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Abstract

This paper describes the system architecture of JAM (Java Agents for Meta-learning),

a distributed data mining system that scales up to large and physically separated data

sets. An early version of the JAM system was described in [53]. Since then, JAM has

evolved both architecturally and functionally and here we present the �nal design and

implementation details of this system architecture.

JAM is an extensible agent-based distributed data mining system that supports the

remote dispatch and exchange of agents among participating data sites and employs

meta-learning techniques to combine the multiple models that are learned. One of

JAM's target applications is fraud and intrusion detection in �nancial information

systems. A brief description of this learning task and JAM's applicability and summary

results are also discussed.
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1 Introduction

The main objective of this work was the design and implementation of a system that supports

the mining of information from distributed data sets. In a relational database context a data

mining task is to explain and predict the value of some attribute given a collection of tuples

with known attribute values. One means of performing such a task is to employ various

machine learning algorithms. In the centralized approach, an existing relation, drawn from

some domain, is thus treated as training data for a learning algorithm that computes a

descriptive model, or a classi�er. This classi�er can later be used to predict (for a variety

of strategic and tactical purposes) the value of a desired or target attribute for some record

whose desired attribute value is unknown.

One of the main challenges in machine learning and data mining, however, is the de-

velopment of inductive learning techniques that scale up to large and possibly physically

distributed data sets. Some approaches that have already been described in the literature

include IBM's SLIQ [28] and SPRINT [52] decision tree algorithms and Provost and Hen-

nessy's rule-based DRL algorithm [47] for multi-processor learning. Our approach to this

problem is to employ the algorithm-independent meta-learning technique.

Meta-learning seeks to compute a number of independent classi�ers by applying learning

programs to a collection of inherently distributed databases in parallel. The \base classi�ers"

computed are then integrated by another learning process. Here meta-learning seeks to

compute a \meta-classi�er" that integrates in some principled fashion the separately learned

classi�ers to boost overall predictive accuracy.

Several methods for integrating ensembles of models have been studied, including tech-

niques that combine the set of models in some linear fashion [1, 3, 4, 17, 24, 25, 27, 33, 35, 51,

54], e.g., majority or weighted voting, bagging, etc., techniques that employ referee functions

to arbitrate among the predictions generated by the classi�ers [7, 20, 22, 50, 21, 23, 34], e.g.,

arbiters, mixture of experts, etc., methods that rely on principal components analysis [29, 31],

e.g., SCANN, or methods that apply inductive learning techniques to learn the behavior and

properties of the candidate classi�ers [55, 7], e.g., stacking. Our distributed system is de-

signed to support any of these meta-learning methods. However, in this study we report

results obtained using three representative techniques: voting, stacking and SCANN.

With meta-learning to provide the means for combining information across separate data

sources (by integrating individually computed classi�ers), we developed a system called JAM.
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JAM facilitates the sharing of information among multiple sites without the need of ex-

changing or directly accessing remote data. The name JAM stands for Java Agents for

Meta-learning; Agents implemented in Java [2] generate and transport the trained classi-

�ers while Meta-learning underlines the key component of the system for combining these

classi�ers. The system improves the eÆciency of inductive learning when applied to large

amounts of data in wide area computing networks for a range of di�erent applications.

We applied JAM to the real-world data mining task of modeling and detecting credit

card fraud with notable success.1 Inductive learning agents are used to compute detectors

of anomalous or errant behavior over inherently distributed data sets and meta-learning

methods integrate their collective knowledge into higher level classi�cation models or meta-

classi�ers. By supporting the exchange of models or classi�er agents among data sites, our

approach facilitates the cooperation between �nancial organizations and provides uni�ed and

cross-institution protection mechanisms against fraudulent transactions.

The remainder of this paper is organized as follows. In Section 2 we describe the ar-

chitecture of JAM and the implementation aspects of the system. The description includes

details on the distributed protocols adopted and the scalability, portability, and extensibility

properties of the system. Sections 3 and 4 focus on the necessary changes of JAM as we

add support for two techniques, pruning and bridging. We developed pruning and bridging

to address two shortcomings of meta-learning, namely, the increased demand for run-time

system resources, and the inability to combine multiple models computed over distributed

data sets with di�erent schemas. Section 5 outlines the data mining task of detecting fraud-

ulent use of credit cards and summarizes the experiments and performance results. Finally,

Section 6 concludes this paper and discusses future research directions.

2 JAM System Architecture

The JAM system is designed around the idea of meta-learning to bene�t from its inherent

parallelism and distributed nature. Recall that meta-learning improves eÆciency by execut-

ing in parallel the same or di�erent serial learning algorithms over di�erent subsets of the

training data set. An early version of the architecture of JAM appeared in [53]. Here we

describe the �nal design and implementation details of this system architecture.

1The main purpose of this paper is to describe the system architecture of JAM. Additional multiple-model

experiments with results on other tasks and data sets can be found in [15, 14].
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JAM is architected as a distributed computing construct developed on top of OS en-

vironments. It can be viewed as a coarse-grain parallel application, with each constituent

process running on a separate database site. JAM is an agent based system that supports

the launching of learning, classi�er and meta-learning agents to distributed database sites.

Under normal operation, each JAM site (i.e., the database site) functions autonomously and

(occasionally) exchanges classi�ers with the rest. JAM is implemented as a collection of

distributed learning and classi�cation programs linked together through a network of JAM

sites. Each JAM site consists of:

� one or more local databases,

� one or more learning agents, or in other words machine learning programs that may

migrate to other sites as Java objects, or be locally stored as native programs callable

by Java agents,

� one or more meta-learning agents, or programs capable of combining a collection of

classi�er agents,

� a repository of locally computed and imported base- and meta-classi�er agents,

� a local con�guration �le and,

� a Graphical User Interface and Animation facilities or a Text-based User Interface.

The JAM sites have been designed to collaborate2 with each other to exchange classi�er

agents computed by learning agents. When JAM is initiated, local or imported learning

agents execute on the local database to compute the local classi�ers. Each JAM site may

then import (remote) classi�ers from its peer JAM sites and combine these with its own local

classi�ers using the local meta-learning agent. Finally, once the base and meta-classi�ers are

generated, the JAM systemmanages the execution of these modules to classify new unlabeled

data sets. Each JAM site stores its base- and meta-classi�ers in its classi�er repository, a

special database for classi�ers. These actions take place at all JAM sites simultaneously and

independently.

The owner (user) of a JAM site administers the local activities via the local con�guration

�le. Through this �le, he/she can specify the required and optional local parameters to

2A JAM site may also operate independently without any changes.
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perform the learning and meta-learning tasks. Such parameters include the names of the

databases to be used, the policy to partition these databases into training and testing subsets,

the local learning agents to be dispatched, etc. Besides the static3 speci�cation of the

local parameters, the owner of a JAM site can also use JAM's graphical user interface and

animation facilities to supervise agent exchanges and administer dynamically the meta-

learning process. Through this graphical interface, the owner can access more information

such as accuracy, trends, statistics and logs and compare and analyze results in order to

improve performance. Alternatively, the owner has the option of using a command-driven

(text-based) interface to manage the JAM site.

