rather
than stable storage. For example, if Site A invokes an operation at Site B and then
Site A crashes, then the work done at B is orphaned. It does not matter whether the
operation replies before the crash. Co-existing with orphaned transactions there may
be committed nested transactions in the same family that should be allowed to com-
mil. The orphaned and non-orphaned operations must be distinguished by the time
the top-level transaction commits. (A system without nested transactions can afford
Lo be slower in eliminating orphans because they do not threaten atomicity.)

Consequently, the abort mechanism consists of two portions:
1. An “abort protocol” which is a method for locating and undoing as many
operalions as possible.
2. An “orphan protection mechanism™ for ensuring that orphans that es-
cape the abort protocol (due to failures) never commit up to the top level.
If the abort protocol cannot undo all operations. it is responsible for recognizing this
fact and ensuring that the orphan protection mechanism has enough information to
do its job.

3.1. Overview

When abort is requested. kill messages are sent among transaction managers [rom
site to sile in a pattern mimicking the pattern of earlier transactlion-operation mes-
sages. Upon receipt of a kill. a transaction manager undoes the local effects of the
named (ransactions and then sends a kill to all sites the dead transactions communi-
cated with. After each of those sites responds with a kill-ack message. the transaction
manager returns a kill-ack to the site that sent it a kill.

If some site fails to return a kill-ack after a reasonable period of time, then it is clas-
sified as dangerous; the identity of every dangerous sile is synchronously reported to
the commil source with a danger message. which is then acknowledged by a

9

danger-ack. If any dangerous site is lound. then when the prolocol terminates. the
aborting tree of transactions will be only partially undone. The list ol dangerous siles
is the link between the abort protocol and the orphan protection mechanism.

A dangerous site is dangerous for two reasons. First, if it is crashed. then there
may exist (unknown to any other site) operations that spread from the crashed site be-
fore it went down. These operations are orphans. Second, if the site is unreachable
due to communication failure, then orphaned work will be left there, possibly together
with committed nested transaclions that should commit up to the top level.

The fact that is the key to the design of the abort mechanism is that every orphaned
operation will either be active at a dangerous site, or will have passed through a dan-
gerous site on its way to the site where it is active. The orphan protection mechanism
is built into the prepare phase of the commitment protocol. All dangerous sites known
to the commil source are included in the prepare message.® Subordinates process
such a “dangerous prepare” message somewhat differently {from a typical prepare mes-
sage. A subordinate first compares the given set of dangerous sites to its list of ac-
cumulated siles (for the entire family). If any dangerous site is in the list, the sub-
ordinate votes not to commit the top-level transaction. This policy prevents orphans
from committing; every operation that passed through a dangerous site and which is
now active at a site that might commit is detected and causes top-level abort. Any
past communication with a dangerous site is conservatively assumed to be orphaned
work. This rule overestimates the amount ol orphaned work (any operalion that used
any dangerous site), and over-aborts (the whole [amily).

The key to the correctness of this method is informing the commil source when a
dangerous site is detected. The restriction that a family cannot be committed until all
of its children are either committed or aborted is used to ensure that orphans do not
commit: the synchronous abort call does not return until the possibility of orphan
problems is recorded at the commit source, thereby delaying the commitment of the
enclosing transaction. If the commit source is unreachable then the top-level trans-
action is aborted locally. If the commil source crashes, then commitment of the top-
level transaction will never be altempted. and orphans are eliminated when each serv-
er aborts the transaction for running too long. Thus, the protocol continues to operate
in spile of any number of failures, but “operating” may consist of aborting the top-level
transaction if the abort of a nested transaction becomes blocked. The act of aborting a
top-level transaction never blocks, as explained in Section 3.6.

Thus, the approximate steps involved in aborting an arbitrary nesled transaction
are:

3Beyond this exception. there is no further presumption that the messages of the protocol carry any
information that would simplify the abort mechanism: commit messages are assumed to carry on.l'y the
identifier of the committing family and to mean no more than “commit all the operations of family X.

10

* Discover which transactions are victims (i.e., which transactions must be
aborted).

*» Proceed [rom site to site undoing victims.

* If a dangerous site is encountered. record it at the commit source.

* If recording danger fails, abort the whole family.
* Return to the caller once every site has either reported that its victims
have been undone or has been recorded as dangerous.
The protocol described so (ar is oversimplified and lacks several crucial delails.
Refinements in Sections 3.2 through 3.6 fill in the missing [eatures.

3.2. Defining Victims

The death of transaction X implies the death of all its descendants. Furthermore, if
X is already committed, then abort must take place up to and including its lowest ac-
tive ancestor (the abort root). Figure 3-1 gives an example of how a request to abort
one transaction makes victims of three others.

B

/N

(committed) C D (active)

(committed) E

Figure 3-1: Victim Selection

Aborting transaction C results in the death of its descendant E as well. Since C is committed. B and its
descendant D must also be aborted.

Localing all victims requires tracking down operations along two dimensions: follow-
ing nesling relations. either up (to find the lowest active ancestor) or down (to find des-
cendants). and following site-to-site spreading of each of these transactions. The pat-
tern of nesting forms a nesting tree. The paltern of spreading forms several (ar-
bitrary) per-transaction graphs with edges threaded through a common set of nodes;
the nodes represent sites, and the (directed) edges represent the pattern of inter-site
calls. For simplicity, we refer to the whole collection loosely as the spreading graph.
Figure 3-2 offers an example of how an execution defines a nesting tree and a spread-
ing graph.

