An Automated Consultant for
Interactive Environments

Aues-39- 5%

Ursula Wolz*
Gail E. Kaiser*

Columbia University
Department of Computer Science
New York, NY 10027

Abstract

Interactive computing environments provide facilities intended to support and assist the range
from novice to expert users, but casual users tend to get trapped in the starter set of commands.
We have developed a rule-based technology for providing on-line assistance calibrated to both
the task at hand and the user’s past experience using the system. Such assistance helps users to
progress to more advanced features. We present our automated consultant and describe its
application to a practical domain, the Berkeley Unix™ mail system.

Copyright © 1988 Ursula Wolz and Gail E. Kaiser

*Supported in part by ONR grant NO0O14-82-K-0256. *+Supported in part by grants from AT&T
Foundation, IBM, and Siemens Research and Technology Laboratories, in part by the New York
State Center of Advanced Technology — Computer and Information Systems, and in part by a
Digital Equipment Corporation Faculty Award.

keywords: Automated consulting, help systems, intelligent assistance, interactive computing
environments, programming environments, user interfaces.

1. Introduction

Interactive computing environments such as mail systems and programming environments
provide resources and facilities intended to support and assist users. A conflict arises between
creating an environment simple enough for a novice, yet sophisticated enough to accommodate
an expert. A common solution is to expose beginners to a set of starter commands, but provide
more comprehensive features they can learn later. Finin [Finin 83] points out that many
beginners get trapped in the starter set, since they are not encouraged to progress to more
powerful commands. We have developed a solution to this problem: an automated consultant
that answers a user’s questions about the environment in a manner designed to provide this

encouragement.

All interactive environments can be characterized as consisting of a set of functions with
which a user can accomplish tasks specific to that environment. The environments themselves
might be mail systems, VLSI design tools, word processing systems or programming
environments. The means of access to the environment might include command languages,
menus with keystroke or pointing devices, or even more sophisticated interfaces. But at the core,
a set of functions must be executed as a plan (i.e., sequence of steps) to accomplish some

computational goal of the user.

Although on-line and off-line documentation helps the user learn about the functions
themselves, the complaint is often made that such documentation can be inadequate at providing
specific ‘goal-oriented’ help for the task at hand. Furthermore, since most tutorials only scratch
the surface of the capabilities of an environment, users tend to rely on the few commands they
learn initially and never develop broad expertise with the system. Increasing one’s expertise
within an environment is often avoided because it tends to cut significantly into a user’s short-
term productivity. Yet in the long run taking the dme to learn something new is likely to increase
long-term productivity. Furthermore, with only limited expertise the quality of the resulting job
is often diminished since the full potential of the environment is not exploited. Methods for

encouraging users to master an environment could certainly be beneficial.

Whether an environment is intended for end users of commercial products or for software

development staff writing such systems, an automated consultant that can give appropriate help
for the task at hand can increase user productivity and the quality of the job. The problem then is
how to provide the appropriate information that neither swamps the novice (or casual user) with
too much complex information nor insults the expert by providing an overly pedantic tutorial.
The problem lends itself well to a solution using expert system techniques, namely how to

choose and articulate appropriate information from a vast and complex knowledge base.

We are exploring a solution to this problem through the implementaton of GECIE
(Generated Explanations for Consulting in Interactive Environments — pronounced Jesse), a
question answering system for Berkeley Unix Mail. GECIE that generates text based both on
what the user is trying to do and what the user already knows how to do. We take a user’s
goal-centered approach in which' the help given is a direct function of a user’s needs within the

current context. In particular, we focus on the content of the answer provided to a user.

First, we provide a small rule base that models a consultant’s behavior and a large
hierarchical knowledge represention that captures a consultant’s domain knowledge. The
domain knowledge includes explicit information about the relationships between the
computational goals that can be accomplished in the environment, the plans used to accomplish
them, and the functions that make up the plans. The rule base allows GECIE to reason about the
actions associated with functions, but also allows it to analyze whether plans can satisfy goals
and which of many equally good plans is most appropriate in a given context. In a mail system,
for example, a goal might be to read a set of messages and forward a subset to a colleague. The
plan for executing that goal will be dependent upon the particular functions available within the

mail system.

Second, we believe that classifying functions, plans and goals according to level of expertise
is inappropriate and global categorization of users as ‘novice’, ‘intermediate’ or ‘expert’ is
inadequate. In our work, information on an individual’s exposure to goals, plans and functions
influences the pedagogical goals of the consultant, that is, what specific information it presents
following a user’s query. Expectations about what the user knows and should be told is based on

the computational goals that user has satisfied in the past rather than on broad ad hoc

classifications of functions and plans as ‘easy’ or ‘hard’. We exploit the structure of our
knowledge base and use a goal-centered representation as a user model. Decisions about how to
answer a user’s question are based on an analysis of the match between the knowledge base and
the user model. Taking another example from a mail system, a user may have extensive
experience with sending simple messages to groups of users, and almost none with modifying
messages through an editor. Such a user will not fall nicely into a categorization of expertise. A
question relating to sending simple messages will require introducing very little new information
into the discussion, while a question about modifying messages may require an extensive

introduction to editing.

The sectdon that follows describes the problem in more detail and outlines our solution.
Section 3 summarizes how we improve on previous work. Section 4 describes GECIE, the initial
implementation of our technology as an extension of the Berkeley Unix Mail. We conclude by

summarizing our contributions.

2. Consulting in Interactive Environments

In order to use an environment effectively, a user must know the system’s capabilities and
how to make best use of them. This requires access to information that describes the specific
features of the system — the functions, commands or constructs (henceforth functions) available.

[t also requires access to methods or plans for best accomplishing goals.

We claim there is a large middle ground between a novice who knows only the rudiments of
a system and an expert who has gained complete mastery over it. The continuum in between is
one in which user expertise may not be optimal for a given task. When the user must take time
to find the appropriate function, or develop an efficient technique, productivity decreases.
Furthermore, in some environments in which the tasks are primarily ‘throw-away’, users may
rely on inefficient methods that are well-known rather than taking time to develop more
sophisticated expertise. A primary reason for the inefficiency of learning is that users bear the
burden of deciding what must be learned and how to locate the appropriate information. This is
typically done by searching through manuals, asking help of others or simply experimenting with

the system. Expert system techniques should be able to provide mechanisms that can relieve

some of this burden.