The con�guration of the distributed system is maintained by a logically independent

module, the Con�guration Manager (hereinafter CM). The CM can be regarded as the

equivalent of a domain name server of a system. It is responsible for providing information

about the participating JAM sites and for keeping the state of the system up-to-date. The

logical architecture of the JAM system is presented in Figure 1. Notice, the CM runs on

Marmalade and three JAM sites Mango Bank, Orange Bank and Cherry Bank exchange

their base classi�ers to share their local view of the learning task. Mango, for example,

has acquired four base classi�ers (two are computed locally, one was imported from Orange

and one from Cherry) that may be combined in a meta-classi�er. The owner of the JAM

site controls the learning task by setting the parameters of the con�guration �le, i.e., the

algorithms to be used, the images to be used by the animation facility, the cross validation

and folding parameters, etc.

2.1 Con�guration Manager

The CM provides registration services to all JAM sites that wish to become members and

participate in the distributed meta-learning activity. When the CM receives an ACTIVE

request from a new JAM site, it veri�es both the validity of the request and the identity

of the JAM site. Upon success, it acknowledges the request and registers the JAM site as

active. Similarly, the CM can receive and verify an INACTIVE request; it notes the requestor

JAM site as inactive and removes it from its list of members. The CM, maintains the list of

active member JAM sites that seek to establish contact and collaborate with peer JAM sites.

By issuing a special QUERY request to the CM, registered JAM sites can obtain this list

3Before the beginning of the learning and meta-learning tasks.
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Figure 1: The architecture of the meta-learning system.

of active members. Apart from ACTIVE, INACTIVE and QUERY, the CM also supports

UPDATE requests that allow JAM sites to change their entries in the list of active members.

The complete set of the di�erent type of messages supported by the CM are described in

Table 1. In addition, the table includes the acknowledgment messages from the CM to the

client JAM site requests.

Table 1: Types of messages supported by the CM
Message Header Message body Direction Description

JAM ACTIVE Identity, contact information incoming Join the group
JAM ACK ACTIVE outgoing Join acknowledged
JAM INACTIVE Identity incoming Departure noti�cation
JAM ACK INACTIVE outgoing Departure acknowledged
JAM QUERY Identity incoming Request list of sites
JAM ACK QUERY List of JAM sites outgoing Return list
JAM UPDATE Identity, new information incoming Change JAM sits entry
JAM ACK UPDATE outgoing Update successful

Using a single CM within JAM is not a limiting factor to the scalability of the system.

The bulk of the communication between the CM and the JAM sites occurs during the

initialization stage of each site. On average, a JAM site is expected to issue UPDATE and

QUERY requests fairly infrequently. Moreover, the overhead incurred due to the transfer of

information between the sites and the CM is minimal. (Each entry in the list of active JAM
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sites accounts for only a few bytes.)

The CM is a logical unit. Hence, even if the number of participating data sites increases,

the CM can be decomposed and distributed across several hosts in a straightforward manner.

The architecture follows that of the name servers in a network environment. A single server

is responsible for a limited number of network devices; if the address of a device is unknown

to a name server, that server will contact another server in an attempt to resolve the name.

2.2 JAM Site Architecture

Unlike the CM, which provides a passive con�guration maintenance function, the JAM sites

are the active components of the meta-learning system. They manage the local databases,

obtain remote classi�ers, build the local base and meta-classi�ers and interact with the JAM

user. JAM sites are implemented as multi-threaded Java programs with a special GUI.

Each JAM site is organized as a layered collection of software components shown in

Figure 2. In general, the system can be decomposed into four separate subsystems, the

User Interface, the JAM Engine and the Client and Server subsystems. The User Interface

(upper tier) materializes the front end of the system, through which the owner can de�ne

the data mining task and drive the JAM Engine. The JAM Engine constitutes the heart

of each JAM site by managing and evaluating the local agents, by preparing/processing the

local data sets and by interacting with the Database Management System (DBMS), if one

exists. Finally, the Client and Server subsystems compose the network component of JAM

and are responsible for interfacing with other JAM sites to coordinate the transport of their

agents. Each site is developed on top of the JVM (Java Virtual Machine), with the possible

exception of some agents that may be used in a native form and/or depend on an underlying

DBMS. A Java agent, for instance, may be able to access a DBMS through JDBC (Java

Database Connectivity). The RMI registry component displayed in Figure 2 corresponds to

an independent Java process that is used indirectly by the JAM server component and is

described later.

2.2.1 User Interface and JAM Engine Components

Upon initialization, a JAM site undertakes a series of tasks; it starts up the GUI on a

separate thread; it registers with the CM; it instantiates the JAM Client and �nally spawns

the JAM Server thread for listening for requests/connections from the outside. The necessary
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Figure 2: JAM site layered model.

information to carry out these tasks (e.g., the host name and the port number of the server

socket of the CM, required URLs, the path names to local agents and data sets, etc.) is

maintained in the local con�guration �le and is administered by the owner of the JAM site.

JAM sites are event-driven systems; they wait for the next event to occur, either a com-

mand issued by the owner via the GUI, or a request from a peer JAM site via the JAM

Server. Such tasks can be any of JAM's functions, from computing a local classi�er and

starting the meta-learning process to sending the local classi�ers to peer JAM sites, to re-

questing remote classi�ers from other sites or to reporting the current status and presenting

computed results. GUI commands can either be single-action instructions (e.g., partition

the data set into training and test sets under speci�c constraints) or batch-mode instructions

(e.g., perform a 10-fold cross validation meta-learning experiment).4 A GUI command acti-

vates the JAM Engine, which will subsequently translate it, verify its validity and execute

it. Depending on the nature of this command, the JAM Engine may, in turn, call the JAM

Client. For example, on an \import and meta-learn remote classi�er agents" command,

the JAM Engine would rely on the JAM Client component to obtain the remote classi�er

agents. The status of the system and the �nal outcome of the actions of the JAM Engine

are returned and reported to the owner through the GUI.

Figure 3 presents a snapshot of the JAM system. In this example, three JAM sites, Mar-

malade, Strawberry and Mango collaborate in order to share and improve their performance

4The Text-based user interface provides a similar, albeit more limited set of commands. A �ne control of

the JAM site, however, is still possible through the local con�guration �le.
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Figure 3: Snapshot of the JAM system in action: Marmalade is building the meta-classi�er.

in diagnosing hypothyroid-related problems [30]. The snapshot is taken from \Marmalade's

point of view". It displays the system during the meta-learning phase. Notice that Mar-

malade has established that Strawberry and Mango are its potential peer JAM sites by

acquiring information through a QUERY request to the CM.

The right side of panel of the GUI keeps information about the current stage of the

system and displays the settings of several key parameters, including the Cross-Validation

fold, the Meta-Learning fold (i.e., the data partitioning scheme used in the meta-learning

stage), the Meta-Learning level, the names of the local learning and meta-learning agents,

etc. The bottom part of the panel logs the various events, and records the current status of

the system. In this instance, the Marmalade JAM site partitions the hypothyroid database

into the hypo.1.bld and hypo.2.bld data subsets according to the 2-fold Cross Validation

Scheme. During the learning phase of the �rst fold, Marmalade computes the local classi�er

Marmalade.1 by applying the ID3Learner agent on hypo.1.bld. Next, it imports the remote

classi�ers, noted by Strawberry.1 and Mango.1 and begins the meta-learning process. In
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this experiment, each site contributes a single classi�er agent. During the meta-learning

phase of the �rst fold, Marmalade applies the three base classi�er agents Mango.1, Mar-

malade.1 and Strawberry.1 on the hypo.1.bld data subset using the 2-fold meta-learning

scheme([6]), to generate the meta-level training set. The �nal ensemble meta-classi�er,

noted as Meta-Classi�er.1 is computed via the stacking method using the \native" bay train

Bayesian learning algorithm over this meta-level training set.

