FUF: the Universal Unifier
User Manual
Version 2.0

Michael Elhadad

Department of Computer Science
Columbia University
New York, NY 10027
Elhadad@cs.columbia.edu

28 February 1989 at 15:04

CUCS-408-88

Abstract

This report is the user manual for FUF version 2.0, a natural language generator program that uses the technique of
unification grammars. The program is composed of two main modules: a unificr and a lincarizer. The unifier takes
as input a scmantic description of the text to be gencrated and a unification grammar, and produces as output a rich
syntactic description of the text. The linearizer interprets this syntactic description and produces an English sen-
tence. This manual includes a detailed presentation of the technique of unification grammars and a reference manual

for the current implementation (FUF 2.0).

Copyright © 1989 Michacl Elhadad

Table of Contents
1. Introduction
1.1. How to read this manual
1.2. Function and Content of the Package
2. Getting Started
2.1. Main User Functions
3. FDs, Unification and Linearization
3.1. What is an FD?
3.2, A simple example of unification
3.3. Linearization
4. Writing and Modifying Grammars
5. Precise characterization of FDs
5.1. Generalities: features, syntax, paths
5.2. FDs as graphs
5.3. Disjunctions: The ALT keyword
5.4. Optional features: the OPT keyword
5.5. Control of the ordering: the PATTERN keyword
5.6. Explicit specification of sub-constituents: the CSET keyword
5.7. The special value NONE
5.8. The special value ANY - The Determination stage
5.9. The special value GIVEN
5.10. The special attribute CAT: general outline of a grammar
6. Tracing
6.1. External vs, Internal Traces: switches
6.2. Tracing of alternatives and options
6.3. Local tracing with boundaries
6.4. The race-enable and trace-disable family of functions
7. Indexing and Complexity of grammars
7.1. Indexing
7.2. Complexity
8. Morphology and Linearization
8.1. Lexical categories are not unified
8.2. CATegories Accepted by the morphology module
8.3. Accepted features for VERB, NOUN, PRONOUN, DET and PUNCTUATION:
8.4. Possible values for features NUMBER, PERSON, TENSE, ENDING, BEFORE, AFTER,
CASE, GENDER, PERSON, DISTANCE, PRONOUN-TYPE, A-AN
9. The Dictionary
10. Reference Manual
10.1. Unification functions
10.1.1. *lexical-catcgories*
10.1.2. *u-grammar*
10.13. u
10.1.4. uni
10.1.5. uni-fd
10.1.6. unif
10.2, Checking
10.2.1. fd-syntax
10.2.2. fd-sem
10.2.3. fd-p
10.2.4, grammar-p
10.3. Tracing
10.3.1. *all-trace-off*
10.3.2. *all-trace-on*

N 00 W W L BN et et bt et

10.3.3. *trace-determine*

10.3.4. *tracc-marker*
10.3.5. *top*

10.3.6. all-tracing-flags
10.3.7. internal-trace-off
10.3.8. internal-trace-on
10.3.9. trace-disable
10.3.10. trace-disable-all

10.3.11. trace-disable-match

10.3.12. trace-cnable
10.3.13. tracce-cnable-all

10.3.14. trace-cnable-match

10.3.15. trace-off
10.3.16. trace-on

10.4. Complexity
10.4.1. avg-complexity
10.4.2. complexity

10.5. Manipulation of the dictionary

10.5.1. *dictionary*
10.5.2. lexfetch
10.5.3. lexstore

10.6. Linearization and Morphology

10.6.1. call-linearizer
10.6.2. gap
10.6.3. morphology-help

10.7. Manipulation of FDs as data-structures

10.7.1. FD-intersection
10.7.2. FD-member
10.7.3. FD-to-list
10.7.4. gdp

10.7.5. gdpp

10.7.6. list-10-FD

10.8. Fine tuning of the unifier
10.8.1. *any-at-unification*

10.8.2. *keep-cset*
10.8.3. *keep-nonc*

Appendix I. Installation of the Package

1.1. Finding the files
L.2. Porting to a new machine
1.3. Packages

Appendix II. Advanced Features

I1.1. Advanced Uses of Patterns
I1.2. Advanced uses of CSET

11.3. Long Distance Dependencies and the GAP feature
11.4. Specifying complex constraints: the TEST and CONTROL keywords

Appendix ITI. Non linguistic applications of the unifier: dealing with lists
III.1. The member/append example

I11.2. Representing lists as FDs
II1.2.1. NIL and variables
111.2.2. The "~" notation

II1.3. Environment and variable names vs. FD and path

I11.4. Procedures vs. Categories, Arguments vs. Constituents
I11.5. The total FD includes the stack of all computation
111.6. Analogy with PROLOG programs

IIL.7. Use of Set values in linguistic applications

Appendix IV. Non standard features of the implementation and restrictions

IV.1. No disjunction in input

IV.2. Mergeable constituents in patterns
IV3. Indexing of alternation

I1V.4. Test and Control

IV.5, GIVEN

Index

il

1. Introduction

1.1. How to read this manual

This manual is designed to help you use the FUF package and to describe and explain the technique of
unification grammars.

The FUF package is made available to people interested in text generation and/or functional unification. It can
be used:

e as a front-end to a text gencration system, providing a surface realization component. A grammar of
English with a reasonable syntactic coverage is included for that purpose.

e as an environment for grammar development. People interested in expressing grammatical theories or
developing a practical grammar can experiment with the unificr and linearizer.

¢ as an environment for a study of functional unification. Functional unification is a powerful technique
and can be used for non-linguistic or non-grammatical applications.

This manual contains material for pcople interested in any of these. It starts with an introduction to functional
unification, its syntax, semantics and terminology. The next sections deal with the "grammar development” 1ools:
tracing and indexing, a presentation of the morphology component and the dictionary. Finally the last section is a
reference manual to the package. Onc appendix is devoted o the possible non-linguistic applications of the
formalism, and compares the formalism with programming languages.

1.2, Function and Content of the Package

FUF implements a natural language surface generator using the theory of unification grammars (cf section
bibliography for references). Its input is a Functional Description (fd) describing the meaning of an utterance and a
grammar (also described as an fd).The Syntax of fds is fully described in section 5. The output is an English
sentence expressing this meaning according to the grammatical constraints expressed by the grammar.

There are two major stages in this process: unification and linearization.

Unification consists in making the input-fd and the grammar "compatible” in the sensc described in [10). It
comes down to enriching the input-fd with directives coming from the grammar and indicating word order, syntactic
constructions, number agreecment and other features.

The enriched input is then linearized to produce an English sentence. The lincarizer includes a morphology
module handling all the problems of word formation (s’s, preterits, ...).

2. Getting Started

Appendix I describes how to install the package on a new machine. Contact your local system administrator 10
learn how to load the program on your system. You should know how to load the example grammars and
corresponding inputs.

2.1. Main User Functions
Once the system is loaded, you are ready to run the program. To try the unification, the user functions are:

(UNI FD &optional GRAMMAR Non-Interactiva)
by dafault the grammar used is *u-grammar*
non-interactive is nil
Complaete work : unification + linearization. Outputs a santenca.
If non-interactive is nil, a line of statistics is
also printed.

(ONI-FD FD &optional GRAMMAR Non-Interactive)
by default the grammar used is *u-grammar*
non-interactive is nil.
Does only the unification. Outputs the enriched fd. This is the
function to use whaen trying the grammars manipulating lists of gr5.1
If non-interactive is nil, a line cof statistics is also printed.

CL> (uni ir01)

The boy loves a girl.
CL> (uni-fd ir02)
(22 ...)

(ONIF FD &optional GRAMMAR Non-Interactiva)
by dafault the grammar used is *u-grammar*
As uni-fd but works even if FD does not contain a CAT featura.

If you want to change the grammar, or the input you can edit the files defining it, or the function with the same
name.

There arc two other useful functions for grammar developers: £d-p checks whether a Lisp cxpression is a
syntactically correct Functional Description (FD) to be used as an input. If it is not, helpful error messages arc

given. grammar-p checks whether a grammar is well-formed.

NOTE: usc £d-p on inputs only and grammar-p on grammars only.

(FD-P FD)

--> T if FD is a well-formaed FD.

--> nil (and error messages) otherwise.
DO NOT USE FD-P ON GRAMMARS

(GRAMMAR-P &optional GRAMMAR print-messages print-warnings)
--> T if GRAMMAR (by default *u-grammar*) is a well-formed grammar.
--> nil (and error messages) otherwisa.
- FD is *u-grammar* by default
- print-massages is t by default.
If it is non-nil, some statistics on the grammar are printed.
It should be nil when the function is called non-interactively.
- print-warnings is nil by default.
If it is non-nil, warnings are generated for all paths in the
grammar. (It is sometimas a good idea to manually check that all
paths are valid.)

(LIST~CATS &optional GRAMMAR)
--> List of categories known by the grammar (by default *u-grammar¥).

Examples:
CL> (fd-p '((a 1) (a 2)))
----> error, attribute a has 2 incompatible values: 1 and 2.
nil
CL> (grammar-p)
-——=>t
Cl> (grammar-p ’'((a 1) (b 2)))
----> error, a grammar must be a valid FD of the form:
((alt (((cat cl)...) ... ((cat cn) ...})))). nil.
CL> (list-cats)

-—-=> ((cat s) (cat np) (cat vp))

The functions complexity and avg-complexity measure how complex is a grammar, that is how much
time unification with this grammar requires. They are documented in section 7 on indexing.

3. FDs, Unification and Linearization
In this section, we informally introduce the concepts of FDs and unification. The next section provides a
complete description of the FDs as used in the package, and presents all available unification mechanisms.

3.1. What is an FD?

An FD (functional description) is a data structure representing constraints on an object. It is best viewed as a list
of pairs (attribute value). Here is a simple cxample:

[((articlo “the") (noun "cat")) I

There is a function called £d-p in the package that lets you know whether a given Lisp expression is a valid
FD or not and gives you helpful error messages if it is not. In FUGS, the same formalism is used for representing
both the input expressions and the grammar.

3.2. A simple example of unification

We present here a minimal grammar that contains just enough to gencrate the simplest complete sentences. Itis
included in file "gr0.l" in the directory containing the examples. A litle more complex grammar, handling the
active/passive distinction, is available in "gr1.1", and a more interesting one in "gr2.1".

({(alt MAIN (
;; a grammar always has the same form: an alternative
;; with one branch for each constituent category.

;; First branch of the alternative
;; Daeascribe the category S.
((cat s)

(prot ((cat np)))

(goal ((cat np)))

(verdb ((cat vp)

(number (prot numbear))))
(pattern (prot verb goal)))

;; Second branch: NP
((cat np)
(n ((cat noun)))
(alt (
;; Propaer names don’t need an article
((proper yas)
(pattern (n)))
;; Common names do
((proper no)
(pattern (det n))
(det ((cat article)
(lex "the")))))))

;; Third branch: VP
((cat vp)
(pattern (v dots))
(v ((cat varb)))}))))

A few comments on the form of this grammar: the skelcton of a grammar is always the same, a big alt
(alternation of possible branches, the unifier will pick one compatible branch o unify with). Each branch of this
alternation corresponds to a single catcgory (here, S, NP and VP).

The second remark is about the form of the input: as shown in the following cxample, an input is an FD, giving
some constraints on certain constituents. The grammar decides what grammatical category corresponds to cach
constituent.

The next main function of the grammar is to give constraints on the ordering of the words. This is done using
the pattern special attribute. A pattern is followed by a picture of how the constituents of the current FD
should be ordered: (Pattern (prot verb goal)) means that the prot constituent should come just before
the verb constituent, etc.

In the first branch, the only thing to notice is how the agreement subject/verb is described: the number of the
PROT will appear in the input as a feature of the FD appearing under PROT, as in:

(prot ((number plural) (lex "car")))

slanding for "cars". To enforce the subject/verb agreement, the grammar picks the feature number from the
prot sub-fd and requests that it be unified with the corresponding feature of the verb sub-fd. This is expressed by:

(verb ((number (prot number))))

which means: the value of the number feature of verb must be the same as the value of the numbe r feature
of prot.

In the second branch, describing the NPs, we have two cases, corresponding to proper and common nouns.
Common nouns arc preceded by an article, whereas proper nouns just consist of themselves, e.g., "the car” vs.
“John". If the featurc proper is not given in the input, the grammar will add it. By default, the current unifier will
always try the first branch of an alt first. That means that in this grammar, proper nouns are the default.

