An Object-Oriented Model
for Network Management

Soumitra Sengupta, Alexander Dupuy,
Jed Schwartz, Yechiam Yemini

CUCS-414-88



An Object-Oriented Model for Network Management

Soumitra Sengupta, Alezander Dupuy, Jed Schwartz, Yechiam Yemins

Department of Computer Science
Columbia University, New York, NY-10027
December 1988

Abstract

Most networks today lack management tools that support automated identi-
fication of faults and bottlenecks and support effective recovery procedures. The
NetMATE project, discussed in this paper, addresses the issues related to dis-
tributed network management of large, heterogenecus networks. NetMATE em-
ploys a modular, object-oriented approach to develop extensible management tools
and a model for network information. The first prototype of the system confirms
the elegance of the design.

1 Introduction

Networks have become a principal means for information sharing and transfer in large
corporations and institutions. The recent directioa towards large enterprise-wide com-
puting is s disest ecnsequencs of the interconnection and the ease of availability of
computing resemsess in large oumbers. The complexity of interconnections has risen
sharply in the past few years. Consequently, management of the connectivity subsys-
tems has become a matter of paramount importance in order to support resilient and
efficient information flow in today’s networks.

A network, in simplistic terms, consists of physical connections between many com-

puting entities, and sets of protocols for information exchange over these connections.

Research supported in part by DARPA contract #F-29601-87-C-0074



The numbess of computing entities, the richness of interconnections, and the hetero-
geneity of protocols, all contribute to the complexity of a network and its management.
While geographic distribution and functional isolation of different domains within a
network make it impractical to employ a centralized network management strategy,
a distributed solution, by its very nature, adds to the complexity of monitoring and

coordination of network entities.

Current solutions for network management are mostly restricted to a single set
of protocols executing on a single platform of hardware and connections supported
by a single vendor. Most networks, however, consist of a heterogeneous mixture of
components that communicate using a variety of protocols. Even when it is possible to
reconcile the heterogeneity, the volume of management information from the network
itself can be overwhelming; which makes the task of extracting correct and meaningful

conclusions extremely hard.

The NetM ATE (Network Management, Analysis, and Testing Environment) project
at Columbia University addresses these and other issues related to effective network
management. The fundamental purpose of NetMATE is to provide a model of a net-
work, whether real or simulated, that can be manipulated and studied. NetMATE is
being developed as a set of software tools that monitor the functional and performance
behavior of large scale distributed network systems, analyze these behaviors, identify
and isolate erroneous operational conditions, repoct them in a meaningful manner
to operators, and support operator-directed, semi-automated network management.
NetMATE is & natural exteasioa of NeST, Columbia's Network Simulation and Pro-
totype Tool system (1, 2], which is a portable simulation envircnment consisting of two
parts: s monitor and s simulator. The moaitor permits graphical iconic interaction
and managemens of simulated netwock scenarics; and the simulator executes detailed
simulated prosssses in accordance with the parameters set by the monitor and process
definitions. NefT bas besa ported to over many sites including universities, industrial
and governmental research and development laboratories, corporation development
and operations teams.

[n this paper, we discuss the degn of a specific module in NetMATE which deals
with the issues of modeling a network to create and store a permanent repasitory of




generic and specific properties of network entities. Vbase, an object-oriented database
(7], is chosen for the purpose of defining and storing the models of real network entities,
their interrelationships, and dependencies. Vbase is an excellent and complete object-
oriented software system with a clean architecture and supports a rich set of data
value and aggregate types (and associated operations) and relationships. One of the
most useful features of Vbase is that the types themselves are objects, and hence can
be manipulated to a very high degree. Given the intricate structure and behavior
of a network, Vbase has been a very useful tool and database in implementing the
NetMATE network model.

The remainder of the paper is organized as follows. In Section 2, we specify the
functional requirements of Net MATE and discuss the sophistication required to fulfill
the requirements. NetMATE architecture is presented in Section 3, where we discuss
the different modules that support the required functionality. Section 4 elaborates
on the data model. Specifically, the generic relationships between the network entities
and their representation in the data model are detailed. We also briefly touch upon the
representation of information required by various modules of NetMATE. A discussion
of the Vbase database with respect to the NetMATE project follows in Section 5. The

current status of Net MATE is presented in Section 8, and we conclude in Section 7.

2 Functional Requirements

The functional requirements of the NetMATE system are derived from the needs of
various users of the system such as operstors, administrators and researchers. There
are few fundamental necessities, however, that are desired by all users. In order for
the NetMATE t0 be a generic tool for network management, it must support these
functions, and more importantly, be extensible in accommodating future needs.

