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Abstract

The proposed research addresses three problems associated with performing incremental
evaluation of attribute grammars: (1) multiple asynchronous subtree replacements in the parse
wee that are initiated by external agents, (2) segmentation of the parse tree according to
granularity of access rights with respect to these agents, and (3) distribution of the segments
across a reliable network. The research focuses on one exemplary application, distributed multi-
user language-based environments, where the parse tree represents a program being developed,
the subtree replacements are changes to the program, the external agents are programmers, the
granularity of segments corresponds to the modularization of the program, and the nodes of the

network are the programmers’ workstations.
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1. Motivation

Development and maintenance of large software systems by many cooperating programmers, an
activity which is called programming-in-the-many, suffers from a well-known problem — the
communication problem [Tichy 79, Brooks 82]. Lack of communication of changes among the
project group members results in a breakdown of the software engineering process, resulting in
defective systems whose components do not functionally fit together.  Although the
communication problem can be simplified by sound design principles, such as modular
decomposition, structured programming and information hiding, it cannot be totally eliminated.
The reason is that it is unlikely that interfaces are designed perfectly and completely from the
beginning. Even if the design is correct, implementors often change their assumptions about the
inputs and outputs of their modules.! In addition, system evolution is inevitable because of bug
fixes, performance tuning, ports to new environments and enhancement, many of which

necessitate changes to the modules’ interfaces.

Solutions to the communication problem have, up to now, relied on the goodwill of the
programmer to ‘‘do the right thing”’. In the early days of programming, teams maintained a
project workbook where changes were recorded. (This was done in the development of IBM’s
0OS/360 [Brooks 82].) The changes were distributed on a regular and frequent basis to all
members of the team, making it possible, in theory though not in practice, for everyone to be
aware of changes that affected them. Though the job was made easier by the development of
tools such as electronic mail and cross-reference capabilities, the programmer was still ultimately
responsible for communicating changes. Even more advanced programming environments have

not done much better.

This thesis investigates a class of programming environments for programming-in-the-many
where the environment assumes the responsibility for communicating changes. This assures that
changes are communicated (1) in a timely manner, and (2) to exactly the set of programmers that
are affected by the change. Timely communication is of critical importance as it prevents work

from having to be undone or redone later. The reason for not overwhelming the programmer

Throughout this proposal, the word module is used in a generic sense to denote the program unit that is
developed by one programmer, such as a Modula-2 module, an-Ada package, or a CLU cluster. Note that the word
module may be used to refer to two program units that are at different levels in the program structure hierarchy, for
example, it may refer to an Ada package, or to an Ada subprogram within that package, since these two units may be
developed by two different programmers.



with information on changes that do not affect him, aside from saving him from doing
unnecessary work, is to prevent the programmer from becoming indifferent to future change
notifications that may be meant for him. The goal of the proposed research is to devise solutions

to the communication problem which can be automated, not managerial or manual ones.

Furthermore, these solutions must accommodate distributed hardware configurations, where each
programmer has a personal workstation connected by a local area network to the workstations
used by others in the programming team. The reason for this constraint is that in the last few
years there has been a pronounced change in the hardware base from large timesharing systems
supporting the entire project team to computing environments consisting of workstations
connected by local area networks. This trend stems from the advantages offered by personal
workstations, including more predictable response time, increased reliability of the system as a

whole, and incremental expandability.

In order for an environment to effectively solve the communication problem, it must be able to:

¢ Detect a change made to a module of the program being developed as soon as the
change is made.

¢ Determine the extent and implication of the change, that is, what other modules are
affected by the change, and what further changes are required in these modules in
order to reestablish consistency in the program. This is called change analysis.

¢ Use the results of change analysis to propagate the change to affected modules. This
is called change propagation.

These requirements underlie our motivations for basing our solution to the communication
problem on language-based editing environments. Each environment is centered around an
editor, which makes it possible to detect changes at the keystroke2 level. The second
requirement is a much more difficult one to achieve as it requires the environment to understand
what makes a program ‘‘consistent’’. We currently restrict consistency analysis to include only
syntactic and static semantic consistency analysis of the program. Such checking depends on the
programming language in which the program is written. Therefore, the editors are language-
based: they understand the syntax and semantics of the particular programming language for
which they are tailored.

20ur editors are structure-oriented, and therefore a keystroke is at the granularity of a syntactic program entity,
for example, a variable name.




The end-product of the proposed research is the development of a system, MERCURY, which
generates distributed language-based environments from a formal specification of the desired
programming language, namely the attribute grammar (AG) formalism. Using attribute
grammars as the basis of the research offers many advantages. The most obvious of these
advantages is that the generation of new environments from AG specifications is much more
cost-effective than handcoding each environment. In addition, there is a large body of theory on
the AG formalism, including optimal algorithms for incremental change analysis in single-user

environments.

The central algorithm of an AG-based environment is the incremental attribute evaluator. When
the program is modified, this algorithm reevaluates those attributes that are affected by the
change, thereby performing change analysis and propagation. Previous incremental attribute
evaluation algorithms assume that the program, a single monolithic text, is being developed by
one programmers. The proposed thesis will address three problems associated with performing
incremental evaluation of attribute grammars in multi-user environments: (1) asynchronous
modification of the program, (2) segmentation of the program into modules, and (3) distribution

of the program across a network.

