The lic Parallel Language
and its Implementation on Dado2

Russell C. Mills

Columbia University
Computer Science Department

17 May 1990
Culs—429- &4
Abstract

Lic is an extension of C that has been implemented on the massively parallel Dado2 tree-structured
MIMD multicomputer. In an lic program, a single controlling processor invokes operations in parallel in
subsets of a set of attached processors, which themselves can invoke parallel operations in remaining
processors. Language features include distributed storage (objects with one element per processor), the
ability to pass parallel values as function arguments and to return them from functions, and built-in and
user-defined reduction operators. The paper first describes the synchronous model of hierarchically
parallel computations used by llc. It next describes the syntax of the lic language and its semantics in
detail. It then describes the Dado architecture and the implementation of lic on Dado2. A summary of the
of the strengths of lic follows. Finally, several examples of llc programs help to clarify the important
features of the language.

Copyright ® 1990 Russell C. Mills and The Trustees of Columbia
University in the City of New York. All rights reserved.

This research was conducted as part of the Dado project. It was supported in part by the New York
State Science and Technology Foundation NYSSTF CAT(88)-5 and by a grant from Hewlett-Packard.
The author is an AT&T Graduate Fellow.

1 Introduction
One of the goals of the research work on the Dado project has been to construct data-parallel

languages [7] in which operations executing in parallel can invoke subsidiary data-parallel operations.
Toward this end we have designed the lic language and implemented it on Dado2, a 1023-processor
tree-structured MIMD [1] prototype machine at Columbia University. Llc is a hierarchically data-parallel
extension of the C language [3, 4] in which a single controlling processor invokes operations in parallel in
subsets of a set of attached processors, which themselves can invoke parallel operations in remaining
processors. Language features include globally- and locally-scoped distributed storage (objects with one
element per processor), parallel evaluation of expressions and statements with synchronous semantics,
the ability to pass parallel values as function arguments and to return them from functions, and built-in
and user-defined reduction operators. ‘

An llc program is a single program in which a number of operations may be performed simultaneously;
it runs on a number of processors, but these processors share a single global name space. Llc contains
no constructs for communications as such; the run-time environment transparently transmits values
computed in one processor but used in another.

Lic is the main system-level parallel language (cf. [12]) for the Dado machine. It has been implemented
efficiently on Dado2; the language can be implemented on other distributed-memory MIMD paralle!
machines, since it requires only that a tree be logically embeddable in the machine’s communication
network. In fact, the only major changes required to port the language are the implementation of
communication functions called by the translated code.

Experience with the system-level parallel languages PPL/M [10] and ||PSL [12] for Dado influenced the
design of lic. The three languages share the notion of distributed storage with one element per physical
processor, provide inter-processor communication, and provide mechanisms for selecting the set of
processors in which parallel operations occur. However, in lic, but not in PPUM or ||PSL, distributed
storage can be locally scoped as well as globally scoped, inter-processor communication is implicit, not
explicit, and the effects of all mechanisms for selecting the domain of parallel operations are lexically
scoped rather than having indefinite lifetime.

The paper first describes the synchronous model of hierarchically parallel computations used in llc. It
next describes the syntax of the lic language and its semantics in detail. It then describes the Dado
architecture and a completed implementation of lic on Dado2. A summary of the of the strengths of lic
follows. Finally, several examples of lic programs help to illustrate some important features of the
language.

2 Hierarchically Parallel Computations

An lic program executes in a partially-ordered pool of processors with a single minimal processor, the
principal processor. If P is a processor, we will call a processor greater than P in the partial ordering a
descendant of P. In effect, lic assumes a tree of processors with the principal processor at the root. Only
the principal processor executes main(), so at program startup, only the principal processor is active. The
principal processor invokes operations in parallel in its descendant processors: each such processor can
itself invoke parallel operations in its descendants. Each processor executing part of an lic program has
associated with it a retinue of descendant processors that receive instructions from it, as well as a subset

of its retinue (the evaluating retinue) that actively executes those instructions. Each processor is the
director (or directing processor) of its retinue.

Lic provides SIMD-like execution semantics. All parallel operations execute with synchronous
semantics, that is, as if all processors executing the operations performed them in lockstep. Execution is
deterministic and repeatable. The language therefore contains no synchronization constructs, since
synchronization at each operation is implicit. Actual execution, however, need not be synchronous if each
processor is capable of executing its own stored program.