Configuration Management — A network management system should be able
to define, confirm, and exercise control over the configuration of network entities.
Automatic validation of a configuration should be possible which includes validation of
connectivity and other network relationships. For instance, the system must recognize



that a standard modem cannot be attached to a generic ethernet but it can be connected
to an asynchronous line; and if a modem is defined to be connected to an asynchronous

line, then the system must confirm the actual connection in the network.

Configuration Management requires definition of static information regarding generic
network entities such as modems, hosts, terminal servers, link protocols, transport pro-
tocols. and so on. Furthermore, it requires definition of properties of specific entities
within a generic class to check the validity of a configuration accurately.

Fault and Performance Management — NetMATE functions should include
fault management facilities such as fault tracing and reporting, event logging and
execution of diagnostic tests. Similarly, it should be able to monitor and evaluate
the performance of the network by collecting and disseminating performance data
and maintaining performance logs. The provision of these functions require real-time
management of large amounts of network information by NetMATE, and an expert
system capable of diagnosing faults and performance degradations.

Flexibility and Extensibility — NetMATE must be flexible enough to accom-
modate the wide variety of vendor products, connection schemes and protocols abun-
dant in today's heterogeneous networks. The generic nature of NetMATE tools must
provide mechanisms to adapt to such diversity with ease, and provide both generic
and specific reasoning about configurability and fault analysis. One of the important
strategies of Net MATE implementation is to take advantage of existing network man-
agement systems that coatrol only a single, homogeneous network (¢.g., NetView -
an SNA network management system (8)).

Distributed Network Management — In a large network, it is impractical to
enforce a centralised netwock management system for mainly two reasons: Vulnera-
bility of the camtral system failure; and an overwhelming flow of network management
information that would slow the real-time management and fault analysis processing.
The distribution of management functions, however, gives rise to typical distributed
systems’ problems such as concurrent net work commands (updates) issued to the same
entity by two different management systems. NetMATE systems should have clear and
possibly non-overlapping management domains, and a coordination policy to avoid
such problems.



Researclr and Planning — Besides managing a real network, NetMATE should
support design and evaluation of new networks and protocols through simulation of
the same under various test conditions such as traffic patterns, loads. and failures.
For real networks, this facility would allow a configuration to be tested before actually
installing the network, and thus aid in the planning process. For researchers, the
simulation techniques would be beneficial in modeling and verification of correctness

and inter-operability of protocols.

The OSI model of network management (5] includes the first two functions as
requirements. Two other functions are mentioned - Accounting and Security Man-
agements. The NetMATE system, however, concentrates on the more fundamental
requirements mentioned above, and we believe that the additional functions can be
accommodated in NetMATE later.

3 Architecture

Let us examine the architecture of the Net MATE system in terms of its system modules
and their functions. The functional capabilities of Net MATE mentioned above are not
implemented individually by the modules; instead, a subset of NetMATE modules
cooperate to support a specific function. This is desirable in order to make use of
existing capabilities and to avoid duplication of effort.

Conceptually, there are ive major components of a NetMATE installation: the
Physical Netwerk, the Simulsted Network (or Simulator), the User Interface (Ul), the
Ezpert Anslgser (EA), and the Modeler. The Modeler is the heart of the installation
in the sense thas it holds the network model and other information in a database; all
other components function as clients to the Modeler. Thus the Modeler serves as the
hub of the system, and provides the essential glue by being a central repository of
information. The Modeler may interact with the Physical Network through Network
Control Points (NCP) which control a specific subset of the network. In a distributed
implementation, the Modeler also provides services to other installations in the system
and takes part in joint coordination of information flow with other Modelers. Figure 1



(w3}

depicts the NetMATE architecture.

.\'etMATé architecture policy dictates that each module individually be as inde-
pendent as possible. This allows for distributed execution of the modules. (The Expert
Analysis module. possibly, is the only exception due to efficiency reasons.) The Mod-
eler, ;n addition to the network information, also holds information for each client, and

thus acts as a database server for its clients. It also serves as a conduit for information

Aow between its clients.

The definition of interfaces between the Modeler and other client modules are of
considerable importance. They are defined by a set of information transfer units, and
the invocation procedures to initiate the transfer. Ideally, a Simulator-Modeler inter-
face should be similar to a NCP-Modeler interface so that there are minimal differences
between a physical network and a simulated network. Different Ul-Modeler interfaces
may implement different views of the network to different users (for security as well as
user-sophistication level reasons). A Modeler-Modeler interface could include only a
specific view (and thus have a superset of a Ul-Modeler interface). The architecture of
NetMATE is such that an interface may be re-used for different clients, thus providing

ease of use and flexibility in the system.

