Cues 457-59

A Non-blocking Commitment Protocol

Dan Duchamp
Computer Science Department
Carnegie-Mellon University!

Abstract

A “non-blocking” commitment protocol is one that ensures that at least some sites of a
multi-site transaction do not block in spite of any single failure. This paper describes
a quorum-based non-blocking commitment protocol that also subsumes the functions
of termination and recovery protocols. The protocol survives any single site crash or
network partition provided that the failure is not falsely detected. The protocol is cor-
rect despite the occurrence of any number of failures, and whether or not failures are
falsely detected. When there is no failure, the protocol requires three phases of mes-
sage exchange between the coordinator and the subordinates and requires each site to
force two log records. Read-only transactions are optimized so that a read-only sub-
ordinate typically writes no log records and exchanges only one round of messages
with the coordinator. Sites can forget the transaction after it terminates everywhere.
Finally, a fundamental result about quorum-based commit protocols is uncovered:
they are effective only for transactions involving more than three sites.

Copyright © 1989 Dan Duchamp

This work was supported by IBM and the Defense Advanced Research Projects Agency, ARPA
Order No. 4976, monitored by the Air Force Avionics Laboratory under Contract F33615-84-
K-1520.

The views and conclusions contained in this dccument are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of any of the
sponsoring agencies or of the United States Government.

1Author's current address: Computer Science Department, Columbia University, New York, NY 10027.
The former Computer Science Department at Carnegie-Mellon University is now called the School of Com-
puter Science.

i

Table of Contents
1. Introduction
2. Protocol Description
2.1. Assumptions
2.2. Operation Without Failures
2.3. Replication Phase
2.4. Handling Failures
2.4.1. Coordinator Loses a Subordinate
2.4.2. Subordinate Loses the Coordinator
2.4.3. Recovery from Crash
2.4.4. Recovery from Partition
2.4.5. Dueling Coordinators
2.4.6. Performance/Availability Tradeoff: Choosing Quorums
2.5. Optimizations
2.5.1. Availability Optimzation: Information Accumulation
2.5.2. Performance Optimization: Delaying Messages
2.5.3. Performance Optimization: Read-only Sites
2.5.4. Performance Optimization: Eliminating Log Forces
3. Informal Correctness Arguments
3.1. Safety
3.2. Liveness
3.2.1. True Detection Assumption
3.2.2. Single-failure Liveness
4. Performance
4.1. Measured Results
5. Related Work
6. Summary
I. Example Operation With Failures
II. Complete Specification
I1.1. Subordinate Actions
I1.2. Coordinator Actions
I1.3. Stateless Actions
I1.4. Timeout
I1.5. Recovery

DORXNNNUTWWWm

1. Introduction

A distributed transaction requires a commitment protocol to ensure that all sites
agree whether the transaction commits or aborts. A non-blocking commitment
protocol is one that permits at least some sites to terminate (i.e., commit or abort) in
spite of the occurrence of any single failure before or during execution of the protocol.
The standard centralized two-phase commitment protocol {9, section 5.8.3.3] is not
non-blocking because if a prepared subordinate loses contact with the coordinator
(either because the coordinator crashes or because of a network failure}, then the sub-
ordinate must remain prepared until the failure is repaired and communication with
the coordinator is reestablished. Until then, the subordinate continues to hold write
locks for the transaction, and is said to be blocked.

Blocking is undesirable because if the data at the subordinate is more valuable than
that at the coordinator, then the unavailability of data at the blocked subordinate may
be more harmful than the unavailability of the coordinator. An example of this situa-
tion is when a data-rich mainframe serves as a subordinate to transactions initiated
by user-controlled workstations. Also, if data is replicated. then data access protocols

[8] can overcome a crashed site, but not a blocked site.

In the absence of failures, non-blocking commitment protocols are inherently slower
than blocking protocols [6], and so non-blocking commitment is not suitable for all ap-

plications. Its main uses are:

1. For applications that are willing to sacrifice some performance in return
for higher availability.

2. For large transactions. If the cost of commitment is a small part of the
whole cost of a transaction, then the advantages of non-blocking com-
mitment make it desirable.

3. For transactions executed at sites spanning a wide area. In such a con-
figuration, subordinates remain prepared longer, and network failures
are more likely.

4, For systems (such as Argus [18]) in which transaction management code
runs in the same address space as user-written code. In such a system
the coordinator can be expected to fail more often because user-written
code is presumably more error-prone.

This paper describes a non-blocking commitment protocol that permits at least
some functioning sites to terminate in spite of any single site crash or network par-
tition. This is optimal resiliency, since Skeen has shown that no protocol can be non-
blocking despite any two failures [23, pp. 83-85], and since it is likewise impossible to
ensure that all sites can terminate during a single partition [21, p. 139]. The protocol
uses the quorum consensus technique [8] to avoid blocking during partition, and is a
centralized protocol that becomes gradually decentralized as failures occur. It can be
viewed as an improved version of a similar protocol described in [2, pp. 256-260]. The
improvements are:

* An optimization that, typically, allows the processing of read-only sites
and read-only transactions to be as fast as with the Presumed Abort
variation of two-phase commit [19].

2

» Addition of the ability for all sites to forget (i.e., expunge data structures
pertaining to) the transaction after it is terminated. This is an important
practical feature, and correctly adding this ability to a non-blocking
protocol is not as obvious as it may seem. As Section 2.2 argues, a
protocol that forgets too soon is incorrect, yet no existing specification of
any non-blocking commitment protocol indicates how to forget.

» Design such that all actions to be taken both before and after a failure are
integrated into a single protocol. Normally, [23, 2, 3] the non-blocking
problem is divided into four sub-protocols:

1. A “commit protocol” executed before the failure.

2. A post-failure “termination protocol” executed by sites that sur-
vive the failure.

3. A post-failure “recovery protocol” executed by crashed sites once
they recover.

4. In addition, centralized termination protocols typically make use
of an additional “election protocol” for selecting a replacement
coordinator.

Having one rather than three or four protocols eases the tasks of reason-
ing about and implementing the protocol.

In addition, this paper presents the following advantages over previous descriptions
[24, 2, 3] of quorum-based non-blocking protocols:
e Elucidation of several performance optimizations beyond the read-only
optimization mentioned above.

¢ A complete specification that includes all knowledge needed to implement
the protocol — including exactly when to write log records, and what the
contents of log records and messages should be.

» Detailed arguments about the safety and liveness of the protocol.

e Analysis of normal case (i.e., failure-free) performance, and comparison
with measured results of an implementation.

» Discussion of a depressing fact about quorum-based non-blocking com-
mit protocols: they are effective only for transactions involving at least
three sites. This fact is fundamental, but has never before been explicitly
mentioned in several discussions of quorum-based non-blocking commit
protocols [23, 24, 3, 2].

The components of this presentation are description of the protocol in Section 2,
demonstration of safety and liveness in the next section, and performance analysis in
Section 4. Appendix I contains one “animation” example of the protocol in operation
during a failure, while Appendix II contains a complete specification of the protocol.

2. Protocol Description

2.1. Assumptions

It is assumed that when the commit protocol begins, the operations comprising the
transaction are finished: i.e., the transaction is not spreading to new sites while the
commit protocol executes. The only assumptions that must be made about the en-
vironment are that each site has a single stable storage log that can be written atomi-
cally, that communication is point-to-point, and that possible failures are described by
a failure model:

1. Any process or site may fail at any time, but must be “fail stop,” mean-
ing that a failure results in the site or process halting immediately. then
losing its volatile memory.

2. The fail stop condition implies that malicious failures [16] do not occur.
Specifically, processes do not “tell lies,” no network message will be un-
detectably altered, and the network will not spontaneously create good
messages. Messages may however be lost, duplicated, or reordered. No
bound on delivery time is assumed.