A processor's retinue can now be defined formally in terms of operations performed synchronously in
parallel by sets of processors. The principal processor’s retinue is the remainder of the processors. If Q
is a processor in P's evaluating retinue for an operation M, Q's retinue during its evaluation of M is the
subset of P's retinue greater than Q in the partial order on the set of processors and not greater than any
processor Q' in P's evaluating retinue that is itself greater than Q. In other words, during each operation,
each processor takes control of as many descendant processors as it can reach, but it cannot reach past
a processor taking control of its own descendants. Only the principal processor's retinue is fixed; the
retinue of any other processor depends on what operations that processor and all its descendants are
performing.

3 Distributed Storage

The lic language allows a programmmer to declare objects either in a single processor or (in data-
parallel fashion) in each member of the processor's retinue. A retinue-tuple is storage created by a
declaration (like all objects in C) and consisting of one element in each processor in the declaring
processor’s retinue. Clearly, the number of elements in a distributed object depends on the number of
processors in the machine executing a program.

To the standard C constructs for defining derived types, namely

* () function returning
o [] array of
» * pointer to

lic adds a single construct,
* * retinue-tuple of

which is a prefix unary operator with precedence that of (*). Retinue-tuple (*) declarations may be mixed
with other C type-defining constructs in almost any fashion. A few restrictions apply:

« Structs and unions can not contain retinue-tuple components.
» There are no pointers to retinue-tuples.
» There are no retinue-tuples of retinue-tuples.

» There are no retinue-tuples of functions.

However, lic functions can have retinue-tuples as parameters, and can return retinue-tuples of any type
that C functions can return. Figure 1 illustrates some declarations. Notice the C++-style [11] function
declarations, which have been included in ANSI C [4].

Figure 1: Some lic Declarations

int ~i; iis a
retinue-tuple of
int
int (~3)[51: j is a

retinue-tuple c¢f
array of S
int

char *“demand():
demand is a
function returning
retinue-tuple of
pointer to
char

void pmemcpy(char *~, char *, unsigned int);
pmemcpy is a
function of (
retinue-tuple of
pointer to
char,
pointer to
char,
unsigned int
) returning
void

All retinue-tuple declarations obey the scope and extent rules of C. Outside a function, the visibility
(lexical scope) of a distributed object is the rest of the file; the object can be static or extern (global); and
its extent is the lifetime of the program. Inside a function, a distributed object can be declared at the
beginning of any block; it is visible only in the block in which it is declared: and it is static, or it is created
at block entry and destroyed at block exit. Distributed objects in recursive functions are handled correctly.

Storage declared in a processor's retinue is called retinue storage, while storage declared in the
processor itself is called self storage, and storage declared in a processor's director is called director
storage. These terms are relative, since a processor's self storage is director storage to the processor’s
retinue, and a processor's retinue storage is self storage to members of the retinue.

4 Embedded Code

All parallel computations in llc are invoked through code executed by members of a processor’s retinue
(retinue code) but embedded textually in code executed by that processor (self code). Symmetrically,
computations in that processor can also be invoked through code embedded textually in code for its
retinue. The terms retinue code and self code are relative, just as retinue storage and self storage are,
since code that is retinue code to a processor is self code to the processor’s retinue, and self code for a
processor is director code to the processor's retinue. The syntactic constructs that embed director and
retinue code in seif code are the only mechanisms lic provides for the communication of values between
processors.

Llc contains a number of constructs that embed retinue code in self code, and that invoke parallel

execution of statements and expressions. The set of processors that evaluate embedded retinue code is
exactly the evaluating retinue of the processor executing the surrounding code; thus all parallel
operations take place in the evaluating subset of the retinue. The following constructs embed retinue

code in self code:

« Par statements

« Initializers of retinue-tuples

* Reduction operators and the A operator

» Evaluating retinue selectors with and ::

e Function arguments, if the corresponding formal parameters are retinue-tuples

e Return statements in functions returning a retinue-tuple
In addition, two constructs embed self code in retinue code:

« The seq statement

¢ The !A (sequential) operator
The next few sections describe these constructs.

5 Parallel and Sequential Computations
Llc uses the par construct to invoke parallel execution:
par statement

All processors in the evaluating retinue execute statement, which is any legal lic statement not containing
goto. par statement is self code (relative to the code textually preceding and following it) containing the
embedded retinue code statement. As a point of tarminology, we will say that the processor executing
the code surrounding par statement executes par statement, while the members of that processor's
gvaluating retinue execute statement.