NetMATE implements a network management control and information flow which
is shown in Figure 2. A real network element is governed by NCPs which have detailed
knowledge about the entity. (A simulated network entity is governed by the Simula-
tor.) The NCPs (and the Simulator) relay information to the Network Manager(s)
(implemented by the model in the Modeler and the logic in the Expert Analyser mod-
ule). In absence of an explicit NCP, the Network Manager functions as an NCP to
the entity. The Manager ultimately provides the information to the users through
different views implemented by the Ul-Modeler interfaces.

[t is importamt to note that hierarchy depicted in Figure 2 does not necessarily
have a tree structure. Indeed, for information flow, it may be desirable to send critical
information to more than one Network Manager. However, for the control flow, which
demands strong consistency, it may be necessary to superimpose a strict and unique
hierarchy structure by which one network element is controlled by a single Network
Manager.




4 The Modeler: An Object-Oriented Database

In this section, we elaborate on the model chosen for the network and other information

as implemented by the Modeler. A network (real and/or simulated) is subdivided into

Network Management Domains consisting of physical devices and connections. Selec-

tion of a domain is based upon any reasonable criterion, such as geographic proximity,

or similar family of communication protocols (TCP/IP compatible, SNA-compatible,

etc.) For control purposes, the management functions associated with a network entity
may not overlap different domains. The network model in the Modeler represents a
network management domain. Multiple Modeler systems interchange network infor-
mation and carry out management functions cooperatively to meet the goals of the
NetMATE project. The management domain approach is motivated by (5], and has
appeared in other network management designs {3, 4].

A Modeler consists of a Network Model, which describes the network entities in
the domain being managed; a Network Management Model, which defines the network
control points and managers of sub-domains or peer domains; and an Organization
Model, which contains information about the clients of the Modeler. Associated with
each model, there is a group of cooperative processes that maintain the integrity of,
and provide services for, the model. The models are realized by an object-oriented
database, and collectively form the basis for an integrated network management tool

for a specific domain.

4.1 Network Model

A Network model is partitioned into two modules: Network Configuration, and Net-
work Definition. Network Configuration consists of model instances that correspond to
the actual network entities in the domain. Network Definition consists of pre-defined
classes for these entities from which the instances in the Network Configuration par-
tition are realized. Consider an example where there exists a class called Modem in
the Definition, and there are three modems in the domain. Then there exist three
instances of the Modem class in the Configuration representing the three modems.




Network Configuration

Network Configuration stores two kinds of information: generic network topology.
and specific information about network entities. While the specific information is
realized from the class hierarchy defined in Network Definition, the topology informa-
tion requires a generic class hierarchy of its own in the Network Configuration. This

hierarchy is partially depicted in Figure 3.

The generic network entities in a domain are nodes, links, and protocol layers. A
node object in the model represents a node entity which may be a machine, protocol
engine, process or application in the network. Similarly, a link object represents a link
entity which is a channel through which node entities can communicate. Therefore,
node and link objects model abstract notions of endpoints and connectivity among the
endpoints in the domain. The classes node and link are subclasses of a simple class,
and a relationship called connection exists between pairs of nodes and links.

Since the behavior of node and link entities are governed by a pre-defined, layered
comrmunication protocol, the Network model defines a layer class of objects. A layer
object represents the properties of an installed protocol and specifies a set of node
and link objects in the Configuration partition that follow the protocol. A node or a
link is contained exclusively in a layer, that is, they cannot be shared among multiple
layers. This is an important concept in NetMATE as we conceive the endpoints of
communication to be more than just physical devices and the connectivity between
endpoints to be more than just a physical connection. Indeed, the nodes and links in
the physical layer do represent physical devices and connections; but in a higher level
layer, they represent endpoints and connections specific to that layer. For example, in
a X.25 layer, there may be X.25 nodes and X.25 Virtual Circust links. The model will
usually include & mumber of layers with a clear semantics of ascendancy of layers.

A second level of abstraction within a layer is achieved by a group object (an
instance of the group class) which represents a collection of nodes, links, and other
groups in the same layer. This aggregation gives rise to a simple hierarchy with
parent-child relationship. A group, as such, has no pre-defined network semantics. Its
properties and functions are determined by its definition and use. The class group
is a subclass of A compound class, and defines a grouping relationship between itself



and its childten objects. The classes simple and compound are subclasses of a
network_element class.