3. Any two sites may lose the ability to communicate, either in one or both
directions, and the network may partition. A partition is the separation
of a completely connected network into exactly two completely connected
subnetworks that cannot communicate with one another. The typical
cause of partition is the crash of a gateway.

4. Failure is detected by timing out on an expected message. It is not pos-
sible to determine the type of failure.
5. Every failure is eventually repaired.
This model matches closely the events that do and do not happen in the real world.

Although the protocol is independent of the methods used for concurrency control
and recovery, this paper is written as if the recovery method is logging, the concur-
rency control method is locking, and each site has a transaction controller that ex-
ecutes the commitment protocol and controls the dropping of locks. These conven-
tions are adopted only in order to be precise in discussing the actions required at
various times. Also. the communicating entities are called “sites” that communicate
via a “network,” although the protocol applies more generally to processes com-
municating via any sort of communication system governed by the failure model.

2.2. Operation Without Failures

In the absence of failures, the non-blocking commitment protocol has three phases.
In the first “prepare phase” the coordinator tries to have all sites become prepared to
either commit or abort. The purpose of the second “replication phase” is to have the
coordinator replicate at subordinate sites the information that it will use to make the
commit/abort decision, namely whether all sites are prepared. (Recording the fact
that all sites are prepared is referred to as joining the commit group. Recording the
perception that some site is not prepared is referred to as joining the abort group.)

4

In the third “notify phase” the coordinator makes the decision and informs sub-
ordinates of the outcome. After the third phase — once all sites have committed or
aborted — there is an additional seventh message, as explained below. The atomic
commitment point occurs during the replication phase once enough sites have
recorded the information given to them by the coordinator. As in two-phase commit,
all sites retain the ability to “abort unilaterally” before they prepare. The first and
third phases of this protocol correspond closely to the two phases of two-phase com-
mit. Beyond having three centralized phases. the other salient aspects of the protocol
are that a subordinate does not forever await messages from the coordinator but in-
stead times out and itself becomes another coordinator, and that a crashed site as-
sumes the role of a coordinator when it recovers.

The precise steps of the protocol for an update transaction are:

1. The coordinator prepares by dropping its read locks and forcing a
prepare log record that contains the list of its write locks, the quorum
sizes and the list of subordinates.

2. The coordinator sends prepare asynchronously to all subordinates, then
awaits responses. The prepare message must contain enough infor-
mation to allow the subordinate to later behave as a coordinator: the
list of sites involved in the transaction and the two quorums sizes.

3. Each subordinate drops its read locks and attempts to prepare. To
prepare, the subordinate forces a prepare log record that contains its
write locks, the quorum sizes and the list of all sites. It then sends
prepare-ack (yes) to the coordinator. If the site cannot prepare, it sends
prepare-ack (no), undoes its updates, drops its write locks, and spools an
abort record. To “spool” a log record means to write it into a log buffer:
the next log force will write the entire buffer into the log.

4. The coordinator waits until either all prepare-ack messages are received
or a timeout occurs. If all sites are prepared, then the coordinator forces
an in-group log record. The record should contain the state of all sites,
the state of the coordinator being in-group/commit. It then sends
Jjoin-group (commit), which also contains state of all sites as known to the
coordinator. If some site is unprepared or a timeout occurred, then the
coordinator forces the in-group log record with the coordinator state be-
ing in-group/abort. It then sends join-group (abort) to all subordinates.
This message also lists every site and its state.

5. A subordinate that receives the join-group message joins the specified
group provided it is not already in a group. It does so by forcing an
in-group log record that contains the list of all sites and their states. It
then sends in-group back to the coordinator. If the subordinate times
out waiting for join-group, then it becomes a coordinator in the prepared
state.

6. The coordinator collects in-group messages, checking if a quorum is
formed. While no quorum exists, the coordinator must continue to
resend join-group to those subordinate sites not yet in a group. Once a
quoruin exists, the coordinator either commits or aborts. Committing is
easy: the coordinator forces an outcome log record that specifies commit.
To abort, updates are undone, write locks are dropped, and then an
outcome log record specifying abort is spooled. After committing or

5

aborting, the coordinator sends outcome to all subordinates. The
outcome message and log record need not include any extra information
beyond that which indicates whether to commit or abort.

7. A subordinate that receives outcome commits or aborts just as the coor-
dinator did. It then replies with outcome-ack. As at the coordinator, the
log record need not include extra information. If the subordinate times
out waiting for the outcome, it becomes a coordinator in the appropriate
in-group state.

8. The coordinator resends outcome until it receives outcome-ack from all
subordinates. It then sends forget to all sites, and forgets the trans-
action. Forgetting is accomplished by spooling a done record into the log
buffer. The purpose of a done record is to indicate that this
transaction’s portion of the log can be reclaimed.

9. A subordinate that receives forgets forgets in the same way the coor-
dinator does. If it times out, it becomes a coordinator and sends
outcome to all sites, which will reply with outcorme-ack.

Clearly, the coordinator should retransmit unacknowledged messages a few times to
prevent needless subordinate timeouts. Beyond this, several important optimizations
are possible, as explained in Section 2.5.

Figure 2-1 displays the messages sent between coordinator and subordinate when a
transaction commits without failure. The three phases are obvious. The extra mes-
sage is necessary if sites are to be able to forget, according to three steps of reasoning.
First, a site with no record of a transaction can join the abort group. Second, it is pos-
sible for one site to be committed while another is still trying to gather an abort
quorum. So if a subordinate were to commit and then forget, it could join the abort
group after having forgotten. In this fashion, a single site could join both the commit
group and, later, the abort group, and allow the same transaction to commit at some
sites and abort at others. To ensure correctness, no site forgets until all sites
(including those that may have crashed or been isolated by partition) have acknowl-
edged the outcome. While forgetting thus can be delayed by a failure, this is not
blocking, since locks have been dropped.

2.3. Replication Phase

The extra replication phase is necessary in order to have a non-blocking protocol
that operates within a failure model that allows partitions. The foundation upon
which the correctness of the protocol rests is that (for the purpose of terminating a
particular transaction) a site can join only one group. ever. At any given time, some
coordinators may be increasing the membership of the commit group while other coor-
dinators are increasing the membership of the abort group. The outcome is deter-
mined by which group succeeds in gathering the required number of sites.

The requirement for an exclusive outcome is set by the well-known quorum consen-
sus method: commit (abort) can take place provided that the commit (abort) group
consists of a commit (abort) quorum. If C is the number of sites required for a commit

Coordinator

Log servers’ locks,
prepare indicator,
list of sites, and
quorum sizes.

prepare (list of sites, quorum sizes)

Subordinate

yes

> Log servers' locks,
prepare indicator,
list of sites, and

quorum sizes.

4
N\
(unanimous)
Log in-commit-group
indicator.

Join-group (commit)

AN

7
Log in-commit-group

. . indicator.
L, in commuit group
N
(commit quorum)
Log commit
indicator. commil N
7
Log commit
. indicator.
P commit-ack
A
(unanimous)
forget \
7
Forget. Forget.

Figure 2-1:

Non-blocking Commitment without Errors

The typical sequence of messages exchanged between a coordinator and a subordinate when a trans-
action commits without error. The notation “(commit quorum) Log commit indicator” means that once a
commit quorum of sites have responded saying that they are in the commit group, write the commit

indicator into the log.

Commands to join the commit group or to join the abort group are not separate message types. Instead,

there is a single join-group message, and whether to join the commit or abort group is passed as data.

quorum, A is the number for an abort quorum, and N is the total number of sites,
then the correct relation between the quorums is:

C+A=N+1,

C,A <N.

This relation is derived from the essential requirements for a non-blocking protocol.
Mutual exclusion of outcomes requires that

N<C+A.