Marmalade will employ the Meta-Classi�er.1 to predict the classes of the hypo.2.bld test

set as dictated by the 2-fold Cross Validation evaluation scheme. If Cross Validation was set

to one, the JAM site would use Meta-Classi�er.1 to classify single data instances (in this case

unlabeled medical records), or optionally label a separate test set provided by the owner.

The snapshot of Figure 3 displays the system during the animated meta-learning pro-

cesses, where JAM's GUI moves icons within the Animation Tabbed folder of the JAM site

displaying the construction of the new meta-classi�er. Detailed information (not shown here)

about the participating JAM sites and the local hypothyroid data sets are found inside the

Group tabbed folder and the Data tabbed folder respectively. In addition, the User Interface

provides a Classi�er Tabbed folder and a Predictions Tabbed folder. The Classi�er Tabbed

folder allows the owner of the JAM site to study the base- and meta-classi�ers more closely,

while the Predictions Tabbed folder lets him/her administer the test phase, e.g., subject the

various models in batch testing (generate predictions on multiple test instances of a test �le)

or single testing (classify one example at a time) to evaluate the performance of the derived

classi�ers and meta-classi�ers.

2.2.2 JAM Client and JAM Server Components

The JAM sites are designed to work in parallel and autonomously. In particular, the JAM

system is architected as a collection of loosely coupled processes (the JAM sites), each

performing its own local data mining (in this case, learning/classi�cation) and occasionally

collaborating with its peer processes to import or export local classi�ers. The design follows

that of a client-server architecture. Speci�cally, each JAM site can operate simultaneously

as a Client site requesting learning or classi�er agents from remote servers and as a Server

site responding to similar requests from other sites.

To avoid synchronization barriers and minimize busy-wait scenarios, both the Client and

the Server components are implemented in a multi-threaded fashion. Figure 4 shows JAM
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Figure 4: JAM as a Client-Server architecture.

site B acting as a Client to sites A and C and as a Server for site A. In this example, the

JAM Engine of site B instructs the JAM client to obtain three remote classi�er agents, one

from JAM Site A and two from JAM Site C. To service the Engine's request, the Client

spawns a main Controller thread that creates a local Queue (i.e., a bu�er) for storing the

results (e.g., the returned classi�ers) and spawns, in turn, three Worker threads, one for

each classi�er agent. The bene�t of this design is that the JAM sites are capable of issuing

multiple requests to their peer JAM sites in parallel. Upon completion, each Worker thread

obtains the lock of the Queue, inserts the result into the Queue and releases the lock. Every

t seconds, currently set at 5 seconds, the Controller thread obtains the lock of the Queue

and conveys any returned results to the JAM Client. When the complete set of results

is available, the JAM Client returns it to the JAM Engine, which continues with normal

execution.

Besides collecting these results, the Controller thread is responsible for monitoring its

Worker threads' progress. To account for the probability of site failures and network outages,

for example, the Controller thread imposes a hard limit as to how long it may wait for a

response from itsWorker threads. AnyWorker thread violating this limit is deemed blocked

and is killed. In such a case, the Controller thread and, subsequently, the JAM Client provide

to the calling JAM Engine an appropriate error code along with the partial set of results.

At the opposite end, JAM Servers are responsible for satisfying requests. As with the
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Table 2: Interface published by the JAMServer
Method call Method parameters Return result

JAMGetDBDirectory Vector of local database names
JAMGetDBProperties DBName Schema description
JAMGetAgentDirectory DBName Directory of local agents
JAMGetAgent TimeStamp Single (Learner/Classi�er) agent
JAMGetBaseLearnersNames Vector of BaseLearners' names
JAMGetBaseLearners LearnerNames, TimeStamp Vector of BaseLearners
JAMGetMetaLearnersNames Vector of MetaLearners' names
JAMGetMetaLearners MetaLearnerNames, TimeStamp Vector of MetaLearners
JAMGetClassi�ers DBName, AlgorithmNames, Vector of Classi�ers

IsMeta, FoldNumber, TimeStamp

JAM Client, the JAM Server is also multi-threaded to support multiple calls simultaneously,

both local (e.g., from the JAM Engine), and remote (from other JAM Sites). This version

of the JAM Server is built upon the existing Remote Method Invocation (RMI) technology

o�ered as part of Sun's Java package. As the name implies, RMI enables the invocation

of methods of remote Java objects from other virtual machines, possibly on di�erent hosts.

JAM Clients invoke remote object methods through references provided by the RMI reg-

istry [2].

An RMI Registry corresponds to a name server at the server side that allows remote

clients to get a reference to server objects. Typically, there is one RMI Registry for every

JAM site. The RMI Registry and the JAM site run as separate processes sharing the same

host machine. Upon initialization, the JAM server uses the RMI Registry to bind its list

of available objects to names. Subsequently, a JAM Client can access and lookup up the

server objects at the RMI Registry based on the Uniform Resource Locator (URL), and

invoke the server methods as needed. By integrating RMI into JAM and by de�ning the set

of object methods exported by the JAM Servers, we speci�ed the communication protocol

among sites. Then we materialize it via remote object method calls from the JAM Clients to

the JAM servers. In addition to being a clean and straightforward approach, RMI provides

the additional bene�t of being extensible; by allowing the JAM Servers to de�ne and export

additional methods through the RMI Registry, the communication protocol can be extended

to support new functionality. The interface (the server object methods) provided as part of

the current design of the JAM server is presented in Table 2.

The �rst four rows of the table contain the necessary and suÆcient methods that need

to be de�ned by a JAM Server. The �rst two methods provide the means for a JAM Client
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to access remote database information, whereas the next two rows describe the methods

for requesting the list of available agents and obtaining the desirable remote learning or

classi�er agents. The design of the interface of the JAM Server, however, is extended with

additional methods to allow alternative, more 
exible and easier use, i.e., it provides methods

for requesting the names of the base-learning and meta-learning algorithms, for acquiring

the base-learning and meta-learning agents and for obtaining the needed classi�er agents.

The learning and classi�er agents are uniquely identi�ed by the TimeStamp index, i.e.,

an index created at the instant each agent is inserted in the JAM Site repository (discussed

later in more detail). Besides the TimeStamp index other information associated with each

agent include:

1. the name of learning algorithm,

2. the cross validation fold number (zero for learning agents),

3. a boolean parameter distinguishing whether it is a base-level of meta-level agent and

4. the name of the database over which it is computed (only for classi�er agents).

The JAM Server is designed to provide to a JAM Client all of its agents that match

the parameters of the calling methods. For instance, if DBName is set to hypo, IsMeta

is set to false, and FoldNumber is set to one, and both AlgorithmNames and TimeStamp

are set to null, the JAMGetClassi�ers method will return all base classi�ers computed over

the hypothyroid database under the �rst cross-validation fold, independently of the learning

algorithm or the time they were created. An error code and a null vector are returned in

case the input parameters of a remote method call are con
icting.

To avoid exposing the wrong agents when con�dentiality issues and distribution rights

are of matter, we followed the conservative approach and designed the JAM Server to export

only its local learning and classi�er agents and not any agents acquired from other sites.

