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Abstract—We examine the impact of bursty losses on the
perceived quality of packet audio, and investigate the effec-
tiveness of various approaches to improve the quality. Be-
cause the degree of burstiness depends on the packet inter-
val, we first derive a formula to re-compute the conditional
loss probability of a Gilbert loss model when the packet in-
terval changes. We find that FEC works better at a larger
packet interval under bursty losses. In our MOS-based
(Mean Opinion Score) listening tests, we did not find a con-
sistent trend in MOS when burstiness increases if FEC is not
used. That is, in some occasions MOS can be higher with a
higher burstiness. With FEC, our results confirms the ana-
lytical results that quality is better with a larger packet in-
terval, but T should not be too large to avoid severe penalty
on a single packet loss. We also find that low bit-rate redun-
dancy generally produces lower perceived quality than FEC,
if the main codec is already a low bit-rate codec. Finally, we
compare our MOS results with objective quality estimation
algorithms (PESQ, PSQM/PSQM+, MNB and EMBSD). We
find PESQ has the best linear correlation with MOS, but the
correlation is still not high enough to be used in isolation to
predict MOS.

Keywords—packet audio, IP telephony, voice over IP, per-
ceived quality, subjective quality, loss model, Gilbert model,
forward error correction, low bit-rate redundancy.

I. INTRODUCTION

IP telephony based on packet audio has drawn signif-
icant interests due to the potential cost savings and new
services [27] it can offer. When deploying it in the current
Internet, however, one must consider the effect of packet
loss and delay. Packet losses in the Internet are temporally
correlated [4], [3], [19], [26], that is, they often come in
bursts rather than with a random (i.e., Bernoulli) pattern.
It is therefore useful to study how this affects the perceived
quality of packet audio and its quality improvement mea-
sures such as Forward Error Correction (FEC) and low bit-
rate redundancy [20]. In our listening tests, we use both
Internet packet traces and the Gilbert model [17].

The Gilbert model has two parameters, unconditional
and conditional loss probability, which we denote as pu

and pc, respectively. pc is defined as the probability that the
next packet will be lost given the previous one was lost. pc

is a simple yet useful measure of burstiness, but for a given
network path, its value clearly depends on the packet inter-
val T . Since loss is generally due to router buffer overflow,

sending packets more frequently during that time will lead
to more consecutively lost packets, hence higher pc.

However, the Gilbert model is often used without refer-
ence to the packet interval T . Consequently, results from
one experiment may not be applicable to another if T is
different. We address this issue by presenting an exact for-
mula that recalculates pc upon change of T .

Then we analyze the final loss rate of FEC under a
Gilbert model. The results indicate that FEC works better
at a larger T , but apparently T cannot be arbitrarily large,
as its adds more end-to-end delay. Also, as T increases, the
penalty of a single packet loss can become intolerable. Ac-
cording to Hardman [9], a phoneme in human speech is on
average 80 ms. Therefore, any T near or beyond 80 ms will
cause a single packet loss to eliminate the whole phoneme,
thus reducing intelligibility significantly.

To verify the analytical results and how large T should
be, we perform a series of subjective listening tests. The
results show that, the quality with FEC is generally better
at a larger T , but for some conditions the MOS is not nec-
essarily higher at 60 ms than 40 ms for higher loss rates.
We also find that loss recovery using low bit-rate redun-
dancy generally has a lower perceived quality than FEC.

Finally, we compare our MOS results with sev-
eral objective quality estimation algorithms (PESQ,
PSQM/PSQM+, MNB, and EMBSD). In most occasions,
these algorithms agrees with subjective MOS in term of
“better or worse” judgment, but the actual prediction of
MOS is less effective. Among them, PESQ has the highest
linear correlation with subjective MOS, but still they are
not precise enough to directly predict MOS. Furthermore,
MNB has a strong saturation effect in some cases, that is,
MNB almost always thinks the audio clips are very good.

The rest of the paper is organized as follows. Section II
derives the formula for recalibrating Gilbert parameters.
Section III analyzes FEC performance under the Gilbert
model. Section IV presents the design methodology of our
listening tests. Section V discusses the test results. Sec-
tion VI studies the MOS correlation of the objective qual-
ity measurement algorithms. Section VII lists related work
in subjective quality evaluation under packet losses. Sec-
tion VIII summarizes the results.
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II. QUANTIFYING THE EFFECT OF DOWN-SAMPLING

AND UP-SAMPLING IN THE GILBERT MODEL

The quality of packet audio depends strongly on the net-
work loss pattern. An analytical model such as the Gilbert
Model is often used to approximate a packet loss trace in
perceived quality evaluations. However, when the packet
interval changes, the conditional loss probability (pc) of a
Gilbert model may also change. For example, if a packet
trace is created with a 30 ms packet interval, and has a pu

(overall loss) of 5% and pc of 30%, it would be incorrect
to use the same pc to simulate the path behavior at 10 ms
or 60 ms packet intervals. This requires a recalibration of
pc, but for packet traces that already exist, it is impossible
to collect the trace again. Even for traces that are yet to be
created, having to use the “lowest common denominator”
(e.g., 10 ms) packet interval results in very large trace files.
Therefore, an analytical recalibration of pc is preferred.

When the packet interval T increases or decreases, it
can be thought of as a form of down-sampling and up-
sampling. Next we will study the dependence Gilbert
model parameters on T from this perspective.