Finally, a brief word about the general mechanism of the unification: the unifier first unifies the input FD with
the grammar. In the following example, this will be the first pass through the grammar. Then, each sub-constituent
of the resulting FD that is part of the cset (constituent-set) of the FD will be unified again with the whole
grammar. This will unify the sub-constituents prot, verb and goal also. This is how recursion is triggered in
the grammar. The next section describes how the cset is determined. All you need to know at this point is that if a
constituent contains a feature (cat xxx) it will be tried for unification.

In the input FDs, the sign "==="is used as a shortcut for the notation:
Bn == John) <==> (n ((lax John)))]

The lex feature always contains the single string that is to be used in the English sentence.

When unified with the following FD, the grammar will output the
sentence "John likes Mary".

(satg 1ir0l ‘' ((cat s)

(prot ((n == john)))
{(verb ((v === like)))
(goal ((n == Mary)))))

That corraesponds to the linearization of the following complate
FD (this is thae result of the unification):

CLISP> (uni-f£d ir01)

((cat s)
(prot ((n ((lax "john")
(cat noun)))
{(cat np)
(proper yaes)

(pattern (n))))
(verb ((v ((lex "like")
(cat verb)))
(cat vp)
(number nil)
(pattern (v dots))))
(goal ((n ((lex "Mary")
(cat noun)))
(cat np)
(proper yes)
(pattern (n))))
(pattern (prot verb goal}))

Following the trace of the program will be the easiest way to figure out what is going on:

CLISP> (uni iro01l)

-—>

Entering alt MAIN -- Branch #1 (CAT S)

-->Enriching input with (CAT NP) at level (PROT)

-->Enriching input with (CAT NP) at level (GOAL)

-->Enriching input with (CAT VP) at level (VERB)

-->Enriching input with (NUMBER (PROT NUMBER)) at level (VERB)
—-—>Enriching input with (PATTERN (PROT VERB GOAL)) at level NIL
-—>

a4

Entering alt MAIN -- Branch §#2 (CAT NP)

-->Enriching input with (CAT NOUN) at leval (PROT N)
-->Enriching input with (PROPER YES) at lavel (PROT)
-->Enriching input with (PATTERN (N)) at level (PROT)
-—>

-=>

Entering alt MAIN -- Branch §#3 (CAT VP)

—-->Enriching input with (PATTERN (V DOTS)) at level (VERB)
-->Enriching input with (CAT VERB) at laevel (VERB V)

-—>

-->

Entering alt MAIN -- Branch #2 (CAT NP)

-->Enriching input with (CAT NOUN) at level (GOAL N)
-->Enriching input with (PROPER YES) at level (GOAL)
-->Enriching input with (PATTERN (N)) at levael (GOAL)
-=>

[Csed 17 backtracking points]

John likes Mary.

In the figure, you can identify ecach step of the unification: first the top level category is identified: (cats). The
input is unificd with the corresponding branch of the grammar (branch #1). Then the constituents are identificd. We
have here 3 constituents: PROT of cat NP, VERB of cat VP and GOAL of CAT NP. Each constituent is unified in
turn. Then for each constituent, the unifier identifies the sub-constituents, In this case, no constituent has a
sub-constituent, and unification succeeds. Note that in general, the hierarchy of constituents is traversed breadth
first.

Now, it is also imporiant to know when unification fails. The following example tries to override the
subject/verb agreement, causing the failure:

(setg 1r02 ‘' ((cat s)

(prot ({(n === john) (number sing)))
(varb ((v == like) (number plural})))
(goal ((n == Mary)))))

CLISP> (uni 1ir02)
-—>
Entering alt MAIN -- Branch §1 (CAT S)
-->Enriching input with (CAT NP) at level (PROT)
-->Enriching input with (CAT NP) at level (GQCAL)
-->Enriching input with (CAT VP) at lavel (VERB)
-->Fail in trying PLURAL

with SING at lavel (VERB NUMBER)

<fail>

3.3. Linearization

Once the unification has succeeded, the unified fd is sent to the lincarizer. The linearizer works by following
the directives included in the pattern . The exact way to define these features is explained in section 5.5. The

lincarizer works as follows:
1. Identify the pat tern feature in the top level: forir)1,itis (pattern (prot verb goal)).

2. If a pattern is found:
a. For each constituent of the pattern, recursively linearize the constituent. (That means linearize
PROT, VERB and GOAL).

b. The linearization of the fd is the concatenation of the lincarizations of the constituents in the
order prescribed by the pattern feature.

3. If no feature pattern is found:
a. Find the lex feature of the fd, and depending on the category of the constituent, the mor-
phological features needed. For example, if fd is of (cat verb), the features needed are:
person, number, tense.

b. Send the lexical itcm and the appropriate morphological feawres to the morphology module .
The linearization of the fd is the resulting string. For exampie, if lex=""give’’ and the fcatures
are the default values (as it is in irO1), the result is *‘gives.”’

Note that when the fd does not contain a morphological feature, the morphology module provides reasonable

defaults. More details on morphology arc provided in scction 8.

Note also that if a pattern contains a reference to a constituent and that the constituent does not exist, nothing
happens: the lincarization of an empty constituent is the empty string. The following cxample illustratcs this

feature:

Unified FD:

((cat s)
(pattern (prot verb goal benef))
(prot ((cat noun) (lex '‘John’’)))
(varb ((cat verb) (lex ‘‘like’’}))}))

Linearized string (note that conatituents GOAL and BEREF are missing):
John likes.

Finally, note that if one of the constituent sent to the morphology is not a known morphological category, the
morphology module can not preform the necessary agreements. This is indicated by the following output:

Unified FD:

((cat s)
(pattern (prot verb goal))
(prot ((cat noun) (lex '‘John’’}))
(verb ((cat varb) (lex ‘‘like‘’’)))
(goal ((cat zozo) (lex ‘‘trotteur’’))))

Linearized string:
John likes <unknown cat ZOZO: trotteur>

In general, when you find that in your output, it means you have donc something wrong. You should check the
list of legal morphological categories (see section 8) or you should check why a high level constituent is sent to the
morphology (your {d is too flat), You can use the function morphology-help to have on-line help on what the
morphology module can do.

4. Writing and Modifying Grammars
In this scction, we briefly outline what steps must be followed 1o develop a Functional Unification Grammar.
The methodology is the following:

1. Determine the input to use. In general, input is given by an underlying application. If not, the
criterion to decide what is a good input is that it should be as much ‘‘semantic’’ as possible, and
contain the fewest syntactic features as possible.

2. Identify the types of sentences to produce.

3. For each type of sentence, identify the constituents and sub-constituents, and their function in the
sentence. A constituent is a group of words that are ‘‘tied together’” in a clause. A constituent in
general plays a certain function with respect to the higher level constituent containing it. For example,
in “‘John gives a book to Mary,”’ the group ‘‘a book’ forms a constituent, of category *‘noun-group,’”
and it plays the role of the ‘‘object upon which action is performed”” in the clause. Such role is often
called the *‘medium’’ in functional grammars.

4. Determine the output (that is, the unified fds before lincarization). In the output, constituents should
be grouped in the same pair and the attribute should indicate what function the constituent is fulfilling.
In the previous example, we want to have a pair of the form (medium <fd describing ‘‘a
book’ ‘ >) in the output. The output must also contain all ordering constraints necessary to lincarize
the sentence and provide all the morphological feature needed to derive all word inflections (e.g.,
number, person, tense).

S. Determine the ‘‘difference’” between the input and the output. All features that are in the output but
not in the input must be added by the grammar.

6. For cach category of constitucnt, write a branch of the grammar. To do that, you need to specify under

10

which conditions each feature of the ‘“difference’” must be added to the input.

This is of course an over-simplified description of the process. Sometimes, the mapping from the input to the
output is best considered if decomposed in several stages. For example, in gr4 (cf. file gr4.1), the grammar first
maps the roles from semantic functions (like agent or medium) to syntactic roles (like subject or
direct-object), and then does the required syntactic adjustments,

In general, the important idea here is that you must first determine your input and your output and the grammar

is the difference of the two.

5. Precise characterization of FDs

5.1. Generalities: features, syntax, paths
Pairs are called features. The attribute of a feature needs to be an atom. The value of a feature can be either an
atom or recursively an FD. Here is an example:

(1) ((cat np)
(det ((cat article)
(definite yes)))
(n ((cat noun)
(number plural))))

A given attribute in an FD must have at most ONE value. Therefore, the FD ((size 1) (size 2)) is
illegal. In fact FDs can be viewed as a conjunction of constraints on the description of an object: for an object to be
described by ((size 1) (size 2)) it would need to have its property size to have both the values 1 and 2.
Conversely, if the attribute size does not appear in the FD, that means its value is not constrained and it can be
anything. The FD nil (empty list of pairs) thus represents all the objects in the world. The pair (att nil)
expresses the constraint that the value of att can be anything. It is thercfore useless, and the FD ((attl nil)
(att2 val2)) isexactly equivalent to the FD ((att2 val2)).

Any position in an FD can be unambiguously refered to by the "path” leading from the top-level of the FD to
the value considered. For example, FD (1) can be described by the set of expressions:

(cat) = np

(dat cat) = article
(det daefinite) = yes
(n cat) = noun

(n number) = plural

Paths are represented as simple lists of atoms (for example, (det definite)). This notation is not am-
biguous because at each level there is at most one feature with a given atiribute,

A path can be "absolute” or "relative.” An absolute path gives the way from the top-level of the FD down to a
value. A relative path starts with the symbol "~" (up-arrow). It refers to the FD embedding the current feature. You
can have several "~" in a row 10 go up several levels. For example:

11

((cat s)
(prot ((cat np)
(number sing)))
(varb ((cat vp)
(number (* ~ prot number)})))

I
this is refaring to the absolute path (prot number)

The value of a pair can be a path. In that case, it means that the values of the pair pointed to by the path and the
value of the current pair must always be the same. In this case, the two features are said to be unified. In the
previous example, the features at the paths <verb number> and <prot number> are unified. That means they

arc absolutely equivalent, they are two names for the same object. This is equivalent to the sysiemic operation of
"conflation”.

The only case where a given attribute can appear in scveral pairs is when it is followed by paths in all but one
pairs. That is:

((a ((al v1)))
(a (b))
(a (c)))

is a valid FD. It is equivalent for example to:

((b ((al vi)))
(a (b))
(¢ (b))

5.2. FDs as graphs

It is often useful 1o represent FDs as Directed Acyclic Graphs (DAGs). Here is how the correspondance is
established: an FD is a node, each pair (attr. value) is an arc lcaving this node. The attr of the pair is the

label of the arc, the value is the adjacent node. Internal nodes in the graph have therefore no label whereas leaves are
atomic values.

*
((cat s) / 1\
(prot ((cat np) /| \
(number sing))) <===> prot cat verdb
(verb ((cat vp) | | |
(number sing)))) * * *
/ \ I / N\
/ \ s/ \

|
I
sing np Vvp sing

When a relative path occurs somewhere in an FD, to find where it poinis (0, just go up on the arcs, one arc for
each "~". When the value of a pair is a path, ¢.g., (a (b)) it mcans that the current arc is actually pointing to the

12

same node as the path given.

*

((cat s) / 1\
(prot ((cat np) / | \
{(number sing))) <====> prot cat verb
(varb ((cat vp) | | |
(numbar (* ~ prot number)))) * * *
/ \ | / \
/ \ s/ \
| 1 |
cat number number cat
I] |
| +-=+]
I I I
np sing vp

The following attributes have a special unification behavior: alt, opt, pattern, cset,

control and cat. The following valucs have a special unification behavior: none, any and given. These

are all the "keywords" known by the unifier.

5.3. Disjunctions: The ALT keyword
alt stands for "alternation”. The syntax for using alt is:

((attl vall)
(att2 vall2)

(aééé valn))

(ALT (£d41 f£d2 ...

fdn))

The meaning of a pair with an alt attribute is: the unificr will try to unify the total FD by replacing first the
pair alt by the FD £d1, if this unification fails, then the unifier will try the following alternatives. If all branches
of the alt fail, the unification fails.

The order in which branches are put within the alt docs not change the result of the unification. (This is an
important feature of the process of unification: the result is always order-independent.) However, since only the
first successful unification is returncd, order can be used to specify default values. For example, if you want 1o
specify that a sentence should be at the active voice by default, the following order should be used:

)

--4)))

(ALT (((voice active)

(k;;ice passiva)

An alt can be embedded within another alt or it can be the value of a feature.

13

5.4. Optional features: the OPT keyword
opt is used to indicate that a set of features is optional. The syntax is

{(attl vall)
(OPT. fd)

(attr.x.::aln))

The meaning is: if the unification of the whole FD succeeds with fd, it is retumned as the result. If it fails, the
unifer tried again without fd. opt is therefore a more readable equivalent to the form:

[(ALT (£d nil)) j

opt is used exactly in the same way as alt.