Nevertheless, it is easy to relax these constraints, if required, by extending the TimeStamp

index to include the name of the remote site from where an agent originates. This change

would enable JAM Clients to index and obtain any agent that resides at a particular JAM

Server, regardless of it being remote (obtained from a peer JAM Server) or local to that

Server.
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Each JAM Server interacts with the local Repositories that maintain the agents and

make them available as required. The JAM Engine instantiates a separate Repository object

for each local data set, i.e., for each DBName. The Repository consists of a database of

local (introduced/installed by the owner) and remote (transferred from another site) learning

agents, and local and remote classi�er agents. By local classi�er agents we mean the classi�ers

computed over a local data set by local or remote learning agents; by remote classi�er agents

we denote the classi�ers derived over remote data either by remote learning agents or by local

learning agents that migrated at the remote site. A learning agent can represent either a

base-learning algorithm or a meta-learning technique. Similarly, a classi�er agent can either

be a single base-classi�er or a meta-classi�er that combines multiple classi�er agents.

Table 3: JAM site Repository Interface
Method call Method parameters Description

JAMInsert JAMSite, AlgorithmName, Add an agent to the Repository
isMeta, FoldNumber, TimeStamp

JAMDelete JAMSite, TimeStamp Remove an agent from the Repository
JAMGetAgent JAMSite, TimeStamp Return a speci�c agent (Learner/ Classi�er)

(Learner or Classi�er)
JAMLoad URL to storage location Populate the Repository with existing

agents from previous runs
JAMGetLearner JAMSite, TimeStamp Return a speci�c Learner agent
JAMGetClassi�er JAMSite, TimeStamp Return a speci�c Classi�er agent
JAMSelect JAMSite, AlgorithmName, Return a vector of agents

FoldNumber, isMeta that match the input parameters

The Repository supports a small number of primitives for accessing and updating the

available agents, as described in Table 3. Each entry in the database, i.e., a learning or a

classi�er agent, is indexed by the name of its originating JAM site and a time stamp created

upon entrance into that database. Other attributes de�ned for each entry in the Repository

include the name of the learning algorithm, the fold number that generated a speci�c classi�er

agent in a k-fold Cross-Validation experiment (this number is set to zero for learning agents)

and the boolean attribute isMeta that distinguishes base-level from meta-level agents.

JAMInsert, JAMDelete and JAMGetAgent are the main primitives for adding, removing

and retrieving agents. Similar to the JAM Server interface, however, the Repository provides

a second set of primitives to support additional functionality; JAMLoad provides the means

to populate the Repository with existing agents that were computed and stored during past

executions of the JAM system; JAMGetLearner and JAMGetClassi�er de�ne alternative

methods to access the learning and classi�er agents respectively; and �nally, JAMSelect
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returns all agents that match the parameters of the calling method.

2.3 Agents

JAM's extensible plug-and-play architecture allows snap-in learning agents. The learning and

meta-learning agents are designed as objects. JAM provides the de�nition of an abstract

parent agent class and every instance agent object (i.e., a program that implements a learning

algorithm ID3, Ripper, CART [5], Bayes [13], Wpebls [11], CN2 [9], etc.) is then de�ned as

a subclass of this parent class. Through the variables and methods inherited by all agent

subclasses, the parent agent class describes a simple and minimal interface that all subclasses

have to comply to. As long as a learning or meta-learning agent conforms to this interface,

it can be introduced and used immediately as part of the JAM system. To be more speci�c,

a JAM learning agent needs to implement the following methods:

1. A constructor method with no arguments. The JAM Engine calls this method to

instantiate the agent, provided it knows its name (it is supplied by the owner of the

JAM site through the local con�guration �le or the GUI).

2. An initialize method. In most of the cases, the sub-classed agents inherit this method

from the parent agent class. Through this method, the JAM Engine supplies the

necessary arguments to the agent including the name of the training data set, the

name of the dictionary �le (also known as attribute �le), and the �le name of the

output classi�er, if required.

3. A buildClassi�er method. The JAM Engine calls this method to trigger the agent to

learn (or meta-learn) a classi�er from the training data set.

4. A getCopyOfClassi�er method. This method is used by the JAM Engine to obtain the

newly built classi�er. The derived Classi�er, a Java object itself, can be subsequently

transferred and \snapped-in" at any participating JAM site. Hence, remote agent

dispatch is easily accomplished.

5. Additional methods, such as getAlgorithmName, getDBName, getDictionaryExtension,

etc. that facilitate the access of agent-speci�c and task-speci�c information. These

methods are de�ned at the Learner class level and inherited by the sub-classed agents.
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BayesLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

BayesLearner()

Probabilistic

RipperLearner

Classifier getCopyOfClassifier()

boolean BuildClassifier()

RipperLearner()

Rule-Based

Classifier getCopyOfClassifier()

boolean BuildClassifier()

CartLearner
CartLearner()

Decision Tree

Classifier getClassifier()  {

Learner

boolean BuildClassifier()
Classifier getCopyOfClassifier()

return classifier; 
}
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boolean BuildClassifier()

ID3Learner()

Decision Tree

Figure 5: The class hierarchy of Learning agents.

The class hierarchy (only methods are shown) for �ve di�erent learning agents is presented

in Figure 5. ID3, Bayes, Wpebls, CART and Ripper re-de�ne the buildClassi�er and get-

CopyOfClassi�er methods but inherit the initialize method from their parent learning agent

class as well as the methods for acquiring speci�c information (e.g., getAlgorithmName).

Due to this design, no task- or algorithm-speci�c information (such as the name of the

algorithm, program options, input and output parameters, etc) is present in the source code

of the JAM Engine. As a result, the system need not be re-compiled if a new algorithm is

introduced. Instead, the JAM Engine can access an agent by calling the rede�ned methods

of the instantiated sub-classed objects of the abstract parent Learner class. The additional

methods (e.g., getAlgorithmName, etc) described earlier, are de�ned as a means to expose

information that is speci�c to each sub-classed object (e.g., the name of the learning algo-

rithm).

The abstract MetaLearner class follows the Learner class design, but with the addition of

an extra baseClassi�ers data member and a prepareMLSet method. The baseClassi�ers data

member corresponds to the vector of classi�ers combined by the meta-learning algorithm

and the prepareMLSet method implements the generic function of composing the meta-level

training set based on the predictions of the base classi�ers on the validation set.Di�erent

meta-learning schemes, such as Stacking, Voting, SCANN, etc., can be introduced in JAM by

sub-classing the MetaLearner class and by de�ning the buildMetaClassi�er method (instead

of the buildClassi�er method of the Learner class) and inheriting or rede�ning (if needed)
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the prepareMLSet method.

Base- and meta-classi�ers are de�ned as Java objects as well. JAM provides the de�nition

of the abstract parent Classi�er agent class and every instance agent object (base-classi�er of

meta-classi�er) is de�ned as a subclass of this parent class. A Classi�er agent is the product

of a Learner or MetaLearner agent when applied to a data set. As with the Learner and

MetaLearner classes, as long as a Classi�er agent conforms to the speci�c interface, it can be

introduced and used immediately as part of the JAM system. Speci�cally, a JAM Classi�er

agent needs to implement the following methods:

1. A constructor method. A sub-classed object of the Learner class calls this method to

instantiate an object of the corresponding Classi�er subclass.

2. A getClassi�erEngine method. It returns an object of the Classi�erEngine class, that

is subsequently used to classify new examples. More speci�cally, the Classi�erEngine

class provides the classifyFile method for generating batch predictions on a test set

and the classifyItem method to classify a single instance.