The algorithms to be developed in this thesis are applicable to a wide variety of applications that
are based on attribute grammars, not just language-based environments. Potental applicatons
have the following characteristics:

e The representation of the central data objects of the application is a tree.

e The ree can be modified by multiple asynchronous subtree replacements initiated
by external agents.

¢ The tree is partitioned into segments according to the granularity of access rights
with respect to these agents.

¢ The segments are distributed across a reliable network.
We foresee straightforward application of these algorithms to the distributed database managers
for object-oriented data bases [Hudson 88], and interpreters of distributed dataflow languages
(Kaiser 89]. The discussion of the problem and approaches for its solution in his proposal (and
the thesis), as well as the implementation of the algorithms, will focus on the application of

multi-user language-based environments.

3Exceptions will be described and contrasted with our work in Section 3.1.




The rest of this proposal is organized as follows. Section 2 gives background work on which the
proposed research is based: first an overview of attribute grammars, and then an introduction to
incremental attribute evaluation. Section 3 describes the proposed research — AG algorithms
for multiple program updates, segmentation of the program into modules, and distribution of the
modules across the network. Section 4 concludes with a description of an initial implementation
of the research, a plan for completing the work proposed, and a summary of the primary

contributions expected.




2. Background

2.1. Attribute Grammars

Attribute grammars were first introduced by Knuth [Knuth 68] to describe the context-sensitive
semantics of a programming language, complementing the way a context-free grammar
describes the language’s syntax. An AG extends a context-free grammar by attaching artributes
to the nonterminal symbols in the grammar, and semantic equations defining these attributes to
the productions of the grammar. Each attribute represents a specific property of the nonterminal,
and can take on any of a specified set of values. A semantic equation defines an attribute (LHS
of equation) as the value of a semantic function applied to other attributes of that production
(RHS of equation). The attribute on the LHS is funcrionally dependent on the attributes in the
RHS of the equation. Note that semantic functions are pure functions; that is, they have no side
effects. Attributes are divided into two disjoint classes: synthesized and inherited. A semantic
equation defines a synthesized attribute of the left-hand symbol of a production, or an inherited
attribute of one of the right-hand side symbols.

Figure 2-1 gives an example of an attribute grammar fragment for declarations in a Pascal-like
programming language. There are four productions, pl through p4. Each nonterminal
occurrence in a production has associated attribute instances, and each production has associated
semantic equations that define the value of the attribute instances. An attribute g associated with
a nonterminal symbol X is denoted by X.a. Occurrences of the same nonterminal instance within
one production are distinguished by the use of a numerical suffix (e.g. in production p3, there are
two occurrences of Decls, denoted by Declis$1 and Decls$2 for the first and second occurrence
respectively). The AG of figure 2-1 builds a symbol table for all declared identifiers, and also

marks identifiers that are declared more than once as erroneous.

The value of an attribute instance is computed according to its defining semantic equation.
Before an attribute can be evaluated, all other attributes that it is functionally dependent on must
have already received values. The functional dependencies among the attributes in the tree
create a partial ordering on the attribute instances in the tree. Any attribute evaluation algorithm
must obey this partial order, but since the ordering is partial, there may be more than one order
of evaluating the attribute instances of the tree.

These concepts are best illustrated operationally by an example. Consider the following string



Decls: { synthesized attributes: SymTabOut:

inherited attributes: SymTabIn; }

Decl: { synthesized attributes: SymTabOut, error;
inherited attributes: SymTabIn; }

Id: { synthesized attributes: Name’
inherited attributes: @; 1

Type: { synthesized attributes: TpKind;
inherited attributes: g; )

Context-free symbols of the attribute grammar and their attributes

(pl] Program ::= ... Decls
{ Decls.SymTabIn = NullTbl({(); }

[p2] Decls 1:=  /* empty rule */
{ Decls.SymTabOut = Decls.SymTablIn; }

(p3] Decls$l ::= Decl Decls$2
{ Decl.SymTabIn = Decls$l.SymTabIn;
Decls$2.SymTablIn = Decl.SymTabOut;
Decls$l.SymTabOut = Decls$2.SymTabOut; }

[p4] Decl = Id ':" Type '’
{ Decl.error = Maember (Decl.SymTabIn, Id.Name)
? "<-- Variable already declared”
Decl.SymTabOut =
Insert (Decl.SymTabIn, Id.Name, Type.TpKind): }

Productions of the attribute grammar fragment and their semantic equations

Figure 2-1: An anribute grammar example
derived by the grammar of figure 2-1:

a: integer;
b: boolean;

Figure 2-2 (a) shows the parse tree for this string; the nodes in the tree are labelled with
nonterminal symbols of the grammar. Figure 2-2 (b) is the semantic tree for the same

declarations.* A semantic tree is a parse tree where each tree node additionally contains fields

4The error attribute is not shown in the figure for clarity.



corresponding to the attributes of its labelling grammar symbol. The dependency graph of a
semantic tree T, denoted by D(T), represents functional dependencies among the attribute
instances of T, and is defined as follows: D(T) is a directed graph, (V, E), where

e V = { attribute instances of T }, and

eE={(ab)|a beV, andaisan argument of b }.
The dependency graph for our running example is shown in figure 2-2 (c).
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Figure 2-2: A string derived from the grammar of figure 2-1



Knuth [Knuth 68] describes a simple algorithm for evaluating all the attributes in a semantic wee
that makes use of the dependency graph. The vertices of the dependency graph are first
topologically sorted, and then the attributes are evaluated according to their topological order.
This algorithm only works if the dependency graph is acyclic. Many attribute evaluators assume
that the AG is well-defined, that is, that the dependency graph for any string derived by the
grammar is acyclic. However, it is hard to verify this assumption since to do so requires

exponential time [Jazayeri 75]. The proposed research will only consider well-defined AGs.