5.5. Control of the ordering: the PATTERN keyword

As mentioned previously, the generation of a sentence is made of two subprocesses: the unification and the
linearization, The unification produces a complex description of a sentence, made of several constituents. Each
constituent is described by an FD, and can recursively contain other subconstituents.

The linearization takes such a complex non ordered description and outputs a linear, ordered string of words.
This operation is constrained by directives put within the FD. These constraints on the ordering are put after the
special attribute pattern.

For example, in a sentence containing the constituents prot, goal and verb, the following pattern can
be used:

(PATTERN (PROT VERB GOAL))

This means that the linearizer should output a string made of the lincarization of the constituent prot first,
followed by the linearization of the constituent verb and finished by the linearization of the constituent goal. It
also means that nothing can come before prot and after goal, and nothing can come between each pair.

The constituents correspond to features of the FD describing the sentence. That is, this FD must contain pairs
with the attributes prot, verb and goal. For cxample:

((cat 8)

(PROT (...))

(GOAL (...))

(VERB (...))

(PATTERN (PROT VERB GOAL)))

If a constituent mentioned in the pattern is not present in the FD, nothing happens: the linearization of an empty
(or non cxistent) constitucnt is the empty string,

The pattern directives are generally added by the grammar, since the input to the unifier should be a
semantic represcntation and therefore docs not contain any constraint on word ordering.

14

A given grammar can generate several constraints, that is it can add 2 or more pattern pairs to the result. The
unifier therefore includes a pattern unifier. The role of the pattern unifier is to take scveral consiraints on the
ordering and to output onc ordering that subsumes all of them.

The following symbols have a special meaning for the pattern unifier: dot s and pound (standing respectively
for the notations ’..." and '#°).

A pattern (¢l ... c2) (noted in the program (cl dots c2)) indicates that the constituent c1 must
precede the constituent c2, but they need not be adjacent. Zero, one or many other constituents can come in
between. The pattern (cl ... c2) still requires the sentence to start with constituent c1 and to end with c2.
Thepattern (... ¢l ... c2 ...) only forces cl tocome before c2.

The pound (#) symbol is used to represent 0 or 1 constituent. For example, if you want to allow a sentence o
start with an optional adverbial, you can specify it with the pattem (# prot ... verb ...). This directive
will be compatible with both (prot verb goal) and (adverb prot verb goal) for example.

As a consequence of the use of the two symbols pound and dots, the constraints described by pattern
directives are PARTIAL orderings.

Appendix II describes some advanced uses of pattern unification.

In addition, the pattern unifier can be used to enforce the unification of constituents. The classical example is
given by the focus constitucnt. There is good linguistic evidence that the focus of a sentence tends to occur first in
a sentence. To represent this constraint, a grammar can include the following directive:

(PATTERN (FOCUS DOTS)) 4]

That is, a sentence should start with its focus. Now, we also know that a sentence at the active voice should
start with its subject, that is its prot constituent. This is expressed by:

(PATTERN (PROT ... VERB ...))

If both constraints are 1o be satisfied, we nced to say that focus and prot are actually the same constituent,
otherwise, the 2 patterns are incompatible. That is, the constituents focus and prot need to be unified. This
mechanism would be quite expensive to implement for all constituents, and would need to meaningless attcmpts
most of the time. Therefore, to allow this kind of unification to occur, the current unifier requires the pattern to
include a special directive, indicating that a constituent can be unificd with other constituents to make two patterns
compatible. The notation used is: (* constituent).

Example:
(PATTERN ((* FOCUS) DOTS))
(PATTERN (PROT DOTS VERB DOTS))

are compatible, and require the unification of the constituents focus and prot. Note that prot needs not be
“stared” 10 be unified with focus. The notation can be understood as specifying that focus is a kind of "meta-
constituent”.

NOTE: Patterns can contain full paths to specify constituents. For example, the following is a legal pattern:

15

(PATTERN ((prot n) (verb v) goal))]

NOTE: the unification of patterns is a non-deterministic operation. It can produce several results for a given
input, and there is no way to produce in which order these possible solutions will be tried. Caution should be
exercised when specifying patterns: they should be specific enough to allow only acceptable word orderings (do not
use too many dots) but should not be too specific to allow for as yet not supported constituents (for example, a
senicnce can start with an Adverbial, not necessarily an NP).

5.6. Explicit specification of sub-constituents: the CSET keyword

The unifiecr works recursively: it unifies first the top-level FD against a grammar (generally the top-level FD
represents a sentence), and then, recursively, it unifies each of its constituents. For example, to unify a sentence, the
unifer first takes the whole FD and unifies it with the grammar of the sentences (cat S), then it unifies the prot
and goal with the grammar of NPs (cat np), then it unifies the verb with the grammar of VPs (cat vp).

You can specify explicitly which features of an FD corresponds to constituents and therefore need to be
recursively unified. To do that, add a pair:

(CSET (¢l ... cn))

For example:
(CSET (PROT VERB GOAL))

The value of a cset (stands for Constituent SET) is considered as a SET (in the mathematical sense).
Thercfore the 2 following pairs are correctly unified:

(CSET (PROT VERB GOAL))
(CSET (VERB GOAL PROT))

Actally, two cset pairs are unified if and only if there values arc two equal sets.

The current version of the unifier does not rely exclusively of csets to find the constituents to be recursively
unifiecd. Here is the procedure followed to identify the constituent set of an fd:
1. If a feature (cset (cl ... cn)) isfoundin the FD, the constituent setis just (c1 ... cn).

2. If no feature cset is found, the constituent set is the union of the following sub-fds:
a. If a pair contains a feature (cat xx), it is considered a constituent.

b. If a sub-fd is mentioned in the pattern, it is considered a constituent.
As a consequence, csets arc rarcly necessary. They are gencrally used when an fd contains a sub-fd that

cither is mentioned in the pattern or contains a feature cat, but that you do NOT want to unify. In that case, you
can explicitly specify the cset without including this unwanted sub-fd.

NOTE: A cset values can contain full paths to specify constituents. So for example, the following is a legal
feature:

(csat ((prot n) (verb v) goal))

16

5.7. The special value NONE

There is a way to prevent an FD from ever getting a value for a given attribute. The syntax is: (att NONE).
It means that the FD containing that pair will NEVER have a value for att. Or in other words, that the object
described by the FD has no attribute att.

5.8. The special value ANY - The Determination stage

An any value in a pair means that the feature must have a determined value at the end of the unification. A
complete unified FD will never contain an any, since an any stands for something that must be specified. If after
unifying everything, the resulting FD contains an any, then the unification fails.

An any represents a strong constraint. It means that a feaure MUST be instantiated. any should not be
understood as "the feature has a value in the input” but as "the fcature WILL have a value in the result”,

The idea of a "resulting final FD" coming out of the unification is important. It actually implies that the process
of unification is the composition of 2 sub-processes: the unification per se and what we call here the
"determination”.

The determination process assures that the resulting FD is well formed. It is a necessary stage since the
"resulting final" FD is more constrained than regular FDs, Here is what the determination does:
o checks that no any is left.

e tests all the test constraints.
It is important to realize that none of this can be done before the unification is finished.

Note that in practice, ANY is used VERY rarely.

5.9. The special value GIVEN
NOTE: GIVEN is a keyword specific to this implementation. Its use is not recommended. See appendix IV for
a list of the non-standard features of this implementation.

A given value in a pair means that the fcature must have a real value at the beginning of the unification. A
unified fd will never contain a given since given will always be unified with a real value. given is useful o
specify what features arc necessary in an input. It is also much more efficient than any. [t is often used in branches
ofan alt, to ‘“‘test” for the presence of a feature.

The rule is: when you think of using any, you oftcn want to use given.
5.10. The special attribute CAT: general outline of a grammar

Each constituent of an FD is generally characterized by its "category”. In FD terms, that means each constitucnt
includes a feature of the form (CAT category-name), where category-name is expected to be an atom.

A grammar is expected to give directives for each possible category, for example NP, VP, or NOUN. The
outline of a grammar must be:

17

((alt (
((cat s)
<rast of grammar for category 8>)
((cat np)
<rest of grammar for category NP>)
<other cataegories>
M)

NOTE: The current version of the unifier makes the assumption that the grammar has such a form. The (CAT
xxx) pairs must appear first. The function grammar-p checks that a grammar has the right form. The list of
categories known by the grammar can be found by using the function 1ist-cats. See appendix IV for a list of the
non-standard features of this implementation.

6. Tracing
There arc plenty of mcthods to trace the process of unification, generating more or less output. You want to
choose the mcthod generating only the most relevant trace.

6.1. External vs. Internal Traces: switches
For the purpose of debugging the unifier, there is a switch generating an extremely detailed output.

To use it, type:
(internal-trace-on)

To switch it off:
{(internal-trace-off)

The other traces are used to follow the process of unification, and are used 1o debug a grammar, they don’t give
any information on the internals of the program. These are the external traces users generally use.

Since these traces are oriented to a grammar developper, we want the grammar developper to indicate what
portions of the grammar must be traced: the grammar is traced, not the program. Therefore, 10 trigger tracing, one
must put dircctives into the grammar. At the Lisp level, and for a given grammar including tracing directives, traces
can be switched on or off by the functions:

18

(trace-on) enable all trace messages to be output.
(trace-off) disable all trace messages toc be output

(all-tracing-flags &optional (grammar *u-grammart))

dafined in the grammar.
(trace-enable flag) re-enable a disabled flag.
(trace-disable-all) disable all flags.
(trace-enable-all) re-enable all flags.

(trace-disable-match string)
disable all flags whose names contain string.

(trace-enable-match string)

return the list of all tracing flags defined in grammar.

(trace-disable flag) disable flag. Everything works as if flag was not

re-enable all flags whose namas contain string.

6.2. Tracing of alternatives and options

The most uscful trace of the unification is gencrated by giving a name to an aliecrnative of the grammar. It is

done by adding an atomic name after the keywords alt or cpt in the grammar:

{(alt PASSIVE
(
;; branch 1 of alt passive
((verb ((voice passive)))
(prot none))

;; branch 2 of alt passive
((verb ((voice passive)))
(prot any)
(prot ((cat np)))

(by-obj ((cat pp) (prep ((lex “by"))) (np (* prot})))
(pattern (dots verb by-obj dots)))))

;. body of alt passive (common to all branches)
(verb ((cat verb-group)))
..)

Here, this fraction of the grammar has been marked by the directive: (alt PASSIVE

.. .).(An equivalent

notation is (alt (trace with PASSIVE) ...).) The effect will be that all unification done subsequently

will be traced, producing the following output:

--> Entering ALT PASSIVE
--> Trying Branch #1 in ALT PASSIVE:
--> Fail on trying (prot none) with
(prot ((nnp ((n ((lex boy)))))))
--> Trying Branch #2 in ALT PASSIVE:

19

If a traced alternative is found later in the grammar, the level of indentation will increase. If the level of
indentation decreases, that means a whole (alt ...) has failed. It is indicated by the output:

| --> Fail on ALT PROT.

The possible messages printed when the grammar is traced are:

Move in the alternatives:
ENTERING ALT £: BRANCH #i
FAIL IN ALT £
¥When the alt is indexed (cf section 7):
ENTERING ALT £ -- JUMP INDEXED TO BRANCH §i INDEX-NAME
NO VALUE GIVEN IN INPUT FOR INDEX INDEX-NAME - NO JUMP
For options:
TRYING WITH OPTION o
TRYING WITHOUT OPTION o
Regular unification:
ENRICHING INPUT WITH s AT LEVEL 1
FAIL IN TRYING s with s AT LEVEL 1
Pattern unification:
UNIFYING PATTERN p with p
TRYING PATTERN p
ADDING CONSTRAINTS c
FAIL ON PATTERN p
Unification betwean pointers to constituents:
UPDATING s WITH VALUE s AT LEVEL 1
s BECOMES A POINTER TO s AT LEVEL 1
UPDATING BOTH PATHS TO A BOUND

HINTS: You want 10 trace only the most relevant alternatives of your grammar to generate the less output
possible. It is a good idea to trace first inner alternatives. Use trace-disable and trace-enable to control
which flags you want 10 use.

6.3. Local tracing with boundaries

If you want a more focused tracing, you can put anywhere in the grammar a pair of atomic flags whose first
character must be a "%" (value of variable *t race-marker*). All the unification donc between the 2 flags will
be traced, and will produce the same messages as usual.