(non−loss)

0 1

1−q1−p
p

q
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Fig. 1. The Gilbert model specified with p and q

A Gilbert model can be specified in two ways: pu and
pc, or with state transition probability p and q, as illustrated
in Figure 1. State 0 is non-lossy, whereas state 1 is lossy.
A transition from state 0 to 1 is a packet loss, so is a 1-1
transition. Apparently, pc = 1 − q. If we denote the state
resident probability as π0 and π1, then π1 is simply pu. As
in [17], their relationships are:

π0 =
q

p + q
, π1 =

p

p + q
= pu

which can be transformed into:

p =
pu · q

1 − pu

=
pu · (1 − pc)

1 − pu

=
1

q
=

1

1 − pc

(1)

The loss burst length k in a Gilbert model has a geomet-
ric distribution: pk = (1 − q)k−1 · q. We can then derive
the mean loss burst length E[k] as:

E[k] =
∞
∑

k=1

pk · k =
1

q
=

1

1 − pc

(2)

At a first glance, re-calibration of pc is simple. The
Gilbert model has a counter-part in the continuous do-
main: the continuous 2-state Markov chain. The system

is in a non-loss (0) or lossy (1) state for an exponentially
distributed period of time. Its parameters are the average
durations in each state, denoted as τ0 and τ1. They do not
depend on the sampling period. All one has to do is mea-
sure τ0 and τ1, and map them to the discrete Gilbert model.

However, it is difficult to measure or infer precisely the
parameters of a continuous model using discrete measure-
ments. If we estimate τ1 to be the average duration of a
loss burst, i.e., E[k] · T = 1/(1− pc) · T , we will find that
τ1 cannot be constant irrespective of T . For example, if at
T = 20 ms, pc = 30%, then τ1 = 1/0.7 · 20 ms = 28.6 ms.
Then at T = 40 ms, even if pc = 0%, τ1 can only be as low
as 40 ms. Therefore we cannot use discrete measurements
(E[k] · T ) to precisely estimate τ1.

A. T to 2T Down-Sampling

We first ask: what happens to pc when T is changed
to 2T ? We denote the new pc as either p′c or pc,k, where
k = 2, 3, 4, ... is the T to kT down-sampling ratio.

T

1 1 1
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packet 2i packet 2i+1 packet 2i+2

pc pc

T

1 0 1

T

q = 1−p pc

packet 2i packet 2i+1 packet 2i+2

(a) One loss burst (b) Merging of loss bursts

Fig. 2. Down-sampling of a Gilbert process (T → 2T )

During down-sampling, in 2T time scale, if packet i is
already lost, and packet i + 1 is also lost, it counts as a
sample of p′c. If we look at the original loss sequence in T
time scale (Figure 2), it corresponds to the loss of packet
2i and 2i + 2. The question now is whether packet 2i + 1
have been lost. The probability of packet 2i + 1 also lost
is pc (Figure 2a), and chance of it not lost is q (Figure 2b).
So p′c is now calculated as:

p′c = pc
2 + q · p = pc

2 + (1 − pc) · p

Using Formula (1) to substitute p, we get

p′c = pc
2 +

(1 − pc)
2 · pu

1 − pu

(3)

In 2T time scale, if the system is in state x (x ∈ {0,1}),
its transition probability only depends on its current state
x, and does not depend on its previous states. This is be-
cause of the memoryless property of the Gilbert process
at T time scale. Therefore, the new loss process is still
memoryless at 2T , hence, still a Gilbert process.

B. General T to kT Down-Sampling

For k = 3, there are totally 4 cases to consider, as shown
in Figure 3. Its exact formula after summing them up is:
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p′c = pc
3 + q(1 − p)p + q · p · pc + pc · q · p

T

pcpc
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Fig. 3. Enumeration of cases for k=3

After simplification and factoring, it becomes

p′c =
pc

3 + pu − 2pu
2 + 3pu · pc − 3 · pu · pc

2

(1 − pu)2

=
(pc − pu)3 + pu · (1 − pu)2

(1 − pu)2
=

(pc − pu)3

(1 − pu)2
+ pu

This expression does not look identical to Formula (3),
but we can transform Formula (3) into

p′c = pc
2 +

(1 − pc)
2 · pu

1 − pu

=
(pc − pu)2

1 − pu

+ pu

Therefore we conjecture the generalized formula to be:

pc,k =
(pc − pu)k

(1 − pu)k−1
+ pu (4)

where pc,k is the conditional loss probability at kT sam-
pling. We can easily prove that the new process under kT
sampling period is still a Gilbert process. This is because
at any kT time scale, the system’s transition only depends
on its current state, not any earlier states, due to the mem-
oryless property at T time scale. To prove Formula (4), we
use induction.
[Proof] The formula already holds for k = 2, 3. If the
statement is true for k − 1, we just need to prove,

pc,k − pu

pc,k−1 − pu

=
pc − pu

1 − pu

Anything 1
0

1

p

cp

T(k−1)*T

1

time X

Fig. 4. Proof by induction for general T → kT case

From Figure 4, the probability that at time X the system
state is 0 is: 1 − pc,k−1, therefore
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Fig. 5. Simulation of sub-sampling in the Gilbert model

pc,k = (1 − pc,k−1) · p + pc,k−1 · (1 − q)

= p + pc,k−1(
−pu(1−pc)

1−pu
+ pc)

= p + pc,k−1
(pc−pu)
1−pu

since p = pu·(1−pc)
1−pu

= pu(pu−pu+1−pc)
1−pu

pc,k = pu(pu−pc)
1−pu

+ pu + pc,k−1
(pc−pu)
1−pu

= pu + (pc,k−1 − pu)pc−pu

1−pu

⇒ pc,k − pu = (pc,k−1 − pu)pc−pu

1−pu

Q.E.D.
Formula (4) predicts pc,k as a power function of pc, with

a minima at pc = pu if k is even. To verify our formula,
we run a down-sampling simulation on the Gilbert model,
with pc as the independent variable. The results are shown
in Figure 5. The simulation clearly confirms the formula’s
correctness. Also notice the part of the curves where pc <
pu, that is, loss is less bursty than Bernoulli. They have
different trends depending on whether k is even or odd. In
practice, such “un-bursty” loss patterns do not often occur.