The Classi�erEngine object is made part of Classi�er to accommodate a number of

existing learning programs of the public domain that require that a data dictionary

accompanies each training or test set. This requirement compels Classi�er agents

to read the data dictionary multiple times when classifying multiple single instances.

The Classi�erEngine object, allows the decoupling of the parsing of the data dictionary

information and classi�cation process, thus making it possible to read data dictionaries

only once.

3. A displayClassi�er method. It is de�ned by each sub-classed Classi�er agent and is

tailored to the speci�c representation of the learning algorithm and the particular

implementation. The method is called from within the Classi�er Tabbed folder when

the owner seeks to study the internal of the Classi�er agent.

4. An isMetaClassi�er method. It is used to distinguish between base-classi�ers from

meta-classi�er agents.

5. A setBaseClassi�ers and a getBaseClassi�ers methods for populating and retrieving

the base Classi�er agents from the baseClassi�ers vector of the meta-classi�ers. For

base classi�ers, both methods return null values.
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Figure 6: The class hierarchy of (base- and meta-) Classi�er agents.

6. Additional methods such as getOriginatingJAMSite, getDBName, getCVFold, etc. that

provide detailed information regarding the origin and the conditions a classi�er was

computed.

The class hierarchy (only methods are shown) for �ve di�erent classi�er agents (base- and

meta-classi�ers) is presented in Figure 6. ID3 and Bayes, represent base-classi�er objects

while Stacking, Voting and SCANN correspond to meta-classi�er objects. All subclasses re-

de�ne their constructors and the algorithm-speci�c getClassifyEngine and displayClassi�er

methods, but inherit other methods such as isMetaClassi�er, getBaseClassi�ers, getOrigi-

natingJAMSite, etc. The de�nition of the Classi�erEngine class used by the Classi�er class

follows a similar approach. For each Classi�er subclass, a Classi�erEngine subclass tailors its

classifyFile and classifyItem methods to execute its own base- or meta-classi�cation scheme.

The Learning and Classi�er agents are transferred among the various data sites using

Java's Object Serialization capabilities [2]. Object Serialization extends Java's Input and

Output classes with support for objects by marshaling and unmarshaling them to and from

a stream of bytes, respectively. To eÆciently transport Classi�er agents across JAM sites,

we overrode the default object serialization mechanism by customizing the writeObject and

readObject methods for each agent subclass. Methods writeObject and readObject are part

of Java's ObjectOutputStream and ObjectInputStream class de�nitions respectively for se-

rializing and de-serializing a given object through an RMI or socket connection.
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2.4 Portability

We used the Java technology to build the infrastructure and the various components of

the JAM system, including the speci�c agent operators that compose and spawn new agents

from existing learning agents, the implementation of the User Interface (Graphical and Text-

based), the animation facilities and most of the machine learning algorithms and the classi�er

and meta-learning agents.

Java provides the means to develop a system that is capable of operating under di�erent

hardware and software con�gurations (e.g., across the Internet), as long as the Java Virtual

Machine (JVM) [26] is installed on these environments. Moreover, by adopting the meta-

learning framework as the unifying machine learning approach, JAM constitutes an algorithm

independent data mining system. Meta-learning has the advantage of not being constrained

to any speci�c representation, internal structures or strategies of the learning algorithms,

but only to the output (predictions) of the individual classi�ers. The platform independence

of Java and the algorithm independence of meta-learning make it easy to port JAM and

delegate agents to participating sites. As a result, JAM has been successfully tested on

the most popular platforms including Solaris, Windows and Linux simultaneously, i.e., JAM

sites can import and utilize classi�ers that are computed over di�erent platforms.

In cases where Java's computational speed is of concern, JAM is designed to also support

the use of native (e.g., C or C++) learning algorithms to substitute slower Java implemen-

tations, a bene�t stemming from JAM's extensible design. Native learning programs can

be embedded within appropriate Java wrappers to interface with the JAM system and can

subsequently be transfered and executed at a di�erent site, provided, of course, that both

the receiving site and the native program are compatible.

2.5 Extensibility

The independence of JAM from any particular learning or meta-learning method, in conjunc-

tion with the object oriented design ensure the system's capability to incorporate and use

new algorithms and tools. As discussed in Section 2.3 introducing a new technique requires

the sub-classing of the appropriate abstract class and the encapsulation of the tool within

an object that adheres to the minimal interface. In fact, most of the existing implemented

algorithms have similar interfaces already.

This plug-and-play characteristic makes JAM a powerful and extensible data mining facil-
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ity. It is exactly this feature that allows users to employ native programs within Java agents

if computational speed is of concern. For faster prototype development and proof of concept,

for example, we implemented the ID3 and CART learning algorithms as full Java agents and

imported and used the Bayes, Wpebls, Ripper and CN2 learning programs in their native

(C++) form. For the latter cases, we developed program-speci�c Java wrappers that de�ne

the abstract methods of the parent classes and are responsible for invoking the executables

of these algorithms. Furthermore, to support the transfer of native classi�ers across multiple

sites, we overrode the default writeObject and readObject methods to transport �les instead

of objects. Contrary to the Java classi�ers that are represented as objects with the ability to

execute, native classi�ers are, in their majority, passive constructs. By storing these native

classi�ers into conventional �les and by re-de�ning the writeObject and readObject methods

to transport �les we achieve transparency between Java and native programs.

3 Pruning meta-classi�ers

The bene�ts of meta-learning in distributed data mining come at the expense of an in-

creased demand for run-time system resources. Meta-classi�ers can be de�ned recursively

as collections of classi�ers structured in multi-level trees [8], which suggests that the �nal

ensemble meta-classi�er may consist of a large collection of base classi�ers. Hence, to clas-

sify unlabeled instances, predictions need to be generated from all base classi�ers before

the meta-classi�er can produce its �nal classi�cation. This results in signi�cant decrease in

classi�cation throughput (the rate at which a stream of data items can be piped through and

labeled by a meta-classi�er) and increased demand for system resources (including memory

to store base classi�ers).

To alleviate the problem, we investigated the e�ects of pruning, i.e. discarding certain

base classi�ers. The objective of pruning was to compute partially grown meta-classi�ers

(meta-classi�ers with pruned sub-trees) that are more eÆcient and scalable and at the same

time achieve comparable or better predictive performance results than fully grown (un-

pruned) meta-classi�ers. We introduced two stages for pruning meta-classi�ers, the a-priori

pruning or pre-training pruning and the a-posteriori pruning or post-training pruning stages.

Both levels are essential and complementary to each other with respect to the improvement

of the accuracy and eÆciency of the system.

A-priori pruning or pre-training pruning refers to the �ltering of the classi�ers before they
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are combined. Instead of combining classi�ers in a brute force manner, with pre-training

pruning we introduce a preliminary stage for analyzing the available classi�ers and qualifying

them for inclusion in a combinedmeta-classi�er. Only those classi�ers that appear (according

to one or more pre-de�ned metrics, e.g. accuracy, true positive, cost, diversity etc.) to be

most \promising" participate in the �nal meta-classi�er. Conversely, a-posteriori pruning

or post-training pruning, denotes the evaluation and pruning of constituent base classi�ers

after a complete meta-classi�er has been constructed.