The objective of our research is to address these issues and offer a theory of how to build an
automated consultant that can assist users in extending their expertise. The following insights
are the result of informal observations of human consultants giving help in environments that
support EMACS, Lisp, Unix, Pascal and Logo, and on an examination of manuals, tutorials and

texts for these environments.

1. Function specification: What does functon F do?

2. Goal satisfaction:
a. How can goal G be accomplished?

b. Plan P accomplishes goal G in the context of situation S, but there must be
a ‘better’ way, what is it, and why is it better?

3. Analyze or debug a plan:
a. What does plan P (learned by rote, for example) do?

b. Plan P ought to accomplish goal G in the context of situation S, but doesn’t,
why not?

Figure 2-1: Typical Types of Questions Users Ask

There is rarely a direct correspondence between a precise statement of a user’s goal and a
plan to satisfy it. It is more often the case that the user’s goal is poorly defined. Furthermore, a
goal may be satisfied by more than one plan. The problem presents itself as requiring a mapping
of many user queries to many possible answers. In order to constrain the potential mappings,
user queries can be categorized at least partially as relating goals to plans as summarized in
figure 2-1. Although the question itself may not be stated clearly in one of these forms, informal

observations indicate that the intention of most utterances falls within one of these question

types.

Magers [Magers 83]) and Borenstein [Borenstein 85] have drawn a distinction between
information that is definitional and instructional. Figure 2-2 further refines this distinction.
Definitional informadon is more appropriate for reminding someone about something they have
previously learned, while instructional information is more appropriate for introducing new

information. These types differ not only in their format and level of detail, but also in their

Introduce: Present functions and plans that the user has not encountered before.

Remind: Briefly describe functions and plans that the user has been exposed to but
may have forgotten.

Clarify: Explain details and options about functions and plans to which the user has
been exposed.

Elucidate: Clear up misunderstandings that have developed about functions and plans to

which the user has been exposed.
Execute: Perform functions and plans directly for the user.

Figure 2-2: Types of Responses a Consultant Might Provide
emphasis and the degree to which related information is included. Clarifying and elucidating
require a careful mixture of reminding and introducing. In this article, we address only the first
four types of answers. We have developed a separate system, Marvel [Kaiser & Feiler 87;
Kaiser er al. 88], that automatically generates and executes plans for the user in the context of
software development and maintenance; our next application of GECIE, after mail systems, will

be to scale up to Marvel.

Although the categorization in figure 2-1 constrains the question, while the taxonomy in
figure 2-2 constrains the answer provided, the requisite knowledge and the processes needed to
search that knowledge are still complex. The processes include the abilities to estimate the
user’s goal, to understand the user’s plan, to evaluate the current situation in order to formulate
an answer that does not digress from the current task, to analyze the user’s plan in terms of the
estimate of the goal and within the current situation, and to choose an appropriate answer and
explanation depending on the user’s current knowledge of the system. This requires knowledge
of the functions provided by the system, the possible goals that can be accomplished with the
system, the plans that may accomplish those goals, the things that typically go wrong (bugs), and

what the user currently does and does not know about the functions, goals, plans and bugs.

Much of this cannot be completely known. For example, it seems unlikely that all possible
goals achievable within a given interactive computing environment will be known before the
environment is used extensively. It also does not seem possible to predict with certainty what

the user’s goal is and what the user knows. Thus the processes described above not only must

operate with incomplete information, but ought to be able to do so effectively. Innovative
techniques or novel applications ought to be easily and reliably incorporated into the knowledge

base.

From an Al Expert Systems perspective, these issues can be encapsulated in two
fundamental problems: (1) How can the search through a vast and complex knowledge base be
restricted in order to glean the appropriate information for the immediate needs of the user? and
(2) What decisions must be made in order to choose the appropriate form in which to present that

information? We provide solutions to both of these problems.

2.1. A Goal-Centered Approach

We propose a goal-centered approach in which the help given is a direct function of user’s
needs within the current context, treated as a discourse between the user and the consultant. In
particular, we are interested in the content of the answer provided to users. The primary

contributions of this research are as follows.

A good consultant has both extensive domain knowledge and expertise in how to explain
something. A good consultant does not simply know how to use an environment effectively, but
knows what to say, how much to say, and what approach to take depending on what she thinks
the user knows. Unlike traditional expert systems, we do not encode both types of knowledge in
one large rule base. Instead, we separate the procedural domain knowledge about how to do
something from the explanatory knowledge of how to talk about how to do something.
Modularizing consulting knowledge in this manner provides advantages already proposed by
Clancey [Clancey 83]. Figure 2-3 illustrates this distincion. Two rule bases capture the
explanatory knowledge. The Plan Analyst determines what information about the domain is

relevant, while the Explainer determines in what form to phrase the answer.

Procedural knowledge is captured in a frame-based knowledge representation in a
hierarchical organization of computational goals. The emphasis on goals is important because it
is not enough for a consultant to know about the functions of an environment. Explicit

knowledge of how to combine those functions into plans that accomplish computational goals is

EXPLANATORY KNOWLEDGE - - - - - - - - - sncodad 23 Rules
question —p»

& answer

PROCEDURAL DOMAIN KNOWLEDGE - - - sncodsd in frame-basad
roprasemation

Figure 2-3: GECIE’s Division of Consulting Knowledge
equally important. The representaton allows the Plan Analyst to reason about the actions
associated with functions, but also allows it to analyze whether plans can satisfy goals and which
of many equally good plans is most appropriate in a given context. A good consultant does not
simply perform a ‘core dump’ of relevant information, but filters that information to satisfy
pedagogical goals. Our knowledge representation also contains explicit discourse information

that the Explainer uses to satsfy pedagogical goals.

We exploit the structure of our knowledge base and use a goal-centered representation as a
user model. This allows us to abandon a simple categorization of users as novice, intermediate
and expert. Similarly we found it insufficient to cluster goals, plans and functions into groups
such as simple or hard. Since the structure of the user model and expert knowledge base are the
same, decisions about how to answer a user's queston are based on an analysis of the match

between these representations.

The feasibility of our approach is explored through an automated consulting system called
GECIE. We have applied GECIE to the real world problem of the Berkeley Unix mail system

(Shoens 86], notorious for the great power it provides experts and the great confusion it creates

for novices and even long-term non-expert users. Our goal is not to replace this mail system, as
has been done by others [Stallman 85; Jackson & Barel 86], but instead to augment it with

consulting behavior that makes its capabilities accessible to casual users.