Since the subset of processors that execute embedded retinue code is exactly the evaluating retinue,
conditional expressions (&&, ||, and ?:), conditional statements (if and switch), and looping statements
(for, while, and do...while) in embedded retinue code affect the evaluating retinue in a natural way. For
example, processors in which an Iif condition is false drop out of the evaluating retinue until the else
clause {(if one is present) or the end of the If statement. Processors executing a looping statement (for,
while, and do...while) in retinue code drop out of the evaluating retinue when they exit the loop; when the
evaluating retinue becomes empty, they rejoin the evaluating retinue, and the loop terminates.

Conditional constructs in embedded retinue code execute as if the various paths through the code
were evaluated in textual order, each path being evaluated in parallel by the appropriate set of
processors. Separate paths through conditional and looping constructs are executed concurrently if the
code on each path operates only on local values.

While the par statement embeds retinue code in self code, lic's seq statement embeds self code in
retinue code embedded in self code. The statement
seq statement

which must be contained in a par statement, causes statement o be executed in the processor executing
the par statement. [n effect, the seq statement cancels the enclosing par. As another point of
terminology, we will say that seq statement is retinue code containing the embedded self code statement,
and that the evaluating members of the retinue execute seq statement, while the retinue's director
executes statement.

In the statement
seq statement
the directing processor executes statement only if the set of processors executing seq statement is
nonempty, and then only once. Certainly, the directing processor should not execute staternent if the
evaluating retinue is empty. Otherwise, it would execute statement in the code fragment

par {
if (0) {
seq ({
statement;
}
}
}

which would be highly counterintuitive. Lic's synchronous semantics dictate that the directing processor
execute statement only once, rather than once for each processor in its evaluating retinue. Otherwise,
the directing processor would have to interleave multiple executions of a single piece of code at an
instruction level, rather than a statement level, with unpredictable results.

Notice that a local retinue-tuple declaration is almost equivalent to a declaration of a non-retinue-tuple
object within a par block enclosing a seq block:
{
int ~i;
)
self-code
is nearly the same as
par {
int 1i:
seq {
self-code
}
}
the only difference being that in the second example, the processor executes seif code only if its
evaluating retinue is nonempty. Retinue-tuple declarations like the one in the first example are
necessary, not just a convenience to the programmer, precisely because the two examples are not
identical.

6 Moving Values Between Processors

Self code cannot refer to retinue storage and director storage, even though declarations of the storage
may be lexically visible. Instead, references to retinue storage must be contained in embedded retinue
code, and references to director storage must be contained in embedded director code. Lic provides two
unary operators, the expression analogs of the par and seq statements, that embed retinue code and
director code in self code. Unlike the par and seq statements, these operators communicate values
among self, director, and retinue processors.

The A (retinue) unary operator, with syntax

A expression
is the expression analog of the par statement. Processors in the evaluating retinue evaiuate expression;
the value of the A expression is one of the values produced. If the evaluating retinue is empty, the value
of the expression is undefined. The A operator works on all data types--integer, floating-point, and
composite. if the directing processor's data formats are different from the retinue’s, appropriate format
conversion happens automatically, even for structs. An example:

/* set 1 to (the value of j in one processor in the retinue) */

{
int *3 = £():
int 1 = *3;

}

The A unary operator, like the * unary operator, is a type-former as well as a unary operator. The use
of A as a unary operator mirrors its use in declaring derived types. In the above example, j is a retinue-
tuple of Int, so %jis an int.

The A operator is useful in two situations:

1.in invoking parallel execution in a syntactic context that requires an expression, not a
statement, such as the initialization of a for loop;

2. in transferring a value from a retinue processor to the director of the retinue (in fact, the A
operator is the only construct that provides such communication).

Lic's In (director) unary operator, with syntax
In expression
is the expression analog of the seq statement. It causes the evaluation of its operand in the directing
processor, and makes the result available in each evaluating retinue processor. The !A operator can be
applied to an operand of any type, even composite, and the type of the result is the type of the operand.
An example:
/* set each j to the value of i in the directing processor */

{
int i = £();
int ~j:
par j = !~i;
Notice that in the par statement, references to j do not require the A operator, since fo each retinue
processor, j is an int, not a retinue-tuple of Int.
The 1A operator is useful in three situations:

1.in invoking sequential execution in the directing processor in a syntactic context that
requires an expression, not a statement;