¢y

Also, il must be possible to reach either outcome even if the other outcome is as little

7
as one site short of achieving a quorum. Translated into mathematics, this is
N — (min(C,A) - 1) 2 max(C,A),
and
N - (max(C,A) — 1) 2 min(C,A).
These inequalities are in fact both the same, namely

N+ 1 2 max(C,A) + min(C.A) @)
N+12C+A
Together, Inequalities 1 and 2 determine the equation
C+A=N+1. €))
The condition
C.,A<N “

reflects the fact that a quorum-based protocol cannot tolerate a single site crash if all
N sites are required to reach an outcome.

An unfortunate consequence of Inequality 4 is that quorum-based protocols are
useful only for transactions with three or more sites: if N is only 2, then by Equation
3, either C or A must also be 2. In this case, if one site were to join the group whose
quorum was 2 and then the other site crashed, then that site would be blocked.

2.4. Handling Failures

2.4.1. Coordinator Loses a Subordinate

If the coordinator loses contact with some subordinate, its behavior in the non-
blocking protocol is similar to that in two-phase commit: timeout and abort if waiting
for prepare-response, resend outcome if waiting for outcome-ack. The only difference is
that the non-blocking protocol will block if too many subordinates crash before or
during the replication phase: the coordinator may not be able to gather a quorum for
either commit or abort. In this sense, non-blocking commitment is actually less
resilient to subordinate crashes than two-phase commitment; with two-phase commit-
ment, the coordinator may terminate no matter how many subordinates crash. This
resiliency is traded in return for being able to tolerate the loss of the coordinator.

2.4.2. Subordinate Loses the Coordinator

A subordinate may become (another) coordinator if it times out waiting for a mes-
sage from the original coordinator; communication with the other sites is always pos-
sible because each subordinate receives the list of sites in the first message of the
protocol. The correctness of the protocol depends in no way upon the length of the
timeout interval, when subordinates become coordinators, or how many do so. It is
not necessary to execute an election protocol [7]. One may think of the subordinates
as making arbitrary decisions about whether and when to become coordinators.

Coordinators and subordinates pass through the same states, so the protocol is

8

symmetric. The progression of states is shown in Figure 2-2. A subordinate that be-
comes a new coordinator executes the protocol just as the original coordinator would
in the same state. The new coordinator first sends to all other sites the last message it
received, to ensure that all sites are at least as advanced as it is.2 Commitment then
proceeds normally. although perhaps with more than one coordinator.

Figure 2-2: Progression of State Transitions
of Non-blocking Commitment Protocol

Every site travels one path through the DAG. Of course, either all sites commit or all abort. Notice that a
site may join the commit (abort) group, but then abort (commit). The group that it joined failed to gain a
quorum, while the other group succeeded.

2.4.3. Recovery from Crash

After recovering from a crash, a site becomes a coordinator. This policy obviates the
question of which site will be coordinator if all sites crash, perhaps due to a power
failure. If the recovered site had not yet terminated before crash, then it is certain
that at least one other site will be able to give it the outcome: the coordinator, which
has not yet forgotten. If the recovered site had terminated before crash. then it will

2The “advancedness” of a state is its level in the state transition graph of Figure 2-2.

9

begin by sending the outcome message. Even if, as is likely, all other sites have ter-
minated and possibly also forgotten, they will satisfy the newly recovered site by send-
ing outcome-ack (see Table II-11).

Becoming a coordinator after recovery ensures that the transition from subordinate
to coordinator is permanent. Furthermore, the opposite transition (coordinator to
subordinate) never takes place.

2.4.4. Recovery from Partition

If a partition lasts longer than some subordinate’s timeout interval, then at least one
coordinator will operate within each subnetwork. So at least one subnetwork will ter-
minate but not forget. The coordinator(s) in that subnetwork will continue to send
outcome until the partition is repaired and the sites that formed the other subnetwork
reply with outcome-ack. (Obviously, a coordinator should increase the interval be-
tween consecutive sends up to some reasonable limit.)

2.4.5. Dueling Coordinators

The presence of multiple simultaneous coordinators is referred to as dueling. To a
subordinate, the existence of dueling coordinators seems like delayed or duplicate
messages, a circumstance that must be handled anyway. However, it is potentially
confusing for a coordinator to receive the same types of messages it is sending. The
rule for how one coordinator reacts to the messages sent by another is based on the
relative states of the two sites.

If the receiving coordinator is in a less advanced state than the sender, then it
should do as instructed, respond as if it were a subordinate, but remain a coordinator.
For example, a prepared coordinator that is told to commit should commit, then send
outcome-ack to the other coordinator; next, it should send outcome (commit) to all sub-
ordinates. If the receiving coordinator is in a more advanced state, then it should ig-
nore the message and continue treating the sender as a subordinate. Lastly, if both
coordinators are in the same state, then the receiver should respond as if it were a
subordinate. So if a committed coordinator receives outcome (commit), it should
respond with outcome-ack.

The major benefit of tolerating multiple simultaneous coordinators is that the
protocol is not burdened with the complication of requiring that every subordinate
agree upon which site is the coordinator. A minor benefit is an increased ability to
terminate in pathological cases where the communication network is very discon-
nected, as explained in Section 2.5.1.

The list of sites is carried in the prepare message. How long a subordinate waits be-
fore timing out should be made proportional to its position within the list of sites.
This lessens dueling. Lessening dueling is desirable in order to reduce network ac-
tivity during a failure, but is not needed for correctness.

10

2.4.6. Performance/Availability Tradeoff: Choosing Quorums

Two factors affect the behavior of the protocol in the (normal) case when a trans-
action commits without failure, and in the case when a partition occurs. They are the
relative sizes of the two quorums and the order in which join-group messages are sent.

In order to speed the normal case, the best choice of quorums is C =2, A= N-1. If
one subordinate is more likely to respond quickly to the join-group message, then that
site should be the first destination whenever the coordinator sends join-group mes-
sages. Such a policy increases the speed with which the commit group achieves a
quorum.

Selecting quorum sizes to minimize blocking when a partition occurs requires know-
ing or assuming the failure probabilities of the components of the system. If certain
partitions are more likely than others, then the chance of blocking can be reduced by
sending the first join-group message to a site that is more likely to be in the partition
not containing the coordinator. Unfortunately, it is unlikely that quorums can be
tuned to improve both the no-failure case and the expected-partition failure case. Par-
titions typically occur because of the crash of a gateway. Also, communication be-
tween two sites separated by a gateway is usually relatively slower than communica-
tion between two sites on the same network. To tune for speed in the normal case,
one wants to use one of the faster (i.e., common network) communication paths. To
tune for availability in the expected-partition case, one wants to use one of the slower
(i.e., separated by a gateway) communication paths.

2.5. Optimizations

2.5.1, Availability Optimzation: Information Accumulation

Whenever any of the first four messages (prepare. prepare response, join-group,
in-group) is sent, it should contain the state of every site as known to the sender. This
feature increases the number of sites reaching an outcome when the communication
network is less than completely connected, by using information about other sites that
is relayed indirectly. For example, suppose that alter several partitions occur, two
subnetworks are connected by only a one-way link between one site in each. Even if
each subnetwork is not large enough to terminate by itself, one may be able to ter-
minate using information passed across the link about the states of sites in the other
subnetwork. Because of the linear progression of states within the protocol, messages
may contain information that is old and possibly useless, but never wrong.

2.5.2, Performance Optimization: Delaying Messages

The last two messages of the protocol, outcome-ack and forget. serve only to inform
sites when they can safely forget the transaction. Accordingly, these messages should
be delayed for some time in case they can be piggybacked on other messages between
the same two sites.