C. Arbitrary Up-Sampling and Down-Sampling

Formula (4) calculates the new pc in the case of down-
sampling, i.e., a packet interval increase in integer ratios,
but it can be extended to up-sampling as well. There is
no requirement that if a process is Gilbert at kT , it has to
be Gilbert as well at T . However, if we assume the loss
process is close enough to be Gilbert at T , we can reverse
Formula (4) as follows:

(pc − pu)k = (pc,k − pu) · (1 − pu)k−1

If k is even, there are two real roots, one positive and the
other negative. But if we can safely assume that burstiness
only goes up during up-sampling, which is a reasonable as-
sumption, only the positive root will be applicable. Then:

pc = pu + k

√

(pc,k − pu) · (1 − pu)k−1 (5)

This is useful, for example, when we approximate a
30 ms based packet trace with a Gilbert model, but we want
to know the path behavior if it were transmitting at 10 ms.
In fact, if we can up-sample it to 10 ms without introducing
much error, we can also perform a down-sampling from
10 ms to 20 ms. So using a concatenation of Formula (4)
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and (5), we can estimate the network behavior at nearly
arbitrary time scale, assuming the network can be safely
modeled as a Gilbert process.

In fact, it is not difficult to generalize that in any T →
kT , where k is any positive real number, Formula (4)
holds. In addition, Formula (5) is simply another way of
writing Formula (4), where k becomes 1/k.

III. ANALYTICAL PERFORMANCE OF FEC UNDER THE

GILBERT LOSS MODEL

An FEC code improves transmission quality by sending
redundant data in addition to the payload. Its most com-
mon types are parity and Reed-Solomon (RS) code [2]. A
parity or RS code is referred to as a (n, k) code if its block
size is n units and payload is k units. It works by sending
data in blocks, first k units of payload, then n − k units
of redundant data. If no less than k units in a block is
correctly received, all the payload in this block can be re-
covered. In the case of packet audio, each unit is an audio
packet, sent regularly at the packet interval.

Given the same pu and FEC code, it is evident that if
losses occur in long bursts (length > k), the FEC block
will not be able to recover them. Therefore FEC is less
effective under bursty losses compared to random (i.e.,
Bernoulli) losses.

The final packet loss probability, pf , of an (n, k) FEC
code under Bernoulli losses [22], where p = pu, is:

pf = p

(

1 −
n−1
∑

i=k

(

n − 1
i

)

(1 − p)ipn−1−i

)

(6)

FEC’s performance under bursty losses is more com-
plex. Frossard [6] gives an in-depth derivation of FEC per-
formance parameters in any renewal error process, includ-
ing a Gilbert loss process. The performance parameters
are the final packet loss probability pf and average final
loss burst length. The results of [6] assume the typical
transmission scheme in packet video or telecommunica-
tions network, where the FEC blocks are sent sequentially
without any overlapping. Packet audio, however, usually
use a “piggy-back” scheme, where the FEC packets are
sent on the first few packets of the next FEC block. This re-
duces the total number of packets and the protocol header
overhead. In our listening tests the FEC clips are generated
using piggy-back.

The piggy-back scheme alters the resulting loss process,
so we cannot directly apply results of [6] to our listening
tests. In addition, the formulas in [6] are not in a simple,
closed form, but rather as a set of recurrences and itera-
tions. So we will present here a formula for a simple (3,1)
piggy-backed parity FEC code. It has a 50% overhead, and
it is one of the FEC codes used in our listening test sets.
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piggy−backed
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1 0
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piggy−backed

0 1
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p c

T

parity
piggy−backed

T

(a) case 1 (b) case 2 (c) case 3

Fig. 6. 1/2 parity FEC under a Gilbert loss process

Given any FEC block, the probability that its first packet
is lost is π1, i.e., the Gilbert state probability or pu. Using
Figure 6(a), the proportion of final lost packets in case 1 is
π1 · pc · 100%. X means “don’t care.” The 100% indicates
both payload packets are unrecoverable.

Similarly, the value for case 2 is π1 · q · p · 50%, the
50% indicates half of the payload is unrecoverable. The
proportion for case 3 is π0 ·p ·pc ·50%, where π0 is simply
1 − π1 = 1 − pu. The sum of these values is then the final
packet loss probability after applying FEC, pf :

pf = π1 · (pc + q · p/2) + π0 · p · pc/2 (7)

Figure 7 shows pf after applying the (3,1) piggy-backed
parity FEC. pc is specified at T=20 ms. The horizontal
lines represent pf in a Bernoulli model (abbreviated as
“Bern” in the figure) Apparently, as T increases, pf in a
bursty Gilbert model approaches the Bernoulli limit.
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Fig. 7. Final loss rate with a (3,1) parity FEC

Figure 7 and Formula (7) suggests that a larger T is
always better for FEC when dealing with bursty losses.
There are, however, other considerations that calls for a
smaller T . First, T is also the packetization delay, which
adds to end-to-end delay. Second, the application must use
an adaptive FEC playout algorithm [22] to avoid having to
always wait on an entire FEC block. But during a lossy
period, even the adaptive FEC playout algorithm has to
wait for at least one FEC block, which is even larger than
T . Finally, with a large T , a single packet loss can wipe
out an entire phoneme [9], reducing speech intelligibility
significantly. In Section V, we will discuss our listening
test results and among other objectives, verify whether a
larger packet interval gives better perceived quality, and if
so, how large it should be.
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IV. SUBJECTIVE LISTENING TEST METHODOLOGY

A. Choice of Codec, FEC, and Low Bit-rate Redundancy

For our tests, we need to choose a voice codec, some
FEC code, and also a low bit-rate redundancy scheme.
Then audio clips are encoded with the selected codec and
network conditions for listener’s evaluation.