;: branch 2 of alt passive

((verb ((voice passive)))

(prot any)

$by-obj$

(prot ((cat np)))

(by-obj ((cat pp) (prep ((lex "by"})) (np (* prot))))
$by-obj%

(pattern (dots verb by-obj dots)))

All the unification done between the 2 flags %by-obj% will be traced. You furthermore will have a message:

Switching local trace flags on and off:
TRACING FLAG f
UNTRACING FLAG £

HINTS: You generally want to have only small portions of the grammar put between tracing fiags.

6.4. The trace-enable and trace-disable family of functions

In general, a grammar is defined in a file, that you load in your Lisp environment. The tracing flags are defined
in that file after the alts and opts or as local flags. When you develop a grammar, you want to focus on different
parts of the grammar. In order to do that, you can selectively enable or disable some of the flags defined in the

grammar.

The function all-tracing-flags returns a list of all the flags defined in the grammar. You can then
choose to enable or disable all the flags, only a given flag, or all flags whose name maiches a given string.

When a flag is disabled, everything happens as if the flag was not defined at all in the grammar. Note that you
cannot create a new flag in the grammar by using these functions. You can simply turn on and off existing flags. It
is therefore a good idea to define all the possible flags in a grammar and to adjust the list of enabled flags from
within lisp.

7. Indexing and Complexity of grammars

In order to increase the efficiency of the unification, the program allows the inclusion of index declarations in
the grammar. To better understand why such declarations can make things faster it is necessary to understand what
makes unification slow.

7.1. Indexing

The main problem for the program is to handle non-deterministic constructs in the grammar. The non-
deterministic constructs arc currently: alt, opt and pattern. Unification of these constructs with an input can
produce several results. Whenever the unifier encounters such a construct, it does not know which of the possible
results to choose. For example, when unifying an alt there is no way to choose a branch out of the many available
in the alt. The way the program works is to try each of the possibilitics one after the other. When the unification
later on fails, the program backtracks and tries the next possibility.

This method is actually a blind search through the space of all the descriptions compatible with the grammar,
Indexing is a technique used to guide the search in a more efficient way when more knowledge is available.

The program allows indexing of alt constructs.!The indexing tells the unifier how to choose one branch out of
the alternation based on the value of the index only, and without considering the other branches ever. The following
example illustrates the technique.

1A opt construct is actually an alt with 2 branches, one being the trivial nil. It would not make sense 1o index it. A pattern construct is
ambiguous because pattemns like (...a...b...) and (...c...d...) can be combined in many ways. Actually, it is always more efficient to put patiems at
the end of the grammar, because much of the ambiguity generated by these patterns would not change the unification anyway, except when the (*
constituent) device is used. In any case, the equivalent of ‘indexing’ a pattern, that is reducing the ambiguity, is 1o use as few dots as possible in
the pattemns.

21

Example taken from grd

((alt (trace with process) (index on process-type)
(((process-type actions)
ees)
({process-type mental)
.es)
{((procass-type attributivae)
o)
({process-type equativa)
«--))
‘)

In the example, the (index on process-type) declaration indicates that all the branches of the alter-
nation can be distinguished by the value of the process-type feature alone. If the input contains a bound feature
process-type, it is possible to directly choose the corresponding branch of the alternation. If however the input
does not correspond such a feature, it has to go through the alt in the regular way, with no jumping around.

This is what happens in the tracing messages for each case:

If input is:
((cat clausa) (process-type attributive) ...)
Trace message is:
-->Entering alt PROCESS -- Jump indexed to branch 3 ATTRIBUTIVE

If input does not contain a feature process-type:
((cat clause) (prot John) ...)

Trace massage is:
-->N¢ value given in input for index PROCESS-TYPE - No jump
~-->Entering alt PROCESS -- Branch #1

A grammar is always indexed at the top-level by the cat feature. It makes more sense to index on the features
that will be bound in the input or at the moment the alt will get tried, but it never hurts to index an alt, so itis
recommended to index whatever is indexable. A program will be soon released to perform this indexation.

The function £d-sem checks that an index declaration is valid, that is, that cach branch of the aliernation
actually has a bound value for the index, and that all the branches have a different value for the indexed feature.

Note the syntax of an alt construct:

alt-form :+ (alt {trace-decl} {index-decl} (list-of-£fds))
trace-decl : atomic-flag | (trace {...} any-flag)
index-decl : (index {...)} index-path)

index-path : atomic-feature | valid-path

The indexed feature can be at the top level of all the branches, as in the first example for process-type, but
it can also be at lower levels, like in the following example:

22

Example taken from grd:

((alt verb-trans (index on (verb transitivity-class))
(((verb ((transitivity-class intransitive)))

((verb ((transitivity-class transitive)))

(.(v‘l;):b ((transitivity-class bitransitive)))

('(;;::b ((transitivity-class neuter)))
oy

NOTE: you CANNOT index an alternation if onc of the indexed values is NONE, NIL, ANY or GIVEN.

7.2. Complexity

The complexity of a grammar can be described by the number of possible paths through it, each path cor-
responding to the choice of one branch for cach aliernation. (This measure of complexity is the number of branches
the grammar would have in disjunctive normal form (cf bibliography).) Indexing the grammar actually divides this
measurc of complexity by a great number.

The functions complexity and avg-complexity compute different measures of the complexity of a
grammar.

(COMPLEXITY &optional grammar with-index)

--> number of branches of grammar in disjunctive normal form.

- By default, grammar is *u-grammar*

- By default, with-index is T. When it is T, all indexed alts are
considered as cne single branch, when it is nil, they are
considered as raegular alts.

(AVG-COMPLEXITY gsoptional grammar with-index rough-avg)

-—-> "avaerage" number of branches tried when input contains no

constraint.

- By default, grammar is *u-grammar¥*

- By default, with-index ias T. When it is T, all indexed alts are
considered as one single branch, when it is nil, they are
considered as regular alts.

- By default, rough-avg is nil. When it is nil, the average of an
alt is the sum of the complexity of the half first branchaes. When
it is T, the average is half of the sum of the complaxity of all
branches.

Note that these functions do not currently measure the ambiguity of the patterns included in the grammar.

8. Morphology and Linearization
The morphology module (partially written by Jay Meyers USC/ISI) makes many assumptions on the form of
the incoming functional description. If you want to use it, you must be aware of the following conventions.

23

8.1. Lexical categories are not unified

The categories that are handled by the morphology module can be declared to be "lexical categories”. If a
category is a lexical category, it is not unified by the unifier, and it is passed unchanged to the morphology module.
The assumption here is that the morphology module will do all the reasoning necessary for these categorics.

To declare that a catcgory is lexical, you can simply add its name to the global variable
lexical-categories. This variable is defined in file TOP.L. Its current value is:

(defvar *laexical-categories*
" (verb noun adj prep conj relpro adv punctuation modal)
"The Lexical Categories not to be unified")

8.2. CATegories Accepted by the morphology module
The following categories only arc known by the morphology module. If a category of another type is sent to the
morphology, no agreement can be performed. The output in that case is:

[<Unknown cat CC: LEX>

MORPH accapts thae following values as the value of the attribute CAT:
ADJ, ADV, CONJ, MODAL, PREP, RELPRO, PUNCTUATION, PHRASE:
words are sent unmodified.
NOUN:
agreemant in number is dona.
irragular plural must be put in the list *IRREG-PLURALS*
in file LINEARIZE.L
PRONOUN:
agreement done on pronoun-type, case, gender, number,
distance, person.
irregular pronouns are defined in file LINEARIZE.L

VERB:
agreament is done on number, person, tense and anding.
irregular verbs must ba put in the list *IRREG-VERBS*
in file LINEARIZE.L

DET :

agreement is done on number, definite and first letter of
following word for "a"/"an" or feature a-an of following word.

The function morphology-help will given you this information on-line if you need it.

8.3. Accepted features for VERB, NOUN, PRONOUN, DET and PUNCTUATION:

24

ENDING: {ROOT, INFINITIVE, PAST-PARTICIPLE, PRESENT-PARTICIPLE}
NUMBER: {SINGULAR, PLURAL}

PERSON: {FIRST, SECOND, THIRD}

TENSE : (PRESENT, PAST}

NOUN:
NUMBER: {SINGULAR, PLURAL}
FEATURE: {POSSESSIVE}
A-AN: {AN, CONSONANT}

PRONOUN:
PRONOUN-TYPE: (PERSONAL, DEMONSTRATIVE, QUESTION, QUANTIFIED}
CASE: {SUBJECTIVE, POSSESSIVE, OBJECTIVE, REFLEXIVE}
GENDER: {MASCULINE, FEMININE, NEUTER}
PERSON: {FIRST, SECOND, THIRD}
NUMBER: {SINGULAR, PLURAL)}
DISTANCE: {NEAR, FAR)

DET :

NUMBER: {SINGULAR, PLURAL}

PUNCTUATION:
BEFORE: {";", ",", ":", "(*, ")", ...}
AFTER : (n,.nl W, omen n(nl nyr, ..')

The feature A-AN is used to indicate exceptions to the rule: normally, a noun starting with a consonant is
preceded by the indefinite article “‘a’’ and if the noun starts with a vowel, it is prcceded by “‘an.”” Some nouns start
with a consonant but must still be preceded by **an’’ (for example, ‘‘honor’’ or acronyms ‘‘an RST"’). In that case,
the featurc (a-an an) must be added to the corresponding noun.

8.4. Possible values for features NUMBER, PERSON, TENSE, ENDING, BEFORE,
AFTER, CASE, GENDER, PERSON, DISTANCE, PRONOUN-TYPE, A-AN

NUMBER: {SINGULAR, PLURAL}
Default is SINGULAR.

ENDING: {ROOT, INFINITIVE, PAST-PARTICIPLE, PRESENT-PARTICIPLE}
Default is none.

PERSON: (FIRST, SECOND, THIRD}
Daefault is THIRD.

TENSE : (PRESENT, PAST}
Dafault is PRESENT.

BEFORE: {";", ",", ":", "(", ")", ...} {(any punctuation sign)
Daefault 1s none.

AFmR : {H;", ",Il’ N:ll, H(Il, H)!I’ ".}
Default is nona.

CASE: {SUBJECTIVE, OBJECTIVE, POSSESSIVE, REFLEXIVE}
Default is SUBRJECTIVE.

GENDER: {MASCULINE, FEMININE, NEUTER}
Default is MASCULINE.

PERSON: (FIRST, SECOND, THIRD}
Dafault is THIRD.

DISTANCE: (FAR, NEAR}
Default is NEAR.

PRONOUN-TYPE: {PERSONAL, DEMONSTRATIVE, QUESTION, QUANTIFIED}
Dafault is none.

A-AN: {AN, CONSONANT)}
Default is CONSONANT.

9. The Dictionary
The package includes a dictionary to handle the irregularities of the morphology only: verbs with irregular past
forms and nouns with irregular plural only need to be added to the dictionary.

There is no semantic information within this dictionary. In fact, a more sophisticated form of lexicon should
have the form of an FD. This dictionary is a part of the morphological module only.

The way to add information to the lexicon is to edit the values of the special variables *irreg-plurals* and
irreg-verbs. These variables are defined in the file LEXICON.L. After the modification, you need to execute the
function (initialiaze-lexicon). The best way 1o do that is to edit a copy of the file LEXICON.L and to load it back.
After loading it, the new lexicon will be ready to use.

The variable *irreg-plurals* is a list of pairs of the form (key plural). The default list starts like this:

"UONIDUN] [OAS[-MO] B ST T "UONENUNUOD Y} UNI 01 POPOU UOTIRULIOJU FUIUTEIUOD , Jurel)-yOBIS,, B pUE popaau

are SINSo1 2I0W JI [[BY O] UONENUNUOD © ‘pJ Suninsal e :son[ea ¢ swnids pue zpf yim 7pf soyiun n :uondiasaq
‘ued ZP3F ‘S19NNSUOD INSIUTULIIIOP-UOU UIEIUOD JOUURd TPF S ATeniqre ofe ZpJ pue TPJ o

ssppwngay

(zp/ 1pf) w0y Buiyie)
uonouny :ad4 g,

nreror

1t s1doooe d-xeuneb ji uuigy piea € s 1 uswngre se rewweis e 3undsedxa suonduny Ay

[I& 01 on[eA 1|NBJOp OY} SI 1] “TEUIWEID) UONEDIJIU) [EUONOUN, B SUTRIUOD J]qeileA yxXewwexb-ny oyf :uondinsaqg
QJqeueaA 3dA

¥ TEWWRIZ -y *T 10T

(Tepow uotieniound ape oxdyex [uoo doad [pe unou gaaa) :An|BA piepurl§

‘parjiun Juroq oy Jusuodwod KFojoydiow oy 01 1UdS are

1811 95041 ore souo3ated 0say [, soweu A10§01eD JO IS B SI 9]qRLIBA xS8TI068120-TROTXOTx I :uondiadsag
olqeurea dA g

xSOLIOZARI-[BIIXI % *['T°01

suopuny uonedYIUN) ‘1°01

*K[[eonaqeydie powos st 1s1| oyt ‘41030180 Yoo u] "souodored g sopun podnoid ore Aoy ~oendiuew ued N Jo
10STL ® 1B} SAYDIIMS PUR SI[BLIBA ‘SUOTIOUNJ 2 [fB JO ISI| B SSPRIDUI UOTIOVS SIYY ‘ssoudlajdwod Jo axes a1 104
[ENUEBJA] 90U3.I3J3Y ‘01

(-a-

(.ouop, ,butop,. .PTP. .¥®O0P, ,OP.)