For example, a user might ask "what does type do?" If the user knows nothing about
either the type or print functions, GECIE provides the standard introduction to the type
function. But if the user already knows about print, then GECIE explains that type is a
synonym for print. If the user has previously used t ype, but has apparently forgotten what it
does, GECIE simply remind the user of the type function as briefly as possible. This is an
example of a "What does function F do?" question. Examples of the other question types from

figure 2-1 in the context of Berkeley Unix Mail are presented in section 4.

Since other discourse-based systems focus on determining a user’s goals (e.g., Wilensky
[Wilensky er al. 84], Pollack [Pollack 86]), we assume the output of such an understanding
mechanism as input to GECIE, and instead are concerned with how to take advantage of this
understanding to generate useful responses to user queries. In order to test GECIE’s capabilities
with real users, we are building a menu-based front end. This narrows the range of questions that
can be asked and requires a more careful articulation of the question by the user. For testing
purposes we view this positively, since both the advantages and disadvantages of more
sophisticated understanding mechanisms do not obscure our evaluation of the merits of

generating an appropriate answer. The front-end is described in more detail in section 4.

Research in user modelling [Carberry 83; Grosz 81; Selker 88] present theories for how to
automatically develop and update models of individual users. Again, we assume that appropriate
mechanisms can be constructed for maintaining a user model and that output from such a system
in the form of a goal-centered knowledge base can be passed to GECIE. For testing purposes,
user models will be built by hand based on systematic human evaluations of individual user’s

knowledge.

One can therefore view the user's question and goal, and a representation of the user’s
knowledge as hand-coded input to GECIE. In the above example, we assume that GECIE is given

the question in symbolic form and that the user model accurately reflects whether the user

already knows about type, print, or both, and concentrate our efforts on generating the best

answer for the context.

3. Related Work

The development of programming environments [Goldberg 87; Habermann & Notkin 86;
Stallman 81; Kaiser er al. 87; Walker er al. 87; Reiss 87]has focused on what the user can do
rather than on how the user learns to do it. UC [Wilensky er al. 84; Chin 86], WIZARD [Finin
83] and ACRONYM [Borenstein 85] have articulated the need for comprehensive information
accessing mechanisms. Evaluations of on-line help using ACRONYM indicated that the
information itself is more important than the means for accessing it. UC and WIZARD both
assume this, and provide information in the context of the user’s goal. Both research groups
acknowledge the need for pedagogical goals or ‘tutoring strategies’, but have not studied them

beyond stereotyping functions along a novice/expert spectrum.

Quilici er al. [Quilici et al. 85] have demonstrated how goal/plan knowledge can be used to
answer questions, but they do not describe how the form and content of a response is affected by
what the user already knows. Others [Wilensky et al. 84; Johnson 86; Waters 86; Finin
83] identify the importance of plans, but they do not include in their knowledge bases the explicit
discourse information needed to satisfy pedagogical goals. Much of the recent work on
explanation [Kukich 85; Swartout 83] involves determining an appropriate level of detail or
developing techniques for making inference chains coherent. McKeown [McKeown et al.
85] and Paris [Paris 85; Paris 87] go further to show how the decision of what to present from the

knowledge base is dependent on the user’s focus of attention and level of expertise.

Our work should be viewed as an extension of McKeown and Paris, but in an environment
that is highly procedural. Our emphasis is on how to do something, rather than on what
something is. A second distinction is that in an interactive computing environment there is often
not only more than one way to explain something, but more than one way to do something,
Therefore the analysis process that determines the most appropriate procedure affects and is

affected by the generation process that produces the form and content of the answer.

10

4. GECIE: A Consultant for Interactive Environments

Consulting can be characterized as a three stage process of question understanding, problem
analysis and answer generation. Our understanding component is currently a simple menu-based
front end. We concentrate on the latter two stages: analysis, through a rule base called the Plan
Analyst, and generation, through a rule base called the Explainer. GECIE attempts to answer a
question by doing a two phase search of the knowledge bases. In the first, the Plan Analyst tries
to construct a coherent relationship between the user’s question, his user model and the
capabilities of the system in an attempt to find the most appropriate information. Based on the
Plan Analyst’s output, the Explainer tries to construct a coherent textual explanation that takes
into account what the user already knows. Both rule bases will be discussed extensively in the
examples later in this section. In what follows below we describe the structure of the knowledge
representation and present details of the understanding and generation components that are not

obvious from the examples.

GECIE’s ‘understanding’ component is a simple menu-based interface. Our goal was to
develop an interface that would be both easy to implement and rapidly learned by users.
Although such an interface does not understand in the Natural Language Processing sense, it
does have some intelligence in the way menus are presented. Figure 4-1 shows the top level
menu, which is a reformulation of the questions of figure 2-1. The user can select a goal or
function by typing the proper word or phase at a command prompt or by browsing a menu of
goals or functions. The menus can be arranged alphabetically, or the order of presentation can
be based on the goal links of the expert knowledge base. Plans that can be identified by name
from the knowledge base can be entered from the command prompt. Otherwise, the user must

construct a plan by selecting an ordered list of functions and goals.

When GECIE is invoked within mail, both the expert knowledge base (EKB) and user model
(UM) are loaded. The world model (WM) is constructed based on the user’s current context in
mail. Depending on the question type selected, the user is prompted to provide a function (F), a

goal (G), or to construct a plan (P).

EKB is a hierarchy of the computational goals that can be satisfied in the target

11

Please select a question:

1. What does the function (select a function) do?

2. How can I (select a goal) ?

3. I use this plan (construct a plan) to (select a goal), is there a better way?

4. What does this plan do: (construct a plan)?

5. This plan (construct a plan) ought to accomplish (select a goal), but doesn’t, why not?

Figure 4-1: Top Level Menu for Question Selection
environment. Figure 4-2 shows the structure of this frame-based knowledge representation.
Computational goals contain links to alternative plans for satisfying the goal. A plan can be
linked to a subgoal or an ordered sequence of subgoals that describe how it can be executed, or
to a function that executes it directly. Encoded within a computational goal are links that

describe the relationship between plans.