G.711 [15] is a low complexity codec widely used in
PSTN, providing toll quality at 64 kb/s. Although a perfect
choice for an intranet where bandwidth is usually abun-
dant, the relatively high bit-rate makes it less suitable for
WAN telephony. We have picked G.729 [11] in our test
because it is an ITU standardized low bit-rate codec pro-
viding near toll quality. Its characteristics have been ex-
tensively studied and are representative of many CELP [2]
type codecs. G.729 runs at 8 kb/s with a 10 ms frame.

The amount of FEC redundancy and its block size de-
termines its robustness to losses. The block size also de-
termines the delay introduced by FEC blocks. For the pur-
pose of bandwidth conservation, FEC redundancy should
not be too high. To reduce delay, FEC blocks should be
small. In our experiment, we use a simple (n,1) parity
FEC code, with a block size of n and redundancy over-
head of 1/(n − 1). We use piggy-back in our FEC code.
We evaluated both (3,1) and (4,1) cases.

A different form of “FEC” used in [4] is actually low
bit-rate redundancy [20]. It works by transmitting a lower
bit-rate version of the same audio signal, but piggy-backed
to later packets. If a packet with the main audio codec is
lost, the lost audio information is substituted with a lower
quality version. It can be viewed as a form of loss con-
cealment [21], which replaces the lost waveform with an
approximation. In both [4] and [20], the illustrated main
codec is a high bit-rate one like G.711 or ADPCM/DVI.
Since we choose to use the 8 kb/s G.729 as the main codec,
this has several implications:
First, the redundant stream should not be coded at a

higher bit-rate. This leaves few choices among standard
codecs, including: DoD LPC-10 (2.4 kb/s), DoD CELP
(4.8 kb/s), G.723.1 (5.3 or 6.3 kb/s). G.723.1 [12] is not
very suitable due to its high CPU complexity, DoD CELP’s
bit-rate is also relatively high. Therefore we choose LPC-
10 as the redundant codec. This corresponds to a 2.4/8 =
30% overhead, comparable to the (4,1) parity FEC code
that we will also evaluate.
Second, because each frame in most frame-based codecs

including G.729 is not coded independently of previous
frames, they suffer decoder state drift during a frame loss.
We have designed our simulation program to use LPC-
10’s decoded waveform to “repair” G.729’s decoder state
during a packet loss. To do this, at the receiver, we re-

encode the LPC-10 waveform into a G.729 coder to pro-
duce a “pseudo” G.729 frame and help restore the decoder
state. But it is difficult to quantify how well the “repair” is.
Moreover, LPC itself is also subject to loss impairment.
Third, using a lower quality redundant stream causes

perceived quality to suddenly drop during packet losses,
which may introduce an unnatural distortion.

In brief, we have selected the following:
codec FEC code Low bit-rate redundancy
G.729 (4,1) & (3,1) DoD LPC-10 (2.4 kb/s)

B. Experiment Design and Test Procedure

Next, we describe how the audio clips are obtained, pro-
cessed and graded.

All the original audio clips are either taken from the
TIMIT [7] speech recognition database, or recorded by na-
tive English speakers using Harvard sentences [24]. In ei-
ther case, the sentences are phonetically balanced. The
clips are adjusted to an active speech level of -26 dBov, as
required in ITU standard P.56 [10]. Most clips are 7-10
seconds long, consisting of 3 short, unrelated sentences.
This conforms to P.830 [13]. Longer clips would have
more packets and be more statistically reliable, but they
also increase the listening and judging effort, and very of-
ten listeners cannot remember the details of a long clip,
due to the human memory recency effect [5], [1].

The degraded clips are created by running the G.729
codec on the original clips, using both a packet trace and
a Gilbert model. The tests cover network conditions with
various degrees of lossiness (pu) and burstiness (pc). The
loss model is identified either as a trace number identify-
ing a particular packet trace, or as a pu, pc pair. For exam-
ple, 10%,36% means pu=10%, pc=36%. When generating
packet losses, we calibrated the random seeds carefully to
make the achieved loss rate close to the target value pu.

When a packet loss occurs, one of three loss repair
mechanisms is used to create the degraded clips. The first
is “plain,” G.729’s default loss concealment algorithm.
The second one is FEC, and packets unrecoverable by FEC
are also masked by the G.729 concealment. The third
mechanism is LPC, which uses a DoD LPC-10 redundant
stream to repair the G.729 decoder state. G.729’s default
concealment is never invoked in the LPC case.