Each transaction manager maintains its site-specific portion(s) of the nesting tree, a
record of the siles to which its active operatlions spread, as well as the forward-

11

A 1
\% J/
B 2
\J/ \/
C 3

Figure 3-2: Example Nesting Tree and Spreading Graph

Suppose that Transaction A begins at Site 1, then spreads to Site 2. At Sile 2, nested transaction B is
created and spreads to Site 3. At Site 3, nested transaction C is created and spreads lo Site 1. The
nesting tree is shown on the left, and the spreading graph on the right.

accumulated list of sites used previously by aclive operations. To locate all victims.
the nesting tree and the spreading graph must be completely traversed. For following
both types of edge there is a convenient starting point. In the case ol nesting, it is the
abort root. In the case of the spreading graph, it is the creation site of the abort root,
or abort source.*

3.3. Locating and Undoing Victims

If the abort initiator is not also the abort source. then a series ol died messages are
sent slarting at the abort initiator and ending at the abort source. The purpose is to
proceed from ancestor to ancestor up the nesting tree to {ind the lowest active trans-
action, which then becomes the abort root. Accordingly. a died message identifies the
most highly nested transaction thal the sending sile knows must abort and knows
was created at the destination site. In general. it may happen that several transaction
managers receive an "X died" message. trace the local child-parent relations up {rom
descendant X to ancestor Y. then send a Y died” message to another site. Figure 3-3
illustrates this: the abort initiator sends a died message to an intermediate sile which
then sends another one to the abort source.

Once the abort root is located. the transaction manager at the abort source begins
to undo the victims. It should traverse ([rom the top down) the portion of the nesting
Lree rooted by the abort root, and for each transaction do the following:

*Two other significant terms will be used in the rest of the discussion:

« Abort target: the transaction named in the request to abort.
» Abort initiator: the site (or siles) where the request to abort is made.

12

Site 1

A: created here, migrated to Site 2, active.

Site 2
A: created at Site 1, active, has child B.

B: created here, migrated to Site 3,
committed, child of A.

Site 3

B: created at Site 2, active, has child C.
C: created here, committed, child of B.

Figure 3-3: Died Messages

Each box represents the knowledge of the transaction manager at each of three sites. An operation has
been performed, starting with Transaction A at Site 1. Sites 2 and 3 were called and they each created a
nested transaction which committed. Transaction B is listed as conunitted at Site 2 and active at Site 3
because of the lazy commitment of nested transactions.

In this example, if a process at Sile 3 aborts Transaction C. “B has died"” would be sent from Site 3 to Site
2, and "A has died” would be sent from Site 2 to Site 1. Site 1 would become the abort source, and
Transaction A the abort root.

1. Check whether the transaction (and its ancestors) is already in the
process of being aborted. If so. do not traverse that portion of the tree.

2. Freeze the viclim along both dimensions: prevent it [rom spreading, and
prevent it [rom creating child transactions.

3. Prevent any server previously uninvolved with the victim from perfoxjm-
ing operations for it, and suspend the servers involved with the victim.
A suspended server will accept no [urther operations for that trans-
action, and will await instructions from the recovery process aboutl how
Lo reset the portions of its data segment that have been changed by the
vicim.
Once the bottom of the nesting tree is reached. the traversal must return from the bot-
tom up. performing the following actions on the way:

4. Tell the recovery process to undo the victim. Once this is finished. plac‘e
an abort indicator into the log, and tell the server to drop the vicim'’s
locks.

5. Send a kill to every site that the victim spread to.

13

Other sites will initiate the same procedure when they receive a kill. The abort in-
itiator can undo the abort target belore receiving a kill for il. However. (o preserve the
only-once recovery restriction, its transaction manager must remember o do the
check outlined in step 1. and not perform a second undo of the subtree rooted at the
abort target when second when a kill arrives for any of those transactions.

Providing that certain conditions are met, eventually all operations of all victims are

located and undone: a kill is sent along every path taken by any operation request.
The conditions are:

¢ No failure occurs.
* No message is lost.

* A transaction that has already been aboried al a site is prevented from in-
itiating new operations at that site. This condition both preserves the
only-once recovery restriction and prevents a lransaction {rom creating

an infinite-size abort problem by perpetually looping through the same
set of sites.

» There must be an assumption that a transaction will not continue
spreading operations to an infinity of new sites. or (if it does) that the
abort protocol is, on net, “faster” than the operations and will eventually
catch up to and abort all of them.

Coming sections will explain how to remove the need for the first two conditions, and
how to ensure the third. Ensuring the fourth condition would seem lo require an a
priori limit (e.g.. time or the number of sites used) on a transaction. However. the
transaction model provides for unfettered execution, so the most that can be said is
that the unending spread of a transaction to new sites is exceedingly unlikely.

Besides these conditions, there are several other sloppy aspects to the protocol as it
stands now:

1. It does not say when the abort call should return to the caller.

2. Lost messages cause problems. In particular, the loss of a died message
would prevenl abort [rom ever occurring. Also, a lost kill would resull in
needless top-level aborts.

3. Conversely, there are many reasons thal a site may receive multiple kills
for the same transaction:

a. A transaction may spread (o a particular site more than once,
and from dilferent sites. All those sites will send kill messages.

b. Cycles may exist in the spreading graph: a transaction or one of
its descendants may loop back to a site it has previously visited.

c. Use of the simplified implementation of information accumula-
tion explained in Section 2.4.2 would create yet another source
of duplication of kill messages. For example, if while servicing an
operation, a transaction spreads from Site A to Site B and [rom B
to C before returning, then Site B will be aware of C while Site A
will know of both B and C. During abort Site A will send kill to
both B and C. not just B.

d. The method of traversing the nesting tree leads to further mes-
sage inelliciencies. For example, if N transactions created at one
site had each called a second site, then N kill messages would be

14

sent from the first site to the second. even il Lhe transaclions
had a common ancestor.

The first three causes of duplicates are illustrated by Figure 3-4.
Remedies [or each of these shorlcomings are presented in the following section.

(sitesused = B, C, D)

(sitesused = C, D)

{sites used = B)

(sites used = none)

Figure 3-4: Duplicate Kill Messages

If a transaction spreads. in order. [rom Sile A to Site C. from A to B. from B to C, from B Fo D, aqd from C
lo B, then during abort Site C will receive kill messages [rom both A and B (cause a). Site B will receive

kill messages from both A and C (cause b), and Site D will receive kill messages from both A and B (cause
c).