(,owoo,, ,Hummoo, ,eures, ,soWOD, ,BWOD,)

(.3gbnoq,, ,butinq, .3ybnoq, .sinq, ,.4&nq,)
(,ewodeq, ,Butmooeq, ,ewwoeq, ,sewodeq, ,SwWodeq,)),

:1BY) 91| SLEIS 9NjBA 1[NEJop YL

(s1dioned-1sed opdronred
Aussad 1sed rem3uis-uosiad-prip-1ussaid 1008) w0y 9yl Jo sadn-g JO 1SI| B St ,SQIoA-Soul, J[qELIRA U]

(- ..

(.w3wp, ,e3wp,)

(.soy30T2, ,$°430710,)

(L UeIPTIY®., LPITUO.)
(.8®AT®D, ,FT®0,)),

27

10.1.4. uni

Type: function
Calling form: (uni input-fd &optional grammar non-interactive)
Arguments:

» input-£d is an input fd. It must be recognized by £d-p.

e grammar is a FUG. It must be recognized by grammar-p. By default, it is *u-grammar>.

enon-interactive isa flag. Itisnil by default.
Description: uni unifies input-fd with grammar and linearizes the resulting fd. It prints the result and some
statistics if non-interactive is nil. It returns no value. grammar is always considered as indexed on the feature cat.
If input-fd contains no feature cat the unification fails. (cf. unif if this is the case.)

10.1.5. uni-fd
Type: function
Calling form: (uni-£d input-fd ¢ optional grammar non-interactive)
Arguments:
e input-£d is an input fd. It must be recognized by £fd-p.
e grammar is a FUG. It must be recognized by grammar—-p. By default, it is *u-grammar*.
snon-interactiveisaflag. Itisnil by default.
Description: uni-£d unifies input-fd with grammar and returns the resulting total fd. The result is determined.

uni-f£d prints the same statistics as uni if non-interactive is nil. grammar is always considered as indexed on
the feature cat. If input-fd contains no feature cat the unification fails. (cf. uni £ if this is the case.)

10.1.6. unif
Type: function
Calling form: (unif input-fd &optional grammar non-interactive)
Arguments:
¢ input-£d is an input fd. It must be recognized by £d-p.
¢ grammar is a FUG. It must be recognized by gramma r~p. By default, it is *u-grammar*.

enon-interactive isaflag. Itisnil by default.
Description: unif unifies input-fd with grammar and returns the resulting total fd. The result is detcrmined.

If input-fd contains no feature cat, unif tries all the categories returned by 1ist-cats until one returns a
successful unification,

unif checks input-fd with £d-p and it checks grammar with grammar-p. unif prints the same statistics as
uni if non-interactive isnil.

10.2, Checking

28

10.2.1, fd-syntax

Type: function
Calling form: (fd-syntax &optional fd print-warnings)
Arguments:

e £d is a list of pairs. It is *u-grammar* by default.

e print-warnings is a flag. It is nil by default.
Description: £d-syntax verifies that fd is a valid fd. If it is, it returns T. Otherwise, it prints helpful messages and
returns nil. If print-warnings is non-nil it also print warnings for all the paths it encounters in the grammar. This
is useful when you suspect that one path is invalid or pointing to a bad location.

Diagnostics detected by fd-syntax

message condition

One of the element of the list of pairs is not a
FD should be a list of attr-valuc pairs. pair and not a valid tracing flag.

One of the attributes of the pairs is a valid trac-
--- WARNING: ~A is used as an attribute not as | ing flag, but is not considered as a tracing flag but as

a flag. aregular attribute.
One of the pairs contain more than 2 valid ele-
Too many values given. ments.
One of the pairs contain less than 2 valid ele-
Too few values given. ments.
Iliegal use of flag or too many values given. A tracing flag is in a bad position.
Hiegal valuc for the attribute OPT. OPT expects a valid FD as a value.
Value of special attributc ALT should be a list of The syntax of alt is (alt (£fdl
FD’s. fdn)). The value of alt is not a list of valid fds.
Value of special attribute OPT should be an FD. Syntax of opt is (opt £d).
Value of special attribute CSET must be a list of cset accepts a flat list of atoms or paths only as
paths. constituents.

pattern accepts a flat list of atoms, paths or
Value of special attributc PATTERN should be a | mergeable constituents. A mergeable constituent is
list of paths or mergeable atoms. marked (* ¢).

A pair is an (attribute value) list and
value can only be a symbol, or a valid path (that is, a
flat list of constituent names starting with 0 or more

A valuc should be cither a symbol, a valid path | 'A) or recursively an fd. None of these 3 categories
oran FD. has been recognized in this case.

When print-warnings is non-nil, this message
--- WARNING: ~s is assumed to be a valid path. | is printed for all paths occuring in fd.

10.2.2. fd-sem
Type: function
Calling form: (fd-sem &optional fd grammar-p)
Arguments:
e £d is a syntactically valid fd. It must be recognized by £d-p. It is *u-grammar* by default.

29

¢ grammar-p is a flag. [t is T by default.
Description: £d-sem verifies that fd is a semantically valid fd. If it is, it retums T. Otherwise, it prints helpful
messages and returns nil. If grammar-p is non-nil £d-sem expects fd to be a grammar. It allows disjunctions in
fd. In this case, £d-sem returns 3 values if fd is a valid grammar: T, the number of traced aliematives in the
grammar, and the number of indexed alternatives.

If grammar-p is nil, fd is considered as an input fd. Disjunctions are not allowed. In any case, only one value
isreturned (T or nil).

Diagnostics detected by £d-sem

message condition
grammar-p is nil and a disjunction has been
Disjunctions are not allowed in input fds. found in fd.
--- Warning: PATTERN or CSET should not be grammar-p isnil and a pattern or cset has
placed in input. been found in fd.

An attribute has been found with 2 differcnt
atomic values in the same branch of a disjunction.
Contradicting values for attribuie ~s. (for example, ((a 1) (a 2))).

10.2.3. fd-p
Type: function
Calling form: (£d-p input-fd)
Arguments:
e input-fd is an fd with no disjunctions.
Description: checks that input-fd is both syntactically and semantically a valid fd.
NOTE: Do not use fd-p on grammars.

10.2.4. grammar-p

Type: function
Calling form: (grammar-p &optional fd print-messages print-warnings)
Arguments:

o fd isa FUG. Itis *u-grammar* by default.

e print-messages is a flag. It is T by default.

e print-warnings isaflag. Itisnil by default.
Description: grammax-p verifics that fd is a valid grammar, both syntactically and semantically. If it is, it prints
some statistics and returns T. Otherwise, it prints helpful messages and returns nil.

If print-messages is nil no statistics are printed.

If print-warnings is non-nil wamings are printed for all the paths encountered in the grammar. This is useful
when you suspect that one path is invalid or pointing to a bad location.

NOTE: do not us¢ grammar-p on input fds.

30

10.3. Tracing

10.3.1. *all-trace-off*
Type: variable,
Description: The *all-trace-off* variable contains a flag that is recognized by the unifier and terminates the
printing of all tracing messages. It must be placed in a valid position for a tracing flag.
Standard Value: %TRACE-OFF%

10.3.2. *all-trace-on*

Type: variable.,
Description: The *all-trace-on* variable contains a flag that is recognized by the unifier and undocs the
effect of the *all-trace-off* flag, that is, it reenables all tracing messages. It must be placed in a valid position for a
tracing flag.
Standard Value: %TRACE-ON%

10.3.3. *trace-determine*
Type: variable.
Description: The *trace-determine* is a switch cnabling the printing of tracing messages on the deter-
mination stage. It indicates which TEST expressions are evaluated.
Standard Value: nil

10.3.4. *trace-marker*
Type: variable.
Description: The *t race-marker* variable contains a character. It is used to determine valid tracing flags: if
the first character of the name of a symbol is *trace-marker*, the symbol is a valid tracing-flag.
Standard Value: #\2

10.3.5. *top*
Type: variable.
Description: The *top* variable is a switch enabling the printing of extensive debugging messages on the
backtracking behavior of the unifier. Should be used for development only.
Standard Value: nil

10.3.6. all-tracing-flags
Type: function
Calling form: (all-tracing-flags &optional grammar)
Arguments:
e grammar is a FUG. It must be recognized by grammar-p. By default, it is *u-grammar*.
Description: all-tracing-£flags returns a list of all the tracing flags defined in grammar, in the order where
they are defined in the grammar.

31

10.3.7. internal-trace-off
Type: function
Calling form: (internal-trace-off)
Description;: internal-trace-of £ tumns off the tracing of internal debugging information. Initially, no debug-
ging information is printed.

10.3.8. internal-trace-on
Type: function
Calling form: (internal-trace-on)
Description: internal-trace-on turns on the tracing of internal debugging information. Initially, no debug-
ging information is printed. Should be used for development only.

10.3.9. trace-disable
Type: function
Calling form: (t race-disable flag)
Arguments:
e flag is a tracing flag. A tracing flag must be an element of the result of all-tracing-flags.
Description: t race-disable disables the tracing flag flag. Initially, all tracing flags are enabled.

10.3.10. trace-disable-all
Type: function
Calling form: (trace-disable-all)
Description: t race-disable-all disables all tracing flags. Initially, all tracing flags are enabled.

10.3.11. trace-disable-match
Type: function
Calling form: (t race-disable-match string)
Arguments:
e string is a string.
Description: trace-disable-match disables all tracing flags whose names contain string as a substring.
Initially, all tracing flags are cnabled.

10.3.12. trace-enable
Type: function
Calling form: (t race-enable flag)
Arguments:
s flag is a racing flag. A tracing flag must be an element of the result of all-tracing-flags.
Description: t race-enable enables the tracing flag flag. Initially, all rracing flags are enabled.

10.3.13. trace-enable-all
Type: function
Calling form: (trace-enable-all)
Description: t race-enable-all enables all tracing flags. Initially, all tracing flags are enabled.

32

10.3.14. trace-enable-match
Type: function
Calling form: (t race-enable-match string)
Arguments:
e siring is a string.
Description: trace-enable-match enables all tracing flags whose names contain string as a substring. In-
itially, all tracing flags are enabled.

10.3.15. trace-off
Type: function
Calling form: (trace-o£ff)
Description: trace-of £ tums off tracing. If no argument is provided, all tracing is turned off. Initially, tracing
is off.

10.3.16. trace-on
Type: function
Calling form: (trace-on)
Description: t race-on turns on tracing.

Initially, tracing is off.

10.4. Complexity

10.4.1. avg-complexity
Type: function
Calling form: (avg-complexity &optional grammar with-index rough-avg)
Arguments:
e grammar is a grammar. It must be recognized by grammar-p. Itis *u-grammar* by default.

s with-index is a flag. It is T by default.

¢ rough-avg isaflag. Itis nil by default.
Description: avg-complexity computes a measure of the average complexity of a grammar. It tries to compute
an "average” number of branches tried when the input to unification contains no constraint.

When with-index is T, all indexed alts are considered as single branches, when it is nil, they are considered as
regular alts.

When rough-avg is nil, the average of an alt is the sum of the complexity of the first half of the branches.
When it is T, the average is half the sum of the complexity of all branches.

10.4.2. complexity

Type: function
Calling form: (complexity &optional grammar with-index)
Arguments:

33

® grammar is a grammar. It must be recognized by grammar-p. Itis *u-grammar* by default.

e with-index is a flag. It is T by default.
Description: complexity computes a measure of the complexity of a grammar, It tries 1o compule the worst case
number of branches tricd when the input to unification contains no constraint. The number it returns is equivalent to
the number of branches the grammar would have in disjunctive normal form.

When with-index is T, all indexed alts are considered as single branches, when it is nil, they are considered as
regular alts.