The listener always uses a headphone to listen to these
clips, and is asked to adjust the listening level properly.
Using a speaker phone would make it difficult for listen-
ers to sense any distortion in the degraded clips. Listen-
ers hear both original and degraded clips, and then give
an opinion score from 1.0 to 5.0, where 5.0 is excellent,
4.0 good, 3.0 fair, 2.0 poor, and 1.0 bad. The averaged
value for a particular clip is then the Mean Opinion Score
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(MOS). Our MOS scale is the same as the ACR (Absolute
Category) test as defined in the ITU standard P.830 [13],
but with a small difference: the listeners are asked to give
the score at a granularity of 0.1, e.g., 3.7 instead of 3 or
4. Its main purpose is to achieve maximum precision and
minimum variance of a MOS value. We have 20 listeners
in our experiments. Most of them are graduate students or
computer professionals, but none of them have done MOS
evaluation before, except the authors.

The table below summarizes how test clips are created.
source TIMIT, Harvard sentences

speech level -26 dBov
clip length 7-10 sec
loss model trace name, or pu, pc pair

packet interval T 10-60 ms
grading MOS scale, 0.1 granularity

loss repair plain, FEC, or LPC
We designed two sets of listening tests. The first is

aimed as a comprehensive test, covering a wide range of
conditions (loss models, loss rate) with a limited number
of test clips. The second test set measures the effect of
burstiness (pc) and packet interval T on both FEC and non-
FEC packet audio.

V. SUBJECTIVE LISTENING TEST RESULTS

Overall, the test results confirm that using a larger
packet interval generally improves the perceived quality
with FEC. The results also suggests that FEC has better
perceived quality than low bit-rate redundancy.

A. Results of Test Set 1

First, the following is a list of packet traces used in the
generation of test audio clips. Due to their nature, we can
only list their equivalent pu and pc to illustrate its bursti-
ness. They are collected between Columbia University,
UC Santa Cruz, University of Massachusetts, and GMD
Fokus in Germany. The dates of the traces are a bit old,
mainly because newer packet traces we obtained have too
few packet losses, mostly due to connectivity to Internet-2.

trace sender receiver date pu pc

1 CU UMass 9/19/1997 10% 37.5%
2 GMD UCSC 9/22/1997 13.4% 22.5%
3 UCSC CU 9/22/1997 5.8% 10.6%
4 UCSC UMass 9/23/1997 5.3% 39%

Figure 8 provides a visual representation of the results
from test set 1. Each data point represents a single test con-
dition, that is, a unique combination of loss model, packet
interval T and repair mechanism, as mentioned in the pre-
vious section. The notation “10%,36%” means that test
condition has a pu of 10% and pc of 36%, whereas “10%
Bern” means it is a Bernoulli model with pu = 10%. If
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Fig. 8. Impact of loss model and packet interval T on audio
quality, Test Set 1

the model is a trace, the trace number is written near that
data point. Each line connected by two or more data points
share the same pu. This allows a fair comparison on how
loss model, packet interval and repair mechanism affect
perceived quality.

Figure 8(a) shows the effect of loss model on G.729’s
default loss concealment quality. Within either line (i.e.,
same pu), the trace models have the highest MOS. Some-
what surprisingly, Bernoulli model has the worst MOS.
It is generally thought that burstier losses result in worse
quality, and has been validated in [8]. But in this case
it is the reverse. We offer the following conjecture: it is
likely at about 10% loss rate, a Bernoulli process intro-
duces more short loss bursts, whereas a burstier pattern
has fewer, although longer, loss bursts. Since each loss
burst maps roughly to one occurrence of distortion, a lis-
tener would probably prefer a less frequent occurrence. A
longer burst would cause the decoder state to drift more,
but since T is 30 ms in clips of group 1, each packet loss
would correspond to a 3-frame loss. Rosenberg [23] has
shown that G.729 can conceal a single frame loss well, but
double and triple frame losses degrades its effectiveness
significantly. Therefore, the decoder state drift is proba-
bly similar between a 3-frame (1 packet) loss or 6-frame
(2 packet) loss. The first authors has informally simulated
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the same conditions on a longer clip (30 seconds), and his
own opinion score also agrees that a 10% Bernoulli pattern
has worse quality than a 10%,36% Gilbert pattern. This
result does not necessarily contradict earlier results, since
many existing studies such as those by ITU often use a T
that is equal to the frame size (in this case 10 ms), whereas
we use 30 ms here. We have found that the Cisco 7960 IP
phones uses a 20 ms packet interval.

Figure 8(b) shows how FEC performance differs be-
tween trace, Gilbert and Bernoulli losses. Although the
same Bernoulli condition in (a) has lowest MOS, here it
has the highest MOS. This is well within expectation, since
FEC can recover more packets under non-bursty losses.
The MOS value between Gilbert and trace models are very
close in both lines, so their quality should be similar.

Figure 8(c) shows how FEC quality changes with the
packet interval T . In all four lines, MOS value increases
monotonically with T . This strongly confirms the analyti-
cal results that under bursty losses, FEC works better with
a larger packet interval. The left two lines in Figure 8(c) il-
lustrates what MOS value becomes if the application uses
a 10 ms packet interval. The middle left line with a smaller
slope makes a “friendly” assumption that at 10 ms inter-
val, pc is still 22.5% (though in fact it would be higher).
Even with this assumption, MOS at T=30 ms is actually
slightly higher than 10 ms (3.50 vs. 3.38). So using a
smaller packet interval does not necessarily increase qual-
ity even under this “friendly” scenario. On the other hand,
the left line with a higher slope recalibrates pc for 10 ms
using Formula 5, which gives a pc of 54%, much higher
than 22.5%. The MOS difference is also much higher un-
der this more realistic setting (3.77 vs. 3.18). The protocol
header overhead is also smaller at T=30 ms than 10 ms.
Therefore It is both bandwidth-efficient and FEC-efficient
to use a relatively large packet interval.