3.4. Further Reflnements

3.4.1. Returning to the Caller

The process that (synchronously) calls for abort cannot be resumed until it is cer-
tain that every dangerous site has been recorded at the commit source, even il the
dangerous site was in a portion of the spreading graph that will not be reached by kill
messages sent from the initiator. Only when the abort source receives its kill-ack can
it — and it alone — know that the entire spreading graph has been tested [or dan-
gerous sites by being sent kill messages. Therelore, a kill-complete message is added
to the protocol. The abort initiator should not respond to the abort call until it has

15

received this message [rom the aborl source. This message is sent by the abort source
only once it has received all its kill-acks: its meaning is that the abort source certifies
either that all operations have been undone or else that all dangerous sites have been
recorded. If no kill-complete arrives after a lime, the abort initiator should abort the
entire family. Of course, if the abort initiator and the abort source happen (o be the
same sile, then died and kill-complete messages need not be sent.

The precise meaning of the abort call returning can now be stated as: the abort tar-
get and its descendants have been undone at the local site, the abort source. and pos-
sibly at other siles; dangerous sites, if any, have been recorded at the commit source.

3.4.2. Increasing Message Reliability
Because unacknowledged kills cause he reporting of dangerous siles, and because

the false reporting of a dangerous site will cause top-level abort, it is reasonable 1o
retransmit kill messages a small number of times. A site should not acknowledge un-
til all sites to which it sent kills have acknowledged or after it has timed out and
recorded them as dangerous. There are three legal responses (o site X sending a kill
message Lo site Y:

1. Y responds with a kill-ack that indicates that the victims are all undone.

2.Y responds with a kill-ack that indicates that the transaction is un-

known to it.

3. Y fails to respond.
In either of the last two cases, X should treat Y as dangerous. but then itsell send a
“victims all undone” kill-ack. A “transaction unknown” kill-ack indicales that the site
has crashed and later recovered with no memory of the transaction.

There is no need to concoct an explicit acknowledgement for died. The fact that the
abort source received a died is implicitly acknowledged when the abort source receives
a kill If no kill is received after a reasonable number of died retransmissions, the
sending sile should abort the entire family. This rule implies that top-level abort will
be the result of a network partition that separates any of the sites along the path that
died messages lake from the abort initiator to the abort source.

3.4.3. Pruning Extra Kill Messages

If TIDs fail to encode nesting information. then comparing TIDs will yield no clue
about how the different transactions are related to one another. This lack of
knowledge is a source of extra kill messages. Consider several transactions all related
as ancestor and descendant. all active at Site X, and all created at a site other than
X. If each spreads from Site X to Site Y. then during abort Site X will send one kill for
each transaction simply because X's transaction manager has no way to know that the
transactions are related. The first kill will cause victims to be undone, and the cor-
responding kill-ack will indicate this. Kill-acks sent in response to later kill messages
should likewise indicate that the victims are undone. But, because ol the restriction
that a transaction may be undone only once. these “late” kills must not cause a

16
second undo.

Thus a site must remember aborted transactions long enough Lo be able to properly
handle late kill messages. The simplest way to remember aborted nested transactions
for an adequately long period of time is to not forget them until top-level commit or
abort, at which time the entire family is forgotten.

Although wasteful of network bandwidth., the duplication of kills increases the
chance thal the abort will spread to all sites. This is a property not to be discounted.
since distributed abort is often triggered by a failure. Any technique for improving the
efliciency of nesting-tree traversal must be designed carefully, since straightforward
correctness arguments are constructed around the fact that the abort protocol
traverses the path of every inter-site operation.

To alleviate the problem that — in general — a transaction manager cannot know
the intra-familial relationship between any (wo transactions active at its site, the com-
plete nesting history of a transaction can be piggybacked on the first call to new site.
Now every transaction manager is ensured of knowing the relations among trans-
actions active at its site. Using this information. extra kills can be pruned out of the
traversal of the nesting tree. The protocol is changed so that if some sile has already
sent a kill to another site on behalf of one transaction. then kill is not resent to the
same site by any more lowly nested transaction. The pruning is massive: a sile sends
a kill to any other site only once.

The TID argument of the kill message is reinterpreted to mean: undo all trans-
actions at or below this level. With this change, another action (in addition to [reezing)
must be taken while performing the local downward traversal of the nesting subtree
rooted by the kill argument. The traversal procedure should develop a list of <site,
transaction> associations. one for each site that any of the transactions had spread to.
The transaction associated with a site is the most highly nested one that had spread
to it. When the traversal procedures turns around and climbs back up the tree. the
kill sent to a site lists its associated transaction as the argument.

Giving every site a complele picture of the nesting relations of its active transactions
preserves the completleness of the protocol despite the pruning. Now. the only source
of duplicate kills is when different sites send kills pertaining to the same subtree.
There are two cases to consider:

1. The first kill received is for the most highly nested transaction. If so,
then all transactions will be undone as a result of the first kill.

2. The first kill received is not for the most highly nested transaction. In
this case, the first kill will undo only a portion of the subtree. To
preserve the only-once recovery restriction. the tree traversal caused by
later kills should stop al the point(s) where an earlier kill started.

In either case, later kills will be handled properly, thanks to the “already aborted”
check performed during local downward traversal.

17

With the pruning optimization. the purpose of the died message is limiled Lo only
determining which (ransactions are active; it is no longer useful in determining the
intra-family connections among nested transactions.

3.5. Abort Protocol as Exception Mechanism

Experience has shown [16, pp. 123-126] [1. p. 288] that it is desirable for the abort
protocol to be a distributed exception mechanism. This is easily done by having the
abort initiator supply a “reason for aborting™ with its request to abort. This infor-
mation is then propagated to every site in died and kill messages. If the aborting
process is different from that which created the transaction, then the creator should
be sent a notification message giving the cause of the abort. When such a message is
received, control is transferred to the end of the transaction. Since kills disseminate
from abort root. if there are several simultaneous aborts then the reason for aborting
is determined by which died message is the first to reach the abort source.

3.6. Aborting Top-Level Transactions

If a failure prevents a died (danger) message from being delivered to the abort (com-
mit) source, nested abort risks blocking until the failure can be repaired. To prevent
blocking, the nested abort becomes a top-level abort; therefore, the liveness of the
abort mechanism depends on always being able to perform non-blocking abort of the
entire family. Fortunately, because of the crash detection property of the communica-
tion subsystem, this is easily done.