Functions describe the operators of the environment. Their representation includes
information about the correct syntax of the function, any preconditions and effects, and the
actions associated with parameters. Preconditions define a state that must be true before a
fucntion can be correctly executed. They may also contain a link to a goal that could satisfy it.
Effects encode the actions of functions when applied to the world model. Currently the world
model is represented as a simple add/delete list that describes possible states in the mail

environment. Therefore effects are encoded as directives to add or delete a state from the world

model.

UM has the same representation as EKB. It contains a history of what the user has done in
past sessions in terms of what goals have been accomplished and what plans and functions were
used to accomplish them. It is currently coded and updated by hand. Problems associated with

updating it automatically are discussed in section 3.

Most of GECIE's responses are stereotypical. At the same time, the content of a response

must be customized to the user’s needs and expertise. Therefore a rule based system that

Computational Goal

Plan 1 Plan2 Plann

relationships

Subgoals FUNCTION: syntax
preconditions
effects
parameters
related goals and functions

Figure 4-2: GECIE’s Frames for Knowledge Representation
ultimately leads to canned text is inappropriate since the canned text is fixed. Similarly, since
GECIE’s range of discourse is limited, a completely open-ended generation system seems equally
inappropriate. We therefore chose template filling as a technique that allows both customizaton
and sterecotyped responses. To generate an answer, the Explainer selects an appropriate set of
response agenda based on the output of the Plan Analyst. The response agenda are directives for
filling textual templates. Representative templates are presented in figure 4-3. Operations

appear in capital letters; variables are surrounded by braces ("{ }").

We now present five example queries based on the question types in figure 2-1 to
demonstrate GECIE's capabilities. The first two include scripts of the entire interaction between
the user and GECIE. All five examples describe the rules used by the Plan Analyst to select the
appropriate information. They also show typical scenarios of how the content of the user model

and the user's question affect the output of both the Plan Analyst and the Explainer.

13

FUNCTION_INTRODUCEC(f)
{f->name] is used to {f->satisfies->description}. It has the form {f->form},
where FOR_EACH (x,f->parameters, "{x} refers to {px->description}").
{f->name} requires that EXPAND_PRECONDS(f->preconds). It causes
EXPAND_EFFECTS(f->effects). For example, EXAMPLE(f->form, WM).

FUNCTION_REMIND(f)
{f->name}: {f->form}. It is used to {f->satisfies->description). For example,
EXAMPLE (f->form,WM).

GOAL_REMIND_SIMPLE(g)
You can {g->description} by using the command {g->function}. For
example, EXAMPLE(f->form,WM) would
EXPAND_EFFECTS(f->effects).

GOAL_INTRODUCE_SIMPLE(g)
GOAL_REMIND_SIMPLE(g). You must make sure
EXPAND_PRECONDS(g->function->preconds).

GOAL_ INTRODUCE_COMPLEX(g,fault)
In order to {g->description}, you must
FOR_EACH(gx,g->subgoals,"GOAL_INTRODUCE_COMPLEX(gx)"). IF
fault DESCRIBE_FAULT(fault->plan). The commands to {g->description}
are
FORMAT_PLAN_INSTANTIATION(gx,g->subgoals,gx->function, WM).
SHOW_MAPPING(gx,g->subgoals,gx->description,gx->function).

GOAL_REMIND_COMPLEX(g)
In order to { g->description}, use
FORMAT_PLAN_INSTANTIATION(gx,g->subgoals,gx->function, WM).
SHOW_MAPPING(gx,g->subgoals,gx->description,gx->function).

WM = World Model
Simple goals are satisfied directly by functons.
Complex goals are satisfied by a plan that maps to subgoals.

Figure 4-3: Representative Response Agenda

4.1. Example 1

The first question is: What does t ype do? This is an instantiadon of the "What does F do?"
category of figure 2-1. In order to ask this question, the user selects question 1 in the menu of
figure 4-1. A second menu allows the user to enter a function name, or search functions

alphabetically or by goal links. Using one of these methods the user indicates that the desired

function is type.

Figure 4-4 shows the portion of EKB required to answer this question. The Plan Analyst

14

uses the following rules to determine what information is relevant to the Explainer:

1. If UM contains F, then report knowledge of F, else report no_knowledge of F.

2. If there exists a function that is directly satisfied by some goal G’, which has the
least complex relational link to the goal G that satisfies our functon F, then F’ =
that function.

3. If F’ exists in EKB, and UM contains F, then report knowledge of F’.

In our example, the Plan Analyst would determine whether the user already knows about

type, and in this case, since there is a relational link to print, whether the user knows about

print. The outcome of this analysis is passed to the Explainer.

G,

G,

G,

type.goal,
G_type: D /* Satisfied directly by function */
Satisfied by: F, type:
Related goals: RL4

print.goal,

G _type: D
Satisfied by: F, print:;
Related goals: RL4
display.list.of.messages,
Description: display each message in the sequence specified
G_type: S /* Satisfied through subgoals */
Satisfied by: G, type.goal:; G, print.goal:;

print, Form: print (message_list}
Preconditions: Pl, P2, P3,
Effects: E1,
Satisfies: print.goal
Parameters: message-list

type, Form: type (message list}
Preconditions: Pl, P2, P3,
Effects: E1,
Satisfies: type.goal
Parameters: message-list

Pl, state: (exists contents of (*p message_list))
use: list.message

P2, state: (at read-level)
use: get.to.read.level

P3, state: (size (*p message-list) > screen-size)
use: set.window.scroll

, Token: A state: (display-contains text-of each (*p message-list))

RL1l, type.goal, print.goal
Relation: synonyms

Figure 4-4: GECIE's Expert Knowledge for Question 1

15

Four analyses are possible based on the existence of F and F’ in UM. These are illustrated
in figure 4-5 along with the corresponding Explainer output, If the user knows nothing about
either type or print, GECIE generates the standard introductory template for type, and does
not overwhelm the user with the fact that print is a synonym. Figure 4-6 shows how the
response agenda for FUNCTION_INTRODUCE(type) is filled from the EKB. If the user knows
about print, GECIE states the fact that type is a synonym, reminds the user about print,
then introduces type. If the user knows about t ype but not print, GECIE reminds the user
about type and makes an aside that there is a synonym for type called print. Finally, in the

last case, if the user knows about both, GECIE just reminds him about t ype.