A relationship called membership is established between layer and network_element
objects representing the fact that a layer consists of nodes, links and groups. Addi-
tionally, a mapping relation is defined between objects in different layers. The mapping
relationship represents the correspondence of objects at different levels of abstraction
(layers) in a protocol suite. Objects (simple or group) at a “higher” layer map to
objects (simple and/or group) at “lower” layers. The mappings, thus, model the func-
tional dependency of the well-being of the objects at one layer to the well-being of
the objects at lower layers, and by definition, determine the ascendancy of the layer
objects. A subclass of group, called mapgroup, is defined to realize the mapping
relationship. An object at a higher layer maps to a set of mapgroups, which individu-

ally represent the lower layer they belong to and the group of objects involved in the
mapping in that layer.

The relationships connection and grouping are many-to-many, whereas the mem-
bership relationship is one-to-many. The mapping relationship is one-to-many when
considered between a higher layer object and mapgroups. However, an object (simple
or group) in a mapgroup may also be a member in other mapgroups in the same layer,
and if considered between objects in different layers, the mapping relationship is many-
to-many. These relations are shown in Figure 5, and are implemented as properties
of the classes in the hierarchy. The instances of all objects representing the generic
network entities in a domain and explicit representation of the relationships among
the objects conceptually construct the topology of the network.

For each generic node, link, group and layer object, NetMATE makes use of ad-
ditional specifie details about their properties other than the generic relationshipe
mentioned above. A node object may represent, for example, a host computer, a
gateway, or a modem. Similarly, a link might represent an Ethernet bus, a virtual
circuit, or a TC'P connection. A gateway node may send management information
which differs significantly from the information sent by a bridge node, and usually,
they will support different sets of management commands. [t is therefore necessary
to associate specific information about the capabilities of the generic network entities,



10

and this is accomplished by kind_of relationship for layer, simple, and group objects.
The objects at the other end of the kind.of relation are instantiated from the class
hierarchy defined in the Network Definition Model. and are the place holders for the

specific properties.
Network Deflnition

Network Definition consists of (relatively) static information about the properties
of layers and other network entities. [t aids in construction of a Network model in two
major ways: Creation of objects for specific properties in Network Configuration; and
integrity maintenance of the defined model. In a specific Network model, only a subset
of the Definition model that represents the actual network entities in the domain may
be chosen to instantiate the specific properties in the Configuration model.

The Definition partition provides property templates (by defining classes and as-
sociated attributes), and defines restrictions on relationships (by specifying allowable
values for attributes). Additionally, the operations defined for the classes provide
network management commands such as querying for status. Thus the partition func-
tions as a dictionary of entity-specific definitions of network management and control
information supported by each entity. This is a very flexible approach which allows
the different classification schemes to be introduced in the Definition model in a semi-
dynamic fashion. One example of classification could be a vendor-specific management
scheme. Figure 4 shows a sample Network Definition class hierarchy for the nodes in
the domain. Once a generic node object is defined in the Network Configuration, it
may be assigned a specific node class in the Network Definition, upon which one (or
many) property templates are instantiated from the chosen class which are then linked
to the generic node through its kind_of relationship.

The partitioning of the Network model into two modules allows NetMATE to pro-
vide generic services at the user level, which are subsequently translated into different
sets of specific procedures for different entities with minimal knowledge requirement
from the user. This flexibility is extremely important in an heterogeneous network
domain because it allows common network analysis functions to be specified at a high
level of abstraction, and then continually refined at the lower levels.



4.2 Network Man.ugement Model

The Network Management model represents the management structure, and is also
partitioned, similar to the Network model, into two modules: Definition and Con-
figuration. The Management model defines, and has instances of, Network Control
Points which represent other network management systems. The protocols by which
the Modeler communicates with an NCP is captured by the operations defined for that
NCP class.

In a distributed network management implementation, a Modeler may request in-
formation from another Modeler. In this scenario, the latter Modeler behaves as a
Network Control Point of the former. Therefore, many properties of the NCP class
are applicable for peer Modelers acting as servers. This architecture is easily extendible
to form a management hierarchy of Modelers consisting of local, peer and parent man-
agers. [n the Management model, one is interested in a manager class, a subclass of
compound, instances of which represent a set of manager objects with a managing re-
lationship. Note that NCP thus becomes a subclass of manager class (Figure 3). For
NetMATE managers, the class will have the NetMATE Network Management Proto-
col routines defined in its operations and will include appropriate interface definition.
An interesting aspect of the management model is that by specifying the Network
Management Protocols as a set of layer objects, and nodes and links that implement
the management activities in the Network model, it should be possible to monitor the
performance of the Network Management Protocol itself.