3.1 Incorporating pruning in JAM

The algorithmic details of pruning is outside the scope of this paper. The details and an

extensive empirical evaluation of three pre-training and two post-training pruning algorithm

have appeared elsewhere [38, 40, 41, 43, 44]. Instead, we focus on the integration of pruning

with JAM and the resulting architecture design.

To integrate the various techniques within JAM and at the same time be consistent with

the system's objectives, we followed an object-oriented design for pruning as well. As with

the Learner and Classi�er classes (Section 2.3), JAM provides the abstract parent Prune

class and de�nes several class members including two data members, namely the vector of

base classi�ers objects and the meta-learning agent object, and one method member, i.e.

the selectClassi�ers abstract method. Then every pruning technique can be subsequently

de�ned by subclassing this parent class and by implementing the selectClassi�ers method.

This method is responsible for evaluating the candidate classi�ers and for returning the

new vector of the selected classi�ers; di�erent implementations of this method, materialize

di�erent pruning algorithms. To deploy one of the pruning methods JAM simply needs to

instantiate and initialize the corresponding subclass with the appropriate arguments (the

vector of candidate base classi�ers agents, the meta-learning agent, the stopping criteria,

etc.) prior to meta-learning, and invoke the rede�ned selectClassi�ers method. As long as a

pruning object conforms to the interface de�ned by the abstract parent Prune class, it can

be introduced and used immediately as part of the JAM system.
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4 Combining incompatible classi�ers

In meta-learning and distributed data mining is assumed that all base classi�ers are trained

over databases with identical schema [12]. This however, is not always the case. Di�erences

in the type and number of attributes among di�erent data sets are not uncommon. Even

minor di�erences in the schema between databases derive incompatible classi�ers, i.e., a

classi�er trained on one database cannot be applied on the another database with di�erent

formats. Yet, these classi�ers may target the same concept.

In the credit card fraud detection problem, for instance, two institutions seeking to incor-

porate in their system useful information that would otherwise be inaccessible, may decide

to exchange their classi�ers. Indeed, for each credit card transaction the two institutions

record similar information. However, they also include speci�c �elds containing important

information that each has acquired separately and which provides predictive value in deter-

mining fraudulent transaction patterns. As a result, a classi�er from one institution cannot

be applied to the data of the other institution. In a di�erent scenario where databases and

schemas evolve over time, it may be desirable for a single institution to combine classi�ers

from both past accumulated data with newly acquired data. To facilitate the exchange of

knowledge and take advantage of incompatible and otherwise useless classi�ers, we devised

methods that bridge the di�erences imposed by the di�erent schemas. The reader is advised

not to confuse this with schema integration over federated/mediated databases where the

e�ort is towards the de�nition of a common schema across multiple data sets.

4.1 Incorporating Bridging Agents in JAM

The basic idea of our approach, is to use special bridging agents that can be trained at one

database to predict the values of the missing information of the other database. In this

case, the target attribute is not the class attribute of that database, but one of the missing

(uncommon) attributes. To approximate the values of that attribute, the predictive model

relies either upon the values of the common attributes (e.g., it can be a classi�cation or

regression model), or upon a user-de�ned rule (when resolving semantic di�erences). In this

manner, these bridging agents compose an intermediate layer that alleviates the di�erences

among database with di�erent schemas.The details of our bridging technique and a extensive

empirical study is reported in [37]. Here, we focus on the architectural design of JAM and
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the manner the bridging agents integrate with the system.

JAM provides the de�nition of the parent Bridge class. A bridging agent object is an

instance of this class. Central to the de�nition of the bridging agent object is the Classi�er

object (Section 2.3). After all, a bridging agent is, itself, a predictive model that is trained

to estimate the value of a target attribute. The only di�erence is that the target attribute

is a missing (uncommon) attribute of the database.

In addition to the Classi�er object, a bridging agent includes other components as well.

The parent Bridge class de�nes a method for pre-processing the data sets to adhere to

the speci�c format expected by its Classi�er object. For instance, the Classi�ers object

may expect to read the data sets as 
at �les with the last column allocated for the target

attribute, while the underlying data set has positioned the target class in the �rst column.

The Bridge class also de�nes a method for populating the target (missing) attribute with the

predicted values and a method for post-processing the resulting data sets to �t the format

expected by the classi�er agent.

To integrate the notion of bridging agents within JAM in a manner that is consistent

with the design of the system, we altered the de�nition of the Classi�er class (Section 2.3)

to also include a vector of Bridge objects. The vector allocates one Bridge object for each

attribute of the originating JAM site that is not present at the destination JAM site. When

a JAM Client requests a Classi�er object from another JAM site, the JAM Server serializes

and sends each entry of the vector of Bridge objects as part of serializing and sending the

requested Classi�er agent. By de-serializing the receiving data stream, the JAM Client

populates the vector of the Bridge objects and re-composes the Classi�er agent. The Bridge

agents are created upon request of Classi�er objects. Speci�cally, the current version of the

JAM system implements the following protocol:

� The JAM Client of a JAM site A issues a JAMGetClassi�ers call to the JAM Server

of another JAM site B to request a classi�er C.

� The JAM Server of B requests the database schema description of JAM site A via its

JAM Client and a JAMGetDBProperties call.

� A's JAM Server responds with the schema description.

� B's JAM Server sorts alphabetically the attribute names of A's database and compares

them to the attribute names of its local database. For each attribute that is not present
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in A, the JAM Server computes a bridging agent and inserts it in the vector of Bridge

Objects of classi�er C. The particular method used for generating a bridging agent

(learning algorithm, regression technique, interpolation, etc.) is decided by the owner

of JAM site B.

� B's JAM server returns classi�er C and its bridging agents to A's JAM client.

The protocol is designed to comply to the interface published by JAM servers (see Ta-

ble 2). It is possible to suppress or eliminate the second and third steps of the protocol in a

future release of the JAM system, by allowing JAM Servers to cache the schema description,

and/or by overloading the JAM Server interface (see Table 2) to support a JAMGetAgent and

a JAMGetClassi�ersmethods that accept schema descriptions as input parameters (provided

by the requesting JAM Client). Identifying attributes with syntactic or semantic di�erences

when attribute names are identical, or distinguishing situations where names are di�erent

when in fact the attributes are the same, has not been addressed in this work. It is a matter

of future research that entails the study and development of methods and languages for

declaring and formally de�ning the schema of each database.

5 Applying JAM in Fraud Detection

The traditional way to defend �nancial information system has been to protect the routers

and network infrastructure. Furthermore, to intercept intrusions and fraudulent transactions

that inevitably leak through, �nancial institutions have developed custom fraud detection

systems targeted to their own asset bases. Recently however, banks have come to realize that

a uni�ed, global approach that involves the periodic sharing of information regarding fraud-

ulent practices is required. Here, we employ the JAM system as an alternative approach that

supports the cooperation among di�erent institutions and consists of pattern-directed infer-

ence systems that use models of anomalous or errant transaction behaviors to forewarn of

fraudulent practices. This approach requires the analysis of large and inherently distributed

databases of information about transaction behaviors to produce models of \probably fraud-

ulent" transactions. An orthogonal approach to modeling transactions would be to model

user behavior. An application of this method, but in cellular phone fraud detection has been

examined in [16].
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The key diÆculties in our strategy are: �nancial companies do not share their data for

a number of (competitive and legal) reasons; the databases that companies maintain on

transaction behavior are huge and growing rapidly; real-time analysis is highly desirable to

update models when new events are detected and easy distribution of models in a networked

environment is essential for up-to-date detection.