Although the algorithm described above is simple and works for any well-defined AG, its
performance is poor for both time and space: all decisions are made at run-time, and the
dependency graph must be kept around. More efficient algorithms for performing attribute
evaluation have been developed for use in practical compiler-compilers [Farrow 84, Kastens
82, Ganzinger 77]. These algorithms perform most of the work at grammar-analysis time, once
for each AG, thus improving the performance of the evaluator. The disadvantage of these
evaluators, which are called staric or semi-static evaluators depending on how much work is
done at run-time, is that they do not work for all well-defined AGs but only for subclasses of

them.

2.2. Incremental Attribute Evaluation

The use of attribute grammars in language-based programming environments was originated by
Reps [Reps 82]. A program is represented internally by its semantic tree. The program is
modified by a sequence of pruning, grafting, or derivation operations on the tree; these
operations are collectively called subtree replacement operations. After a subtree replacement,
some attributes may become inconsistent. An attribute is inconsistent if its value is not equal to
its semantic function applied to the current values of its arguments. An incremental attribute
evaluator reevaluates the inconsistent attributes, thus reestablishing consistency among the

attributes in the tree.

Continuing with the example from the previous subsection, suppose that a programmer, Joe, was
editing a program with the two declarations of a and b. If he were to add the following line to
his program:

a: character:

then, after attribute reevaluation, the value of the error attribute associated with this declaration



would be "<-- Variable already declared”. Such attributes can be displayed by the programming
environment as part of the program text to notfy the programmer of inconsistencies in the

program. So Joe would see the following on his display after making the change:

a: character; <-- Variable already declared
This illustrates how change analysis and change propagation are accomplished by means of
attribute evaluation. It is desirable that the evaluation strategy be incremental, that is, it does not
evaluate all the attributes in the semantic tree from scratch, but only those that are affected by the

change.

The problem of incremental attribute evaluation for single subtree replacements can be stated as
follows. Starting from a consistently attributed tree T, a subtree S of T is replaced by another
tree, S’, which is also consistently attributed. The root node of the two subtrees, S and S’, must
be labelled with the same nonterminal grammar symbol. Let 7’ be the tree T with S replaced by
S’. The problem is to evaluate the minimum number of attributes in T’ so that attribute
consistency is reestablished. An optimal solution to this problem for the general class of well-
defined AGs was devised by Reps [Reps 83].

Before describing Reps’ algorithm, we define some terminology and state the assumptions used.
The owtpur arributes of a production, p, are those attributes defined by semantic equations
associated with p. The inpur atrributes of p are those attributes which appear on the right hand
side of the semantic equations of p. An AG is in normal form if for any production p, the output
attributes of p consist of the synthesized attributes of the LHS symbol of p and the inherited
attributes of the RHS symbols of p, and the input attributes of p consist of the inherited attributes
of the LHS symbol of p and the synthesized attributes of the RHS symbols of p. It is assumed

that the AG is in normal form.S

When a subtree S with root node r is replaced by a subtree S” with root node r’ 6 which of the
two sets of attribute instances associated with the roots of the subtrees S and S’ should be used?
In Reps’ algorithm, the synthesized attributes of r and the inherited attributes of r” are used.

This decision, together with the fact that the AG is in normal form implies that initially, the only

5This assumption is made only to simplify the exposition. It is not a restriction because any grammar can be put
in normal form, and the algorithm to be described can be easily extended to deal with non-normal form grammars.

6Recall that nodes r and # must be labelled with the same nonterminal symbol.
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inconsistent attributes are those associated with the root of the replaced subtree. Therefore, after
a subtree replacement at node r, the algorithm starts by evaluating the attributes associated with
r. The problem is: in what order should they be evaluated? It is not sufficient to consider just the
direct dependencies among the attributes of r in the two production instances where the node r
appears. The reason is that although there may not be any direct dependencies among these
attributes, they may be linked through a chain of dependencies arbitrarily far down the subtree
rooted at r, or in the tree above the node r. (See, for example, the dependencies between the
attributes SymTabln and SymTabOut of Decls in figure 2-2 (c). ) For this reason, the scheduling
algorithm for determining which attribute should be evaluated next must take into account

transitive dependencies.

For the class of well-defined AGs, the transitive dependencies among the attributes of a
nonterminal symbol may be different for different occurrences of the symbol in a semantic tree.
The upper tree context of a nonterminal instance r in a semantic tree is the resulting tree after the
subtree rooted at r is pruned . There can be several different subtrees derived from r, and several
upper tree contexts. Therefore, it is in general not possible to determine the transitive

dependencies from a static analysis of the AG.