2. in broadcasting a value to retinue processors from the director of the retinue (in fact, the IA
operator is the only construct that transters values from director to retinue);

3.in using the value returned by a function that returns a retinue-tuple, as described in
section(RetinueTupleParameters)

Lic provides no automatic conversion of sequential values to parallel, requiring the programmer to use
the A and !4 operators even when the transiator can determine the unambiguous meaning of an
expression. In large part, this design decision reflects the belief that the distinction between sequential
and parallel execution is important, and should be reflected in the immediate text of the program.
Moreover, the translator must sometimes reiy on the !4 and A operators to disambiguate expressions, as
in the following example:

par {
£
£0);:
}
In this example, the retinue's director (the processor executing the par statement) calls f, then each
evaluating retinue processor calls f Without the !A operator, the translator would not be able to
distinguish the two uses of £ Notice that functions in lic, unlike storage, are accessible in any processor;
a function declaration (implicit in this example) makes the function callable in any processor, not just the

processors making the declaration.

In order to make the lic implementation efficient, the !A operator can be used only in retinue code
embedded in self code. It is therefore illegal for a function called from embedded retinue code to refer to
director storage, even if the text of the function could refer to the storage were the function substituted
textually into the embedded retinue code. The reason for this restriction is that a directing processor
cannot handle communication with its retinue efficiently it each processor in the retinue can make
communication requests that the lic translator cannot anticipate.

7 Reduction Operators

Lic provides a number of reduction operators. Each lic reduction operator uses a commutative,
associative llc binary operator to combine a set of retinue values pairwise to produce a single seif value.
Lic borrows its syntax for reduction operators from APL [2]; the language provides the collection of
reduction operators shown in figure 2.

Two of these reduction operators stretch a semantic point for syntactic convenience: strictly speaking,
|| and && are not commutative operators in C, since they do not evaluate their right operands if the value
of the expression can be determined from the left operand. The reduction operators ||/ and &&/,
however, evaluate all their operands in parallel and produce the logical OR or AND of ail the local results.

A reduction operator's operand is embedded retinue code; the reduction operator itself is self code.
Each reduction operator evaluates its operand in the evaluating retinue and combines the values using
the corresponding binary operator to produce a single value. Thus, lic’s reduction operators implicitly
communicate values from a processor’s retinue to the processor.

In addition to providing reduction operators corresponding to most of C's binary operators, llc aiso
allows programmers to define new reduction operators. Any function of two parameters can be used as
the combining code in a reduction operator. A declaration of the form

function-declarator default default-value;
declares function to be usable as combining code. Then an expression such as

function/ retinue-expression
causes function to be applied as a reduction operator to the values of retinue-expression in the evaluating
retinue. If the evaluating retinue is empty, the result is default-value. For exampie, the declaration

Flgure 2: Reduction Operators
sum of the operands

product of the operands

maximum of the operands
(max is a built-in binary operator in lic)

minimum of the operands
(min is a built-in binary operator in lic)

bitwise OR of all operands

bitwise AND of all operands

bitwise exclusive OR of all operands

1 if any operand evaluates to a non-zero value; 0 otherwise

1 it all operands evaluate to a non-zero value; 0 otherwise

1) default 0;
on of two Int parameters retuming an int and with value 0 when reducing over an

3
7.

iluating Retinue

nstructs we have seen that affect a processor's evaluating retinue are C control
I retinue code. In addition to these implicit means for selecting a processor's
o0 provides an explicit mechanism: the with statement and its expression analog,
constructs select the evaiuating retinue that a processor has during its own
or expression; thus they define the set of processors that evaluate any retinue
alement or expression. The effects of the with statement and the :: operator are
i of the statement (or expression) restores the previous evaiuating retinue.

'fines the evaluating retinue for a statement:
:ssion) self-statement

self code containing the embedded retinue code retinue-expression. Al
iating retinue of the processor executing the with statement evaluate
those processors in which the expression is true (nonzero) remain in the
-statement. Retinue-expression can also be pretaced by the keyword all, in
3ssors evaluating retinue-expression is the directing processor's entire retinue.

the with statement may help to illustrate its meaning. If retinue-expression is
or, the statement

sion) par retinue-statement
nt

'ssion) retinue-statement

with (retinue-expression) self-statement

is equivalent to
par if (retinue-expression) seq self-statement

The with statement has an expression analog,
self-expression :: retinue-expression
As above, the set of those processors where retinue-expression is true becomes the evaluating retinue
for self-expression. The :: operator is useful in syntactic contexts requiring an expression.