To aborl a top-level transaction, the initiator first undones the family locally: it then
sends a died message direclly to the family's creation site. (This site is guaranteed to
be the abort source.) The initiator next sends kill messages to all sites that it knows
the family spread to, then [orgets about the family. It is permissible lo forget im-
mediately even if any combination of died and kill messages are lost. Once the abort
initiator has forgotien the family, the sile is indistinguishable [rom one that has
crashed and recovered. Accordingly, the crash detection mechanism will prevent
another operation {rom executing and committing at the site. Thus, once any site has
aborted a top-level transaction, it will not commit. A simple case analysis presented in
Tables 3-1 and 3-2 demonstrates that — no matter which type ol message is next sent
— a crashed or recovered site will always be detected. and orphans will never commit.

Aborting top-level transactions is much simpler for two reasons. First, because of
the crash detection mechanism, orphaned work cannot commit: the abort initiator is
sure (o vote no to any request to commit. Second. the abort root is trivially identified,
so there is no need to send died messages. The kill-complete message is eliminated as
well, and the utility of a kill-ack is limited Lo increasing the reliabilily of kill delivery.

Note that the crash detection mechanism must employ a timestamp LWM rather
than a simple crash count (as used in [11]) because “crash detection” is needed to

18

NEXT MESSAGE RESULT

Operation request | Sender times out and aborts.

If crashed sile is commit source, all other sites must
eventually time out and abort orphans: otherwise,
Operation response |sender times out and aborts.

Sender fails (o receive kill-ack, times out and reports
Kiil crashed site as dangerous.

If crashed site is commit source. there will be no top-
level commit; otherwise, site that sent kill times out
Kill-ack and reports this site as dangerous.

Because abort call doesn't return, enclosing trans-
action doesn't commit. Site that sent operation re-

Kill-complete quesl times out and aborts.

Sender fails to receive kill, times out and aboris top-
Died level.

Site is commit source: there will be no top-level com-
Danger mit.

Site is not commit source and has not yet sent its
kill-ack: site that sent kill to it times out and reports
Danger-ack it as dangerous.

Table 3-1: Sending to Crashed Site

The next message is either an operation request or response. one of the messages of (some) commit
protocol. or one of the messages of the abort protocol. Specification of the commit protocol is beyond our
scope. The lable shows the resull in the other cases.

detect a site that did not crash but rather performed a top-level abort and forgot.5

3.7. Preventing Orphans Entirely
If the communication subsystem provides the right sort of crash detection via
keepalive messages® then the abort mechanism will prevent orphans entirely.

Il a site’s communication subsystem “pings™ all other sites that have communicated
with it (i.e.. sent a message Lo it or received a message [rom il), then when some site
crash or network partition occurs, all sites that have sent or received messages across
the failed component will be promptly informed of the failure. Each site will then in-
itiate the abort of all transactions that communicated across the [ailure. Thus a site
crash does not result in losing the knowledge of which sites the (ransaction has
spread to beyond the crashed one. The abort protocol “continues” on the “other side”
of the failure instead of being blocked.

SJust as with a crash count, production of locally-generated limestamps requires an occasional wri%e to
stable storage (o ensure monotonicily. The alternative is a real-time timestamp which could be obtained
(rom something like an NTP [14] time server.

5This requires that the interval between successive keepalives must be shorter than the time in which
a site can recover. Currently, typical siles take minutes Lo recover.

19

NEXT MESSAGE

ACTION

RESULT

Operation request

If crash detection check is
made on requests as well
as responses., operation
will be rejected. Other-
wise. operation wil be per-
formed and crash will be
detected (and abort in-
itiated) when response is
received.

If caller is still up. its
crash detection detects in-
consistency and initiates
abort. If caller is down,
operalion becomes (pos-
sibly isolated) orphan; will
abort wvia local server
timeout or via AP. Same if
caller crashed and
recovered.

Operation response

Response rejected
crash detection

by

Abort iniliated because of
crash detection.

Kill

Send “transaction
known™ kill-ack.

un-

Sender will report this site
as dangerous.

Kill-ack

Ignore.

Site that sent kill to this
one times out and reports
this one as dangerous.

Kill-complete

Ignore.

Because abort call doesn't
return, enclosing (rans-
action doesn’t commiit.
Site that sent operation
request times out and
aborts.

Died

[gnore.

Sender will time out and
abort top-level.

Danger

[gnore.

Site is commit source:
there will be no top-level
commit.

Danger-ack

Ignore.

Site is not commit source
and has notl yet sent its
kill-ack: site that sent kill
to it times out and reports
it as dangerous.

Table 3-2: Sending to Recovered Site

One advantage of coupling low-level failure detection with an “eager” abort protocol
is that a much stronger guarantee can be made about orphan elimination: there will
be no orphans — the abort protocol will locate and undo all operations.
major advantage is that there is no longer a need to require servers to abort long-
running ransactions: the transaction is guaranteed to abort if abort is requested or if
there is a failure, and these are exactly the circumstances under which it should
abort. So there is no need to bound transaction lifetime. Of course, servers may con-
tinue to do so as part of their resource control policy. but it no longer need be required
by the abort mechanism. The disadvantage of aborting when a lower layer reports a

failure is that a partition — even a transient one — causes abort.

Another

20

4. Informal Correctness Arguments

This section offers informal arguments thal the abort mechanism is both safe and
live. In the context of an abort mechanism, safely means that no orphaned operation
ever commits, and liveness means that all aborted operations do eventually abort.

4.1, Safety
The skeleton of the safeness argument is:
1. The crash delection algorithm guarantees that the top-level transaction
cannot commit if any site crashed or aborted the top-level transaction.

2. Because of the crash detection guaranlee, top-level abort is sale. It is
guaranteed that if the top-level {ransaction aborts anywhere at any time,
then it will commit nowhere.