It is useful to differentiate between Network Management model information and
the Network model information for various reasons. Management information is re-
quired for the distributed implementation of Net MATE, and also to model NCPs. The
hierarchical structure reduces the data flow bet ween every network entity and a single
Modeler (and thus supports filtering), and allows the integration of vendor-specific
network management subsystems in a uniform fashion.



,<
[R%)

4.3 Organization Model

The Organization model keeps information about the various client modules of Net-
MATE that are using the services of the Modeler. This model is also used by the
clients, if desired. to store information related to their operations. Not all information
in this model related to a client need be persistent; it may be sufficient to keep the
information as long as the client requires services from the Modeler. While a detailed
design of the Organization model has not been finalized. some of the important issues

follow.

Important information related to a client include communication protocol and asso-
ciated interface, outstanding requests, outstanding replies, and event triggers. Among
these, the outstanding requests and replies imply asynchronous, message-based com-
munication protocol between clients and the Modeler. Event triggers require a mecha-
nism for definition of event objects (which may be persistent), evaluation of associated
procedures and appropriate interruption of the client. Additionally, the Organiza-
tion model routines are responsible for maintaining the consistency of the Network
and Network Management models as they are accessed by the clients. A partial class
hierarchy for the User Interface appears in Figure 3.

A user interface client may choose to store display information in the Organization
model that corresponds to the objects in the Network model. The class hierarchy
defined for display information includes view (instantiates a window object), view-
group (instantiates a group containing objects that are displayed in a view), and
appearance (instantiates an object representing the graphical image of an element
on the screen). A set of processes in the Modeler may be dedicated for the user
interface client for manipulation of such display objects.

The major function of modules in an Expert Analyser is to provide automatic
decision making in fault and performance bottleneck analyses. For this, an Expert
analyser must understand the Network model in great detail. It is the principal client
of the event reporting services, and the principal requestor of information from the

network.



i3

An Experf Analyser consists of a generic knowledge base which consists of rules
for problem determination in a generic model of a network such as the Network model
described earlier. However, in order to be applicable on a live (real or simulated)
network, many rules would require network entity-specific attribute values to be sub-
stituted in real time. In some cases, where generic rules are not possible, the rules
must be entity-specific to effectively handle a entity-specific problem. Thus an Expert
Analyser client may consist of rules that are best defined in the Network Definition,
along with other entity-specific attributes and operations. Although these rules would
be a part of the Network model information, their invocation and evaluation will be

controlled by the Expert Analyser client.

5 The Modeler and Vbase

The preceding description of the Modeler architecture clearly demonstrates the need

for an object-oriented system supporting an object-oriented data model for network

management systems. A relational model for elements in a network is impractical

and unwieldy mainly due to heterogeneity, and large number of, and different, ways

network elements have to be managed. For example, the properties of, and applicable

operations on, a node differs widely depending upon the layer it belongs to (and hence

the protocol it executes), its own type hierarchy within a layer (for instance, whether
it is a gateway, or a bridge, or a host object in the pAysical layer), and posesibly
the vendor network management facilities it provides. Since NetMATE is designed
as a generic set of tools, it is therefore necessary to isolate these dependencies in
different collestions of properties and associated set of specific operations for ease
and portability in netwock management. Vbase supports the required modularization
capability of the NetMATE models to a very high degree and has been an invaluable
tool for developing the NetMATE prototype.

Vbase, as a general-purpose object-oriented database, supports properties, oper-
ations, and inheritance for abetract data types defined in a type hierarchy. Besides
using the basic features to define the network element types in NetMATE, we have
made good use of the convenient many-to-many relationship construct in Vbase (im-




14

plemented as “distributed set”). The exception and trigger concepts, rarely found in
other systems, have proven quite valuable in the Modeler development. Although at
the current prototyping stage we have had no need for concurrency control. the syn-
chronization mechanisms available in Vbase also seem quite adequate for that task.

The clean structure of Vbase is most evident in its design that the same constructs
that Vbase supports, are also used in its implementation. One useful consequence of
this is that the user-defined types and methods themselves are objects of system types
Type and Method. We have exploited this feature by being able to use the object id
of a type at runtime to efficiently refer to, and exchange information about, that type

across computers and disparate object-oriented systems.