11

2.5.3. Performance Optimization: Read-only Sites

It is common for individual processes, sites, or entire transactions to be read-only.
In two-phase commitment, a read-only site requires fewer messages and writes no log
records. This property can often but not always be preserved by non-blocking com-
mitment.

When asked to prepare, a read-only site drops its locks, votes read-only, but retains
its memory of the transaction. (In two-phase commitment, a subordinate that votes
read-only may forget immediately after voting.) With non-blocking commitment it is
necessary for the transaction manager of a read-only site to remember the transaction
because it may be asked later to join the commit group.

If the coordinator sees that the transaction is completely read-only, then it next
sends forget. If there is a mix of read-only and update sites, then commitment
proceeds normally. The coordinator invites subordinates to join the commit group. If
there are enough update sites to form a commit quorum, read-only sites should not be
asked to join. If it is necessary to ask some read-only sites to join the commit group,
then they write the in-group record directly without writing a prepare record. Al-
though they participated in the second phase, these sites need not be included in the
third phase. The purpose of informing an update site that a transaction has com-
mitted (or aborted) is to allow it to drop its locks. Read-only sites have already
dropped their locks. In summary, read-only sites should be left out of the replication
phase if possible, and need never be involved in the notify phase. They must be told
to forget. however.

Having read-only sites not write a prepare record means that it must be possible for
a site that has no memory of a transaction to join a group. For example, a read-only
site may crash and then later be asked to join a group. The rule for which group a site
should join if it lacks memory of the transaction is:

¢ No other site in commil group: join abort group. It is not certain that all
sites prepared.

e Commit and abort groups are same (non-zero) size: join commit group, to
help commit rather than abort.

e One group larger than other: join the larger group, to help terminate as
soon as possible.

2.5.4. Performance Optimization: Eliminating Log Forces

Careful analysis reveals that two log writes need not be log forces. First, the
commit/abort record at a subordinate need not be forced. as explained in [4, pp.
50-52]. Second, it is necessary to force only one of the coordinator's first two records
(prepared or in-group).

If the prepare record is not forced, then the transaction must abort if the coor-
dinator crashes; the coordinator’'s prepare record is placed in the log when it forces the
in-group record. If the prepare record is forced, then the in-group record need not be:
if the subordinates already constitute a quorum or are only one site shy, then the

12

coordinator can force a combination in-group and commit/abort record.

The latter is preferable. In addition to allowing a transaction to commit in spite of a
failure, there is an availability advantage in multiple-failure cases. Provided that the
coordinator has not already joined a group, it can examine the number of sites in each
group. and perhaps force an outcome by “casting the deciding vote.” For example, if
the abort group is only one site shy of a quorum, it is preferable for the coordinator to
join the abort group in order to terminate the transaction even if it was soliciting sites
to join the commit group.

Having a coordinator delay joining a group should be handled carefully. The danger
is that a “procrastinating” coordinator could unnecessarily prevent a transaction from
terminating. For example, consider a partitioned subnetwork of M sites consisting of
two coordinators and the rest subordinates. Suppose also that the quorum for com-
mitting is M, and that every subordinate has joined the commit group, but that the
two coordinators are still only prepared. The protocol must be designed so that the
two coordinators do not forever send each other the join-group message, each waiting
for the other to become the M-1st site in the commit group.

Accordingly, the rule for how a coordinator reacts to a message from another coor-
dinator in the same state should be amended to: if the receiving coordinator is ranked
lower than the sender in the list of sites, it will react as if it were in a less advanced
state. This rule establishes a strict ordering of the relative states of two coordinators.

13

3. Informal Correctness Arguments

There are two salient issues to investigate: safety and liveness. Showing salety re-
quires demonstrating that never does some site commit and another abort. Showing
single-failure liveness requires demonstrating — that provided that only one site crash
or network partition occurs during the execution of the protocol — that some site is
able to terminate without waiting beyond the specified timeout intervals, and that
blocked sites become unblocked once the failure is repaired.

3.1. Safety

The safety of the protocol rests on the fact that a site’s membership in a group is
stable and therefore a quorum is also stable. Once a site joins a group it remains in
the group (and refuses to also join the other group) until after it is known that all sites
have reached the outcome and there will be no further attempts to form groups for
that transaction. Provided that quorum sizes are chosen according to Equation 3, it is
impossible that the commit group and the abort group can both reach a quorum any
time during the execution of the protocol. This is the crux of all protocols based on
the quorum consensus method.

This simple and intuitive argument is developed more fully and is connected more
precisely to the specification of the protocol by the 13-step chain of reasoning
enumerated below. Statements in normal typeface are true statements about the
protocol.® Statements in italic typeface are deductions based on previous statements.

1. It is assumed that when the protocol starts, all operations have ter-
minated or have been aborted (i.e., the transaction is quiescent), and
every site that is involved is known to the original coordinator. The list
of involved sites is transmitted in the first message and is placed in the
first log record (prepare for write sites, in-group for read-only sites), and
so is always known to every site that ever becomes a coordinator.

2. A site commits or aborts only when it has positive information that a
quorum has been gathered. A site may receive positive information ei-
ther by receiving a message that indicates that some other site is already
terminated, or — when acting as a coordinator — by receiving a message
that indicates that a quorum has been formed.

3. Therefore, to show safety, it must be shown that conflicting quorums are
impossible.

4. A site joins a group only when it is prepared or when the transaction is
unknown to it.

5. Because recovery from site crash restores the state indicated by the last
log record, a site remembers if it previously joined a group.

6. Once in a group or terminated, a site refuses to join the other group.

7. Therefore, once in a group, a site remains in only that group until told to
forget the transaction.

3An energetic reader can verify each statement by inspecting Tables II-1 through I1-11.

14
8. No site will send forget until all sites have terminated.

9. A site that is terminated will never try to form a quorum, so there will be
no attempt to form a quorum after any site has forgotten.

10. Therefore, a site_joins at most one group, ever — before or after forgetting.
The lifecycle of a site is as follows: it joins a group once, then remembers
that it joined until such time as it will not be asked to join the opposite
group, then it forgets only after knowing that it will never again be asked
to join a group for that transaction.

11. Therefore, it is not possible for any site to join conflicting groups.
12. Therefore, at most quorum one can ever exist, assuming C + A > N.

13. Therefore, it is not possible for any site to decide commit/abort opposite of
what another site decides.

3.2. Liveness
The elegance of the "when in doubt, become a coordinator” policy carries a price, ex-
pressed by the “true detection assumption.”

3.2.1. True Detection Assumption
For this protocol to always permit one subnetwork of a partition to terminate, there
must be no false error detection. Assuming otherwise, a scenario such as this could
occur:
1. The original coordinator prepares all sites and begins the replication
phase. Some sites join the commit group.
2. Meanwhile, a prepared subordinate “imagines” (i.e.. incorrectly detects)
that the coordinator has failed. The subordinate becomes a coordinator
and sends prepare messages.
3. The prepares of the second coordinator are lost (through bad luck), so
the second coordinator begins forming the abort group. Some other
prepared sites join the abort group at the behest of the second coor-
dinator.
4. A true partition happens (the first “real” failure), leaving each subnet-
work with some sites in the commit group and some in the abort group.
5. For certain choices of quorum sizes, neither subnetwork of sites will be
able to form a quorum. For example, suppose N =8, C = 5, and A = 4.
If the sites are partitioned into two equal subnetworks and each subnet-
work has one site in the commit group and one in the abort group, then
neither subnetwork can terminate.

A second coordinator acting as an adversary can prevent quorums from forming by al-
ways doing “just the wrong thing:” getting sites on either side of the soon-to-be par-
tition to join the opposing group before a true partition occurs.