For the single subtree replacement case, Reps uses characteristic graphs to keep track of
ransitive dependencies among the attributes of a nonterminal occurrence in the mee. A
characteristic graph is a directed graph, G = (V,E), where V consists of the attribute instances
associated with a nonterminal occurrence in the semantic tree, and an edge (v,w) is in E, where v
and w are in V, and there is a path from v to w in the dependency graph of the semantic tree that
does not go through any other attributes in V. A subordinate characteristic graph of a node r,

denoted by r.C, only considers dependencies in the subtree rooted at r. A superior characteristic

graph of a node r, denoted by r.C, only considers dependencies in the upper tree context of r.

Reps’ incremental evaluation algorithm, which is described below, is optimal because of the fact
that these characteristic graphs are maintained cheaply. Each editing operation maintains the
following invariants on the semantic tree representing the program being edited.:

e Both superior and subordinate characteristic graphs are kept for the nonterminal
occurrence where the editing cursor is placed.

e All nodes on the path from the cursor to the root of the tree have superior
characteristic graphs.
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e All other nodes in the tree have subordinate characteristic graphs

Figure 2-3 shows the incremental algorithm for reevaluating a semantic tree T after a subtree
replacement at r has occurred [Reps 84a]. It makes use of two data structures: (1) a model M,
which is a graph containing attributes that need reevaluation and direct and transitive
dependency edges among them, and (2) a worklist S, which contains those attributes in the model
that are ready to be evaluated (i.e., their arguments have already been evaluated, or do not need
to be reevaluated). M initially contains the attributes of the root of the replaced subtree, r. The
(direct and transitive) dependencies among these attributes are obtained from the characteristic
graphs associated with . Those attributes in M that have no incoming edges are placed in the
worklist S. Attributes are removed from S and evaluated until § is empty. When an attribute is
evaluated and its value changes, other attributes that depend on it may need to be brought into
the model. This is done by the EXPAND procedure, which is not shown here. EXPAND brings
into the model all the attributes of a neighboring production of the attribute that caused the
expansion, as well as all dependency edges among them. The attribute that was just evaluated,
as well as all its outgoing edges, are then removed from the model. This may result in some

attributes becoming ready for evaluation; such attributes are inserted into the worklist S.

procedure EVALUATE(T: semantic tree; r: nonterminal occurrence at root of replaced subtree)
declare

S: set of attribute instances

M: directed graph

b, c: attribute instances

OldValue, NewValue: attribute values
begin

M=rCurcC
S := the set of vertices of M with in-degree 0 in M
while § # @ do

Select and remove a vertex b from §

OldValue := value of b

evaluate b

NewValue := value of b

if OldValue # Newvalue and M does not contain all the successors of b in D(T)

then EXPAND(M, b, S)
Remove b and all outgoing edges from M
Insert any attributes whose in-degree is now 0 in §

end

Figure 2-3: An incremental attribute evaluation algorithm
for single subtree replacements
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Reps’ incremental evaluation algorithm for a single subtree replacement is time-optimal. This
means that both the number of semantic function applications, as well as the bookkeeping costs
of the algorithm, are proportional to the size of the set AFFECTED, where AFFECTED is the set

of attributes whose values differin T and T"'.
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3. Proposed Research

The proposed research addresses three problems associated with performing incremental
evaluation of attribute grammars in multi-user distributed environments: (1) multiple
asynchronous subtree replacements in the parse tree that are initiated by external agents, (2)
segmentation of the parse tree according to granularity of access rights with respect to these
agents, and (3) distribution of the segments across a network. The proposed research assumes
that the network is reliable, and therefore issues of fault-tolerance and recovery will not be

discussed.

3.1. Multiple Subtree Replacements

3.1.1. Problem Formulation

Let T be a semantic tree of some attribute grammar G, T the resulting tree after subtree S in T is
replaced by S’, and T” the resulting tree after subtree R in T’ is replaced by R’. The two
modifications at § and R are asynchronous, that is, the second one may occur while the
evaluation of the first one is still in progress. The problem is to design an incremental evaluation
algorithm that can handle this scenario, generalized to k£ asynchronous changes, in an optimal
way. This problem arises naturally in multi-user environments as multiple programmers make

changes simultaneously in different modules of the program.

An incremental evaluator for asynchronous subtree replacements is optimal if it meets the
following requirements:

1. For any one modification, the algorithm will evaluate only those attribute instances
affected by the modification.

2. For any k > 1 modifications affecting the same attribute a, where the k evaluations
are stll in progress and none have yet evaluated a, the algorithm will evaluate a
only once.

3. The bookkeeping costs of the evaluation algorithm are proportional to the number
of attributes evaluated.

This is an ideal definition of optimality and it is as yet an open question whether an algorithm
that achieves all these requirements can be designed. As will be seen in section 3.1.2, there
seems to be a tradeoff between the bookkeeping costs of the algorithm and the number of
attributes reevaluated. That is, a particular evaluation algorithm may evaluate the minimum
number of attributes but only by being sub-optimal in its bookkeeping costs. Such an algorithm

would be useful for an application where attribute evaluation is expensive compared to the
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bookkeeping costs, such as the proof checker described in [Reps 84b].