10.5. Manipulation of the dictionary

10.5.1. *dictionary*

Type: variable
Description: The *dictionary* variable is a hash-table containing different types of entries. Each entry con-
tains information on irregular morphological words.

The current dictionary contains entries for verbs, nouns and pronouns. It is defined in file LEXICON.L

The entries conlain the following properties:
» verb : present-third-person-singular past present-participle past-participle
¢ noun : plural

e pronoun : subjective objective possessive reflexive.
) Jl

10.5.2. lexfetch
Type: function
Calling form: (Lexfetch key property)
Arguments:
¢ key is a non-inflected "root” form of a word. It must be a string.

o property is one of the properties defined in *dictionary* for the part-of-speech of the word.
Description: lexfetch fetches the inflected form of the word key from the hash-table *dictionary*. The
properties accessible arc those defined in *dictionary*.

10.5.3. lexstore
Type: function
Calling form: (lexstore key property value)
Arguments:
* key is a non-inflected "root” form of a word. It must be a string.

* property is one of the propertics defined in *dictionary* for the part-of-speech of the word.

¢ value is the inflected form of key for property. It must be a string.
Description: lexstore stores the inflected form value of the word key in the hash-table *dictionary*. The
properties accessible are those defined in *dictionary*.

34

10.6. Linearization and Morphology

10.6.1. call-linearizer
Type: function
Calling form: (call-linearizer fd)
Arguments:
o fd is a unified determined total fd. It must be accepted by £d-p.
Description: call-linearizer takes a complete determined fd in input and returns a string corresponding
the linearization of the fd.

10.6.2. gap

Type: feature.
Description: if a constituent contains the featurc gap, it is not realized in the surface (it is a gap, still holding the
place of an invisible constituent in the structure). It is used for implementing long-distance dependencies.

10.6.3. morphology-help
Type: function,
Calling form: (morphology-help)
Description: gives on-line help on what the morphology component can do.

10.7. Manipulation of FDs as data-structures

10.7.1. FD-intersection

Type: function
Calling form: (fd-intersection fd! fd2)
Arguments:

e fdl and fd2 are valid fds (recognized by £d-p). They represent lists as fds, using constituents car and

cdr, and are terminated by a (cdr none).

Description: fd-intersection computes the intersection of two lists represented as FDs, and returns the result
as a regular Lisp list.

10.7.2. FD-member

Type: function
Calling form: (£d-member elt fdlist)
Arguments:

» ¢lt is any value acceptable as a value to an (attribute value) pair.

e fdlist is a valid fd (recognized by £d-p). It represents a list as an fd, using constituents car and cdr,

and is terminated by a (cdr none).

Description: £d-member works as the lisp function member but on a list represented by an fd. It returns a list
represented by an fd.

35

10.7.3. FD-to-list

Type: function
Calling form: (fd-to-1ist fdlist)
Arguments:

« fdlist is a valid fd (recognized by £d-p). It represents a list as an fd, using constituents car and edr,
and is terminated by a (cdr none).

Description: £d-to-1ist converts a list from an fd representation to a lisp representation.

10.7.4. gdp
Type: function
Calling form: (gdp fd path)
Arguments:
e fd is a valid fd (recognized by £d-p).
e path is a valid path (that is a flat list of constituent names, starting with 0 or more #)
Description: gdp goes down the path path (hence its name: GoDownPath) and returns the fd found at the end of
path. 1t is the only function that should be used to access sub-parts of an fd. gdp always returns a valid {d.

gdp works only if the special variable *input* is accessible and bound to the total fd containing fd.

If path icads to a non-existent sub-fd, gdp returns:
¢ NONE: if the fd cannot be extended to include such a sub-fd (that’s when we mect an atom on the way
down)

* ANY : if the fd MUST be extended to include such a sub-fd (and exactly this sub-fd, that is only when
the valuc is ANY)

o NIL : otherwise (that is, an UNRESTRICTED fd).

10.7.5. gdpp
Type: function
Calling form: (gdpp fd path frame)
Arguments:
» fd is a valid fd (recognized by £d-p).
* path is a valid path (that is a flat list of constituent names, starting with O or more #)

e frame is a structure of tlype £ rame. By default it is durmy - £ rame, an empty frame.
Description: gdpp goes down the path path (hence its name: GoDownPathPair) and retums the pair whose value is
the fd found at the end of path. It is the function that should be used to work as the basis to the set £ of gdp, to set
values to parts of an fd. gdpp always rcturns a pair whose second is a valid fd, and is never a path or none if fd
cannot e extended to include path. (gdpp *input* nil) returns the pair (*top* *input*) (where *input*
refers to the total fd).

gdpp works only if the special variable *input* is accessible and bound to the total fd containing fd.

If path leads to a non-existent sub-fd, gdpp extends (by physical modification) fd to include a path down to the
required path if possible, or the function returns none. When the fd is modified physically, frame is updated (the
field undo) to keep track of the modification.

36

10.7.6. list-to-FD
Type: function
Calling form: (1ist-to-£d list)
Arguments:
o list is a regular lisp list.
Description: 1ist-to-£d converts a list from a a lisp representation to an FD representation.

10.8. Fine tuning of the unifier

10.8.1. *any-at-unification*

Type: variable
Description: If *any-at-unification* is nil, and the unifier cncounters a pair (attributc any) in the
grammar, and no feature att ribute exists in the input, the unification succeeds and the input is enriched with the
pair (attribute any). Only at the determination stage, it is checked whether anys remain in the total fd. If it is the
case, the unification fails, and the unifier backtracks.

If *any-at-unification* is non-nil, the test 10 decide whether the feature attribute exists or not is
performed immediately on the non-determined fd. The result may be incorrect, but it is much faster. The result is
assured to be correct if the feature tested is onc that is never instantiated by the grammar, and is expected to be
provided in the input.

Standard Value: T

10.8.2. *keep-cset*
Type: variable
Description: If *keep-cset* is nil, the determination stage removes all the cset features from the total fd. If
it is T it keeps them.
Standard Value: nil

10.8.3. *keep-none*
Type: variable
Description: If *keep-none* is nil, the determination stage removes all the pairs whose value is none from
the total fd. If it is T it keeps them.
Standard Value: T

37

Appendix I
Installation of the Package

I.1. Finding the files
You need to find out on which machine and under which directory the system is available. You also need to0
know how to run Common Lisp on that machine.

Language : Common Lisp
System : At Columbia, available
on Lisp-A (Symbolics), in directory >elhadad>fuf>
on the HP workstations (HP-UX), in /u/cs/elhadad/Fug/work/
(define environment variable "fug2" to this value:
under csh: setenv fug2 /u/cs/elhadad/Fug/work
under ksh: fug2=/u/cs/elhadad/Fug/work; export fug2)
Examples are in the subdirectory named "examples”.

Start : on Lisp-A: (locad ">elhadad>fuf>fug")
on the HPs: % cl #need to have /lisp/bin is path
CL> (load "$fug2/fug2")

The file FUG2.L will load all the required modules. Examples arc in the files GRO, GR1 and up for the
grammars, and in files IR0, IR1, ... and up for the inputs. The examples are of increasing complexity.

To try the examples, type:

CL> (load "gro")
t
CL> (load "irO")
t

1.2. Porting to a new machine
The program is contained in 16 files of source and 10 files of examples. All the source files should be grouped
in a directory, that we will call here $fug2, and the example files in a subdircctory of $fug2 called examples.

Once this is done, you probably need to edit the file FUG2.L. This file loads all the required modules and
defines a few functions useful for compiling or loading the package. In the file FUG2.L, the function require is
used to load all submodules. requi re takes as first argument the name of a module, and accepts a second optional
argument, the name of the file containing that module.

You must change the second arguments of all the require statements in file FUG2.L and update there the
name of the directory, from $fug?2 to the name of your directory.

You also need to cdit the first line of the functions compile-fug and reload-fug and change there the
name of the dircctory from $fug to the new name.

When the file FUG2.L is updated, load it in your common-lisp environment and follow these 4 steps:

38

(load "$fug2/fug2")
(in-package "FUG2")

(compile-£fug2)

(relocad-fug2)

NOTE TO UNIX USERS: if you run CommonLisp under Unix, and your version of Lisp can read environment
variables and expands such variables in file names (for example, (load v~userx/filel") is a valid state-
ment, or (Load "$var/file2")), then you don’t need to edit the file FUG2.L. All you need to do is to define
the environment variable "fug2"” to the complete pathname of the directory containing the source files.

Once this installation is done, all you need to do to load the package is (load "sfug2/fug2") (with
$fug2/ replaced by the name of your directory if you are not under Unix).

1.3. Packages

The whole package is loaded in package ' FUG2. The casicst way 10 access it is to type:

(in-package "FUOG2") ;:; note the upper-casa

or

(use-package "FUG2")

The following symbols are exported from package 'FUG2 (they are the external symbols of the package, cf
[Steele-84, chapter 11, p171-192]):

External Symbols of package FUG

File Symbols

fd-p
fd-syntax
fd-sem
checker.l grammar-p

) complexity
complexity.l avg-complexity

keep-cset
determine.l *keep-nonex

graph.| *any-at-unification*

dictionary
lexfetch
lexicon.l lexstore

call-linearizer
linearize.l morphology-help

gdp
path.] gdpp

u-grammar¥
lexical-categories~
uni

uni-fd

unif

top.l list-cats

trace-on

trace-off
internal-trace-on
internal-trace-off
trace-enable
trace-disable
trace-enable-all
trace-disable-all
trace-enable-match
trace-disable-match
all-tracing-flags
trace-marker¥
all-trace-off
all-trace-on
trace-determine
trace.l *top*

In addition, the following symbols are external. These arc the keywords used as names in the code:

40

External Symbols of package FUG (keywords)

File

Symbols

1op.1

* already exists in LISP
trace already exists in USER
@

alt

any

cat

control
cset

dots

done

gap

given

index

lex
mergeable
none

opt

pattern
pound
punctuation
test

All these symbols are documented for reference in section 10. If you use the package FUG2? in another
package, only these symbols will be imported.

41

Appendix I1
Advanced Features

I1.1. Advanced Uses of Patterns

In addition to constrain the ordering of constituents, the pattern unifier can be used to enforce the unification of
constituents. The classical example is given by the focus constituent. There is good linguistic evidence that the
focus of a sentence tends to occur first in a sentence. To represent this constraint, a grammar can include the
following directive:

[(PATTERN (FOCUS DOTS))

That is, a sentence should start with its focus. Now, we also know that a sentence at the active voice should
start with its subject, that is its prot constituent. This is expressed by:

(PATTERN (PROT ... VERB ...))

If both constraints arc to be satisfied, we necd to say that focus and prot are actually the same constituent,
otherwise, the 2 patterns are incompatible. That is, the constituents focus and prot need o be unified. This
mechanism would be quite expensive to implement for all constituents, and would need to meaningless attempts
most of the time. Therefore, to allow this kind of unification to occur, the current unifier requires the pattern to
include a special directive, indicating that a conslituent can be unified with other constituents to make two patterns
compatible. The notation used is: (* constituent).
Examplae:

(PATTERN ((* FOCUS) DOTS))
(PATTERN (PROT DOTS VERB DOTS))

are compatible, and require the unification of the constitucnts focus and prot. Note that prot needs not be
"stared" to be unified with focus. The notation can be understood as specifying that focus is a kind of "meta-
constituent”.

I1.2. Advanced uses of CSET
Notc that CSET is rarcly used, and most often used when you DO NOT want a sub-fd to be unified as a
constituent, even though it is mentioned in a pattern or it contains a feature (cat xx).