The non-blocking protocol can be shown to be live despite a single failure only if
there are no false detections of failures. Put another way, the protocol is live in the
presence of any single diagnosed failure, whether the diagnosis is correct or not. The
liveness argument in the next section depends upon this true detection assumption:
every detected failure is a real failure.

15

3.2.2, Single-failure Liveness
Unlike the demonstration of safety., which is based on general statements, the
demonstration of liveness is done with a simple case analysis.

It is clear from examination of the specification in Sections II.1 and I.2 that the
state transition graph is indeed the DAG shown in Figure 2-2, so no site ever
“retreats” through the states. It remains to show that not all sites “park™ in any state
unless there are too many failures, and that — for those sites that do park — when
the failures are repaired the outcome is eventually reached.

Analysis of a subordinate is trivial. In each state, a subordinate will either be
“pushed” into a more advanced state by a message from some coordinator or timeout
waiting for such a message and become (permanently) a coordinator itself. Therefore,
showing the liveness of a subordinate reduces to showing the liveness of a coor-
dinator.

A coordinator will be pushed into a more advanced state by another more advanced
coordinator or will force itself into the next state provided it can receive enough
responses from subordinates and other coordinators, in which case it “pulls” itself for-
ward to the next state. When a message is received from another coordinator, if the
sender is less advanced the message is ignored; otherwise, the receiving coordinator is
pushed. When a message is received from a subordinate, either it is a delayed
response (in which case it is ignored). or it is an expected acknowledgement. In the
latter case, the message contributes to the coordinator pulling itself into the next
state.

A coordinator might stop advancing only when there are enough failures to prevent
its pulling itself to the next state. If the coordinator fails to receive enough prepare
responses, it times out and advances to the next state. If it fails to receive enough in-
group responses, it blocks. If it fails to receive enough outcome acknowledgements, it
continually resends outcome. However, this is not blocking; a site is blocked only
when it is a coordinator awaiting in-group messages. Blocking cannot be caused by
the crash of any single site provided that both quorum sizes are less than the number
of sites, so consider the occurrence of a single partition.

What situations may exist when a coordinator is trying to form a quorum and a par-
tition has occurred? The possible cases are:
1. Both subnetworks have all sites prepared.

2. One subnetwork has some sites in one group, while the other has all
sites prepared.

3. Both subnetworks have some sites in one group. The group is the same
in both subnetworks.
The true detection assumption rules out the possibility of the existence of sites in both
groups before the failure. At most one kind of group may exist within a subnetwork
before the failure.

16

Information that another site is in a more advanced state always pushes a coor-
dinator into that state: for example, if a prepare response from a subordinate indicates
that the subordinate really is in the commit group, then the receiving coordinator will
use the information to conclude that all sites are prepared, and will begin forming the
commit group. Because of this property, a subnetwork consisting of some prepared
sites and some sites in a group will — barring further failures — have all sites join
that group, no matter which sites act as coordinators. Therefore, Case 3 above will
terminate in at least one subnetwork, Case 2 will either terminate in the advanced
subnetwork (if it is big enough) or abort in the other subnetwork, and Case 1 will
abort in at least one subnetwork. Blocked sites become unblocked and crashed sites
recover as described in Sections 2.4.4 and 2.4.3, respectively.

17

4. Performance

This section examines the performance of the protocol in the case where no failures
occur. Since failures are rare, this is the most important measure of commit protocol
performance. For judging the latency of the normal case, two events are important:
the moment at which all locks have been dropped, and the moment when the
(synchronous) commit call returns to the caller. The critical path of a commitment
protocol is the shortest sequence of actions that must be done sequentially before all
locks are dropped and the call returns, and this measure is the focus of performance
evaluation.

Experience shows that the length of the critical path is dominated by inter-site mes-
sages and log forces [5]. Because coordinator-subordinate communication is
asynchronous, subordinate log forces take place roughly in parallel. and so the critical
path of an N-subordinate transaction should be not greatly more than that of a 1-
subordinate transaction.

The optimizations of Section 2.5.4 piggyback the non-critical messages and log
forces of one transaction onto other messages and log forces. and so reduce the criti-
cal path of an update transaction to 4 log forces and 5 messages. This compares to 2
and 3. respectively, for two-phase commit. The log forces and messages in the critical
path are:

e Log forces: coordinator prepare, subordinate prepare, subordinate in-
group, and coordinator in-group and commit. The last two are batched
together, as explained in Section 2.5.4.

» Messages: prepare, prepare response, join-group, in-group, and outcome.

The ratios of these dominant operations are 4/2 and 5/3, implying that the length of
the critical path of non-blocking commit is about twice that of two-phase commit. For
read-only transactions, optimizations reduce the non-blocking critical path to that of
optimized two-phase commit. Comparison of the two protocols is shown in Table 4-1.

LOG MSG
TRANSACTION TYPE MESSAGES |FORCES DELAYS LF DELAYS
NBC update 5N 2+2N 5 4
2PC update 3N 1+N 3 2
NBC read 2N 0 2 0
2PC read 2N 0 2 0

Table 4-1: Performance Comparison of Non-blocking
and Two-phase Commit Protocols

N is the number of subordinates. NBC stands for non-blocking commit, while 2PC stands for two-phase
commit. Both protocols are fully optimized.

18

4.1. Measured Results

This non-blocking protocol has been implemented within the Camelot transaction
processing facility [25]. Performance measurements were gathered on several IBM RT
PCs, model 125, a 2-MIP machine. The network was a 4Mb token ring without
gateways. The computers were running Mach [1], version 2.0.

The timing experiment consisted of executing a minimal distributed transaction on
a coordinator and on 1, 2, and 3 subordinate sites. The “minimal transaction” per-
formed one small operation at each site. A minimal transaction was used in order to
more easily subtract the latency due to operation processing, leaving just that as-
sociated with the commitment protocol.

Table 4-2 shows the failure-free performance of the non-blocking protocol and two-
phase protocol for update and read transactions, respectively. The number is not
directly measured, but is necessarily derived by measuring the latency of entire trans-
actions and then subtracting the known times of the operations outside the commit
protocol.

(DERIVED PROTOCOL

TRANSACTION TYPE LATENCY)

NBC update, 2 sub. (157.0)

2PC update, 2 sub. (88.0)

NBC update, 3 sub. (193.5)

2PC update, 3 sub. (102.5)

NBC read, 2 sub. (58.0)

2PC read, 2 sub. (34.0)

NBC read, 3 sub. (67.5)

2PC read, 3 sub. (40.5)

Table 4-2: Derived Commit Protocol Latency

The cost of non-blocking commitment relative to two-phase commitment seems
somewhat less than twice as high, the ratio varying from 1.88 to 1.66. This result is
in agreement with the analysis above. The advantage gained by optimizing read-only
transactions is clearly substantial.

In absolute terms, the protocol executes in a fraction of a second in the test environ-
ment. In order for the latency of the commitment protocol to be negligible (say, less
than 5%), non-blocking commitment should be used with transactions that last longer
than a few seconds. This implies that non-blocking commitment is suitable for trans-
actions used in application programming, but not in system programming.

19
5. Related Work

The motivation for a non-blocking commitment protocol has existed for some time,
and many protocols have been invented. The seminal work is Dale Skeen’s 1982 Ph.
D. dissertation [23] devoted entirely to the topic of non-blocking protocols. In addition
to proving fundamental results and defining the notation that is now standard, Skeen
described several protocols. The two most interesting ones are the “canonical” three-
phase non-blocking commitment protocol [22] which does not survive partition, and
the “quorum-based” protocol [24] which does.

The problem of finding a non-blocking commit protocol is substantially easier if the
possibility of network failures is ruled out. The implication that the lack of response
from a remote site means that the site has stopped is an important tool for the
protocol designer. Further examples of protocols that survive only site crash failures
are the four-phase protocol of the SDD-1 project [10]. Le Lann’s Cooperative Protocol

[17, p. 46]. and Yuan and Jalote’s prolocols for recovering from site failure with min-
imal message exchange [27].