The second requirement is the more important one for the purposes of this section of the
proposal, so we shall state it a little more formally for the case when k = 2. Suppose that subtree
S was replaced at time 1, and subtree R at time t,, where 1, < 1,. Let AFFECTED be the set of
attributes that were affected (and therefore must be reevaluated) because of the subtree
replacement at §, and similarly, AFFECTED, the set of attributes affected by the subtree
replacement at R. Furthermore, suppose that the evaluations from the two modifications overlap,
that is,

AFFECTED,N AFFECTED, # &
If the evaluation due to the subtree replacement at S is still in progress at the time of the second
modification, f,, then AFFECTED, can be divided into two subsets: (1) EVAL, containing those
affected attributes that have already been evaluated at the time of the second replacement, and
(2) UNEVAL, containing the attributes still needing evaluation.

AFFECTEDS‘,2 = EVALSJ2 U UNEVALS_,2
Note that all these sets are not known a priori but are determined as the evaluation is proceeding.
The second optimality requirement states that every attribute a, such that

ae UNIE'VALS',2 NAFFECTED,,

is evaluated only once.

3.1.2. Solution Approaches

A naive approach to the multiple replacement problem is to perform k sequential applications of
Reps’ algorithm for single subtree replacements. Thus, a subtree replacement operation is
blocked until an evaluation of a previous one has completed. This algorithm is optimal if the
sets AFFECTED, 1 < i S k, are disjoint. If they are not disjoint, however, attributes in the
intersection of these sets would always be evaluated more than once. Thus, the naive algorithm

does not satisfy the second optimality requirement.

Before examining the asynchronous subtree replacement problem, we first consider a simplified
problem — k_ synchronous subtree replacements. This problem has been studied before in the
context of single user environments in order to allow the editing model to include other
commands besides subtree replacements [Reps 86]. Such a command would be viewed as
multiple subtree replacements occurring at different nodes in the tree, but since all subtree

replacements happen by this one command, they are synchronous. Hence, the k subtree
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replacement tree operations are done first, and then evaluation of all of them proceeds.

The design of an optimal algorithm for multiple subtree replacements is once again non-trivial
because of transitive dependencies among attributes, although in a different way from the single
subtree replacement case. Suppose there are two subtree replacements, one at node r, in the
semantic tree and another at node r,. There are two attributes associated with r;» @ and b, and
two attributes associated with r,, ¢ and d. The characteristic graphs described in section 2.2 give
us enough information to determine that a should be scheduled for evaluation before b, and ¢
before d, because of transitive dependencies from a to b and ¢ to 4 respectively. However, there
is no information to allow us to determine whether a should be evaluated before ¢. The answer
depends on whether there is a dependency from b to ¢ (in which case a should go first), or from d

to a (in which case ¢ should go first).

For multiple subtree replacements, two kinds of characteristic graphs are required:

¢ TDS, — This graph represents direct and transitive dependencies between attributes
of a nonterminal symbol, X. This is the same as Reps’ characteristic graphs
described above.

* TDPS, , — This graph represents direct and transitive dependencies between
attributes of a pair of symbols, X and Y.

The complexity of an algorithm for evaluating multiple synchronous subtree replacements
depends on (1) the cost of maintaining these two kinds of characteristic graphs for cursor
movement and subtree replacement operations, and (2) the cost of using the characteristic graphs

in the attribute evaluation algorithm.

A problem that will be addressed in the thesis is determining how efficiently TDS and TDPS
graphs can be maintained and used for different classes of AGs. By restricting the class of
grammars that the evaluator can handle, it may be possible to compute the transitive information
statically, thus improving the performance of the evaluation algorithm. Our goal is twofold: (1)
to understand the restrictions that must be placed on an AG in order to compute the transitive
information as efficiently as possible, and (2) to find efficient evaluation algorithms for the

major known classes of AGs, such as parfirioned grammars, absolutely non-circular grammars,
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and ordered attribute grammars.”

Reps er al give an incremental attribute evaluation algorithm for & synchronous subtree changes
[Reps 86]. This algorithm is not applicable to the general class of well-defined AGs, but only to
a subset of them.2 The amortized cost of the algorithm after a sequence of update operations is
O((JAFFECTED| + k) x log n), where k is the number of synchronous subtree replacements
and n is the number of nodes in the semantic tree, so this is a known upper bound on the

problem.

For asynchronous subtree replacements, a subtree replacement can be interleaved with ongoing
evaluations of previous subtree replacements. For the k asynchronous subtree replacement
problem, we assume the existence of k editing cursors (i.e., nodes) in the parse tree at which
subtree replacements can occur. Unlike the synchronous case, knowing the transitive
dependencies among the roots of the replaced subtrees is not sufficient. For example, in figure
3-1, if a subtree replacement at r, occurs while evaluation of r, is in progress, attributes that are

arbitrarily far from r, may have to be stopped from being evaluated.

There is a tradeoff between (1) minimizing the number of attributes reevaluated, and (2) the cost
of maintaining necessary transitive dependencies to do so. Let us illustrate this tradeoff by

describing three algorithms that compromise between these costs in different ways.

