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ABSTRACT

This survey presents a wide collection of algorithms for the geometric transformation of
digital images. Efficient image transformation algorithms are critically important to the remote
sensing, medical imaging, computer vision, and computer graphics communities. We review the
growth of this field and compare all the described algorithms. Since this subject is interdisci-
plinary, emphasis is placed on the unification of the terminology, motivation, and contributions
of each technique to yield a single coherent framework.

This paper attempts to serve a dual role as a survey and a tutorial. It is comprehensive in
scope and detailed in style. The primary focus centers on the three components that comprise all
geometric transformations: spatial transformations, resampling, and antialiasing. In addition,
considerable attention is directed to the dramatic progress made in the development of separable
algorithms. The text is supplemented with numerous examples and an extensive bibliography.

This work was supported in part by NSF grant CDR-84-21402.
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1. INTRODUCTION

A geometric transformation is an image processing operation that redefines the spatial rela-
tions-hip between points in an image. This facilitates the manipulation of an image’s spatial lay-
out, i.e., its size and shape. This area has received considerable attention due to its practical
importance in remote sensing, medical imaging, computer vision, and computer graphics. Typi-
cal applications include distortion compensation of imaging sensors, decalibration for image
registration, geometrical normalization for image analysis and display, map projection, and tex-
ture mapping for image synthesis.

Historically, geometric transformations were first performed on continuous (analog) images
using optical systems. Early work in this area is described in [Cutrona 60], a landmark paper on
the use of optics to perform transformations. Since then, numerous advances have been made in
this field [Homner 87]. Although optical systems offer the distinct advantage of operating at the
speed of light, they are limited in control and flexibilty. Digital computer systems, on the other
hand, resolve these problems and potentially offer more accuracy. Consequently, the algorithms
presented in this survey deal exclusively with digital (discrete) images, the primary target of
geometric transformations.

1.1. MOTIVATION

The earliest work in geometric transformations for digital images stems from the remote
sensing field. This area gained attention in the early 1960s, when the U.S. National Aeronautics
and Space Administration (NASA) embarked upon aggressive earth observation programs. Its
objective was the acquisition of data for environmental research applicable to earth resource
inventory and management. As a result of this initiative, programs such as Landsat and Skylab
emerged. In addition, other government agencies were supporting work requiring aerial photos
for terrain mapping and surveillance.

These projects all involved acquiring multd-image sets, i.e., multiple images of the same
area taken either at different times or with different sensors. Immediately, the task arises to
align each image with every other image in the set so that all corresponding points match.
Misalignment can occur due to any of the following reasons. First, images may be taken at the
same time but acquired from several sensors, each having different distortion properties.
Second, images may be taken from one sensor at different times and at various viewing
geometries. Furthermore, sensor motion will give rise to distortion as well.

Geometric transformations were originally introduced to invert (correct) these distortions
and allow the accurate determination of spatial relationships and scale. This requires us to first
estimate the distortion model, usually by means of reference points which may be accurately
marked or readily identified (e.g., road intersections, land-water interface). In the vast majority
of applications, the coordinate transformation representing the distortion is modeled as a bivari-
ate polynomial whose coefficients are obtained by minimizing an error function over the refer-
ence points. Usually, a second-order polynomial suffices, accounting for translation, scale,
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rotation, skew, and pincushion effects. For more local control, affine transformations and piece-
wise polynomial mapping functions are widely used, with transformation parameters varying
from one region to another. A historical review of early remote sensing techniques can be found

in [Haralick 76].

The methods derived from remote sensing have direct application in other related fields,
including medical imaging and computer vision. In medical imaging, for instance, geometric
transformations play an important role in image registration and rotation for digital radiology. In
this field, images obtained after injection of contrast dye are enhanced by subtracting a mask
image taken before the injection. This technique, known as digital subtraction angiography, is
subject to distortions due to patient motion. Since motion causes misalignment of the image and
its subtraction mask, the resulting produced images are degraded. The quality of these images is
improved with superior transformation algorithms that increase the accuracy of the registration.