Evaluating retinues nest syntactically; if one with statement encloses another, the set of processors
that evaluate the inner with's condition is just the set of processors in which the outer with’s condition is
true. Thus the two statements

with (retinue-expression-1)
with (retinue-expression-2)
self-statement

and

with (retinue-expression-1 && retinue-expression-2)
self-statement

mean the same thing. Functions aiso inherit their caller's evaluating retinue, so that
with (retinue-expression) body-of-self-function;

is the same as
with (retinue-expression) self-function():

which is identical to
self-function() :: (retinue-expression);

Self code can operate on retinue storage only in parallel on each element of the storage, but programs
often need to work sequentially with the elements of a distributed object. For example, a program may
need to load the elements of an array into a retinue-tuple, where the elements of the array can be
manipulated in parallel. To handle this need, lic provides the ? (choose-one) unary operator. The
operand of the ? operator is an expression of numeric or pointer type, and the operator returns the value
0 in all processors but one, while it returns 1 in one processor in which the operand is non-zero. Lic does
not specify which processor receives the non-zero value, but guarantees that ? chooses the same
processor each time from a given pool of processors and non-zero values. Like the !A operator, the ?
operator can be used only in embedded retinue code, but unlike the !4 operator, both its operand and its
result are retinue values.

The ? operator is useful for selecting a single data item (for example, one for which the value of some
expression is minimized) from a collection of data. Iteration through the elements of a retinue-tuple can
also be effected quite easily. If done has been declared to be a retinue-tuple of int, the statement

for (~(done = 0); ||/(done == 0); "“{done = 1) :: ?(done == 0)) ;
sets done to 1 in one processor during each loop iteration, and terminates when done is 1 in each
processor in the for statement's evaluating retinue.

-
0

9 Retinue-tuple Parameters and Return Values

In lic, retinue-tuples are almost, but not quite, first-class objects. While retinue-tuples cannot be
assigned to or operated on directly (their elements can be operated on in parallel), lic allows functions to
have retinue-tuple parameters and to return retinue-tuple values. Code that calls a function with a
retinue-tuple argument causes each member of the calling processor's evaluating retinue to generate an
argument for the function; the processor calling the function then executes it in cooperation with its
retinue. Likewise, a function returning a retinue-tuple causes each member of the caliing processor’s
evaluating retinue to generate a return value for the function. Lic uses C++'s syntax for declaring function
parameter types and return values (see Figure 1). Functions with retinue-tuple parameters or return
values must be declared as such, or the translator will generate incorrect code.

If a function has been declared to have retinue-tuple parameters, the corresponding arguments in a call
to the function are retinue code, even though the call itseif is self code. To illustrate the use of retinue-
tuple parameters, here's a function that uses the parailel memory copy function pmemcpy declared in
Figure 1 to distribute a string to all evaluating retinue processors.

void distribute(char *from)

{
int len = strlen(from) + 1;
char *malloc (unsigned int):
char **to = malloc{(!~len):;

pmemcpy (to, from, len);

}

in the text of a function returning a retinue-tuple, any return statements are self code executed by the
processor executing the function, but the expression returned is retinue code. Using the retinue-tuple of
values returned by a function is a standard lic idiom. For example, the following code fragment
demonstrates how to use the values returned by the function demand trom Figure 1):
par {
int (*£fp) () = (int (*) ()) !"“demand("£"):
(*fp) () ¢
}
In this example, the processor executing the par statement calls demand(), each processor in the
evaluating retinue cooperates with the directing processor to compute a return value, which it stores in fo.
The A operator in this example is essential, since the call to demand is director code relative to the use of
the function’s return value.

Retinue-tuple parameters and return values are very important in lic, because they allow programmers
to modularize their code. A typical lic program contains many functions that are purely local, but also
contains large chunks of intermingled sequential and parallel code. Since a function executing in a
retinue processor cannot refer to storage in its directing processor, code that refers to both retinue and
self storage must be part of a function in the retinue's director. Experience with a previous parallel
language, PPL/M [10], showed that the inability to break up the intermingled code led to intolerably large
procedures and excessive reliance on global distributed variables for communication between functions.