To address these diÆculties and thereby protect against electronic fraud our approach

has two key component technologies, both provided by JAM: local fraud detection agents

that learn how to detect fraud within a single information system, and an integrated meta-

learning mechanism that combines the collective knowledge acquired by the individual local

agents. Thus, meta-learning allows �nancial institutions to share their models of fraudulent

transactions without disclosing their proprietary data. This way their competitive and legal

restrictions can be met, but they can still share information. Furthermore, by supporting

the training of classi�ers over distributed databases, JAM can substantially reduce the total

learning time (parallel learning of classi�ers over (smaller) subsets of data). The �nal meta-

classi�ers can be used as sentries forewarning of possible fraud by inspecting and classifying

each incoming transaction.

To validate the applicability of this approach in the security of �nancial information

systems we experimented with two data sets of credit card transactions supplied by two

di�erent �nancial institutions. By way of summary, we found that JAM, as a pattern-

directed inference system constitutes a protective shield against fraud with the potential

to exceed the performance of existing fraud detection techniques. The full details of the

experiments are discussed in [36]. Next we present a summary of that evaluation.

5.1 Experimental Setting

We employed �ve inductive learning algorithms in our experiments, Bayes, C4.5, ID3,

CART and Ripper. Bayes implements a naive Bayesian learning algorithm described in [32],

CART [5], ID3 [48] and its successor C4.5 [49] are decision tree based algorithms, and Rip-

per [10] is a rule induction algorithm. We used multiple versions of decision tree algorithms

for their property to generate diverse classi�ers.

Then we employed eight di�erent meta-learning techniques, based on the Voting, Stacking

and SCANN methods.Speci�cally, we applied the two variations of voting, majority and

weighted, the �ve learning algorithms (Bayes, C4.5, ID3, CART, Ripper) as meta-learning

24



algorithms for stacking and the SCANN meta-learning method.

We obtained two databases (70MB approximately) from Chase and First Union banks,

both members of FSTC (Financial Services Technology Consortium), each with 500,000

records of credit card transaction data spanning one year (form October 1995 to September

1996). Chase bank data consisted, on average, of 42,000 sampled credit card transactions

records per month with a 20% fraud and 80% legitimate distribution, whereas First Union

data were sampled in a non-uniform (many records from some months, very few from others,

very skewed fraud distributions for some months) manner with a total of 15% fraud versus

85% legitimate distribution. The database schemas were developed over years of experience

and continuous analysis by bank personnel to capture important information for fraud detec-

tion. The records had a �xed length of 137 bytes each and about 30 numeric and categorical

attributes including the binary class label (fraud/legitimate transaction).

The �rst step in this data mining process involved the arduous process of cleaning and

preprocessing the given data sets. In this case, dealing with real-world data entailed missing

data �elds (records with fewer attributes), invalid entries (e.g., real values out of bounds),

legacy systems remains (e.g., in some cases, letters were used instead of signed numbers for

compactness), unde�ned classes for certain categorical attributes, con
icting semantics (e.g.,

in some cases for the same attribute, a zero denoted both a missing value, and the value 0),

etc. Furthermore, we simpli�ed the learning task by removing insigni�cant data (e.g., the

last four digits of the nine digit zip codes), by discretizing some real values (e.g., the time a

transaction took place) and by transforming attributes to more informative representations

(e.g., we replaced the date of the last payment with the number of days passed since the

transaction date).

Although preprocessing is an early task in the data mining process, we had to backtrack

(sometimes even after learning and meta-learning) and repeat it several times until we settled

on the �nal format for each data set.

5.2 Learning Tasks

Our task was to compute e�ective classi�ers that correctly discern fraudulent from legiti-

mate transactions. To evaluate and compare the base- and meta-classi�ers constructed, we
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adopted three metrics: the accuracy, the (TP �FP ) spread5 and a cost model �tted to the

credit card detection problem. Accuracy expresses the ability of a classi�er to give correct

predictions, (TP � FP ) denotes the ability of a classi�er to catch fraudulent transactions

while minimizing false alarms, and �nally, the cost model captures the performance of a

classi�er with respect to the goal of this application (stop loss due to fraud).

Credit card companies have a �xed overhead that serves as a threshold value for chal-

lenging the legitimacy of a credit card transaction. If the transaction amount amt, is below

this threshold, the transaction is authorized automatically. Each transaction predicted as

fraudulent require an \overhead" referral fee for authorization personnel to decide the �nal

disposition. This \overhead" cost is typically a \�xed fee" that we call $X. Therefore, even

if we could accurately predict and identify all fraudulent transactions, those whose amt is less

than $X would produce (X � amt) in losses anyway. In these experiments, we incorporated

the threshold values and referral fees in the detection process and we sought to produce

classi�ers and meta-classi�ers that maximize the total savings.

5.3 Summary Results

To generate our classi�cation models we distributed each data set across six di�erent data

sites (each site storing two months of data) and we applied the �ve learning algorithms

on each month of data, therefore creating 60 classi�ers (10 classi�ers per data site).6 This

\month-dependent" data partitioning scheme was used only on the Chase bank data set.

The very skewed nature of the First Union data forced us to equi-partition the entire data

set randomly into 12 subsets and assign two subsets in each data site.

Next, we had each data site import the \remote" base classi�ers (50 in total) and apply

them on its own data. Hence, each classi�er was not tested unfairly on known data. Speci�-

cally, we had each site use half of its local data (one month) to test, prune and meta-learn the

remote base-classi�ers and the other half to evaluate the overall performance of the pruned

or unpruned meta-classi�er (for extensive details see [39, 41]). In essence, the setting of this

experiment corresponds to a parallel six-fold cross validation.

Finally, we had the two banks exchange their classi�er agents as well. In addition to its

5In comparing the classi�ers, one can replace the TP-FP spread, which de�nes a certain family of curves

in the ROC plot, with a di�erent metric or even with a complete analysis [45, 46] in the ROC space.
6Extensive experiments evaluating di�erent data distributions are presented in [42].
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10 local and 50 \internal" classi�ers (those imported from their peer data sites), each site

also imported 60 external classi�ers (from the other bank). Thus, each Chase data site was

populated with 60 (10+50) Chase classi�ers and 60 First Union classi�ers and each First

Union site was populated with 60 (10+50) First Union classi�ers and 60 Chase classi�ers.

Again, the sites used half of their local data (one month) to test, prune and meta-learn

the base-classi�ers and the other half to evaluate the overall performance of the pruned or

unpruned meta-classi�er. To ensure fairness, each site meta-learned 110 base-classi�ers. The

10 local base-classi�ers of each site were not used in meta-learning.

The two databases, however, had the following schema di�erences:

1. Chase and First Union de�ned a (nearly identical) feature with di�erent semantics (i.e.,

they used di�erent time intervals to measure the number of times an event occurs),

2. Chase included two (continuous) features not present in the First Union data

For the �rst incompatibility, we had the values of the First Union data mapped to the

semantics of the Chase data. For the second incompatibility, we deployed bridging agents

to compute the missing values (a detailed discussion appears in [37]). When predicting, the

First Union classi�ers simply disregarded the real values provided at the Chase data sites,

while the Chase classi�ers relied on both the common attributes and the predictions of the

bridging agents to deliver a prediction at the First Union data sites.

Tables 4 and 5 summarize our results for the Chase and First Union banks respectively.