Computer graphics offers another repertoire of methods and goals for geometric transfor-
mations. In this field, the goal is not geometric correction, but rather inducing geometric distor-
tion. This inverse formulation is used to map 2-D images onto 3-D surfaces. This technique,
known as texture mapping, has been used with much success in achieving visually rich and com-
plicated imagery. Furthermore, additional sophisticated filtering techniques have been promoted
to combat artifacts arising from the severe spatial distortions possible in this application. The
thrust of this effort has been directed to the study and design of efficient space-variant low-pass
filters. Since the remote sensing and medical imaging fields have generally attempted to correct
only mild distortions, they have neglected this important area. The design of efficient algo-
rithms for filtering fairly general areas remains a great challenge.

The continuing development of efficient algorithms for the geometric transformation of
digital images has gained impetus from the growing availability of fast and cost-effective digital
hardware. The ability to process high resolution imagery has become more feasible with the
advent of fast computational elements, high-capacity digital data storage devices, and improved
display technology. Consequently, the trend in algorithm design has been towards a more effec-
tive match with the implementation technology.

1.2. OVERVIEW

In this section, we briefly review the various stages in a geometric transformation. Each
stage of the geometric transformation process has received much attention from a wide commun-
ity of people in many diverse fields. As a result, the literature is replete with varied terminolo-
gies, motivations, and assumptions. A review of geometric transformation techniques, particu-
larly in the context of their numerous applications, is useful for highlighting the common thread
that underlies their many forms.

The purpose of this paper is to describe the algorithms developed in this field within a con-
sistent and coherent framework. It centers on the three components that comprise all geometric
transformations: spatial transformations, resampling, and antialiasing. Due to the central impor-
tance of sampling theory, a review is provided as a preface to the resampling and antialiasing
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sections. In addition, a discussion of efficient separable implementations is given as well. We
now briefly outline the contents of these sections.

1.2.1. Spatial Transformations

The basis of geometric transformations is the mapping of one coordinate system onto
another. This is defined by means of a spatial transformation — a mapping function that estab-
lishes a spatial correspondence between all points in the input and output images. Given a spa-
tial transformation, each point in the output assumes the value of its corresponding point in the
input image. The correspondence is found by using the spatial transformation mapping function
to project the output point onto the input image.

Depending on the application, spatial transformation mapping functions may take on many
different forms. Simple transformations may be specified by analytic expressions including
affine, projective, and polynomial transformations. More sophisticated mapping functions that
are not conveniently expressed in analytic terms can be determined from a sparse lattice of con-
trol points for which spatial correspondence is known. This yields a spatial representation in
which undefined points are evaluated through interpolation. Indeed, taking this approach to the
limit yields a dense grid of control points resembling a 2-D spatial lookup table that may define
any arbitrary mapping function.

In computer graphics, the spatial transformation is completely specified by the parameteri-
zation of the 3-D object and its position from the 2-D projecting plane (i.e., the viewing screen).
The objects are usually defined as planar polygons or bicubic patches. Consequently, three coor-
dinate systems are used: 2-D texture space, 3-D object space, and 2-D screen space. The various
formulations for spatial transformations are discussed in section 3.

1.2.2. Sampling Theory

Sampling theory is central to the study of sampled-data systems, e.g., digital image
transformations. It lays a firm mathematical foundation for the analysis of sampled signals,
offering invaluable insight into the problems and solutions of sampling. It does so by providing
an elegant mathematical formulation describing the relationship between a continuous signal and
its samples. We will use it to resolve the problems of image reconstruction and aliasing that fol-
low. Note that reconstruction is an interpolation procedure applied to the sampled data, and
aliasing simply refers to the presence of unreproducibly high frequencies and the resulting
artifacts.