The essential technique for surviving partitions is quorum consensus, and use of
this technique has a long history. The protocol described in this paper is quite similar
to that in [2, pp. 256-260], which is in turn similar to Skeen’'s decentralized quorum-
based termination protocol [23, pp. 164-176], which itself makes use of the special-
purpose commitment scheme outlined by Reed [20, pp. 115-118].

Because the inherent slowness of non-blocking commit is unattractive, several ad-
hoc methods have been devised either to unblock a blocked transaction, or to make
blocking less likely. IBM's LU 6.2 supports “heuristic commit.” which allows for
resolution of a blocked transaction by either manual or programmed means [12, p.
5.3-16]. The R* prototype likewise allows manual resolution of a blocked transaction

[19]. Quicksilver implements two techniques for reducing the likelihood of blocking:
“coordinator migration” and “coordinator replication” [11]. A two-site transaction uses
coordinator migration. Coordinator migration allows the subordinate and the coor-
dinator to switch roles, for times when the subordinate is supposed to be more reliable
than the coordinator. For transactions involving more than two sites is Quicksilver
uses coordinator replication. In essence, the coordinator nominates one of the sub-
ordinates to serve as a co-coordinator. Each co-coordinator coordinates commitment
of approximately half the sites. If either co-coordinator fails, then the other takes over
as coordinator for all sites. The advantage of coordinator replication is that it has a
shortened “window of vulnerability:” the time during which some subordinates are
prepared and there is a single coordinator.

Optimality work on the non-blocking problem includes Dwork and Skeen’s proofs of
lower bounds on the number of messages and message phases [6], study of site-
optimal termination protocols [3] and message-optimal recovery protocols [27]. and a
series of papers [13, 14, 15, 26] that develop message-optimal commit protocols.

20

6. Summary

This paper describes a quorum-based non-blocking commitment protocol that also
subsumes the functions of termination and recovery. Like all such protocols, it is use-
ful only for transactions involving three or more sites. In the normal case, the protocol
requires three message phases, including two log forces at each site and five messages
in the critical path. In the case of failures, the protocol is non-blocking for any single
site-crash or network failure provided that there is no false detection. It is correct
provided that the quorum selection rules are obeyed, even if failures are falsely
detected. Read-only sites need never participate in the notify phase, and often need
not participate in either the replication or notify phases. A transaction that is com-
pletely read-only has the same critical path performance as optimized two-phase com-
mitment. Sites can forget the transaction after the transaction is terminated
everywhere.

21

I. Example Operation With Failures

Figures 1-1 through I-9 display the sequence of events that take place when a par-
tition splits five sites into two subnetworks. A new coordinator takes control within
the subnetwork that is separated from the original coordinator. In this example the
non-blocking protocol achieves no more unblocked sites than would be achieved by

two-phase commit. The point is to illustrate the manner in which a new coordinator
operates.

Log at site A

Prepared)

Commit group

Site E
Prepared
Prepared
Site B
Prepared
Prepared
Site D
Site C

Figure I-1: Partition Example: Frame 1

The box representing a site indicates which records are in the log at that site. In the initial state of the
example, every site is prepared and is aware of the quorum sizes. Three sites are required for both a
commit or an abort quorum. The coordinator (denoted by the asterisk) knows that every subordinate is
prepared, and has joined the commit group.

22

Site A

Prepared
Commit group

X Site E

Prepared
Join the
commit
rou
Prepared group
Site B Prepare
Prepared
Prepared <
Site D

Site C

Figure I-2: Partition Example: Frame 2

The coordinator sends “join-commit-group” messages to all subordinates. A partition prevents two mes-
sages from arriving. Meanwhile, site D becomes impatient waiting for the message and converts into
another coordinator. It must try to push every site into its state (prepared), so it sends prepare messages
to all other sites. Again, some of the messages do not arrive because of the partition.

23

Site A

Prepared
Commit group

Site E

In the
commit

group

Prepared

Prepared
Commit group

Yes
Site B vote

Prepared

Prepared
Commit group

Site D

Site C

Figure I-3: Partition Example: Frame 3

Each remaining subordinate (B, C, and E) res

ponds to whatever message it received. In the case of site E,
the prepare message from Site D is a duplicat

e. Site E reiterates its vote.

24

Site A
Prepared
Commit group
Committed
Site E
Prepared
Commit
Prepared
Commit group Join the
abort
Site B group
Prepared
Prepared < Abort group
Commit group S
ite D
Site C

Figure I-4: Partition Example: Frame 4

The original coordinator commits because it succeeded in having a majority join the commit group.
Based on its limited knowledge, the second coordinator has concluded (falsely) that not all sites are

prepared. and so has joined the abort group. It is attempting (in vain} to get a majority of sites to join
with it.

25

Site A

Prepared *
Commit group
Committed

Commit-ack

Prepared
Commit group
Committed

Site B

Prepared
Commit group
Committed

Site C

Site E

Prepared
Abort group

Inthe
abort

group

Prepared
Abort group

Site D

Figure I-5: Partition Example: Frame 5

Site E joins the abort group. Now every site has joined some group. The sites in the majority partition
have committed, while the sites in the minority partition are doomed to block until the failure is repaired.

26

Site A
Prepared)
Commit group
Committed
Site E
Prepared
Abort group
Prepared
Commit group
Committed
Site B
Prepared)
Prepared Abort group
Commit group
Committed Site D
Site C

Figure I-6: Partition Example: Frame 6

The failure is repaired. The two coordinators are now dueling. Site A will continue sending “commit”
until all sites acknowledge. Site D will continue sending “join-abort-group.” (These messages are not
shown.)

A subordinate receiving a join-abort-group message from D will respond with an “in-group” message that
indicates its view of the state of every site. Therefore, the response from site E will contain no new
information, while the responses from site B and C will list sites A, B, and C as committed. Likewise, site
A will respond with an “outcome” message indicating commit. So the responses to D’s messages have the
same effect as A’s messages: notice of commitment propagates. Receiving any type of information that
indicates that any site has committed or aborted must result in the receiving site immediately committing
or aborting, no matter what its previous state. Only one set of messages is shown to prevent clutter in
the drawing.

27

Site A
Prepared)
Commit group
Committed
Site E
Prepared
Commit-ack Abort group
Committed
Prepared
Commit group
Committed
Site B
Prepared
Abort group
Prepared Committed
Commit group
Committed Site D
Site C

Figure 1-7: Partition Example: Frame 7

Sites D and E commit, as instructed by coordinator A. D remains a coordinator.

28

Site A
forgotten
Site E
Prepared
Abort group
Committed
Prepared I
Commit group
Committed |
Site B |
N l
AN I
Prepared *
Abort grou
Prepared ~ Commgitte dp
Commit group . —
Committed é— - Site D
Site C
forget
— — — — commit

Figure I-8: Partition Example: Frame 8
The original coordinator has received commit acknowledgements from all sites. It now sends forget mes-
sages and then itself forgets.

Site D continues acting as a coordinator in the new state (committed) that it was pushed into: it sends
commit messages.

29

Site A
forgotten
N Site E
N forgotten
AN
L |
forgotten AN |
™\
~ \ :
Site B ~
~ AN
~ « commit-ack N |
~ N
~
~
<\ forgotten
forgotten > |
- Site D
Site C

Figure I-9: Partition Example: Frame 9

For sites that receive two conflicting messages (subordinates B, C, and E}, the order in which the mes-
sages (commit and forget) arrive does not matter. In either case — forgotten or not — the site will send
commit-ack in response to the commit message. Site A, which has now forgotten about the transaction
will also send commit-ack. In other words, the duel between the two coordinators will not prevent one
from forgetting.