3. Use of a dangerous site is a necessary-but-not-suflicient condition for an
operation to be an orphan.

4, Therefore, if the top-level transaction aborts whenever danger is
detected, no orphan will commit.
These statements are elaborated below.

Crash detection. Simple arguments show that once a transaction's LWM is forgotten
at a site, then il the transaction returns there, that [act will always be revealed by
LWM mismaltch. The reason is that when a forgotlen transaction returns o a site. its
LWM will initially be missing there and then will be set to a value higher than any
previously recorded LWM for that transaction at that site. If LWMs are recorded only
in response messages and LWM matching occurs only at the commit source, then a
“crash” will always be detected at the commit source when the LWM arriving on a
message is greater than that recorded earlier. If LWMs are recorded in both requests
and responses. then mismatch will be discovered at the site that crashed if the sender
had previously communicated with that site. Table 4-1 enumerates what happens in
each case of this scenario.

MESSAGE PREV COMM? WHERE DETECT HOW DETECT
dest=missing,
Request Yes destination msg=Prev
cs=Prev,
Request No comimitl source msg=higher
dest=missing,
Response Yes destination msg=Prev
cs=Prev,
Response No commit source msg=higher

Table 4-1: Crash Detection

There are four cases: whether the message is a request or response, and whether the sender and destina-
tion have previously communicated. For each of these cases. the table indicates where the LWM mis-
match will occur and what two values the LWMs will have. “Prev" denotes whatever LWM.value was
recorded at another site because of the first operation that executed at the destination before it forgot its
LWM.

21

Top-level abort is safe. As part of “forgetting” aboul a family, its LWM will be ex-
punged. So, from the point of view ol the next message pertaining to that lamily that
arrives at that site, the site is the same as one that had crashed and recovered or one
where the family had never been active. As shown above, any atlempt to reestablish
any transaction within the family at the aborted site will be detected and lead io aborl.

Aborting in case of danger overestimates orphans. By definition of the abort
protocol, every orphaned operation will either be aciive al a dangerous site, or will
have passed through a dangerous site on ils way to the site where il is active. An or-
phaned operation is one that it is unreachable by the abort protocol. Since the
protocol duplicaies the pattern of operation calls, an unreachable operation is one that
followed an inter-site path that the protocol cannot follow.

4.2, Liveness

The basic abort mechanism is live only in a degenerate sense. That is, il failures
produce orphans, the only guarantee about their elimination is that eventually all or-
phans will be aborted by server timeout. So the abort protocol is simply a perfor-
mance optimization to orphan elimination by timeout.

If the abort mechanism can depend upon failure reports from the communication
subsystem as discussed in Section 3.7, then the abort mechanism is live because the
abort protocol does — in the absence of failures — succeed in locating all operations of
aborting transactions. Liveness in the absence of failures translates to overall liveness
because. when a site crashes, the communication subsystem will report a failure (o
every site that had communicated with the [ailed site. This is what would happen
were Lhe site to remain up and send kill messages.

It is easy to see that, provided there are no failures. the abort protocol without the
optimization of Section 3.4.3 will locate all operations. A kill message is sent along the
path taken by any operation request. If the kill is lost, then retransmission will
succeed in delivering it. If retransmission fails, then a [ailure has occurred.

It is also true that. provided there are no failures, the optimized abort protocol will
locate all operations. Although the optimization reduces the number of kills sent, it
remains the case that a sile sends one kill to every other site to which any of its trans-
actions spread. The kill argument is the transaction most highly nested at the send-
ing site that also spread to the destination site. Therefore, at every destination site it
is the case that some site will send it a kill which has its most highly nested trans-
action as the argument.

22
5. Evaluation

Beyond the obvious goal of correctness. there are many properties that an abort
mechanism should have:
1. Low overhead: do not add to the overhead of normal processing only to
facilitate aborting. Specifically,
a. Do not add log wriles.
b. Do not add messages to the commit protocol.

¢. Add as litlle extra information as possible to messages or log
records.

2. Efficiency: perform abort as efficiently as possible.

a. Traverse the nesting tree and spreading graph as efliciently as
possible.

b. Do not unnecessarily abort enclosing transactions.
3. Speed: since the abort protocol is a performance optimization. it should
be fast.

a. Drop locks as fast as possible.

b. Resume the process that invoked abort as soon as possible.

c. Do not delay the commitment of an enclosing transaction beyond
the return of the abort call of the nested transaction.

4. Special cases of liveness: there are several things that should be done
faster than “eventually.”

a. Allow unilateral abort. which means that uniless a transaction
is prepared, a site may abort the transaction without having first
to communicate with any other site.

b. Exterminate orphans as quickly as possible.”

c. Continue operating in spite of failures. (Abort is often triggered
because of failure.)

For top-level abort. some of these goals (such as 2b and 3c) are vacuous. It seems
highly unlikely that any abort mechanism could saltisfy all these goals completely and
simullaneously, since meeling the overhead and elficiency goals denies the
mechanism the information it would need to accomplish other goals such as 2b and
4b, which require precise and timely identification of orphans.

The abort mechanism described in this paper completely satislies all the goals ex-
cept these. which are mostly, but not completely, satislied:
1. Overhead:

c. Extra information is added to messages, but its size is propor-
tional to the number of sites involved in the transaction, not to
the (possibly much larger) number of transactions in the family.

2. Efficiency:
a. In general, more than the optimal number of messages (kills and

kill-acks) are sent while traversing the nesting tree and spreading
graph.

"The Argus orphan elimination algorithm provides a stronger and more qugnliﬁed guarantee: an or-
phan will be eliminaled before it can read items whose values were read earlier by another transaction
and passed to it as arguments (12, 6].

23

b. The policy of aborting the top-level transaction if any active
operation used a dangerous site aborts more than just orphaned
operations.

3. Speed:

b. The abort call is synchronous; that is, the caller does not regain
control until the protocol has finished.

4. Liveness guarantees:

b. The only guarantee made about orphans is that they will never
commit.

The following sections discuss — and to some extent justify — the reasons underlying
the failure to meet these goals.