Together with defining theoretical limits on the continuous reconstruction of discrete input,
sampling theory yields the guidelines for numerically measuring the quality of various proposed
filtering techniques. This proves most useful in formally describing reconstruction, aliasing, and
the filtering necessary to combat the artifacts that may appear at the output. The fundamentals
of sampling theory are reviewed in section 4.



1.2.3. Resampling

In the continuous domain, a geometric transformation is fully specified by the spatial
transformation. This is due to the fact that an analytic mapping is bijective — one-to-one and
onto. However, in our domain of interest, complications are introduced due to the discrete
nature of digital images.

In digital images, the discrete picture elements, or pixels, are restricted to lie on a sampling
grid, taken to be the integer lattice. The output pixels, now defined to lie on the output sampling
grid, are passed through the mapping function generating a new grid used to resample the input.
This new resampling grid, unlike the input sampling grid, does not generally coincide with the
integer lattice. Rather, the positions of the grid points may take on any of the continuous values
assigned by the mapping function.

Since the discrete input is defined only at integer positions, an interpolation stage is intro-
duced to fit a continuous surface through the data samples. The continuous surface may then be
sampled at arbitrary positions. This interpolation stage is known as image reconstruction ¥, Col-
lectively, image reconstruction followed by sampling is known as image resampling.

Image resampling consists of passing the regularly spaced output grid through the spatial
transformation, yielding a resampling grid that maps into the input image. Since the input is
discrete, image reconstruction is performed to interpolate the continuous input signal from its
samples. Sampling the reconstructed signal gives us the intensity values that are assigned to the
output pixels.

The accuracy of interpolation has significant impact on the quality of the output image.
Therefore, many interpolation functions have been studied from the viewpoints of both computa-
tional efficiency and approximation quality. Popular interpolation functions include cubic con-
volution, bilinear, and nearest neighbor. They can exactly reconstruct second-, first-, and zero-
degree polynomials, respectively. More expensive and accurate methods include cubic spline
interpolation and convolution with a sinc function. Using sampling theory, this last choice can
be shown to be the ideal filter. However, it cannot be realized using a finite number of neighbor-
ing elements. Consequently, the alternate proposals have been given to offer reasonable approx-
imations. Image resampling and reconstruction are described in section 5.

1.2.4. Aliasing

Through image reconstruction, we have solved the first problem that arises due to operating
in the discrete domain — sampling a discrete input. Another problem now arises in evaluating
the discrete output. The problem, related to the resampling stage, is described below.

The output image, as described above, has been generated by point sampling the recon-
structed input. Point (or zero-spread) sampling refers to an ideal sampling process in which the
value of each sampled point is taken independently of its neighbors. That is, each input point

t In the literature, the terms reconstruction and interpolation are used interchangeably.



influences one and only one output point.

With point sampling, entire intervals between samples are discarded and their information
content is lost. If the input signal is smoothly varying, the lost data is recoverable through inter-
polation, i.e., reconstruction. This statement is true only when the input is a member of a class
of signals for which the interpolation algorithm is designed. However, if the skipped intervals
are sufficiently complex, interpolation may be inadequate and the lost data is unrecoverable.
The input signal is then said to be undersampled, and any attempt at reconstruction gives rise to
a condition known as aliasing. Aliasing distortions, due to the presence of unreproducibly high
spatial frequencies, may surface in the form of jagged edges and moire patterns.

Aliasing artifacts are most evident when the spatial mapping induces large scale changes.
As an example, consider the problem of image magnification and minification. When magnify-
ing an image, each input pixel contributes to many output pixels. This one-to-many mapping
requires the reconstructed signal to be densely sampled. Clearly, the resulting image quality is
closely tied to the accuracy of the interpolation function used in reconstruction. For instance,
high-degree interpolation functions can exactly reconstruct a larger class of signals than low-
degree functions. Therefore, if the input is poorly reconstructed, artifacts such as jagged edges
become noticeable at the output grid. Note that the computer graphics community often consid-
ers jagged edges to be synonymous with aliasing. As we shall see in section 4, this is sometimes
a misconception. In this case, for instance, jagged edges are due to inadequate reconstruction.
not aliasing.