/* UM: does not contain either ‘type’ or ’‘print’ */
Plan Analyst output: function: type no_knowledge
Explainer output: FUNCTION_INTRODUCE (type)

/* UM: contains ’‘print’, but not ‘type’ */

Plan Analyst output: function: type no_knowledge
function: print knowledge

Explainer output: DESCRIBE_LINK(type,print)
FUNCTION_ REMIND (print)
FUNCTION_INTRODUCE (type)

/* UM: contains ‘type’, but not ’‘print‘’ =/
Plan Analyst output: function: type knowledge
function: print no_knowledge
Explainer output: FUNCTION_REMIND (type)
MAKE SIDE_COMMENT (DESCRIBE_LINK(type,print))

/* UM: contains both ‘type’ and ’‘print’ */
Plan Analyst output: function: type knowledge
Explainer output: FUNCTION_REMIND (type)

Figure 4-5: GECIE's Responses to Question 1

4.2. Example 2a

The second question is: How can I reply to a message? This is an instantiation of the "How
can I satisfy G?" category of figure 2-1. To ask this question, the user selects question 2 in the
menu of figure 4-1. In a second menu, the user selects the desired goal. Let us assume the user
chose "reply.to.message”. In this case it might be easier to locate the goal by searching a goal
based menu rather than an alphabetized one. Let us further assume that WM contains a message

which was sent only to him, not to other group members.

16

type is used to type a sequence of messages on the terminal. Tt has
the form:

type {message_list]
where {message_list} refers to a sequence of messages. type requires
that the contents of the message_list exist, that the user is at read
level and that the messages fit on the screen. It causes the text of
each message in the message list to be displayed on the screen. For
example:

type 1:3

displays messages 1 through 3.

Figure 4-6: Text Generated to Introduce the Function type

Figure 4-7 is a graphic representation of the portion of EKB required to answer this

question. In this case the Plan Analyst constructs a trace through the goal hierarchy and passes it

to the Explainer. The Plan Analyst uses the following rules:

1. If UM contains a plan P for G, then report user_plan = P and user’s knowledge of

relevant functions.

2. If EKB contains a most efficient plan P’ for G, then report best_plan = P’ and

user’s knowledge of any relevant functions.
3. If EKB does not contain P (the user’s plan), then report plan_not_known =P.

4. If P = P’, then report best_plan = user_plan.

5.If plan_not_known is a valid plan! report plan_not_known, else report fault =

plan_not_known.

Three possible responses are illustrated in figure 4-8. If the user does not know anything

about how to reply to a message, GECIE selects a ‘best’ plan based on the context and meta-

knowledge of relational links. In this case, the context indicates that the response should be to

reply only to the sender, and the meta-knowledge indicates that a task should be done now rather

than later. Since the user knows about "compose.message”, the only relevant function is Reply.

Figure 4-9 shows how the response agenda for this case is expanded to produce text. If the

user has replied to messages in the past and does it efficiently then GECIE simply reminds the

'A discussion of how to determine the validity of a plan can be found in [Wolz 85].

17

send.mail
reply.to.message
—
reply.now ~_~ <-do now/do later-> reply.later
reply.to.al reply.only.to.sender \
<-all/one->) —~
/’\\ s‘an.single.reply compose.message
reply.group.known F: Reply

siart.group.reply compose.message

F: reply . <- lower case /upper case ->

Figure 4-7: GECIE’s Expert Knowledge for Question 2a and 3b
user about the command Reply. But, if the user seems to know how to reply to messages, but
does it awkwardly, then GECIE introduces a better way. GECIE explains why it is better by
providing the relational links between goals of the user’s plan and the better plan. GECIE
considers a plan to be awkward when the user’s plan does not match GECIE’s plan or when the
user’s plan is not even in EKB. The latter case is the last case shown in figure 4-8. Here the
plan works, and is classified as not known, rather than faulty. Ideally plans that work but aren’t
known should be incorporated into EKB. This is discussed in secton 5. Faulty plans are

presented in Example 3b.

4.3. Example 2b
A refinement of the second question is: To reply to a group of users I reply to each

individually — is there a better way? This is an instance of the "Given P is there a better P for
G?" category of figure 2-1. In this case the user must identify the question type and select a goal
and plan. Let us assume the user selected the goal "reply.to.all” and the plan:

FOR EACH (x in group)

send.mail.to.individual
In the first case below we will assume that WM contains a message that was sent to the user and

others. In the second case, WM contains a message that was sent only to the user. In the third

18

/* UM: contains send.mail compose.message =~/
Plan Analyst output: user_plan: nil
best_plan :reply.to.message -> reply.now ->
reply.only.to.sender
function: Reply no_knowledge
Explainer output: SUMMARIZE.PLAN (best_plan)
GOAL_INTRODUCE_SIMPLE (reply.to.message)

/* UM: contains reply.to.message -> reply.now ->reply.only.to.sender */
Plan Analyst output: best_plan = user_plan

best_plan: reply.only.to.sender

function: Reply knowledge
Explainer output: GOAL_REMIND_SIMPLE (reply.only.to.sender)

/* UM: contains reply.to.message -> save.message -> leave.read.level
-> send.message */
Plan Analyst output: best_plan: reply.now -> reply.only.to.sender
plan_not_known: plan -> reply.now ->save.message ->
leave.read.level -> send.message
function: Reply no_knowledge

Explainer output: GOAL_INTRODUCE_COMPLEX (reply.only.to.sender, fault->plan)

Figure 4-8: GECIE’s Responses to Question 2a

In order to reply to a message it is assumed you want to reply right
away and reply only to the sender. To do this, you must indicate you
wish to reply and compose a message. You can indicate you wish to
reply by using the command ‘Reply’. For example,

Reply

would put you in write mode, the receiver of your message would be
identical to the writer of the message you just received.

Figure 4-9: Text Generated to Introduce the Goal "reply to a message”

case, WM does not contain any message.

Figure 4-10 is a portion of EKB required to answer this question. This question is analyzed
using rules 2 - S of the last example. Rule | is unnecessary since we assume plan P chosen by

the user should be in UM2.

Three possible responses are illustrated in figure 4-11. In the first, the message to which the

“If the plan does not actually exist in UM, one should assume that after the interaction it is indeed inserted by a
programmer.