Some desirable Modeler functions that are not currently possible through Vbase
follow. Dynamic modification of the type hierarchy and definition in the Network
Definition model, even in a restricted form, is required. We expect this function
to be supported by the object-oriented database through dynamic schema updates.
Secondly, it is desirable to have a Structured Query Language (SQL)-like features in
the interface between different modules and the Modeler. This can be made possible by
having the Object SQL queries invoked and evaluated from the procedures in Vbase.
Finally, a distributed implementation of Vbase (which probably is more of a research
issue) will be extremely helpful in the distributed NetMATE system.

6 Current Implementation

The NetMATE system currently has prototypes for a User Interface module and a
Modeler. The User Interface module is implemented in the X Window system and
is written in Cé<. [t makes use of the Interviews window systems interface library.
At present, dynamic creation and deletion of generic nodes, links and groupe are
supported. [t is possible to define connections and groupings. The user of the system
is able to move the graphical representation of objects on the screen at will.

The interface between the Modeler and the User Interface is developed using the
Sun RPC/XDR interface protocol (6]. This interface allows the Ul to invoke remote



13

procedure cali® to the Modeler to get services performed on its behalf. This interface
was chosen for the prototype since it is easy to use, and appropriate at the present
time. It is our intention to follow ISO ASN.1 standards for information exchange
when appropriate tools to do so become more available. Until then. we will use two
RPC interfaces for bi-directional communication between the Modeler and each of its

clients.

The Modeler, implemented in VBase, currently has the generic Network Configu-
ration. In this prototype version, it includes creation and deletion of nodes, links and
groups, connections between nodes and links, and addition and deletion of simple and
group objects to and from a given group. It also returns objects that a given node or
link is connected to, children objects of a given group, parent objects of a given group
or a simple object, and so on. As mentioned earlier, while VBase is not a distributed
database, it has been fairly easy to exchange objects between the Modeler and the
User Interface as 64-bit object ids defined in VBase. A preliminary design for the
User Interface information to be stored in the Organization model of the Modeler is

complete.

For the second version of NetMATE, we have decided upon the structure of the
Network Definition partition for an X.25 network and the interface between the User
Interface and the Modeler that allows the User Interface to inquire about the specific
properties of nodes and links, and their values. Our next goal is to define the same for
a TCP/IP local area network and attach the NetMATE system to a physical network.

7 Conclusion

In today's heterogeneous network environment, network management is a challenging
and complicated task. Our preliminary design and implementation results for Net-
MATE have demonstrated the utility and flexibility of an object-oriented approach to
model not only a network but also the network management and organization struc-
tures. The modular development of Net MATE will allow a distributed, efficient and
portable solution to manage diverse netwocks, both real and simulated.



References -
(1] Bacon D., Dupuy A., Schwartz J., Yemini Y., "NEST: A Network Simulation
and Prototype Tool,” Proceedings Usenix Conference Winter 87, Dallas, Texas.

[2] Dupuy A., Schwartz J.. “NeST System Overview,” Technical Report CUCS-
375-88, Department of Computer Science, Columbia University, New York, NY.

(3] Feridun M., Leib M., Nodine M., Ong J. “ANM: Automated Network Manage-
ment System,” IEEE Network, V2, N2, March 1988, pp 13-19.

(4] Klerer S.M. “The OSI Management Architecture: an Overview,” IEEE Network,
V2, N2, March 1988, pp 20-29.

(5] ISO TC97/SC21/WG4/N399 Management Framework Editing Meeting. “Po-
sition Paper Concerning OSI Management Domains,” Tokyo, June 1987.

(6] Remote Procedure Call/External Data Representation, Network Programming,
Sun Manual.

(7] Vbase Integrated Object System, Technical Notes, Ontologic Incorporated, Bil-
lerica, MA.

(8] Willett M., Martin R.D., “LAN Management in an IBM Framework,” IEEE
Network, V2, N2, March 1988, pp 6-12.



NCP -

Modeler &

N

Peer
Modeler

User Expert
Interface Analyser
User
interface

Simulator




Network
@ Element

Network
Control
Point

Network
Control
Point

Network
Manager

Network Network
Manager Manager

Network
View/Model

USER USER




network_ . .
layer element ~.,‘v'|ew
compound
node ..".,.rnanager
4
mapgroup ."-..viewgroup NCP




Other
node

modem

node_def

phy_iayer
node

log_layer
node

ethernet

token_ring
node

node

proteon i 3-com




OE ©

node
@ ‘ node
mapgroup