Figure 8(d) compares the quality of FEC and the LPC
repair mechanism. It is evident that LPC (the line at bot-
tom) has a much lower MOS compared to FEC (the line at
top), with regard to any loss model. The difference is about
1.0 MOS scale, that is, a difference between “Good” and
“Fair” in quality. In fact, its MOS values are even lower
than the plain loss concealment. According to some of
the listener feedbacks, the LPC clips have unnatural dis-
tortions, which makes the listening experience less com-
fortable and thus gets a lower MOS. The author has looked
into this issue, and also compared with the G.711/LPC re-
pair scheme. It seems that with a small packet interval
(< 40 ms), similar distortions exist even for G.711/LPC
clips. This may be due to the lower MOS quality of LPC-
10, which is about 2.4 to 2.5. When a lost packet is re-
paired (substituted) by a lower quality signal, and each loss

burst could cause an unnatural transition in the frequency
(perceptual) domain. This problem seems to be worse in
the G.729/LPC case than G.711/LPC.

Figure 8(e) compares again FEC and LPC, but at differ-
ent packet intervals instead of loss models as in (d). Again
FEC quality for trace 1 is noticeably better than LPC qual-
ity for the same trace. The MOS of FEC increases sig-
nificantly as T becomes larger, the MOS of LPC also in-
creases with T , but only slightly.

Finally, Figure 8(f) shows performance of FEC and LPC
during extremely poor network conditions. Both have 40%
loss (with pc set at a somewhat arbitrary 50%). These are
the exceptions where LPC repair work slightly better than
FEC. A (4,1) FEC simply cannot repair most lost pack-
ets. This results in a final loss rate around 32-33%, and a
MOS below 1.8 for both T=30 ms and 60 ms. LPC gives a
slightly higher MOS (2.04) in both groups, but the MOS is
already on the grade level of “poor.” Speech intelligibility
is also difficult at this loss rate. The MOS does not change
much between 30 ms and 60 ms, probably because of the
high loss rate, effect of T is negligible.

To summarize, we find that trace models often produce
slightly higher MOS than Gilbert models when only plain
loss concealment is used (Figure 8(a)), but they give simi-
lar MOS results on FEC (Figure 8(b)). The results confirm
that for T = 10, 30, and 60 ms, FEC consistently works at
higher T s, either in final packet loss probability or MOS.
LPC repair has worse MOS quality than an equivalent (4,1)
FEC code. The only exceptions are when pu is very high
(40%), but the speech in such conditions becomes unintel-
ligible anyway with either LPC or FEC. The worse quality
may be due to the lower MOS (2.4-2.5) of the LPC-10
codec. However, the first author has informally tried a low
bit-rate redundancy using DoD CELP (4.8 kb/s), which has
a much higher MOS of 3.2. The resulting audio has unnat-
ural distortions that are still very audible. It is possible
that mixing two different codecs may result in worse qual-
ity than each codec would be capable of alone, because
many codecs do not preserve the phase information during
compression, and mixing two codecs may creates frequent
phase changes that become annoying to the ear.

B. Results of Test Set 2

Our second test set focus on how different degrees of
burstiness affect perceived quality, with or without FEC.
pu increases up to 16%, at a 4% spacing. For each unique
pu, a pc of 30% and 50% are evaluated, both with and with-
out FEC. For pc=30%, only two packet intervals are eval-
uated (20 and 40 ms), but for pc=50%, three intervals are
evaluated (20,40,60 ms). In test set 2, the notation 4%,30%
means at T=20 ms, pu=4% and pc=30%. When T=40 ms,
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pu remains the same, but the actual value of pc will be
smaller, and can be calculated with Formula (4). We use a
(3,1) parity FEC code, giving a 50% redundancy.
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Fig. 9. Impact of loss burstiness and packet interval T on audio
quality, Test Set 2

Figure 9 provides a visual representation of MOS results
of test set 2. Notice that all pc = 30% conditions have
only two points (T=20 and 40 ms), whereas all pc = 50%
conditions have three points. Within each sub-figure, pu is
fixed, to allow a simple and fair comparison how burstiness
and packet interval affect quality. Each sub-figure contains
results for pc=30% and 50%, with and without FEC. It is
easy to see that all the FEC data points and lines are at the
top of a sub-figure, and non-FEC ones at the bottom.

When not using FEC, the MOS increases with T when
pu is very low (4%), as in Figure 9(a), but there is no con-
sistent trend when pu is higher.

In almost all cases, MOS values of FEC at T=20 ms is
much lower than at T=40 ms and 60 ms. The only excep-
tion is at pu=8%,pc=30%, where the 20 ms MOS is nearly
the same as 40 ms. The first author looked into this excep-
tion, and found that in the T=40 ms clip, most loss bursts
hit either on an unvoiced frame or at end of a voiced frame,
and some hit the silence period of the audio clip. It has
been noted that loss of unvoiced frames or middle/end of
voiced frames does less damage to perceptual quality than
loss at unvoiced/voiced transitions [28], [25].

Somewhat surprisingly, for pc=16%,pc=50%, as in Fig-
ure 9(d), the MOS at T=60 ms is not much higher than at
40 ms. In Figure 9(c), where pc=12%,pc=50%, the MOS
at T=60 ms is even slightly lower than the MOS at 40 ms.
In both cases, the final loss rate of the audio clip is close
to its theoretical average pf , so it is not an issue of ran-
dom seed selection. This is because with a larger T a sin-
gle loss penalty too severe. Since the average duration of
a phoneme in human speech is about 80 ms [9], a single

lost packet at T=60 ms can strongly distort a phoneme. A
double loss would certainly wipe out the whole phoneme,
rendering the speech unintelligible. This exception does
not occur in test set 1, mainly because the packet inter-
val in set 1 is compared between 30 ms and 60 ms, rather
than 40 ms and 60 ms. Therefore, it is not always better to
use a larger T , one has to consider the severity of a single
loss penalty as well. According to the results in test set 2,
the rule of thumb seems to favor a 40 ms packet interval at
higher loss, and prefer 60 ms at lower loss.