19

reply.to.all

I
reply.create.alias reply.group.known reply.to.each.in.group
group
<-not known/known->

can send
same mesage/different message
<- less work/more work->

FOR.EACH(x in group)

create. send. start.group. compose. Send.message.to.
F: alias F: reply

Figure 4-10: GECIE’s Expert Knowledge for Question 2b and 3b
user wishes to reply was addressed to a group of users. GECIE chooses to tell the user about the
reply command since a group exists in WM. In the second case, the message was only
addressed to the user. GECIE chooses a plan that requires the user to identify a group of users. In
both cases, since the user knows how to send mail, GECIE simply reminds the user about how to
send mail and describes the relational links between the suggested plan and the user’s. In the
third case, the context does not allow a choice between these plans. GECIE presents both options.
Both plans are preferred to the user’s plan because they require less work on the user’s part. In
the event that the user’s plan is equivalent to the suggested solution, GECIE would inform the

user of this and use relational links to justify why the user’s plan is best.

4.4. Example 3a
A third question is: My advisor told me to read her mail and look for messages pertaining to

her course. These were the instructions:

enter MAIL

type h +

{note message numbers of relevant messages}
type save (message numbers} homeworks.txt

What's actually going on?

This question is an instance of "What does plan P do?" The user must supply a plan, which

20

/* WM contains message that was sent to user and others x/

Plan Analyst output: wuser_plan: reply.to.each.in.group
best_plan: reply.to.all -> reply.group.known
function: reply no_knowledge

Explainer output: GOAL_REMIND_SIMFLE (reply.to.each.in.group)
GOAL_INTRODUCE COMPLEX(reply.group.known)
DESCRIBE_LINK(reply.to.each.in.group,

reply.group.known)

/* WM contains message that was just sent to user */

Plan Analyst output: user_plan: reply.to.each.in.group
best_plan: reply.to.all -> reply.group.create.alias
function: alias no_knowledge

Explainer output: GOAL_REMIND SIMPLE (reply.to.each.in.group)
GOAL_INTRODUCE_COMPLEX (reply.group.create.alias)
DESCRIBE_LINK(reply.to.each.in.group,

reply.group.create.alias)

/* WM does not contain explicit reference to a message */
Plan Analyst output: wuser_plan: reply.to.each.in.group
best_plans:reply.to.all -> reply.group.create.alias
:reply.to.all -> reply.group.known
function: reply no_knowledge
function: alias no_knowledge

Explainer output: GOAL_REMIND_ SIMPLE (reply.to.each.in.group)
GOAL_INTRODUCE_COMPLEX (reply.group.create.alias)
DESCRIBE_LINK(reply.to.each.in.group,

reply.group.create.alias)
GOAL INTRODUCE_ COMPLEX (reply.group.known)
DESCRIBE_LINK(reply.to.each.in.group,

reply.group.known)

Figure 4-11: GECIE's Response to Question 2b

might be constructed as follows:

start.mail
h +
save message numbers homeworks.txt

Figure 4-12 is a portion of EKB required to answer this question. The Plan Analyst searches

for the most likely goal in EKB that is satisfied by P. If a goal cannot be found, that is, if there is

some problem with the plan, GECIE re-evaluates the plan using the rules presented in the next

example for faulty plans. When a goal is found, the Plan Analyst searches UM to see if the user

knows the goal or any of its subgoals. It uses the following rules:

1. If EKB contains a goal G that is satisfied by P then best_goal = G, target_plan = P,
else report bad_plan = P.

21

2. If best_goal exists and UM contains best_goal, then report that user knows
best_goal.

3. If best_goal exists and for all parts P; of target _plan, UM contains P; then report
set_of_P,; = all P, that user knows.

==t

Four possible responses are illustrated in figure 4-13. In the first case the user does not
know any steps in the plan. GECIE starts at the highest level goal found, which is to collect a
subset of messages, and introduces all of the steps. In the second case the user knows some of
the steps. GECIE assumes that the plan is used to collect a subset of messages, introduces those
steps that the user does not know and then merely reminds the user of those steps the user
already knows. In the third case the user knows all of the steps in the plan and GECIE simply
reminds him about how to collect a subset of messages. Finally in the last case the user knows
how to collect a subset of messages, by reading the messages themselves rather than the headers.

GECTIE describes the links between the plan given in the question and the user’s plan.

collect.subset.of. messages

//;\

stlart.mail choose.messages store_subset
F: mail read.mail . , read.headers F:save

) <- whole message/ I
F: read just header -> - h

Figure 4-12: GECIE's Expert Knowledge for Question 3a

4.5. Example 3b

The last question we consider is actually two questions. These are modifications of question

3a, but the user actually idendfies the plan as bad:

1. I'm trying to reply to a group of users but [only seem to be able to reply to the

/* UM: does not contain best goal on any of the steps. */
Plan Analyst output: set_of P.: nil
target_plan: collect_subset_of messages->start.mail->
read_headers->store _sSubset
function: mail no_knowledge
function: h no_knowledge
function: save no_knowledge
Explainer output: GOAL_INTRODUCE_COMPLEX(collect_ subset_of messages)

UM: contains start.mail store.subset

Plan Analyst output: set_of P-(i): (start.mail,store subset)
target_plan: collect_subs=t_of_messages->....
function: h no_kncowledge

Explainer output: GOAL_SUMMARIZE (collect_subset_ of messages)
GOAL_ _REMIND (start.mail)
GOAL INTRODUCE (read headers)
GOAL_ _REMIND (store_ subset)

/* UM: contains collect_subset_of messages->start.mail->
read.headers->store.subset*/

Plan Analyst output: set_of P-(i): (start.mail, read.headers,store_subset)
target_plan: collect_subset of_ messages->.
Explainer output: GOAL_REMIND COMPLEX(collect subset of messages)

/* UM: contains collect subset of _messages- >start.mail->
read.messages->store.subset*/

Plan Analyst output: set_of P-(i): (start.mail,store_subset)
target_plan: collect_subset_of messages->..
user_plan: collect subset_ of messages->start.mail->

read.messages->store.subset

Explainer output: GOAL_SUMMARIZE (collect _subset_ of messages)

GOAL_REMIND (start.mail)

GOAL_REMIND (read.messages)

GOAL_INTRODUCE {read.headers)
DESCRIBE_LINK (read.messages, read.headers)
GOAL_REMIND (store_subset)

Figure 4-13: GECIE's Responses to Question 3a

sender of the message. Why?