Site D then sends the forget message and forgets (this is not shown).

30

II. Complete Specification

This appendix contains a complete specification of the non-blocking commit
protocol. The specification is sizable, and has been divided as follows: five sections
(Sections II.1 through I1.5) list what a site should do when:

1.it is a subordinate and receives an input (i.e., user-given "commit
transaction” call or an inter-site message),

. it is a coordinator and receives an input,
. it has no information for the transaction and receives an input,

. it is a subordinate and has just timed out waiting for a message,
. it is recovering from a failure and is not yet accepting inputs.

Qi I

Within each section, a separate table is devoted to every state. That is, one table
lists what action to take in response to every type of input assuming that the site is in
a given state. To shorten the specification, the commit and abort states are lumped
into a single “terminated” state:; likewise, the commit and abort messages are
represented by a single (parameterized) “outcome” message.

Every action is justified in the text accompanying the table. An erroneous input is
indicated by “...” An input causing a state transition is indicated by italics. The input
which corresponds to expected normal operation is indicated by italic boldface. The
expression “to broadcast” means to send a message to all sites not yet in the state
commanded by the broadcast. The prepare, join-group, outcome, and forget messages
are referred to as “commands.” The other messages are called “acknowledgements.”

II.1. Subordinate Actions

The specification for the subordinate has 35 actions (5 states times 7 messages).
The next 5 tables specify action on a per-state basis. In every state, receipt of an ac-
knowledgement message (prepare response, in-group, or outcome-ack) signals an er-
ror, since by definition a subordinate cannot have sent the corresponding command.

31

MESSAGE ACTION

. Collect votes of local processes.

. If some votes are no, vote no and begin
aborting.

. If all votes are read-only, change state to
read-only then send vote.

. If all votes are yes or read-only and some
are yes, force prepare record, change

Prepare state to prepared, then send vote.

B W N~

Prepare response

If any site is in the commit group, error; otherwise, force in-
group(abort) record, change state to in-grouplabort), send
Join group in-group.

In group

Commit is error. For abort, do as instructed: abort and drop
Outcome locks, spool outcome record, and send outcome-ack.

Outcome ack

Forget

Table II-1: Active Subordinate

Prepare is the normal case. Join-group must be for the abort group, since a transaction cannot commit
unless every site is prepared or read-only. Likewise, outcome must indicate abort.

MESSAGE ACTION
Prepare Vote yes.

Prepare response

Join winning group: force in-group record, send
Join group in-group.

In group

Do as instructed: either abort and drop locks or just drop
locks, spool outcome record. When record is forced, send
Outcome outcorne-ack.

Outcome ack

Forget

Table II-2: Prepared Subordinate

A prepare message is a duplicate. Join-group is the normal case. Forget is an error because every site
must be read-only or terminated before forget can be sent.

32

MESSAGE

ACTION

Prepare

Vote read-only.

Prepare response

Join group

Join winning group: force in-group record, send in-group.

In group

Outcome

Outcome ack

Forget

Forget.

Table II-3: Read-Only Subordinate

Same as prepared except that outcome is an error and forget is legal. A read-only site is never involved in
the notify phase.

MESSAGE ACTION
Send prepare response. Since the prepare response lists
the state of every known site, the message will indicate that
Prepare this site is in a group.

Prepare response

Join group Send in-group.
In group
Do as instructed: either abort and drop locks or just
drop locks, spool outcome record, when forced send
Outcome outcome-ack.

Outcome ack

Forget

Table II-4: In-Group Subordinate

A prepare or join-group message is a duplicate. Outcome is the normal case. Forget is an error because
every site must be read-only or terminated.

33

MESSAGE ACTION

Send prepare response. Since the prepare response lists
the state of every known site, the message will indicate that
Prepare this site is terminated.

Prepare response

Send in-group. Since the in-group message lists the state
of every known site, the message will indicate that this site
Join group is terminated.

In group

If outcome in message is opposite, error: else send
Outcome outcome-ack.

Outcome ack

Forget Forget.

Table II-5: Terminated Subordinate

Every message except forget is a duplicate.

These tables exhibit an elegant symmetry:

¢ Acknowledgement messages are errors.

* Excepting the read-only state and the forget message, commands earlier
than the expected one are ignored. and commands later than expected
are heeded.

II.2. Coordinator Actions

The specification for coordinator has 36 actions (5 states times 7 messages, plus the
commit call from the user). Coordinator specifications are much more complicated
than those for subordinates because, in addition to receiving acknowledgements sent
by subordinates (the normal case), another coordinator can send commands.

34

MESSAGE ACTION

1. Get the list of sites from the communica-
tion manager.

2. Have all local processes vote.

3. If some votes are no, invoke the abort
protocol (it is usually faster).

4. If all votes are read-only, change the
state to read-only, then broadcast
prepare messages.

5. If all votes are yes or read-only and some
are yes, force a prepare record, change
the state to prepared, and broadcast

User commit call prepare messages.

Prepare

Prepare response

Join group

In group

Outcome

Outcome ack
Forget

Table II-6: Active Coordinator

A site can be an active coordinator only if it is the original coordinator. In that case, no other site is
prepared yet, and so there can be no other coordinator. So the original coordinator should not receive
any input except the user’s commit call.

To process the commit call, the coordinator tries to prepare itself, then tries to prepare the subordinates.

35

MESSAGE

ACTION

Prepare

Vote yes.

Prepare response

If some site is listed as being in the commit group,
then broadcast join-group{commit) messages. If some
site is listed as being committed or aborted, force the
appropriate outcome record and broadcast outcome
messages. If the response is a no vote, force an in-
group{abort) indicator and broadcast join-group{abort)
messages. If all responses are in, and all are either
read-only or yes, then broadcast join-group{commit)
messages.

Do as instructed, join the winning group: force an in-group
record, broadcast join-group messages, respond in-group to

Join group the sender.
In group

Do as instructed: force an outcome record, broadcast out-
Outcome come messages, respond outcome-ack to the sender.

Outcome ack

Forget

Table II-7: Prepared Coordinator

The only legal messages are those from another coordinator (prepare, join group, outcome, but not forget)

or a prepare response. A forget message would be an error because forget should be sent only after every
site has committed or aborted. This site, being not read-only, should be terminated before receiving the

forget message.

A negatlve prepare response causes transition to the in-group(abort) state, but if every site prepares (the

normal case), the coordinator delays joining the commit group. This is the optimization of Section 2.5.4.

A prepare message from another coordinator is simply acknowledged; the two coordinators are dueling,

and both are in the same state. If told by another coordinator to join a group or commit/abort, then the

other coordinator is in a more advanced state, and its command should be heeded.

36

MESSAGE ACTION
Prepare Vote read-only.

If some site is listed as being in the commit group,
then broadcast join-group{commit) messages. If some
site is listed as being committed or aborted, force the
appropriate outcome record and broadcast outcome
messages. If the response is a no vote, force an in-
group(abort) indicator and broadcast join-group{abort)
messages. If all responses are in, and all are either
read-only or yes, then broadcast join-group (commit)
Prepare response messages.

Do as instructed, join the winning group: force an in-group
record, broadcast join-group messages, respond in-group to

Join group the sender.
In group
Outcome Send outcome-ack.

Outcome ack

Forget Forget.

Table II-8: Read-Only Coordinator

Same as when prepared, except that there is no need to write a commit/abort record if an outcome
message is received and that a forget message is not an error.

37

MESSAGE ACTION

Send join-group (specifying commit or abort, depending
Prepare group).

Prepare response Ignore.

If sending site is higher ranked, join winning group (iLe, force
an in-group record) and send in-group message. If sending
Join group site is lower ranked, send join-group.