VI. COMPARISONS OF SUBJECTIVE MOS AND

OBJECTIVE QUALITY ESTIMATION ALGORITHMS

A. Introduction to Objective Quality Measurement

As part of our subjective quality evaluation, we have
also compared various objective perceptual quality estima-
tion algorithms [16], [14], [18], [29], [30]. Objective qual-
ity measurement is unbiased by difference of human ears
and the listener’s own understanding of quality. There-
fore the results are always repeatable. The algorithms are
usually based on an approximation to the human ear’s in-
ternal psycho-acoustical representation of an audio signal.
As an approximation, these algorithms will inevitably in-
troduce some deviation from subjective quality perceived
by the human ear. We present here a comparison of these
algorithms versus our subjective MOS results. If the al-
gorithm outputs an objective MOS, we compute its corre-
lation with subjective MOS. Otherwise, the algorithm out-
puts an objective perceptual distance, and we plot it against
subjective MOS. Overall, PESQ performs best, whereas
PSQM/PSQM+ and EMBSD seem to have the largest vari-
ance in predicting the true MOS. MNB predictions appear
to “saturate” for one of our test sets, that is, it almost al-
ways thinks the quality is high.

PSQM [14] is originally designed to evaluate codec
quality. PSQM+ [18] is an enhancement of PSQM to cover
short duration temporal clipping as often seen in wireless
communications. PESQ [16] is an intended replacement of
PSQM. It is designed to consider artifacts in a voice over
IP environment, namely packet loss concealment and play-
out delay variation. MNB [29] is another objective quality
measurement algorithm, defined in the appendix of P.861.
EMBSD is an enhancement of MBSD [30].

All these algorithms work by comparing a reference sig-
nal and a degraded signal, and output some measure of
quality. PESQ directly produces an objective MOS in the
range of [1.0,4.5]. The upper bound of 4.5 is probably due
to the fact listeners rarely gives scores higher than 4.5 on
average. MNB produces 2 perceptual distances (MNB1
& MNB2), and they are mapped into a logistics value
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with a range of [0,1]. Also known as auditory distance,
a larger perceptual distance implies a stronger degradation
between the reference (good) signal and degraded signal,
and hence lower MOS, but its value is not directly compa-
rable between different algorithms. MNB’s logistics value
is claimed to have a near linear relationship with subjec-
tive MOS, and since PESQ uses a MOS interval of 3.5, we
will use (MNB logistics * 3.5 + 1) to transform it into an
objective MOS.

PSQM/PSQM+ and EMBSD output only a perceptual
distance, which can be transformed into an objective MOS,
but we are not aware of any pre-determined transformation
function and tuning parameters for these algorithms. If we
perform a test set specific optimization on such transfor-
mation, it would be an unfair comparison to PESQ and
MNB. Rather, we will present its scatter plot against sub-
jective MOS.

B. Correlation Evaluation

To quantitatively measure the goodness of fit between
objective and subjective MOS, we compute the Pearson
correlation coefficient ρ for MNB and PESQ. We use two
approaches, first, we use the original audio clips (PCM
linear-16) as the reference signals to the objective algo-
rithms, then compute the correlation, denoted as ρl16.
Next, we use its corresponding G.729 coded clips without
loss as the reference signals, then compute the ρ, denoted
as ρg729. With the second approach, the algorithms are
only evaluating degradation only due to packet losses, in-
stead of mixing the codec’s quality into the final score. But
such usage has not been cited before, so our result could
serve as its initial test. The following table shows the cor-
relation results.

Algorithm Test Set 1 Test Set 2
ρl16 ρg729 ρl16 ρg729

MNB1 0.897 0.885 0.767 0.798
MNB2 0.910 0.935 0.844 0.870
PESQ 0.888 0.902 0.892 0.910

TABLE I
CORRELATIONS OF SUBJECTIVE AND OBJECTIVE MOS

In both test sets, the correlation between objective and
subjective MOS increases when the reference input be-
comes G.729 coded non-loss signal. In test set 1, MNB
actually has the highest correlation. However, the corre-
lation value does not tell the whole story. Figure 10(a)
shows the visual correlation of objective versus subjective
MOS for test set 1. The figure is similar for test set 2, so
we will not repeat it here. In the right column, the scat-
ter plot of MNB1 and MNB2 are not linear any more. It

appears to have a “saturation” effect at the higher end of
MOS (around 4.5), which means MNB (especially MNB1)
will almost always think the clip quality is good, whereas
the real quality may be much worse. A highly saturated
objective MOS does not do any good in terms of MOS
prediction. It will over-predict MOS, which is more harm-
ful than no prediction. In this case, the higher correla-
tion coefficient does not imply a linear correlation. On the
other hand, PESQ still maintains a linear trend, therefore
PESQ produces more predictive objective MOS, although
we must notice the overall correlation is still around 0.9,
which is not very high.

Figure 10(b) shows the scatter plot of perceptual dis-
tance versus subjective MOS. EMBSD and PSQM+ ap-
pears to have the largest spread, implying that a relative
low degree correlation if it were to be transformed into an
objective MOS.