11

10 Local and Nonlocal Functions

The lic translator can produce substantially better code if it knows that functions called from retinue
code or from directing code invoke no retinue code directly or indirectly. A local function declaration or
call advises the compiler that the specified function contains no retinue code and that it calls no functions
that do. The local and nonlocal keywords modify a standard function declarator, and are placed before
the parentheses; the syntax mirrors that of the volatile and const pointer modifiers. For example, the
declaration

int f nonlocal(int i):

declares f to be a nonlocal function of one Int argument, which returns an int. The program fragment

{

int atoi(), {(*fp) () = atoi:
char *s;
par {

int 1 = !“(*fp) local(s):

}
}

advises the compiler that the call to *fp invokes no retinue code.

11 Dado2 Architecture

This section summarizes the Dado2 architecture so that we can proceed to a description of a
completed implementation of lic on Dado2. For a more complete description of the Dado architecture,
see [5, 9]

Dado is a medium-grain, tree-structured, distributed-memory, massively parallel MIMD multicomputer
originally intended to accelerate the execution of Al production systems, but applicable to a wider range
of problems. The largest version, Dado2, contains 1023 processors connected in a complete binary tree.
Dado2 is attached as a coprocessor to a conventional computer, which is the principal processor in an lic
program. To the programmer, the host computer and the Dado machine together form an unbalanced
binary tree whose root is the host computer; the Dado root processor is the left child of the host.

Each processor consists of an 8-bit microprocessor, 64K bytes of RAM with parity, and a semi-custom
I/0 chip. Dado2 has two separate communication channels, each a byte wide. The microprocessor ports
allow a processor to communicate with its tree neighbors (parent, left child, and right child). The I/O chip
provides partitionable global communication via a broadcast circuit and a resolve/report circuit (a multi-
byte minimum-computing comparator). During each resolve/report operation, the comparator flags a
single processor that has the minimum value. Dado2 communication cannot be interrupt-driven;
processors must anticipate and participate actively in each byte of all communication.

The Dado2 I/0 chip can communicate through all or part of the Dado2 tree. A memory-mapped /O
chip register controls the connections of each I/O chip to its tree neighbors’ /O chips, so that any
processor can disconnect itself from its parent or its children from itself. At any point in a program’s
execution, the 1/0O chip connections divide the Dado2 machine into a number of connected components.
Within a connected component, all communication through the I/O chip is global and synchronous; all
processors in the connected component must participate in each communication.

12

12 Implementation of llc on Dado2

As with the Poker [8] parallel programming language, the heart of the lic implementation is a source-to-
source translator that converts the parallel language (lic) to the sequential base language (C). The lic
translator converts an lic program for the host-Dada2 ensemble into C code for the host machine and for
the Dado2 processors. The generated C code contains calls to interprocessor communications functions
[6). The transiator splits each lic function into a C function for the processor executing the lic function
and a C function for its retinue. It converts each self statement containing embedded retinue code into a
labeled retinue statement and a self statement containing a broadcast by the directing processor of the
address (determined at link time) of the retinue statement. At runtime, retinue processors repeatedly read
addresses broadcast by their directing processors and execute the corresponding code. In eftect, the
translator generates SIMD code for a directing processor’s retinue. Instead of broadcasting machine
instructions, however, the directing processor broadcasts pointers to parallel code of arbitrary complexity.

When a processor enters an lic function containing embedded retinue code, it broadcasts to its retinue
the address of the translator-generated parailel code for the function, and at function exit, it broadcasts
the address of a return statement to force its retinue to leave the corresponding parallel function. This
scheme makes it easy to implement retinue-tuple local variables, function arguments, and function return
values. Retinue-tuple local variables in an lic function simply become local variables in the corresponding
translator-generated retinue function. Retinue-tuple function arguments become locally-computed
arguments to a translator-generated function, while retinue-tuple return values become locally-computed
return values of a translator-generated function.

Only those processors in the evaluating retinue actively execute retinue code; the translator generates
expraessions conditioned on a processor's evaluating state. The translator handles lic constructs in the
following ways:

e For conditional and looping constructs in embedded retinue code, and for with stateménts
and :: operators, it generates code that saves, manipulates, and restores the processor's
evaluating state.

« For the !A operator, it generates calls to Dado2 I/O chip broadcast functions: a write for the
directing processor, and a corresponding read for the processors in its retinue.

e For the A operator, the ? operator, and the reduction operators min/, max/, ||/, and &&/, it
generates calls to Dado2 /O chip resolve/report functions: a read for the directing
processor, and a corresponding write for the processors in its retinue.