5.1. Overhead

An abort mechanism must be able to distinguish between orphaned and non-
orphaned operations by the time the top-level transaction attempts to commit. To do
so in a model that places no limits on transaction lifetime, nesting, or distribution, ei-
ther extra messages must be sent or else information must be added to at least some
exisling messages in order that sites that are aware of the existence of orphans can
inform the other sites. Appendix I contains a detailed statement of what information
must be maintained by a transaction manager.

A presumplion of this work is that a transactional compulation is more likely to
consist of a very large number of transactions than a very large number of sites.
Hence, the abort mechanism was designed so that the amount ol inlormation pig-
gybacked on messages was not proportional to the number of transactions within the
[amily. The simplified implementation of information accumulation described in Sec-
tion 2.4.2 violates this principle. and so should be used with care.

5.2. Efficiency

Efficiency of tree/graph traversal. Despite the pruning optimization of Section 3.4.3,
the abort protocol still sends more than the optimal number of kill messages. These
extra messages arise because of the speed goal. which dictates a parallel traversal of
the tree/graph. An optimal message count could be obtained by traversing the nest-
ing tree in a more orderly fashion; e.g., by breadth-first search.

Using a message-optimal protocol would likely not be a wise tradeofl of speed versus
efliciency. At the present time, the wasted network bandwidth is not likely to be a
severe problem, since distributed transactions typically do not involve many sites, and
since aborts are rare. It is conceivable that experience will show that distributed
operation increases the percentage of aborted transactions; for example, nested trans-
actions may enclose RPCs to read replicated data [rom several sites. with the slower
calls being aborted once the required number of calls return. If the percentage of dis-
tributed transactions that abort is not negligible, then the resource consumption of

24
the abort protocol should be reexamined.

Extent of unnecessary aborts. If the sites used by different nested transactions are
disjoint, then the top-level transaction can commit even if some nested transactions
failed to abort completely. Ensuring this property was an explicit design objective, be-
cause of the pleasant consequence when nested transactions are used to enclose
single-site RPCs: the failed abort of an RPC will not prevent the enclosing transaction
from committing. An example is:

1. Site A (which is the commit source. for simplicily) makes calls within
nested transactions to replicated data at sites B, C, and D.

2. Sites B and C respond, and since 2 out of 3 siles salisfies the read
quorum condition of the data replication method. the nested transaction
enclosing the call to Site D is aborted.

3. Coincident with the abort, Site D crashes, so kill messages sent from A
to D are not acknowledged.

In this case, Site D will be recorded as a dangerous site. When commitment happens.
a “dangerous prepare” is sent from A to B and C. Since neither has any record of com-
municating with D, both vote yes, and the transaction commits. This sort of situation
may be common if the use of replicated data is popular, and if remote procedure calls
are wrapped within nested transactions to facilitate failure isolation. Argus does this,
as does Avalon [2].

Retention of data structures. Although aborted families are forgotten immediately.
aborted nested transactions are not. The overhead of retaining the descriptors of
aborted nested {ransactions is small, since there are likely Lo be many more com-
mitted nested transactions (which must be remembered anyway) than aborted ones.

5.3. Speed

The performance of an abort protocol is variable since it depends upon the depth of
nesting, the extent of spreading, and the amount of work to undo at each site.
Roughly speaking, the latency of an abort in which no failures occur is proportional to
the diameter of the spreading graph. Kill messages spread outward until the site far-
thest from the abort source has received one. The latency of returning to the
synchronous abort call is the cost of this kill phase plus the variable cost of sending
died messages (o locate the abort source plus sending a kill-complete back to the in-
itiator.

Because abort is assumed to be rare. to an extent its performance is not one of the
important parameters ol a transaction facility. It is [ar more important that the abort
mechanism intrude as little as possible on the typical behavior of the system (i.e.,
failure-free commitment). In this sense, the abort mechanism succeeds: all processing
related to aborting a particular transaction happens only after the abort call has been
invoked.

25

5.4. Special Liveness Guarantees

Unilateral abort. Unilateral abort is a somewhal abstruse but traditional goal [10].
Its motivation is thal a command to abort a transaction may represent an “emergency”
at the abortling site, and that any unnecessary delays in undoing the transaction at
that site are intolerable.

Orphan elimination. The abort mechanism offers orphan protection more so than or-
phan elimination. Orphans at sites which are involved in the commit protocol do not
survive beyond the commit protocol. Orphans al isolated siles live unlil their servers
decide to abort them for having lived too long. Therefore, there is no elegant
guarantee of when orphans disappear except that, because of one of the assumptions,
they eventually do.

If the communication subsystem provides crash detection via keepalive messages
then a much stronger statement can be made: there will be no orphans; the abort
protocol will locale and undo all operations. The reason is that the sites on the “other
side” of the failure will detect the failure and themselves initiate (additional) aborts.
For this reason. it is a major advantage for an abort mechanism to include an abort
protocol.

5.5. Effect of Restrictions
The only-once recovery restriction is an artificial one, imposed to make the work
more general. Each of the other four restrictions of Section 2.3 is essential.

1. As explained, the correctness of the mechanism depends upon the
synchronicity restriction: all dangerous sites must be recorded before
the enclosing commit can be allowed to proceed. Thus. the abort call
must be synchronous.

2. Dangerous sites must be stored (in memory) somewhere such that. il the
information were lost, there would be no attempt to commit the top-level
transaction. This is the definition of the commit source and reason that
such a site is required to exist.

3. The need for any site to be able to locate either the commit source (in
order to report danger) or the abort source (in case of top-level abor't)
forms the requirement that the address of both of these siles appear in
the TID.

4. The requirement that servers abort long-running transactions appears
lo be fundamental to the transaction model. The Argus abort
mechanism discussed below seems to suggest that the alternative is to
retain and systematically communicate an unbounded amount of infor-
mation so that any orphan. no matier how old. will eventually be
detected. The optimized versions of the Argus mechanism bound the
amount of information that must be maintained and added to messages.
but they depend on limiting orphan lifetime in order Lo do so.