When a CSET feature is specified, the order of the constituents can be important to make unification morc
efficient. The unifier traverses the input (d breadih-first identifying constituents at each level. Within the same
level, the CSET feature when present specifies in which order the constituents must be unified. Therefore, if there is
a constituent known to be easy to unify, and whose value condition the unification of the brother constituents, it
should be unified first, and placed first in the CSET. This way, the CSET feature can be used to optimize the work
of the unificr.

pUB ANV U99MIdQ ST 2191 SB JOMLNOD PuB 1STI U00M10q 00uaIpljip dwes ayl Ajemdoouod st oyl

((((w)p daxequnu) 3se3)
(t @)

(((®) q)
(1 =)

:xe0Tu eyy o3 jueTeatnbe st

((((2)8 (e)® Tenbs) 3se3)
(1 =)
: seTdurexy

*SIUIRNISUO0D 3523 91 JO Apoq ol uIyiA pagemodsip XA TONOULS 210Jo121
AIE S109]J9 9pIS "POUIULIAOP 10U KISNOIAQO SI PAlenjeAd 9q [{im soedipoad 393 oY) yowym ur JIPIO dYJ

‘paren[eA? st 91edrpaid oy a1030q yed 1ey £q 01 parojal sunmied)
a1 Jo anjea oyl Aq pooerdarst (g e) @ uoissaudxa oy, "(2ANE[d1 IO AINOSQR 1aYIR) ied pieA @ AQ pamo][o)
2q 1SNW , Y "SIUTRNSUOd 9yl JO uoissardxo o ur @4 9y Jjo sued o1 19501 01 pasn st @, 1oereyd [B13ads oy,

*UONN|OS JIYIOUE PUlj 01 SYOBNNIE] JOTJIUn Y PUe ‘S[Tej 1 SSIMIIYIO ‘SPIadans
uorieatjiun i ‘py Sunnsas oyl o1 parjdde uoym paysnes st o1edrpaxd Syl uonedyIun U Jo pus oyl 1k J ~Aesipaxd
ds11 Aue 01 s1oja1 Jurensuod xo[dwod vy "uoIEdIjIun B JO 1[NS2I 9y U0 JUTensuod x9jdwos e ppe 01 posn st 3523

3597 JO WAUOUAS B PaIopIsSuod 9q ued 11 ‘Sureq own oyl
104 seoueiswnand [eraads Afpwonxa rapun 1dadx9 posn 9q 10U PINOYS TOIAUOD *S(I 7 JO UONBILJTUN [NJSSIO0NS B
juaa21d o1 uonestjiun Jo djdiounrd oy uo £ja1 Jou op Loyl :suonearjidads oinduil, OM] o8 TOIUOD pue 1593

‘uoneudwdjdwi SIyl JO SAMILI) PIEPULIS-UOU Y] JO IST] B JOJ A
xipuadde 59§ *PapUIWIWIOsdI 10U ST 350 YL “uoneuswd(dui sup 01 21J100ds are SpIoMAdY om) asay], FION

SPIOMAIY TOULNOD pue I SHAL) :sjurensuod xaidwod 3uifjiadg 11

‘saruadosd 11 1oyut pnom woym unouosd dane[a1 o1p seasoym ‘deb e oq pinom upw Y1 UOMINISUCD dY) pue
UDW Y] MOWY | DIMIONNS Y DABY PINOM OSTE[D DANB[A OY) ‘MOUY | WOYM UDW Y [Ul ‘SIY ["PIPIO TUSNINSUOD dUO
s OsNE[o 919[dWwo0 € SB ISTR|O SATIR[AI Oyl PUB ‘UONIBZIATIR|S1 Y] JO JONIBW Y} SB Pamala oq ued unouold sane|al
a1 ‘osned aane[u e ut 9jdwrexs 104 ‘srewnwerd ut sarouspuddop asuerstp-Suol wuowaidwr 01 pasn St 91AD SIY [,

11 dnyS [[14 192113U1[91 ‘ON[BA ANON-UOU AU (im deb 01nqLIIe ue SUIEIU0d JUSMINSU0D
€ JI "1X9) 30BJNS Yl Ul PAZI[edl 3q 10U ISNW UIMASUOD B 1Byl JMEdIpUl 01 pasn st ded armes) eisads oy

a1nedy JvO 2Y) pue sapuwapuady(q duejsyq uo "¢ 1

‘q puw ® ueyy ‘3exty o Ayyum ! (((q » 2) 3es0)

q PU®R ® FO UOTIWOTITUN ey3 sulerjsuoo pue Ayjun o3 Aswe sT ! (§ o)
£3tun o3 pawey ey ! (¢ Q

K3Tun o3 paey et ! (3 »)

{pxeq qwo))

(44

43

GIVEN: TEST constraints are tested at determination time, whereas CONTROL constraints are tested as soon as the
unifier meets them. CONTROL is therefore in general much more efficient than TEST, but the results it provides
are unpredictable in ccnain cases (if the features tested are given a different value later on during the unification, the
result of the test could be different).

45

Appendix III
Non linguistic applications of the unifier: dealing with lists
Unification as used in the theory of functional unification grammars is a powerful mechanism that is not
restricted to linguistic domains. It can be viewed as a "programming language” of its own. Actually, it is similar by
many aspects to PROLOG. There are however some very specific features that make working with this version of
unifcation well adapted 1o grammars, and not so well to more classic programming tasks.

IT1.1. The member/append example
To make things clear, this implementation includes a "grammar” doing some list processing. The only opera-

tions presented are member and append. This grammar is in the directorey examples in file GRS.L. It is printed here
for casy reference for the discussion.

‘' ((alt
(((cat appand)

(alt append

;; First branch: append([],Y,Y).

(((x nona)
(z (* y))
;; This is to normalize the result of a (cat append):
;; it must contain the CAR and CDR of the result.
(car (» z car))
(edr (% z edr)))

;; Second branch: append([X/Xs],Y, [X/Z]):-append(Xs,Y,6 2).
((alt (((x ((car any)))) ; this alt allows for partially
((x ((cdr any)))))) ; defined lists X in input.
;; recursiva call to append
;7 with new arguments x, y and z.
{(csat (z))
(z ((car (~ » x car))
(cdr ((cat append)
(x (* * * x cdr))
v (***y¥))))))
(car (~ z car))
(edr (% z cdr))))))
(((cat member)
(alt member
(((x (*» y car)))
((y ((cdr any)}))
(m ((cat member)
(x (* * x))

(y (* % yedr))))))))

This grammar is actually almost equivalent to the following PROLOG program:

member (X, [X]|_1).
mamber (X, [_|Y]) :- member(X,Y)

append ([],Ys,Ys) .
append ([X|Xs],Ys, [X|Zs]) :- append(Xs,6 Ys, Zs).

Note that the PROLOG form is much nicer! But there are reasons to look at the FUG version anyway. Here is

46

how it works.

I11.2. Representing lists as FDs

The first problem to handle lists with FUGs, is to represent lists as FDs, since FUGs can handle only FDs.

Quite simply, lists are represented as an FD with two features, CAR and CDR (with names ala Lisp).

The list (a b c) is represented by the FD:

((car a)
(cdr ((car b)
(edr ((car c¢)
(cdr nona))))))

The list (a (b c¢)) is represented by the FD:

((car a)
{cdr ((car ((car b)
(cdr ((car c)
(edr none)))))
(cdr nonea))))

II1.2.1. NIL and variables

Note in the previous example that the equivalent of the lisp atom NIL is NONE in the FD. NIL in an FD means
“"anything can come here” whercas NONE means "nothing can come here”. NIL therefore plays a role similar to
uninstantiated variables in PROLOG.

The PROLOG expression {a X c] can be represaented by tha FD:

((car a) ((car a)
(cdr ((car nil) (cdr ((cdr ((car c)
(cdr ((car c) <==> (cdr nonae))))))

(edr nona))))))
The PROLOG expression [a b | Xs] can be represented by the FD:

((car a)
(edr ((car b))))

I11.2.2. The "~" notation
The car/cdr notation for lists is very awkward to use. The file FDLIST.L includes a mechanism to translate
between the regular Lisp notation and the FD notation. It defines the macro-character "~" to indicate list values.

{ (cat member) ((cat maember)
(x a) <== (x a)
(y ~(c b a))) (y ((car c)

(ecdr ((car b)
{(cdr ((car a)
(cdr nona))))))))

47

Note that the "~" notation can be used only for completely specified lists. If some elements are uninstantiated,
you must describe the list with the car/cdr notation.

II1.3. Environment and variable names vs. FD and path

The notions of environment and variable in PROLOG or LISP correspond to the notion of "total FD" and path
in Functional Unification. What we call a "total FD" is the highest level FD, the one corresponding to the path). It
is the FD corresponding to the input to the unifier, and that will be "detcrmined” at the end of unification. This FD
contains all the environment of a computation.

Variables are then just places or positions within this total FD.

If thae total FD is the FD corresponding to [a X c]
((car a)
(edr ({(cdr ((car c)
(cdr nonae))))))

The variable X can be refered to by using the path (cdr car)

IT1.4. Procedures vs. Categories, Arguments vs. Constituents

A program in FUG can be viewed as a collection of procedures, cach procedure being represented by a
category. In the member example of section 10.1, an input containing the feature (cat member) will be sent to the
member procedure.

Procedures expect arguments and return resuits. There is no notion of input and output in unification, as far as
arguments are concemed. So we just consider arguments in general. For example, the member procedure has two
arguments, called X and Y and represented in FUG notation by the constituents X and Y of the (cat member).

The procedure append has three arguments, X, Y and Z. Z can be seen as the "result” of the procedure, or in
functional notation: Z = append(X,Y).

Notc that, as in the corresponding PROLOG program, the FUG implementation of member and append is
non-dircctional. All of the arguments can be partially specified, and the unification enforces the relation cxisting
between them,

II1.5. The total FD includes the stack of all computation

One problem with the way FUG work is that there is no notion of "environment" besides the total FD.
Therefore, when a program works recursively, all the local variables that are normally stacked in an external
environment are stacked within the total FD. At the end, the total FD contains the whole stack of the computation,
and is pretty heavy to manipulate.

As an example here is the result of the simple cali append([a,b].[c.d],Z):

48

((CAT APPEND)

(X ((CAR A) (CDR ((CAR B) (CDR NONE)))))
(Y ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(z
((CAR A)
(CDR
((CAT APPEND)
(X ((CAR B) (CDR NONE)))
(Y ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(z
{ (CAR B)
(CDR
((CAT APPEND)
(X NONE)
(Y ((CAR C) (CDR ((CAR D) (CDR NOME))))
(Z ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(CAR €)
(CDR ((CAR D) (CDR NONE)))))})
(CAR B)
(CDR
((CAT APPEND)
(X NONE)
(Y ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(2 ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(CAR €)
(CDR ((CAR D) (CDR NONE))))})))))
(CAR R)
(CDR
{ (CAT APPEND)
(X ((CAR B) (CDR NONE)))
(Y ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(z
((CAR B)
(CDR
((CAT APPEND)
(X NONE)
(Y ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(Z({CAR C) (CDR ((CAR D) (CDR NONE)))))
(CAR €)
(CDR ((CAR D) (CDR NONE)))))))
(CAR B)
(CDR
((CAT APPEND)
(X NONE)
(Y ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(Z ((CAR C) (CDR ((CAR D) (CDR NONE)))))
(CAR C)

(CDR ((CAR D) (CDR NONE)})}))))))

Fortunately, the only thing of interest in this FD is probably the value of the constituents CAR and CDR of Z.

49

IIL.6. Analogy with PROLOG programs

We have seen so far what aspects of FUGs are specific and different from other programming languages.

A program written using a FUG is very similar to a PROLOG program:
* The notion of success and failure in unification are cquivalent to the "yes" and "no" of PROLOG
programs.

e Simple statement can be combined using the connectives AND and OR: both FDs and PROLOG
statements make use of conjunction and disjunction.

* Both notations rely heavily on unification, and refinement of partial descriptions to perform computa-
tions,

IIL.7. Use of Set values in linguistic applications
This discussion of FUGs as programming languages can appear frivolous. It is actually motivated by the desire
lo integrate more expressive features in linguistic grammars.

There are many different reasons to use set values in grammatical descriptions. For example, 10 describe a
conjunction like "John, Mary and Frank” the sct {John, Mary, Frank} appears as a good candidatc. Many other
applications for the category of set appear quite naturally when writing a grammar,

We want to be able to express grammatical constraints on such constructs within the framework of FUGs. We
have found the procedures member and append 1o be quite useful in this attlempt.

51

Appendix IV
Non standard features of the implementation and restrictions
The current implementation includes featurcs not available in other systems working with functional unifica-
tion, and imposes restrictions. This section lists these non-standard aspects of the implementation. For each of the
restriction, it is precised whether the checking functions (fd-p, fd-sem and grammar-p) detect the limitation
or not.

IV.1. No disjunction in input
The input must be a simple FD, containing no disjunction (alt or opt). It can contain patterns. tests and
controls arc not allowed in input.

It is advised not to put patterns, csets or anys in the input fd. These constructs are indeed best viewed as
devices used by the grammar to realize or enforce some constraints. The input should be left as "declarative” as
possible, and therefore should not contain such constructs.

If disjunction are found in an FD given o £d-sern, an error message is printed. £d-sem also issues warnings
if its argument contains patterns or csets.

IV.2. Mergeable constituents in patterns

An extension to the standard patlern unification mechanism is the use of "mergeable constituents”. A mergeable
constituent in a pattern is noted (* constituent-name). This notation indicates that when unifying the pattern
containing it, this constituent can be "merged” or unified with another constituent that would need to be placed at the
same position in the pattern.