« For other reduction operators, it generates calls to support functions that read values trom a
processor’s children, combine those values with its own value, and (in a retinue processor)
write the result to the processor's parent.

» For code in which processors in a directing processor's retinue may themselves invoke
parallel operations, the translator generates instructions to manipulate the state of the VO
chip’s connections to its tree neighbors. Before such code, the translator places instructions
to save the state ot the I/O chip's connections to its children and disconnect any children in
the current evaluating retinue; after the code, the translator inserts instructions that restore
the I/O chip’s state.

Because of the Dado2 hardware requirement that a processors entire retinue participate in all
communications while only the evaluating retinue participates in computations, the translator must
separate communication from computation, but it must do so without affecting the semantics of the code.

13

Since communication and computation can be very tightly interwoven, the translator must perform
extensive analysis and reorganization of the source code. For this reason, the lic translator is really a
compiler, not a simple preprocessor.

13 Related Work

Experience with the system-level parallel languages PPL/M [10] and ||PSL [12] for Dado influenced the
design of lic. The three languages share the one-element-per-processor limitation. PPL/M requires the
programmer to write explicit communications instructions in parallel code; ||PSL asks the programmer to
write these instructions in sequential code. Llc contains no explicit communications instructions.

Among other parallel languages, C* for the Connection Machine (7] is most like ilc. Even though lic
was developed independently from C*, the two languages share some major features. They both rely
heavily on reduction operators and on parallel operations on subsets of distributed objects, because both
are natural and powerful constructs that reduce the complexity of programming a massively parallel
computer.

Lic differs from C* in the structure of its distributed objects, which are mappings from the set of physical
processors to the set of possible values of the element type. In C*, the programmer declares the
cardinality of a distributed object, and the compiler allocates a processor to each element of the object; if
the target machine does not have enough processors, the program cannot run. The cardinality of a
program's distributed objects determines the program's speedup. In lic, the runtime environment
determines the cardinality of a distributed objeét, and for problems in which there are more data than
processors, and the number of processors in the iarget machine determines the program’s speedup.

Lic differs from C* in a number of other ways:

 Lic provides muitiple levels of parallelism and MIMD execution, while C* provides only a
single level.

« Lic provides distributed function arguments and return values, which C* apparently does not.

« Lic allows declarations of distributed objects in sequential code.

14 Conclusion

As part of the Dado project, we have designed an implemented lic, a system-level parallel language
consisting of a few simple extensions to the sequential language C. This language combines powerful
operators, hierarchically (even recursively) parallel operations, a tight interweaving of sequential and
parallel code, efficient implementation, and access to most of the capabilities of the Dado machine.

As a system-level parallel language, lic has many strong points:

1. Powerful constructs. LIc's reduction operators and constructs for invoking parallel
operations in subsets of the set of attached processors are powerful and allow
programmers to write compact, clear programs.

2. Simplicity. Llc stays within the spirit of C by providing a single widely applicable construct
for declaring distributed objects, and a small set of constructs for controlling parailel
execution.

14

3. Expressiveness. Local distributed variables provide convenience; distributed function
arguments and return values facilitate modular programming.

4. Deterministic execution.

5. No artificial barrier between sequential and parallel code. Paralle! and sequential code in lic
can be tightly interwoven.

6. Safety. Llc does not require the programmer to write two sides of each communication.
Instead, communication is implicit, and the translator generates matching communication
instructions. It is impossible to write a program that deadlocks because a communications
instruction has been omitted.

7. Efficiency. No language feature is implemented inefficiently on Dado?2.

8. Full use of the machine. Lic provides full access to the capabilities of the Dado machine.
Even tree-neighbor communication, which is not supported explicitly in the language, can
be written quite efficiently using parallel constructs in recursive functions.

9. No MIMD/SIMD distinction. Lic provides clear SIMD-like semantics for parallel execution in
any processor's retinue. Each processor always has a retinue and is in another processor’s
retinue.

15 Acknowledgements

Many discussions with Richard Reed helped shape lic. Leland Woodbury wrote licc(1), which
coordinates the lic and C preprocessors and compilers, assemblers, linkers, and utilities for the host and
Dado processors. Sal Stolfo, my adviser, was very helpful with his support and his ideas. Perry Metzger
made important criticisms of earlier versions of lic; Chip Maguire and George Shrier also contributed
criticisms. Sally Lewis and Leland Woodbury made many helpful comments on earlier drafts of this
paper.