2. I’'m using reply to reply to the sender of a message, but seem to send mail to
everyone else to whom the message was addressed. Why?

Both are instances of "Plan P ought to accomplish goal G in the context of situation S, but

doesn’t, why not?" In this case the user must identify both the goal and a plan. The Plan

Analyst uses the following rules:

1.If P is a valid plan for G in the EKB, then report valid_plan = P, else report
bad_plan = P.

2. If valid_plan exists and EKB contains a most efficient plan P’ for G, then report
best_plan = P".

23

3. If P = P’ then report best_plan = valid_plan.

4.If bad_plan exists and the fault is missing preconditions, then report fault_type:
missing precondition(s).

5. If bad_plan exists and the fault is missing steps, then report fault_type: missing
plan_step(s).

6. If bad_plan exists and the fault is extraneous steps, then report fault_type: extra
plan_step(s).

7. If bad_plan exists with missing preconditions and missing step, and missing step
satisfies missing preconditions, then report missing preconditions satisfied by
missing steps.

8. If bad_plan exists with missing plan_step and extra plan_step, and relationship
exists between them, then report relationship.
If the question fires rules 1 - 3 then the scenarios is very similar to examples 3a. Figure
4-10 includes the necessary representation of the EKB to answer the first question above. The

user identifies the goal as "reply.to.all", and the plan as:

reply
compose.message

Assume the cause of the problem is that WM contains a message that was only sent to the user.
In this case rule 4 would be fired since a precondition of the reply command is missing, namely
that the WM must contain a group to which to send the message and not just a single user. The
output of the Plan Analyst and Explainer are shown in the first case of figure 4-14. The

Explainer suggests creating an alias to refer to the group of users.

Figure 4-7 includes the necessary representation of the EKB to answer the second queston

above. The user identifies the goal as "reply.only.to.sender”, and the plan as:

reply
compose.message

The problem here is that the wrong command is being used, namely reply rather than Reply3.

The second example in figure 4-14 shows the output of the Plan Analyst and Explainer. The
Plan Analyst notices that there is both a missing step — "start.single.reply” and an extra one —

“start.group.reply.” It checks to see whether there is a relationship between them and finds the

3For the Unix uninitiated, character case matters, so Reply and reply are indeed two different oommands: We
admit this is grossly user unfriendly and should not occur in the first place, but the example was 100 good o resist.

24

relationship one level higher between "reply.to.all” and reply.only.to.sender”, and one level
lower between reply and Reply. The Explainer uses this information to generate a response
that tells the user that reply and Reply are two different commands and that the desired one is

Reply.

/* UM: contains compose.message; WM contains message sent only to user */
Plan Analyst output: bad_plan: user_plan
fault_type: missing precond: (user_group)

Explainer output: GOAL_INTRODUCE_COMPLEX (create.alias)

/* UM: contains compose.message */
Plan Analyst output: bad plan: user_plan
fault type: missirg plan_step: start.single.reply
fault_type: extra plan_step: start.group.reply
relations: reply.to.all <-> reply.only.to.sender
<- user_group/single_user ->
F: reply <-> F: Reply
<- small r/ capital R ->
Explainer output: GOAL_SUMMARIZE (reply.only.to.sender)
GOAL_REMIND_ SIMPLE (start.single.reply)
GOAL REMIND_SIMPLE (start.group.reply)
DESCRIBE_LINK(start.single.reply, start.group.reply)
FUNCTION_REMIND (Reply)
FUNCTION REMIND (reply)
DESCRIBE_LINK (Reply, reply)

Figure 4-14: GECIE’s Responses to Question 3b

5. Implementation Status and Discussion

GECEE is implemented in C under Unix 4.3 BSD on a MicroVAX II. We currently have
plans to test GECIE on real users and to further develop the system. Work remains to be done on
the menu-based front end, on the rules for both the Plan Analyst and the Explainer, on the
mechanics of generating text form templates, and on automatically updating both knowledge
bases. We also have plans to test the domain independence of GECIE by applying it to two other

domains, software development and VLSI design.

In order to evaluate GECIE's capabilities we plan to will conduct a small controlled study
with obliging human guinea pigs. These users will be given a limited introduction to Berkeley
Unix Mail and will be asked to complete a series of assigned tasks. We will compare GECIE

with the standard Unix "man" facility, with a human consultant, and with a scaled down GECIE

25
that only reasons about goals from the expert knowledge base, but not from a user model.

The current version of the menu interface was developed for expediency rather than for
theoretical insights into interfaces or natural language understanding methods. Clearly there are
better ways to extract information from a user, but this is not the focus of our work. One
enhancement we do intend to make is to give the user the option of constructing a hypothetical
world model rather than using the current mail as context. This would allow users to ask "what

if"" questions rather than being bound by their current task.

The current rule bases in both the Plan Analyst and Explainer are sufficient for answering
uncomplicated questons such as those presented in the examples. But often a user’s initial
question spawns other questions that may be combinatons of question types and require a
mixture of answering strategies. We plan to expand both rule bases to handle more complex

questions.

A problem with the current version is the Explainer’s use of templates. In many of the
examples one can see that the final text generated by the response agenda is redundant. This
demonstrates an inadequacy of template based methods and has led us to consider using a
functional unification grammar (Kay 79] that can unify the content of the individual response

agenda to produce more graceful text.

Finally, we would like to be able to update both knowledge representations automatically.
At first glance this would seem to be fairly straightforward. If a user presents GECIE with a plan
that works but isn’t currently in EKB, simply insert the plan. The problem lies in determining
the right place for the plan in EKB and automatically attaching the right relational links between
the plan and those already in EKB. Similarly, when the user demonstrates knowledge of a goal,
plan or function, one would assume the appropriate structure could be inserted in the right place
in the user model. But here we are faced with developing criteria for evaluating knowledge
acquisition, Both of these issues fall within the domain of research on machine learning.

Consideration of them at the present ime would take us too far afield.

26

6. Conclusions

This paper describes GECIE, an automated consultant for answering questions within
interactive computing environments. We focus on answer generation in the context of extending
user expertise in such environments. We separate GECIE’s knowledge into two components, a
rule base that captures knowledge of how to consult, and a frame-based hierarchical knowledge
representation that encodes knowledge of the domain about which to consult. We do not
categorize users along a spectrum of expertise, and functions along a spectrum of level of
difficulty. Instead we present a goal-centered approach where an answer to a question about the

environment is based on knowledge of what the user has done in the past and is doing now.