C. Relative MOS Consistency

In both test sets, for most of the data, the output of ob-
jective algorithms agrees with subjective MOS in a rel-
ative sense. That is, within the same pu, if MOS(A) >
MOS(B), then the objective algorithms agree with this in-
equality tests more than 80% of the time. Changing the
reference signal to G.729 has almost no effect on how the
objective algorithms agree with these inequality tests.

From these results, it appears these algorithms are useful
in judging the relative audio quality.

VII. RELATED WORK

Some related studies on perceived quality under bursty
have been performed by the telecommunications sector
such as ITU, T1A1 [8]. But there are a few limitations
which we intend to overcome in this paper.

First, they usually assume an environment more like
circuit-switching. For example, packet interval T is usu-
ally the same as codec frame length (10 ms for many
codecs). Such a small packet size is too inefficient for gen-
eral use in WAN IP networks, since a IP/UDP/RTP header
costs 40 bytes already. With a larger T , loss concealment
behaviors could also be quite different.

Second, although a distinction is made between bursty
losses and Bernoulli losses, but do not directly quantita-
tively specify the burstiness, for instance, in term of pc.
This makes the result less comparable unless more infor-
mation is available.

Third, quality measures such as FEC or low bit-rate re-
dundancy are not evaluated. Bolot [4] studies optimiza-
tion of low bit-rate redundancy, but the resulting perceived
quality is not studied except using a pre-determined util-
ity function that translates bit-rates into a utiltily value



IEEE INFOCOM 2002 10

Reference signal: PCM linear-16 Reference signal: G.729 processed, no-loss

1

1.5

2

2.5

3

3.5

4

4.5

1.5 2 2.5 3 3.5 4 4.5

O
bj

ec
tiv

e 
M

O
S

Subjective MOS

Objective MOS correlation

MNB1
MNB2
PESQ

1

1.5

2

2.5

3

3.5

4

4.5

1.5 2 2.5 3 3.5 4 4.5

O
bj

ec
tiv

e 
M

O
S

Subjective MOS

Objective MOS correlation

MNB1
MNB2
PESQ

0

1

2

3

4

5

6

7

1.5 2 2.5 3 3.5 4 4.5

O
bj

ec
tiv

e 
P

er
ce

pt
ua

l D
is

ta
nc

e

Subjective MOS

Objective vs. subjective quality correlation

EMBSD
PSQM

PSQM+
MNB1
MNB2

0

1

2

3

4

5

6

7

1.5 2 2.5 3 3.5 4 4.5

O
bj

ec
tiv

e 
P

er
ce

pt
ua

l D
is

ta
nc

e

Subjective MOS

Objective vs. subjective quality correlation

EMBSD
PSQM

PSQM+
MNB1
MNB2

(a) Objective vs. Subjective MOS (b) Perceptual Distance vs. Subjective MOS

Fig. 10. Objective/Subjective correlation: Test Set 1

(quality). However, as we have found in our tests, it gen-
erally has lower quality than FEC, and often even worse
than default loss concealment. This is true for G.729 with
DoD LPC-10 (MOS 2.4-2.5), and informally the author
has found G.729 with DoD CELP (MOS 3.2) share the
similar distortion problem.

A codec’s loss concealment behavior is not always the
same. Rosenberg [23] has shown that G.729 can conceal a
single frame loss well, but double and triple frame losses
degrades its effectiveness significantly. Sanneck [25] and
Sun [28] has found that most CELP type codecs can con-
ceal a frame loss well if the loss location is at either an
unvoiced or middle/end of a voiced frame. It is much less
effective if the loss is at an unvoiced to voiced transition.
The decoder state drift is most significant in such cases. In
our tests, we have a few occasions where MOS values are
unexpected, which we think are due to dependence on loss
locations. But so far we are not aware of any algorithm that
can reliably use this information to predict MOS values.

In this paper, we only use a normal FEC for loss recov-
ery. However, it is possible to combine our results with

speech properties as shown in [25]. An application can
then decide on an optimal packet interval T and allocate
more FEC data to frames at unvoiced to voiced transitions.

Finally, an alternative to FEC is to have strong loss con-
cealment. For instance, recently an enhanced G.711 codec
(http://www.globalipsound.com/technology.html) claims
to maintain good quality even at 30% losses. It will greatly
affect the concept of Quality of Service if the same can be
done for a low bit-rate, frame-based codec.

VIII. SUMMARY

We examine perceived quality of packet audio under
bursty loss conditions, in particular how they affect qual-
ity improvement measures including FEC and low bit-rate
redundancy. We present a formula for re-calibrating the
conditional loss probability (pc) in a Gilbert model when
the packet interval T changes. Both the analytical formula
and the subjective listening tests confirm that FEC quality
is noticeably better when operating at a larger T . But sub-
jective tests also indicate that T should not be too high to
prevent a single packet loss penalty to become too high,
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for instance, that would wipe out an entire piece of speech
content (e.g., a phoneme).

We also evaluate perceived quality of an alternative re-
covery scheme: low bit-rate redundancy. Our test results
indicate that its quality is generally lower than that of FEC
with a similar overhead. This is based on G.729 as the
main codec with DoD LPC-10 as the redundant codec.
The lower quality is informally determined to be caused
by unnatural transitions during packet losses, possibly due
to the lower MOS (quality) of LPC-10. However, an in-
formal test with a higher MOS codec, the DoD CELP, also
has similar audible distortions.

Finally, we find PESQ best in predicting objective MOS,
but its precision still cannot substitute MOS tests.
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