Algorithm 1: The first algorithm is prepared to handle a subtree replacement at r, at any time.
Initally, TDPS,I',2 is known. As evaluation of r, proceeds, transitive dependencies between
attributes of r, and auributes that become ready for evaluation in r, are computed. This means
that as evaluation of r, proceeds, the TDPS,P,2 graph changes to be TDPS’[-M‘('z)’ The
transitive information among neighboring nodes can be used to compute this information
incrementally as evaluation at r, proceeds. The advantage of this algorithm is that if a subtree

replacement occurs at r, all the necessary information is there to immediately stop those

7The best result that could come out of the thesis is the determination of lower bounds for the problem of multiple
synchronous subtree replacements, and the design of the ‘‘best’* algorithm for different classes of grammars. If this
result is not achieved, though, the design of evaluation algorithms for different classes of AGs that are more efficient
than currently known, is still significant.

8The class of AGs for which the algorithm described in [Reps 86] works is a subset of the class of grammars that
pass step 2 of Kastens' construction for ordered attribute grammars [Kastens 80). This subclass includes AGs for
which the relations TDS,, for all nonterminals X, and TDPS, ,, for all nonterminals X and Y such that X 3 Y, can
be determined statically to be acyclic.
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Figure 3-1: Transitive dependencies for asynchronous changes
attributes in r, that are descendents of attributes of r, from being evaluated prematurely, and vice
versa. The disadvantage is that if no change is made at r, before the evaluation of r, completes,

all this work is done in vain.

Algorithm 2: The second algorithm only computes the transitive dependencies between
attributes of r; and attributes in the model of r, when a subtree replacement at r; occurs. The
disadvantage is that a lot of transitive information may have to be computed before any
evaluation can proceed, possibly resulting in an unacceptably slow response time after certain

editing operations. The advantage is that the cost is only incurred if it is actually needed.

Algorithm 3: The third approach reduces the cost of maintaining transitive information at the
risk of recomputing some attributes unnecessarily. In this version, TDPS graphs are not
maintained at all. Two (or more) evaluations for asynchronous subtree replacements proceed
independently until one reaches an attribute evaluated by the previous one. This indicates that a
dependency between attributes in the two subtrees may exist. At this point necessary transitive
dependencies are computed from scratch to determine which attribute evaluations to suspend.
This algorithm is being implemented in our prototype implementation of MERCURY. More
details can be found in [Micallef 89].
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In the thesis I will design and analyze evaluation algorithms that balance the number of
antributes reevaluated and the cost of maintaining transitive dependencies in different ways for
well-known classes of attribute grammars. 1 already have some initial results for this problem
[Micallef 88a]. I have designed algorithms for evaluating asynchronous changes for two classes
of AGs: ordered attribute grammars (OAGs), and a subclass of OAGs that I call pairwise-ordered
attribute grammars (POAGs). For OAGs, the algorithm minimizes the number of attribute
evaluations but the bookkeeping costs are not optimal. The complexity of the algorithm is
O(AFFECTED| x h), where h is the height of the semantic tree. The algorithm for POAGs also
minimizes attribute evaluation, but because it can compute more information statically, the
bookkeeping costs are proportional to O (|AFFECTED| + k) X log n), where k is the number of

subtree replacements and # is the size of the semantic tree.

The problem of incremental evaluation for asynchronous subtree replacements has been
addressed before. Kaplan and Kaiser were the first to describe an algorithm to solve the problem
for the general class of well-defined AGs [Kaplan 86]. Their algorithm is similar to Algorithm 3
described above, but the details of determining the transitive dependencies when the models
collided were not included. The algorithm for k synchronous edits of Reps er al [Reps 86] was
extended to handle asynchronous edits by Geitz [Geitz 87]; the asynchronous version handles the
same class of grammars as the synchronous version. Geitz’ algorithm minimizes the number of
attributes evaluated; however, the bookkeeping costs of the algorithm are not optimal by our
definition of optimality. We expect the thesis research to lead to improvements on these results

as well as achievement of new results for classes of AGs that were not considered before.

3.2. Segmented Parse Tree

In the previous subsection dealing with multiple subtree replacements, there was a single
atribute evaluator that had access to the entire semantic tree in which the changes were being
made. This section will consider the issues that arise when the semantic tree is divided into
segments, where each segment corresponds to a subtree in the original monolothic semantic tree.
For the application of multi-user programming environments, the segment corresponds to the
unit of the program being developed by one programmer, such as an Ada package, a Clu cluster,
or a Modula-2 module.

Clearly, an evaluator is required for each segment. The evaluator is invoked whenever a change
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in that segment occurs. The evaluator for one segment interacts with evaluators of other
segments since attribute dependencies may cross segment boundaries resulting in attributes
flowing among segments. The collection of cooperating evaluator processes is called the global

evaluator.

A segment evaluator is similar to an evaluator for a monolithic semantic tree except for its
actions at interface nodes. An interface node is a node that is on the boundary between two
segments. Interface nodes are duplicated in the semantic tree of the two segments which they
bound. An interface node is either at the root or a leaf of a segment. The input attributes of a
segment are the inherited attributes of the root interface node of the segment and the synthesized
attributes of leaf interface nodes of the segment. The output attributes of a segment are the
reverse, that is, the synthesized attributes of the root interface node and the inherited attributes of
leaf interface nodes. When an input attribute of a segment S changes value because of an edit in
an adjoining segment, the evaluator for S treats this as a subtree replacement at the
corresponding interface node. When an output attribute’s value changes, the evaluator sends a
message with the new value to the adjoining evaluator, which will in turn fire up a new

evaluation.

