Cues-ygg -9

An Optimization to the Two-Phase Commitment Protocol

Dan Duchamp
Carnegie-Mellon University!

The basic two-phase distributed commitment protocol as described in [3, pp. 381-382] can be
optimized so that a subordinate update site drops its locks more promptly and makes one
fewer log force per transaction. The optimization applies as well to the variations of two-phase
commitment (i.e., hierarchical, presumed commit, and presumed abort) described in the same

paper.

As described in [3], the sequence of actions during the second phase of an execution of two-

phase commitment in which the transaction commits is:

. Coordinator forces commit record into its log.

. Coordinator drops its locks.

. Coordinator sends commit notice to subordinate.

. Subordinate forces commit record into its log.

. Subordinate drops its locks.

Subordinate sends commit acknowledgement to coordinator.

. Subordinate forgets about transaction.

. Upon receipt of all commit acknowledgements, coordinator forgets about trans-
action.

0N O U LN -

An optimization is possible wherein events 4 through 6 become:

4. Subordinate drops its locks.

5. Subordinate spools commit record into its log.

6. Subordinate sends commit acknowledgement to coordinator once the spooled
commit record has been placed in the log.

The subordinate drops its locks before writing a commit record.

Of course, a subordinate may not drop its locks until the transaction is committed. In the
unoptimized protocol, a subordinate writes its own commit record to indicate that the trans-
action is committed and therefore that locks may be dropped. The optimized protocol uses the
commit record at the coordinator to indicate the same fact. So the coordinator must not forget
about the transaction before the subordinate writes its own commit record; hence, the commit
acknowledgement cannot be sent until the subordinate’s commit record is written.

Author’s current address: Computer Science Department, Columbia University, New York, NY 10027.

This work was supported by IBM and the Decfense Advanced Rescarch Projects Agency, ARPA Order No. 4976,
monitored by the Air Force Avionics Laboratory under Contract F33615-84-K-1520. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official policics,
either expressed or implied, of any of the sponsoring agencies or of the United States Government.



The advantages of the optimization are:

1. Throughput at the subordinate is improved because fewer log forces are required.
The amount of improvement is dependent upon the fraction of transactions that
require distributed commitment.

2. Locks are retained at the subordinate for a slightly shorter time; this factor is
important only if the transaction is very short.
Throughput is improved at no cost to latency. This optimization is independent from the no-
tion of group commit [1, p. 7], which is a more widely applicable technique that improves
throughput at the cost of increasing latency.

The disadvantages of the optimization are:
1. Some mechanism must exist to delay the sending of the commit acknowledge-
ment notice until after the subordinate has written its commit record. (A system
that implements group commit very likely already has this mechanism.)
2. The subordinate's “window of vulnerability” is increased.?
Both disadvantages are relatively minor, and are worth suflering considering that the optimiza-
tion can result in noticeable throughput improvement, as reported in [2].

An important observation is that, even using the optimization, the serialization order of two
transactions remains the same even if the second obtains the locks dropped “early” at a sub-
ordinate by a prior transaction whose commit record is not yet logged. That is, the contents of
the subordinate log are the same whether or not the commit record of the first transaction is
forced before its locks were dropped. This is true provided that the {irst log record written by
the second transaction is either in the same commit group as the commit record of the first (for
systems implementing group commit) or is always one that is forced, not spooled (for systems
not implementing group commit). The simple case analysis below shows that the serialization
order is preserved in systems not having group commit; the argument for systems with group
commit is trivial.

Suppose that transaction 1 has committed and dropped its locks at a subordinate site X, but
that its commit record has not yet been placed in the subordinate log. Suppose further that
transaction 2 then locks some of the data that was updated by transaction 1. The possible
next actions and their consequences are:

¢ Site X crashes: the recovery process aborts transaction 2 and re-prepares trans-
action 1. Since the commit acknowledgement for transaction 1 has not yet been
sent, the subordinate queries the coordinator and discovers that transaction 1 is
comnmitted.

* Transaction 2 aborts: same as if transaction 2 never executed.

¢ Transaction 2 commits:

2The window is the time betwcen the moment when the subordinate writes its prepare record and the moment it
writes its commil/abort record. 1f the subordinate crashes during this window its recovery is dependent upon the
availability of the coordinator.



. Transaclion 2 is read-only: same as if transaction 2 never executed.

. Transaction 2 is not distributed: the commit record of transaction 2 is
forced, thereby placing the commit record of the first transaction in the log
before it.

. Transaction 2 is distributed, and Site X is the coordinator: the commit
record of the second transaction is forced.

. Transaction 2 is distributed, and Site X is a subordinate: the prepare
record of the second transaction is forced.

References

[1] D. J. DeWitt, et. al.
Implementation Techniques for Main Memory Databases.
In Proc. ACM-SIGMOD 1984 Intl. Conf. om Mgmt. of Data, pages 1-8. May, 1984.

(2] D. Duchamp.
Transaction Management.
PhD thesis, Carnegie-Mellon University, 1988.
Available as Technical Report CMU-CS-88-192, Carnegie-Mellon University.

(3] C. Mohan, B. Lindsay, R. Obermarck.
Transaction Management in the R* Distributed Database Management System.
ACM Trans. on Database Systems 11(4):378-396, December, 1986.