Table 4 reports the performance results of the best classi�cation models on Chase data,

while Table 5 presents the performance results of the best performers on the First Union

data. Both tables display the accuracy, the TP-FP spread and savings for each of the fraud

predictors examined and the best result in every category is depicted in bold. The maximum

achievable savings for the \ideal" classi�er, with respect to our cost model, is $1,470K for the

Chase and $1,085K for the First Union data sets. The column denoted as \size" indicates

the number of base-classi�ers used in the classi�cation system.

The �rst row of Table 4 shows the best possible performance of Chase's own COTS

(Commercial O� The Shelf) authorization/detection system on this data set, while the sec-

ond row presents the performance of the best base classi�ers over a single subset. The next

four meta-classi�ers combine only \internal" (from Chase) base classi�ers, while the last four

combine both internal and external (from Chase and First Union) base classi�ers. Bridging
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Table 4: Performance results for the Chase credit card data set.
Type of Classi�cation Model Size Accuracy TP - FP Savings

COTS scoring system from Chase - 85.7% 0.523 $ 682K
Best base classi�er over single subset 1 88.7% 0.557 $ 843K
Meta-classi�er over Chase base classi�ers 50 89.74% 0.621 $ 818K
Meta-classi�er over Chase base classi�ers 46 89.76% 0.574 $ 604K
Meta-classi�er over Chase base classi�ers 27 88.93% 0.632 $ 832K
Meta-classi�er over Chase base classi�ers 4 88.89% 0.551 $ 905K

Meta-classi�er over Chase and First Union
base classi�ers (without bridging) 110 89.7% 0.621 $ 797K
Meta-classi�er over Chase and First Union
base classi�ers (without bridging) 65 89.75% 0.571 $ 621K
Meta-classi�er over Chase and First Union
base classi�ers (without bridging) 43 88.34% 0.633 $ 810K
Meta-classi�er over Chase and First Union
base classi�ers (without bridging) 52 87.71% 0.625 $ 877K

agents were not used in these experiments, since all attributes needed by First Union agents,

were already de�ned in the Chase data. The former four rows detail the performance of

the unpruned (size of 50) and best pruned meta-classi�ers for each of the evaluation metrics

(size of 46 for accuracy, 27 for the TP-FP spread, and 4 for the cost model). Finally, the

latter four rows report on the performance of the unpruned (size of 110) and best pruned

meta-classi�ers (sizes of 65, 43, 52) according to accuracy, the TP-FP spread and the cost

model respectively.

Similar data is recorded in Table 5 for the First Union set, with the exception of First

Union's COTS authorization/detection performance (it was not made available to us), and

the additional results obtained when employing special bridging agents from Chase to com-

pute the values of First Union's missing attributes.

The most apparent outcome of these experiments is the superior performance of meta-

learning over the single model approaches and over the traditional authorization/detection

systems (at least for the given data sets). The meta-classi�ers outperformed the single base

classi�ers (local or global) in every category. Moreover, by bridging the two databases, we

managed to further improve the performance of the meta-learning system. Notice, however,

that combining classi�ers agents from the two banks directly (without bridging) is not very

e�ective. This phenomenon can be easily explained from the fact that the attribute missing

from the First Union data set is signi�cant in modeling the Chase data set. Hence, the
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Table 5: Performance results for the First Union credit card data set.
Type of Classi�cation Model Size Accuracy TP - FP Savings

Best base classi�er over single subset 1 95.2% 0.749 $ 800K
Meta-classi�er over First Union base classi�ers 50 96.53% 0.831 $ 935K
Meta-classi�er over First Union base classi�ers 14 96.59% 0.797 $ 891K
Meta-classi�er over First Union base classi�ers 12 96.53% 0.848 $ 944K
Meta-classi�er over First Union base classi�ers 26 96.50% 0.838 $ 945K
Meta-classi�er over Chase and First Union
base classi�ers (without bridging) 110 96.6% 0.843 $ 942K
Meta-classi�er over Chase and First Union
base classi�ers (with bridging) 110 98.05% 0.897 $ 963K

Meta-classi�er over Chase and First Union
base classi�ers (with bridging) 56 98.02% 0.890 $ 953K
Meta-classi�er over Chase and First Union
base classi�ers (with bridging) 61 98.01% 0.899 $ 950K
Meta-classi�er over Chase and First Union
base classi�ers (with bridging) 53 98.00% 0.894 $ 962K

First Union classi�ers are not as e�ective as the Chase classi�ers on the Chase data, and

the Chase classi�ers cannot perform at full strength at the First Union sites without the

bridging agents.

An additional result, evident from these tables, is the invaluable contribution of pruning.

In all cases, pruning succeeded in computing meta-classi�ers with similar or better fraud

detection capabilities, while reducing their size and thus improving their eÆciency. A detailed

description on the pruning methods and a comparative study between predictive performance

and meta-classi�er throughput can be found in [41, 36].

6 Conclusions and future research directions

In this paper we described the architecture of the JAM system, a distributed, scalable,

portable and extensible agent-based system that supports the launching of learning and

meta-learning agents to distributed database sites. JAM consists of a set of similar and col-

laborating JAM sites in a network con�guration maintained by the Con�guration Manager.

JAM is scalable in that it is designed with asynchronous, distributed communication pro-

tocols that enable the participating database sites to operate independently and collaborate

with other peer sites as necessary, thus eliminating centralized control and synchronization

points. JAM is portable because it is built upon existing agent infrastructure available over
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the Internet using Java technology and algorithm-independent meta-learning techniques. Ex-

tensibility is ensured by decoupling JAM from the learning algorithms and by introducing

modular plug-and-play capabilities though a well-developed object-oriented design. At the

same time, JAM is designed to support pruning and bridging, two techniques that address

two drawbacks of meta-learning, the increased demand for run-time system resources, and

the inability to combine multiple models computed over data sets with di�erent schemas.

The JAM system can be further enhanced with additional functionality. For example, the

current implementation of JAM de�nes a Con�guration Manager that provides registration

and membership services to each JAM site. Future extensions of the CM can support

multiple groups of sites, varying levels of \visibility" (e.g., some sites may not be allowed to

get access information about every other JAM site - a similar approach to access/capability

lists between users and resources), authentication capabilities, directory services of databases

and learning and classi�er agents, fault tolerance, etc.

Furthermore, JAM sites can be extended with tools facilitating the data selection problem.

The data selection problem refers to the preprocessing, transformation and projection of the

available data to expressive and informative features, and is probably one of the hardest,

but very important stages in the knowledge discovery process. The process depends on the

particular data mining task and requires application domain knowledge. The current version

of JAM, assumes well-de�ned schemas and data sets. The credit card data sets that were

used as an application, for example, were �rst developed by experienced FSTC (Financial

Services Technology Consortium) personnel and then cleaned and pre-processed by us in a

separate o�-line process before being used in JAM.

Introducing data selection tools and de�ning the JAM databases can be linked to the

incompatible schema problem. Recall that comparing databases and identifying attributes

with syntactic or semantic di�erences has not been addressed here. The study and develop-

ment of formal methods and languages for declaring and de�ning schemas is a crucial and

hard problem, suitable for extensive research (early work in this �eld can be found in [18, 19]).

Resolving the incompatible schema problem can instigate the expansion of present data min-

ing systems. The \visibility" of meta-learning systems will be extended to data sources that

would otherwise remain unutilized, information will be shared more readily and meta-level

classi�cation models will improve their performance by automatically incorporating more

diverse models.
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