How are segments defined? There are two possibilities: statically or dynamically. A segment is
statically defined by specifying in the AG which nonterminal symbols can be interface nodes.
This can be restricted further to only allow a flat segment structure; that is, two nonterminal
symbols X and ¥, where X ¥ Y, cannot both be interface nodes. A segment is dynamically
defined if the programmer can create a new segment from any node in the parse tree at any time

during program development.

A thesis problem is to design segmented evaluators for both statically defined segments and
dynamically defined segments, and compare them with respect to ease of construction and
efficiency of the evaluator. Boehm and Zwaenepoel describe a parallel compiler based on AG
technology which is related to the segmented evaluators described here [Boehm 86]. The parse
tree of the source program that is being translated is divided into subtrees, which are evaluated in
parallel by evaluators executing on different machines. Their algorithm uses a combined static
and dynamic evaluation strategy: attributes that depend on other attributes associated with nodes
in a different subtree are computed dynamically, whereas those whose arguments are in the same

subtree are computed according to a statically precomputed plan. The main difference from the



problem described above is that the evaluator for each segment is not incremental — it evaluates

all the attributes in the segment.

3.2.1. Optimality Considerations

A segment evaluator is locally optimal if evaluation of multiple subtree replacements within the
segment, arising from local changes within that segment as well as remote changes in other
segments that have propagated to this one, is optimal according to the definition given in section
3.1.1. A thesis problem is to determine whether restricting segments to be defined statically
makes it possible to reduce the cost of keeping track of transitive dependencies, thus improving

the complexity of the evaluation algorithm.

What about optimality among segment evaluators? A subtree replacement may cause several
visits to an adjoining evaluator. Heuristics for improving performance of the cooperating
evaluators by (1) scheduling as few visits as possible, and (2) scheduling a visit a soon as
possible will be investigated in the thesis. Yellin has shown that a problem related to (1) is
NP-complete [Yellin 84]. Heuristics have been developed for non-incremental evaluators used
in compiler-compilers; I will determine whether these heuristics can be adapted for our problem,

or whether new ones are needed.

An issue that arises in the construction of the segment evaluators concerns the organization of
segment interconnection information. There are two possible ways of keeping track of this
information:

e Centralized — the interconnection structure between all the segments is managed by
a separate process, and communication between different segment evaluators is done
via this process.

¢ Distributed — each evaluator has built into it which other evaluators it can
communicate with.

What are the tradeoffs for these two options? Keeping the segment interconnection information
distributed, with each evaluator keeping track of the evaluators it communicates with, is
attractive because it avoids a heavy concentration of messages at a central server, and
information is localized where it is used. However, when the segments reside on different
machines (the topic of the next subsection), keeping the segment interconnection information as

a separate layer is advantageous for segment location independence.
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3.3. Distribution of Segments

When segments are distributed on different machines, replication of segment interconnection
information is desirable for high availability. For example, consider a program P that consists of
a main block containing some global declarations and three modules A. B, and C. Suppose that
P is divided into four segments, Main and the three modules, where Main and module A reside
on workstation Frodo, and B and C reside on workstation Gollum. Furthermore, suppose that
there is a chain of attribute dependencies from module B to module C which go through Main. If
a change occurs in B, B’s evaluator sends a message to the evaluator for Main on Gollum, which
eventually sends a message to the evaluator for C back on Frodo. The propagation of the change
to C, therefore, depends on the message transmission time between the two machines and the
load on Gollum. By replicating Main on both machines, C will be informed of the new

information immediately, irrespective of the load or communication delay on Gollum.®

Replication, however, does not come without cost. There needs to be additional mechanisms for
keeping the replicated entities consistent. Keeping replicated information consistent is usually
done pessimistically, by synchronizing updates to avoid inconsistencies. In certain situations, an
optimistic approach may be possible; that is, updates are allowed to happen without
synchronization, and compensatory actions taken if a conflict arises. The optimistic approach is
preferable because it avoids synchronization among the segment evaluators, and synchronization
necessarily means waiting. A thesis problem is to find ways to minimize synchronization costs in
our application, multi-user environments. [ will also evaluate the tradeoffs involved with

replication 1o determine under what conditions replication pays off.

An example of when synchronization may be necessary is the creation of new segments. A
segment can be created in two ways:
e By splitting off a subtree of an existing segment and making it a new segment.

e By creating an initially independent segment and then specifying its position in the
program structure.