Of these restrictions, the abort-on-timeout is the most bothersome. Fortunately. it
can be removed provided that the communication subsystem reliably detects failures,
a feature that is common. The remaining restrictions are not very constraining, and

20

so the abort mechanism should be applicable (o a wide variely of domains.

27
6. Related Work

Every transaction facility must have some way ol aborling (ransactions. so one
would except a well-developed body of literature on the problem. However, implemen-
tations of powerful nesting models are rare. Because of this and because the only
aspect of aborting non-nested, non-distributed transactions is the recovery algorithm,
builders of transaction systems have rarely written about abort. There is only one set
of documents that consider in detail how to perform abort within a Moss-based nest-
ing model: namely, those written by the Argus group [11, 17, 12, 6] and derivative
works thal explore the same idea [13, 7]. Since Argus is a programming language. the
goal of its abort mechanism is to provide a bound on orphan lifetime that would be
useful as a basis for defining language semantics.

The Argus aborlt mechanism differs [rom the one discussed here in that there is no
abort protocol; there is only an orphan protection scheme. Argus’ abort call returns
immediately after undoing the victim only within the local “Guardian.”® Therefore, the
abort call systematically creates orphans, both up the nesting tree (an up-orphan is an
ancestor of a committed nested transaction that aborts) as well as down (a
down-orphan is simply the descendant of an aborted transaction). Site crashes —
even if detected by keepalives — also create orphans, since there is no abort protocol
to spread notice ol the detected crash. This is a distinct disadvantage compared to
our abort mechanism, which can take advantage of a detected site crash: all sites that
had been in communication with the lost site will initiate the abort protocol. which en-
sures thatl no orphans exist.

The major advantage of the Argus mechanism is that it guarantees that an orphan
will be terminated “by the time it should be:” specifically. before it can read values
[rom the database that were read earlier by another (intra-family) transaction and
passed to the orphaned operation in its arguments. This situation can arise if data
items are replicated and the replicas must salisfy an invariant. The danger is that a
snapshot taken at one replica may be in conflict with a snapshot taken earlier at
another replica if, during the interim, a third transaction is able to obtain locks at
both replicas and make a change. If the orphan were to see the invariant violated.
then languages primitives may fail to work correctly.

This possibility is avoided because the aborting Guardian disseminates notice of the
dead transaction in all future messages (including those of the commit protocol}. All
other Guardians repeat this notice in the information they add to their outgoing mes-
sages. Any flow of messages that could cause the locks of a [irst transaction lo be
dropped at one replica, followed by commitment of an intervening transaction at all
replicas, followed by a read at some replica by an orphan, will necessarily also spread
to all replicas the identity of the orphan. Hence the orphan’s atlempted read can be

8A Guardian is a combined server and transaction manager.

28

stopped. and the orphan terminated. Similar but simpler thinking applies (o climinat-
ing crash-created orphans.

To detect both kinds of orphans., every Guardian maintains the following infor-
mation and transmits it with every message (including those of the commit protocol):

* A list consisling of the roots of all subtrees ever aborted. Argus TIDs en-
code the list of all ancestors of the transaction, so whether two trans-
actions are related as ancestor and descendant can easily be deduced

from comparing the two identifiers. The TID of the abort root identifies all
down-orphans.

* The list of all guardians used by a transaction and its committed descen-
dants, their age (as measured by a crash count recorded in stable storage)

at the time they were last used. and the age of every guardian that ever
existed.

This information is a complete history of all aborts and crashes: it is maintained
across crashes by recording it in every “prepare” log record. To detect down-orphans.
whenever a new call is received all old calls are compared against the received list of
aborted subtrees, and received calls are compared against the old list. Any match
identifies an operation that must be terminated. To detect up-orphans, all old calls
are compared against the received list of guardian ages. and received calls are com-
pared against the old list. Any mismatch identifies an orphan.

The piggybacked information required by this design is enormous. so two optimized
designs exist. In both cases. in order to limit the amount of information piggybacked
onto messages. limits must be imposed on transaction lifetime. The first of these op-
timizations is “time-driven orphan elimination,” an idea which is described also in
[13. 7. To have time-driven orphan elimination, the execution model must limit
transactions to finish before a quiesce time lest they be aborted by a later release time.
Orphans are guaranteed to be eliminated by the release time and so messages must
carry only enough extra information to detect orphans that may exist between the
present moment and their release time. For those cases when the quiesce and release
times are defined to be too soon, a (wo-phase “relresh protocol” exists to push the
deadlines back. The second optimized version ol the Argus abort orphan elimination
algorithm also places limits on transaction lifetime. but it drastically reduces the infor-
mation added to messages. The cost is that the information needed to detect orphans
must be kept a central repository; Guardians exchange information with the repository
in the background. The repository must be replicated for high availability. The exist-
ence of a replicated repository does not recreate the problem it was intended to solve
because the consistency constraint is weak. and so the repository does nol require
transactional update.

We argue that the abort mechanism developed in this paper is superior to that of
Argus. Argus provides very quick partial abort and then depends upon its “strong”
but higher-overhead orphan elimination mechanism. Our method presumes that both
aborts and orphans are rare. and so makes a tradeofl that more properly assigns the

29

cost ol aborting and orphan protection to the aborting transactions and places less
burden on the normal events: inter-site communication and commitment. Table 6-1
summarizes and compares the overhead of our mechanism with the first optimization
of the Argus algorithm. Furthermore, our abort mechanism can take advantage of a
communication subsystem’s failure delection feature in order to ensure the complete
absence of orphans. This is a consequence of having an abort protocol that performs
“eager” orphan elimination as opposed o the “lazy” method of elimination in which an
orphan is not detected until it calls a Guardian that knows it is an orphan.

ABORT MECHANISM ARGUS
all aborted trans-
actions with less than
certain lifetime; site id.
site id, timestamp for|timestamp for every
every lransactlion used |transaction used in
Added to req/resp in call call
prepare msg:. dan-
Added to other msg gerous sites same as above
Placed in stable storage none same as above
accumulate sites & |accumulate aborted
compare timestamps |transactions. sites,
Req/resp processing with those stored and timestamps
prepare msg: compare | accumulate aborted
dangerous sites with |transactions, sites.
Other msg processing sites visited and timestamps

Table 6-1: Overhead Comparison

30

7. Summary
We have presented a method of aborting transactions that my be arbitrarily nested
and distributed. The mechanism possesses many desirable features:
» The mechanism is operates within a general transaction model and a
realistic failure model.