If some site is listed as being committed or aborted,
force the appropriate outcome record and broadcast
outcome messages. If there is already a quorum or if
one would be achieved by the coordinator joining, then
spool the appropriate in-group record, force outcome
In group record and broadcast outcome.

Do as instructed: force outcome record, broadcast outcome
Outcome message, respond outcome-ack to sender.

Outcome ack

Forget

Table II-9: In-Group Coordinator

The legal messages are those from another coordinator (except forget), the expected response from a
subordinate (in-group), and a delayed or duplicate response from a subordinate (prepare response).

A delayed prepare response from a subordinate should be ignored. An in-group message represents
normal operation. If the transaction has achieved a quorum or would achieve one if the coordinator joins,
then the coordinator joins the group and then commits or aborts.

A prepare message from another coordinator indicates that the two coordinators are dueling, and the
sender is in a less advanced state; accordingly, respond with a join-group message. A join-group message
indicates that the dueling coordinators are in the same state: break the tie by ranking in the list of sites.
If the sender is higher ranked, it dominates and makes this site joins a group. Otherwise, the receiver
dominates. If told by another coordinator to commit/abort. then the other coordinator is in a more
advanced state, and its command should be heeded.

38

MESSAGE ACTION

Prepare Send outcome.

Prepare response Ignore.

Join group Send outcome.
In group Ignore,

If outcome in message is opposite, error; else send
Outcome outcome-ack.

If all subordinates have responded, broadcast forget,
Outcome ack spool a done record, and forget.
Forget Forget.

Table II-10: Terminated Coordinator

Every message is legal when a coordinator is terminated.

A prepare response or an in-group message are delayed duplicates, so they should be ignored. An
outcome-ack is normal.

Prepare and join-group messages come from a less advanced coordinator, and so an outcome message is
sent in response. An outcome message comes from a coordinator in the same state, and so an outcome-
ack is sent. Forget comes from a more advanced coordinator, and should be heeded.

I1.3. Stateless Actions

39

MESSAGE ACTION

Vote no. Either this is a delayed duplicate, or the receiving
site was an active or read-only subordinate that has
crashed and recovered; to be safe, must assume that it was
Prepare active.

Prepare response Ignore. This is a delayed duplicate.

Join winning group: force in-group record and send in-group
message. Either this is a delayed duplicate, or the receiving
site was an active or read-only subordinate that has crashed
Join group and recovered.

In group Ignore. This is a delayed duplicate.

Send outcome ack. Either this is a delayed duplicate, or
the coordinator needs your acknowledgement in order to
forget. (you may have crashed before acking or the mes-

Outcome sage may have been lost).
Outcome ack Ignore. This is a delayed duplicate.
Forget Ignore. This is a delayed duplicate.

Table II-11: Coping with a Message for an Unknown Transaction

Notice that — for messages that both protocols have in common — the behavior is identical to that of the
Presumed Abort variation of two-phase commitment.

I1.4. Timeout
Become coordinator in the current state.

I1.5. Recovery
Become coordinator in the current state.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

40
References

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, M. Young.
Mach: A New Kernel Foundation for UNIX Development.
In Proc. of Summer Usenix, pages 93-112. July, 1986.

P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Control and Recovery in Database Systems.
Addison Wesley, 1987.

D. Cheung and T. Kameda.

Site Optimal Termination Protocols for a Distributed Database Under Network
Partitioning.

In Proc. Fourth Ann. Symp. on Principles of Distributed Computing. pages
111-121. ACM, August, 1985.

D. Duchamp.
Protocols for Distributed and Nested Transactions.
In Proc. Unix Transaction Processing Wkshp., pages 45-53. May, 1989.

D. Duchamp.

Analysis of Transaction Management Performance.

In Proc. Twelfth Symp. on Operating System Principles. ACM, December, 1989.
to appear.

C. Dwork and D. Skeen.

The Inherent Cost of Nonblocking Comrnit.

In Proc. 2nd Ann. Symp. on Principles of Distributed Computing, pages 1-11.
ACM, August, 1983.

H. Garcia-Molina.
Elections in a Distributed Computing System.
IEEE Trans. on Computers C-31(1):48-59, January, 1982.

D. K. Gifford.

Weighted Voting for Replicated Data.

In Proc. of the Seventh Symp. on Operating System Principles, pages 150-162.
ACM, December, 1979.

J. N. Gray.

Notes on Database Operating Systems.

In R. Bayer, R. M. Graham, G. Seegmuller (editors), Lecture Notes in Computer
Science. Volume 60: Operating Systems - An Advanced Course, pages
3983-481. Springer-Verlag, 1978.

M. Hammer and D. Shipman.
Reliability Mechanisms for SDD-1.
ACM Trans. on Database Systems 5(4):431-466, December, 1980.

R. Haskin, Y. Malachi, W. Sawdon, and G. Chan.
Recovery Management in Quicksilver.
ACM Trans. on Computer Systems 6(1):82-108, February, 1988.

Systems Network Architecture. Format and Protocols Reference Manual: Ar-
chitecture Logic for LU Type 6.2
SC30-3269-3 edition, IBM Corporation, 1985.

[13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

41

T. V. Lakshman and A. K. Agrawala.

O(NVN) Decentralized Commit Protocols.

In Proc. 5th IEEE Symp. on Reliability in Distributed Software and Database
Systemns, pages 104-110. 1986.

T. V. Lakshman and A. K. Agrawala.

Communication Structure of Decentralized Commit Protocols.

In Sixth Intl. Conf. on Distributed Computing Systems, pages 100-107. May,
1986.

T. V. Lakshman and A. K. Agrawala.
Efficient Decentralized Consensus Protocols.
IEEE Trans. on Software Engineering SE-12(5):600-607, May, 1986.

L. Lamport, R. Shostak, M. Pease.
The Byzantine Generals Problem.
ACM Trans. on Prograrnming Languages and Systems 4(3):382-401, July, 1982.

G. Le Lann.
A Distributed System for Real-Time Transaction Processing.
Computer 14(2):43-48, February, 1981,

B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, W. Weihl.
Argus Reference Manual.
Technical Report MIT/LCS/TR-400, MIT, November, 1987.

C. Mohan, B. Lindsay, R. Obermarck.

Transaction Management in the R* Distributed Data Base Management Sys-
tem,

ACM Trans. on Database Systems 11(4):378-396, December, 1986.

D. P. Reed.
Naming and Synchronization in a Decentralized Computer System.
PhD thesis. Massachusetts Institute of Technology, September, 1978.

D. Skeen and M. Stonebraker.

A Formal Model of Crash Recovery in a Distributed System.

In Proc. Fifth Berkeley Workshop on Distributed Data Management and Com-
puter Networks, pages 129-142, 1981.

D. Skeen.
Nonblocking Commit Protocols.
In SIGMOD '81, pages 133-142. 1981.

D. Skeen.
Crash Recovery in a Distributed Database System.
PhD thesis, Univ. of California, Berkeley, May, 1982.

D. Skeen.

A Quorum-Based Commit Protocol.

In Proc. Sixth Berkeley Workshop on Distributed Data Management and Com-
puter Networks, pages 69-80. February, 1982.

A. Z. Spector, R. Pausch. G. Bruell.

Camelot, A Flexible, Distributed Transaction Processing System.

In Thirty-third IEEE Computer Society Intl Conf. (COMPCON), pages 432-437.
March, 1988.

42

(26] S. Yuan and A. K. Agrawala.
A Class of Optimal Decentralized Commit Protocols.
In Eighth Intl Conf. on Distributed Computing Systems, pages 234-241. June,
1988.

[27] S. Yuan and P. Jalote.
Fault Tolerant Commit Protocols.
In Proc. 5th Intl Conf. on Data Engineering, pages 280-286. 1989.