Acknowledgments

This article is an expansion of "A Discourse-Based Consultant for Interactive
Environments”, which appeared in the Fourth IEEE Conference on Artificial Intelligence
Applications, San Diego CA, March 1988, pp. 28-33. We thank Kathy McKeown for her
ongoing support of this project. Michael Lebowitz, Cecile Paris and Michael van Biema also

deserve thanks for their helpful comments and insights.

References

[Borenstein 85] Borenstein, N.S.
The design and evaluation of on-line help systems.
PhD thesis, Camegie Mellon University, April, 1985.

[Carberry 83] Carberry, S.
Tracking user goals in an information-seeking environment.
In Proceedings of AAAI-83. American Association of Artificial Intelligence,

1983.

[Chin 86] Chin, D.N.
User modeling in UC, the UNIX Consultant.
In Proceedings of the CHI' 86 Conference, pages 13-17 . Boston, MA, April,
1986.

[Clancey 83] Clancey, W. J.
The epistemology of a rule-based expert system - a Framework for

explanation.
Artifical Intelligence, 20:215-251, 1983.

[Finin 83]

{Goldberg 87]

[Grosz 81]

27

Finin, T.

Providing help and advice in task oriented system.

In Proceedings of the Eighth International Joint Conference on Artificial
Intelligence, pages 176-178. Karlsruhe, West Germany, 1983.

Goldberg, A.
Programmer as reader. ,
IEEE Software, 9:62-70, September, 1987.

Grosz, B.

Focusing and description in natural language dialogues.

In A. Joshi, B. Webber and L. Sag (editor), Elements of Discourse
Understanding, pages 85-105. Cambridge University Press, Cambridge,
England, 1981.

[Habermann & Notkin 86]

Habermann, A.N. and D. Notkin.

Gandalf: Software development environments.

IEEE Transactions on Software Engineering, SE-12(12):1117-1127,
December, 1986.

[Jackson & Barel 86]

Jackson, P. and M. Barel.

Introduction to computing facilities training program volume 1 -- Using a
MicroVax

Carnegie Mellon University Software Engineering Institute, Pittsburgh, PA,
1986.

[Johnson 86] Johnson, W.L.
Intention-based diagnosis of novice programming errors.
Morgan Kaufmann Inc., Los Altos, CA, 1986.

[Kaiser & Feiler 87]

[Kaiser er al. 87]

[Kaiser er al. 88]

[Kay 79]

Kaiser, G.E. and P.H. Feiler.

An architecture for intelligent assistance in software development.

In 9th International Conference on Software Engineering, pages 180-188.
Monterey, CA, March, 1987.

Kaiser G. E., S. M. Kaplan and J. Micallef.
Mulduser, istributed language-lased environments.
IEEE Software, 11:58-67, November, 1987.

G. E. Kaiser, N. S. Barghoud, P. H. Feiler and R. W. Schwanke.
Database support for knowledge-based engineering environments.
IEEE Expert, May, 1988.

To appear.

Kay, Martin.

Functional Grammar.

In Proceedings of the Sth meering of the Berkeley Linguistics Society.
Berkeley Linguistics Society, 1979.

[Kukich 85]

[Magers 83]

28

Kukich, K.

Explanation structures in XSEL.

In Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics. Chicago, IL, 1985.

Magers, C. S.
An experiemntal evaluation of On-line HELP for non-programmers.
In CHI' 83 Proceedings, pages 277-281. 1983.

[McKeown et al. 85]

[Paris 85]

[Paris 87]

[Pollack 86]

[Quilici ez al. 85]

[Reiss 87]

[Selker 88]

[Shoens 86]

(Stallman 81]

McKeown, K.R., Wish, M. and Matthews, K.
Tailoring explanations for the user.
In Proceeding of the IJCAI. 1985.

Paris, C.

Description strategies for naive and expert users.

In Proceedings of the 23rd Annual Meeting of the Association for
Computational Linguistics. Chicago, IL, 198S.

Paris, C. L.

The Use of Explicit User Models in Text Generation: Tailoring to a User's
Level of Experutise.

PhD thesis, Columbia University, 1987.

Pollack, M.
Inferring domain plans in question-answering.
PhD thesis, Moore School, University of Pennsylvania, May, 1986.

Quilici, A.E., G. Dyer and M. Flowers.

Understanding and advice giving in AQUA.

Technical Report, UCLA Artificial Intelligence Laboratory, Los Angeles, CA,
1985.

Reiss.
Working in the garden environment for conceptual programming.
IEEE Software, 11:16-26, November, 1987,

Selker. T.

Cognitive Adaptive Computer Help - A Research Overview.

Technical Report, T.J. Watson Research Center, IBM, T.J. Watson Research
Center, Yorktown Heights, N.Y., 1988.

Shoens K.

Mail Reference Manual
Version 5.2 edition, 1986 .
Revised by Craig Leres .

Stallman, R.M.

Emacs The extensible, customizable, self-documenting display editor.

In SIGPLAN SIGOA Symposium on Text Manipulation, pages 147-156. June,
1981.

[Stallman 85]

[Swartout 83]

29

Stallman, R.
GNU Emacs Manual
3rd edition, MIT Artificial Intelligence Lab, Cambridge, MA, 1985.

Swartout, W. R.
xplain: a system for creating and explaining expert consulting systems.
Artificial Intelligence, :285-325, September 1983, 1983.

[Walker et al. 87] Walker, J. H., D. A. Moon, D. L. Weinreb & M. McMahon.

[Waters 86]

The symbolics genera programming environment.
IEEE Software, 20:36-87, November, 1987.

Waters, R.C.
KBEmacs: Where's the AI?
The Al Magazine, 7(1):47-56, Spring, 1986.

[Wilensky ez al. 84]

[Wolz 85]

Wilensky, R., Y. Arens, and D. Chin.
Talking to Unix in english:An overview of UC.
Communications of the ACM, 27(6):574-593, June, 1984.

Wolz, U.

Analyzing user plans to produce informative responses by a programmer’ s
consultant.

Technical Report CUCS-218-85, Department of Computer Science, Columbia
University, New York, NY, 1985.