For example, patterns (a ... b) and (c ... b) cannot be unificd, because the first position of the unify-
ing pattern would need to be both a and c. But patterns ((* a) ... b) and (¢ ... b) can be unified, under
the constraint that constitucnts a and ¢ be unificd (or "merged”). See also section 5.5 for a description of pattern
unification.

IV.3. Indexing of alternation

This implementation allows indexing of alts, as described in section 7. The notation used is:
(alt {trace-flag} {(index {...) indexed-path)]} (branches+})

where each branch is a regular fd. The validity of the indexed-path is checked by the function
grammar-p.

IV.4. Test and Control
It is possible to specify arbitrary constraints on the result of an unification within the grammar by using the
constructs test and cont rol described in section 4.7. The notation is:

(TEST <lisp-expression>)

52

where <lisp-expression> is an arbitrary lisp expression, where certain variables can be @ (path), and refer o
the value of (path) in the determined result of the unification (see section 5.8 for a definition of the detcrmination
stage of unification).

Unification succeeds if the evaluation of <lisp-expression> in the environment of the determined result is
non-nil. If itis nil, the unifier backtracks.

control works in a similar way, except that the <lisp-expression> is evaluated immediately when the unifier
encounters the cont rol, and therefore is evaluated in a non-determined {d.

Note that both test and control can be used only to enforce complex constraints but not to compute
complex results to be added in the unification.

The function gramma r-p does not check that the value of test and control is a valid lisp-expression.

IV.5. GIVEN

The special value given is defined in this implementation. A featurc (att given) is unified with an input
fd, if the input contains a real value for attribute att at the beginning of the unification.

given is useful to check the presence of requirced fcatures in inputs.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10

(11]

[12]

References

Grosz, B.J., Sparck Jones, K. and Webber, B.L.
Readings in Natural Language Processing.
Morgan Kaufmann, Los Altos, 1986.

Karttunen, L.

Features and Values.

In Proceedings of the 10th International Conference on Computational Linguistics (COLING 84), pages
28-33. ACL, Stanford, California, July, 1984.

Karttunen, L.
Structure Sharing with Binary Trees.
In Proceedings of the 23rd annual meeting of the ACL, pages 133-137. ACL, Chicago, 1985.

Karttunen, L.

D-PATR: A development Environment for Unification-Based Grammars.

In Proceedings of the 11th International Conference on Computational Linguistics (COLING 86), pages
74-79. ACL, Bonn, 1986.

Karttunen, L.
D-PATR: A Development Environment for Unification-Based Grammars.
Technical Report CSLI-86-61, CSLI, August, 1986.

Karttunen, L.

Parsing in a Frec Word Order Language.

Natural Language Parsing.

Cambridge University Press, Cambridge, England, 1985, pages 279-306.

Kasper, R.

Systemic Grammar and Functional Unification Grammar.

Systemic Functional Perspectives on discourse: selected papers from the 12th International Systemic
Workshop.

Ablex, Norwood, NJ, 1987.

Kasper, R.
A Unification Method for Disjunctive Feature Descriptions.
In Proceedings of the 25th meeting of the ACL, pages 235-242. ACL, Stanford University, June, 1987.

Kasper, R. and W. Rounds.
A Logical Semantics for Feature Structures,

In Proceedings of the 24th meeting of the ACL. ACL, Columbia University, New York, NY, June, 1986.

Kay, M.
Functional Grammar,

In Proceedings of the Sth meeting of the Berkely Linguistics Society. Berkeley Linguistics Society, 1979.

Kay, M.

Algorithm Schemata and Data Structures in Syntactic Processing.
Technical Report CSL-80-12, Xerox Parc, Oclober, 1980.

Also in Readings in NLP, p35-70.

Kay, M.

Functional Unification Grammars: a Formalism for Machine Translation,

In Proceedings of the 10th International Conference on Computational Linguistics (COLING 84), pages
75-78. ACL, Stanford University, 1984,

53

54

[13]

[14]

(15]

[16]

(17]

(18]

[19]

[20]

(21]

(22}

(23]

[24]

Kay, M.

Parsing in Functional Unification Grammar.

Natural Language Parsing.

Cambridge University Press, Cambridge, England, 1985, pages 152-178.
Also in Reading in NLP p125-138.

Pereira, F.C.N.
A Structure-Sharing Representation for Unification-Based Grammar Formalisms.
In Proceedings of the 23rd annual meeting of the ACL, pages 137-144. ACL, Chicago, 1985.

Pereira, F. and S. Shieber,

The Semantics of Grammar Formalisms Seen as Computer Languages.

In Proceedings of the Tenth International Conference on Computational Linguistics (COLING 84), pages
123-129. ACL, Stanford University, Stanford, Ca, July, 1984,

Ritchie, G.D.
Simulating a Turing Machine using Functional Unification Grammar.
In Proceedings of the Europeean Conference on Al (ECAI 84), pages 127-136. 1984,

Ritchie, G.D.

The Computational Complexity of Sentence Derivation in Functional Unification Grammar,

In Proceedings of the 11th International Conference on Computational Linguistics (COLING 86), pages
584-586. ACL, Bonn, 1986.

Rounds, W.C. and A. Manaster-Ramer,
A Logical Version of Functional Grammar.
In Proceedings of the 25th meeting of the ACL, pages 89-96. ACL, Stanford University, June, 1987.

Shieber, S.M,

The Design of a Computer Language for Linguistic Information.

In Proceedings of the 10th International Conference on Computational Linguistics (COLING 84), pages
362-366. ACL, Stanford University, 1984,

Shieber, S.M.
Using Restriction to Extend Parsing Algorithms for Complex Feature-Based Formalisms.
In Proceedings of the 23rd annual meeting of the ACL, pages 145-152. ACL, Chicago, 1985.

Shieber, S.M.

A Compilation of Papers on Unification-Based Grammar Formalisms, Parts I & 11,
Technical Report CSLI-85-48, CSLI, 1985.

3 papers COLING 84 + 3 ACL 85.

Shieber, S.
CSLI Lecture Notes. Volume 4: An introduction to Unification-Based Approaches to Grammar.
University of Chicago Press, Chicago, 11, 1986.

Wittenburg, K.B.
Natural Language Parsing with Combinatory Categorial Grammar in Graph Unification-Based Formalism.
PhD thesis, Austin University, 1986.

Wroblewski, D.A.
Non Destructive Graph Unification.
In Proceedings of the Sixth National Conference on Al (AAAI 87), pages 582-587. AAAI, Seattle, 1987.

Index

notation 14

$ notation (Unix) 38
$fug2 37,38

* notation 14, 28, 41
all-trace-off (variable) 30
all-trace-on (variable) 30
any-at-unification (variable) 36
dictionary (variable) 33
*irreg-plurals® (variable) 23,25
irreg-verbs (variable) 23, 26
keep-cset (variable) 36
keep-none (variable) 36
lexicalcategories (variable) 23,26
top (variable) 30
*trace-determine® (variable) 30
tracc-marker (variable) 19,30
u-grammar (variable) 26

.. notation 14
=== notation 5
@ notation 42, 51
A notation 28, 35

A-an (morphological feawre) 23
Absolute path 10

Adj 23

Adv 23

Agreement (subject/verb) 4,7
All-iracing-flags (function) 18, 20,30
Alt (keyword) 4,12, 18,20,21,28
Any (special value) 36, 16, 35
Append 45,47

Arguments 1o procedures (in FUG as program) 47
Avg-complexity (function) 22,32

Branch (of an alt) 4

Call-linearizer (function) 34

Car (in FDs) 46

Case 23

Cat (special auribute) 16, 21, 23,27
Category 16

Cdr (in FDs) 46

Common Lisp 37

Common noun 5

Comparison prolog/FUG as program 49
Compile-fug (function) 37
Complexity (function) 22,32
Complexity 22

Con 23

Conflation 11

Conjunction 10

Constituent 4, 15

Constraint (feature as) 10
Constraints (specifying complex) 42
Control (keyword) 42, 51

Cset (keyword) 5,15, 28,41

Cset (unification) 15

Debugging 17

55

56

Default (in alt) 5, 12
Demonstrative 23

Denotation (of FDs) 10

Det 23,24

Determination 16,27, 36, 47, 51
Dictionary 25

Directed acyclic graph 11
Directory 37

Disjunction 12

Disjunctive normal form 22,33
Distance 23

Dots (in pattern) 14

Efficiency (of unification) 20

Ending 23

Environment (of a FUG as a program) 47
Examples 3,37

Extemal symbols 38

Extemnal tracing 17

Failure (of unification) 7,12, 19
Far 23

FD 1,3

Fd-intersection (function) 34
Fd-member (function) 34
Fd-p (function) 2,3, 29, 51
Fd-sem (function) 21,28, 51
Fd-syntax (function) 28
Fd-to-list (function) 35
Features 10

First (person) 23

FUG2 (package) 38

Fug2.l (file) 37

Gap 34,42

Gdp (functdon) 35

Gdpp (function) 35
Gender 23

Given (special value) 16, 52
Gr0.1 (file) 3,37

Grl.l (fite) 37

Gr2.l (file) 37

Gr3.l (file) 37

Grd.l (file) 10,37

Gr5.1 (file) 37

Grammar organization 16
Grammar-p (function) 2,29, 51
Graphs (FDs as) 11

Indexation (automatic) 21
Indexing 20, 51

Infinitive 23

Initialize-lexicon (function) 25
Instantiated features 16, 46
Internal tracing 17
Internal-trace-off (function) 17,31
Internal-trace-on (function) 17,31
1r0.1 (file) 37

Irld(file) 37

Ir2.1 (file) 37

Ir3.1 (file) 37

Ird1 (file) 37

Ir5.1 (file) 37

Jumping (1o a branch) 21

Lex (special auribute) §
Lexfetch (function) 33
Lexical categories 23
Lexiconl (file) 25,33
Lexstore (function) 33
Linearization 1, 8, 13, 22, 34
Linearize 1 (file) 23

List (as FDs) 46
List-cats (function) 2
List-to-fd (function) 36
Lists (as FDs) 34, 35, 36
Loading the system 37

Member 45, 47

Mergeable constituents (in pauemn) 14, 28, 41, 51
Modal 23

Morphology 8,9, 22, 34

Morphology-help (function) 9, 23, 34

Near 23

Nil (special value) 10, 35, 46

No disjunction in input 51

Non-deterministic constructs 15, 20

Non-standard feawres of implementation 16, 17, 42, 51
None (special value) 16,35

Noun 23

Number 23

Objective 23

Opt (keyword) 13, 18, 20, 28
Optional features 13

Order independence 12
Ordering constraints 4, 13

Packages 38

Pair (auributefvalue) 10

Past 23

Past-paniciple 23

Path (flat description of FDs) 10
Path (unification) 11

Path 10, 28,35

Pauem (keyword) 4, 8, 13, 20, 28
Patiem (unification) 14

Person 23

Personal 23

Phrase 23

Plural 23

Porting to a new machine 37
Possessive 23

Pound (in pattem) 14

Prep 23

Present 23

Procedures (in FUG as program) 47
Prolog 45, 47

Pronoun 23

Pronoun-type 23

Proper noun 5
Punctuation 23, 24

Quantified 23
Question 23

Recursion §, 15

Reference 1o the FD in a test expression 42
Reflexive 23

Relative path 10, 11

57

58

Reload-fug (function) 37
Relpro 23
Require (Lisp function) 37
Restrictions 17, 51

Root 23

Search (through the grammar) 20
Second (person) 23

Set values in FDs 49

Singular 23

Sub-constituents 5

Subjective 23

Syntax 10

Tense 23

Test (keyword) 42,51

Third (person) 23

Total fd 16, 27, 35, 36, 47

Trace-disable (function) 18,20, 31
Trace-disable-all (function) 18, 20, 31
Trace-disable-match (function) 18,20, 31
Trace-enable (function) 18,20,31
Trace-enable-all (function) 18, 20, 31
Trace-enable-match (function) 18, 20, 32
Trace-off (function) 18,32

Trace-on (function) 18, 32

Tracing (local) 19

Tracing (of alt) 18

Tracing (of opt) 18

Tracing 17

Tracing flag 19,28,30

Tracing messages 19

U (funation) 26

Uni (function) 2,27

Uni-fd (function) 2,27

Unif (function) 2,27

Unification (overall mechanism) 5
Unification 1

Unification functions 26
Unknown category 9,23
Use-package (function) 40

Variables (in FUGs) 46, 47
Verb 23

~notation 46