Replication is even more crucial when dealing with unreliable networks as it is not acceptable for the evaluation
algorithm to come to a stall because some machine is inaccessable, due o either machine or network failure. As
mentioned previously, the scope of the thesis is limited to reliable networks, and therefore we will only consider the
issues that arise with replication when the network is reliable. In particular, we are not concemed with algorithms
for restoring consistency among the replicated entities after recovery from a machine or network fault. Such
algorithms have already been developed, both for this application of multi-user distributed environments [Kaiser
87a], and for more general database applications [Garcia-Molina 88].
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The first situation poses no problems if only one programmer has write access to a segment,
which is a reasonable assumption to make. However, in the second case, it may be possible for
two programmers to create two segments independently that when added to the program as
specified cause a conflict. For example, if Ada is the implementation language, adding two
packages with the same name to a program is illegal since packages must be uniquely identified.
How should the environment handle such a situation? It is inappropriate to flag one of the
packages as erroneous as is done if the collection of packages were compiled since it is
impossible to determine which of the packages was added first. (We do not assume that there is a
global clock in the distributed environment.). A more appropriate action would be to flag both
of them as erroneous and leave it to the two programmers to resolve. Another approach would
be to synchronize the operation of attaching new segments to the program, that is, guarantee that
only one programmer can be doing this at any one time. This effectively places a total order on
the creation of new segments so that the environment can flag just the duplicate module that was

added last as the erroneous one.

When segments are distributed on a network, an additional factor must be considered in the
performance of the attribute evaluation algorithms — network traffic. This can be measured
either in the number of messages transmitted due to one evaluation, or in the number of bytes
transmitted.  Another thesis issue is to find algorithms that minimizes the number of

messagesibytes sent among the segment evaluators.

Some initial work has been done along this line already concerning aggregate attributes at
interface nodes. An aggregate attribute consists of many components; for instance, a symbol
table is usually defined by an aggregate attribute where each component corresponds to an entry
for one symbol. A well-known problem with aggregate attributes is that a change to one
component of the aggregate results in the reevaluation of all attributes that depend on any
component of the aggregate. For instance, a new variable declaration results in reevaluation of
all variable references in the scope of the changed declaration. In the distributed environments, a
change to an exported facility in one segment is propagated to all segments, including those that
do not import the facility. I have designed a new attribute evaluation algorithm called selective
propagation which propagates a change in one program segment to a second segment only if the
latter actually uses the changed information [Micallef 88b]. This is done by maintaining use-lists

for each component of the aggregate interface attributes.
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4. Conclusion

4.1. Preliminary Implementation

A preliminary implementation of the research described here has been done in the MERCURY
prototype [Kaiser 87b], a generator of distributed editing environments. MERCURY is
implemented on top of the Cornell Synthesizer Generator, which generates editing environments
for single users developing monolothic programs. The generated editors run on Suns or Vaxen
connected by an ethernet. The incremental attribute evaluation algorithm currently implemented
handles asynchronous edits within a segment sequentially. The segment interconnection
organization is currently limited to a flat organization, and new segments are added to the
program with no synchronization. The segment interconnection information is encapsulated
within the artribute propagation layer (APL), which handles inter-editor attribute propagations.
The APL is implemented as a continuously running process on each machine in the environment,

and replicates the segment interconnection information on each machine.

4.2. Research Plan
Below we summarize the tasks to be achieved in the thesis. The entire thesis should be
completed by May, 1990.

e Multiple asynchronous subtree replacements:

« Find lower bounds on cost of maintaining transitive dependencies for different
classes of attribute grammars.

» Design attribute evaluation algorithms that achieve these lower bounds.

s Explore balance between bookkeeping costs and number of attribute
reevaluations for a given AG.

¢ Segmented Evaluators:

* Design and compare segmented evaluators for statically and dynamically
defined segments.

* Explore whether statically defined segments can be exploited in order to
optimize bookkeeping costs required to handle multiple changes within a
segment.

» Find and compare heuristics for scheduling interactions among evaluators to
improved global performance of the cooperating segment evaluators.

» Distributed Segments:

« Evaluate tradeoffs involved with replication.
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* Explore alternatives for minimizing synchronization costs in multi-user
environments.

* Design incremental attribute evaluation algorithms that minimize network
traffic.

The most important part of the thesis, and also where most of the difficulty lies, is the algorithms
and lower bound complexity analysis for multiple subtree replacements. I intend to tackle the
three subproblems listed above for this milestone in parallel, that is, design the algorithms while
simultaneously try and understand the inherent difficulty of the problem. I expect the research
for this part of the thesis to be completed by December 1989. The construction of segmented
evaluators depends to a certain extent on the evaluation algorithms. Therefore, some of the
research in this subtopic will have to occur after the first milestone is completed. I expect to
have this section of the thesis done by February 1990. The issues that arise when the segments
are distributed are loosely coupled from the other two problem characteristics. I have made

some initial headway in this area, so I expect this part to be finished first, by October 1989.

4.3. Contributions

The practical contribution of this research is the development of a programming environment
generator — MERCURY — that supports teams of programmers collaborating on the
development and maintenance of large software systems. The environment supports incremental
checking of interdependencies among modules, whether residing on the same machine or
distributed across multiple machines connected by a network. Each module is edited using a
language-based programming environment, previously suited only to programming-in-the-small.
By supporting change propagation among many such environments, we achieve programming-
in-the-many. The technical contribution of the research lies in the development of new attribute
grammar algorithms for the kernel of the distributed multi-user environments, which expands the
body of knowledge about AGs. These algorithms can be used in other applications besides
language-based editors, such as support for distributed data bases and implementation of
distributed dataflow languages.
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