* Provided that the communication subsystem provides prompt [ailure
detection. there will be no orphans.

* A site can abort unilaterally.

* The mechanism imposes relalively few and relatively minor restrictions on
the transaction facilily, and so promises to be portable.

* Little overhead is imposed on transaction-operation messages.
* No information need be maintained in stable storage.

‘s The abort protocol never blocks.
The primary disadvaniages of the mechanism are that iis abort protocol must be
synchronous, that it may over-abort in some cases. and that — if the communication
subsystem does not provide prompt failure detection — there is no limit on the extent
or lifetime of orphaned computations.

31

8. Acknowledgements

Lily Mummert and Dean Thompson discovered many ambiguities in the firsy
description of the mechanism, and collapsed the protocol from lwo phases to one,
pointing out that having a second “forget” phase is a poor tradeofl. Lily helped imple-
ment the protocol in Camelot,

32

I. Required Information
The transaction manager maintains a descriptor for every transaction: this decriptor
must contain:

e Transaction state (with values such as active, committed. and aborted).
The inilial state is active. The state should be changed when abort
begins, so that any attempt to perform another abort can be detlected and
stopped.

» The identity of the parent transaction, if any.

e The idenlity of the transaction’s children, if any.

e The site, if any, from which the transaction spread to this one.

e A list of sites spread to, if any. This information is both forward-
accumulated on requests and backward-accumulated on responses.

* A list of the local servers involved in the transaction.

o I the transaction is top-level: a list of dangerous sites, il any.

» The id of the process that began the transaction.

e The id of the process that aborts the transaction.

e The reason for aborting.

* A count of the number of kill-ack messages awaited.

¢ A count of the number of danger-ack messages awaited.

« Its complete nesting history. This information is needed only for the op-
timizalion of Section 3.4.3.

Additionally, the transaction manager must also maintain information associated with
the [amily (for commitment) and a mapping of site-to-LWM (for crash detection).

There are six messages sent during the abort protocol. They should contain the fol-
lowing information:
» Died:
1. The transaction that must die.
2. The reason [or dying.

3. The original target transaction at the abort iniliator.
4. The identity of the site thal originally initiated abort.

The last two items are needed to that the abort rool can return a
kill-complete.
o Kill:
1. The root of the subtree to be aborted.
2. The reason for dying.
o Kill-ack:
1. The root of the subtree that was to have been aborted.

2. The return code. which indicates either that the abort root and
everylhing below it were undone, or that the root is unknown.

¢ Kill-complete:
1. The original abort target (sent to the abort root from the abort
source by a series of died messages).
e Danger:
1. The family id.
2. A list of dangerous sites.
e Danger-ack:
1. The family id.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

(9]

(10]

(11}

(12]

(13]

33
References

M. R. Brown. K. N. Kolling, and E. A. Taft.
The Alpine File System.
ACM Trans. on Computer Systems 3(4):261-293, November, 1985,

D. L. Detlefs, M. P. Herlihy, and J. M. Wing.
Inheritance of Synchronization and Recovery Properties in Avalon/C++.
IEEE Computer 21(12):57-69, December, 1988.

D. Duchamp.

Transaction Management.

PhD thesis, Carnegie Mellon Univ., December, 1988.
Available as Technical Report CMU-CS-88-192.

D. Duchamp. et. al.

Design Rationale of the Camelot Distributed Transaction Facility.

Technical Report CUCS-008-90, Columbia Univ. Computer Science Dept.,
March, 1990.

J. N. Gray, et, al.
The Recovery Manager of the System R Database Manager.
ACM Computing Surveys 13(2):223-242, June, 1981.

M. Herlihy, N. Lynch, M. Merritt, and W. Weihl.

On the Correctness of Orphan Elimination Algorithms.

In Proc. 17th Intl. Symp. on Fault-Tolerant Computing. pages 8-13. IEEE. July.
1987.

M. Herlihy and M. S. McKendry.

Timestamp-Based Orphan Elimination.

Technical Report CMU-CS-87- 108, Carnegie-Mellon University, December,
1987.

L. Lamport.
Time, Clocks, and the Ordering ol Events in a Distribuled System.
Comm. ACM 21(7):558-565, July, 1978.

B. Lindsay et. al.
Notes on Distributed Databases.
Technical Report RJ2571, IBM Almaden, July, 1979.

B. Lindsay et. al.
Computation and Communication in R*: A Distributed Database Manager.
ACM Trans. on Computer Systems 2(1):24-38, February. 1984.

B. Liskov.
Progress Report of the Programming Methodology Group.
In MIT LCS Progress Report, pages 142-176. MIT Press, 1984.

B. Liskov, R. Scheifler, E. Walker and W. Weihl.

Orphan Detection.

In Proc. 17th Intl. Symp. on Fault-Tolerant Computing. pages 2-7. 1IEEE, July,
1987.

M. S. McKendry and M. Herlihy.

Time-Driven Orphan Elimination.

In Proc. Fifth IEEE Symp. on Reliability in Distributed Software and Database
Systems. pages 42-48. 1986.

[14]

(15]

(16]

{17]

34

D. Mills.
Network Time Protocol (Version 1) Specification and [mplementation.
Technical Report RFC 1059. Network Working Group. July. 1988.

J. E. B. Moss.
Nested Transactions: An Approach to Reliable Distributed Computing.
MIT Press., 1985.

R. Pausch.

Adding Input and Output to the Transaction Model.
PhD thesis, Carnegie Mellon Univ., August, 1988.
Available as Technical Report CMU-CS-88-171.

E. Walker.

Orphan Detection in the Argus System.
Mastler's thesis, MIT, June, 1984.

Available as MIT LCS Technical Report 326.