15

I. A Small Example of Hierarchical Parallelism inllc

/*
* this program computes the level of each processor
* in the Dade¢ machine
* It assigns 0 to the principal processor and recursively
* computes level = parent’s level + 1
*
/

int ~level;
int setlevel nonlocal (};

void
main(int argc, char *argv(])
{
setlevel (0) ;
par gprintf("self %x level %$x\n", self (), level):

#pragma self
#pragma retinue
int
setlevel (int n)
{
par |
if (parent() == !~self()) level = setlevel(!“n + 1);

return (n):

16

il. An Extended Example in lie

~
*

Count the number of times some strings

appear in a collection of strings.

First distribute a collection of strings

(read one per line from stdin)

among the retinue of the principal processor.

Then count the number of times strings

passed as arguments to main() occur in the distributed collection.

/

% % A ¥ X A X X

#include <stdio.h>

/* a string for this program is an array type */
typedef char STRING(1024]:

/* each processor stores a list of strings */
typedef struct slist |

struct slist *next:

char *data:
} SLIST:

void pmemcpy(char *"to, char *from, int n):

17

/* load character strings into Dado, returning pointers to lists x/
SLIST **
load (void)
{
char *malloc (), *gets():
STRING line:;
SLIST *"~slist
int “nstrings

NULL;
0;

while (gets(line)) ({
with (?(nstrings == !“min/nstrings)) {
int len = strlen(line) =+ 1;

par {
SLIST *news:

if (((news = {(SLIST *)malloc(sizeof (SLIST))) == NULL)
|| ((news->data = malloc(!”~len)) == NULL))} {
eprintf("can’t malloc %d bytes\n",
sizeof (SLIST) + !"~len):;
'~exit (1)
}
news->next = slist:
slist = news;
nstrings++;
}
pmemcpy (slist->data, line, len);
}
}
return (slist);

}

/* after loading a set of character strings, */
/* test command-line strings against the set */
main(int argc, char *argv(])
{

SLIST *~slist = !“~load{():

int argn:

for (argn = 1; argn < argc: argn++) |
int total = 0
STRING “teststring:

pmemcpy (teststring, argv[argn], strlen(érgv[argn]) + 1):
par {
register SLIST *p:

for (p = slist; p; p = p->next) |
seq total += +/(strcmp(p->data, teststring) == 0):
}

}
printf ("%4d %s\n", total, argvlargn]):

(1]

(2]

(3]

[4]

(8]

(6l

(71

(8]

&)

(10]

[11]

[12]

18

References

Flynn, M. J.
Very High Speed Computing Systems.
Proceedings of the IEEE 14:1901-1909, 19686.

fverson, K. E.
A Programming Language.
Wiley, New York, 1962.

Kernighan, B. W., and Ritchie, D. M.
The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

Kernighan, B. W., and Ritchie, D. M.
The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1988.

Lerner, M. D., Maguire Jr., G. Q. and Stolfo, S. J.
An Overview of the DADO Parallel Computer.
In Proceedings NCC '85. AFIPS, 1985.

Mills, R. C., Radouch, Z., and Maguire Jr., G. Q.
A New Kernel for the DADO2 Parallel Computer.
Technical Report, Department of Computer Science, Columbia University, June, 1987.

Rose, J. R., and Steele Jr., G. L.

C*: An Extended C Language for Data Parallel Programming.

In Second International Conference on Supercomputing, pages 2-16. International
Supercomputing Institute, Inc., May, 1987.

Snyder, L., and Socha, D.

Poker on the Cosmic Cube: The First Retargetable Parallel Programming Language and
Environment.

In Proceedings of the 1986 International Conference on Parallel Processing. |EEE, 1986.

Stoffo, S. J., and Miranker, D. P.
The DADO Production System Machine.
Journal of Parallel and Distributed Computing 3(2):269-296, 1986.

Stolfo S. J., Miranker, D. P., and Lerner, M.
PPL/M: The Systems Level Language for Programming the DADO Machine.
Technical Report, Department of Computer Science, Columbia University, 1384.

Stroustrup, B.
The C++ Programming Language.
Addison-Wesley, Reading, MA, 1986.

van Biema, M., Maguire, G. Q. Jr., Lerner, M., and Stolfo, S. J.
The Design and Implmentation of a System Level Language for the DADO Paraliel Machine.

In Twentieth Hawaii International Conference on System Sciences, pages 152-162. ACM, Kona,

Hawaii, January, 1987.

Attt