Under magnification, the output contains at least as much information as the input, with the
output assigned the values of the densely sampled reconstructed signal. When minifying an
image, the opposite is true. The reconstructed signal is sparsely sampled in order to realize the
scale reduction. This represents a clear loss of data, where many input samples are actually
skipped over in the point sampling. It is here where aliasing is apparent in the form of moire
patterns and fictitious low-frequency components. It is related to the problem of mapping many
input samples onto a single output pixel. This requires appropriate filtering to properly integrate
all the information mapping to that pixel.

The filtering used to counter aliasing is known as antialiasing. Its derivation is grounded in
the well-established principles of sampling theory. Antialiasing typically requires the input to be
blurred before resampling. This serves to have the sampled points influenced by their discarded
neighbors. In this manner, the extent of the artifacts is diminished, but not eliminated.

Completely undistorted sampled output can only be achieved by sampling at a sufficiently
high frequency, as dictated by sampling theory. Although adapting the sampling rate is more
desirable, physical limitations on the resolution of the output device often prohibit this alterna-
tive. Thus, the most common solution to aliasing is smoothing the input prior to sampling.

The well understood principles of sampling theory offer theoretical insight into the problem
of aliasing and its solution. However, due to practical limitations in implementing the ideal
filters suggested by the theory, a large number of algorithms have been proposed to yield
approximate solutions. Section 6 details the antialiasing algorithms.
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1.2.5. Separable Geometric T ransformation Algorithms

A large body of work in the geometric ransformation of digital images has been directed
towards optimizing special cases to obtain major performance gains. In particular, the use of
separable techniques has reduced complexity and processing time. Separable geometric algo-
rithms reduce 2-D problems into a sequence of 1-D (scanline) resampling problems. This makes
them amenable to streamline processing and allows them to be implemented with conventional
hardware. Separable techniques have been shown to be useful for affine and perspective
ransformations, as well as mapping onto bilinear, biquadratic, bicubic, and superquadric
patches. Contributions in this area are discussed in section 7.
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2. DIGITAL IMAGE ACQUISITION

Consider the imaging system shown in Fig. 2.1. The entire imaging process can be viewed
as a cascade of filters applied to the input image. The scene f (x,y) is a continuous two-
dimensional image. It passes through an imaging subsystem which acts as the first stage of data
acquisition. Due to the point spread function (PSF) of the image sensor, the output g (x.y) is a
degraded version of f (x.y).

f(x.y) Imaging g (x.y) Sampling
sl  Subsytem Subsystem
scene *hx,y) image *s(x,y)

Figure 2.1: Imaging system.

As its name suggests, the PSF is taken to be a bandlimiting filter, 4 (x,y), having blurring
characteristics. It reflects the physical limitations of an optical lens to accurately resolve each
input point without the influence of neighboring points. Consequently, the PSF is typically
modeled as a low-pass filter given by a bell-shaped weighting function over a finite aperture
area. A PSF profile is depicted in Fig. 2.2. By definition,

g(xy) = f(x,y)* hx.y) Q2.1

where < denotes convolution. The problems addressed in this paper also assume that the imag-
ing device induces geometric distortion in addition to blurring. Examples are given in section 3.

h(x)
N

N

Figure 2.2: PSF profile.

V

N



The continuous image g (x,y) then enters a sampling subsystem which digitizes the analog
input and completes the data acquisition stage. The sampled image g;(x.y) is given by

gs(x.y) = gxy)* s(x,y) (2.2)
where

sky)= Y Y dGx-my-n) (2.3)

is the two-dimensional comb function, depicted in Fig. 2.3, and

1 if (x,y) =(0,0)
5 (x, y) ={ i (2.4)

0 otherwise

is an impulse function, known also as the Kronecker or Dirac delta function.

Figure 2.3: Comb function.

The comb function comprises our sampling grid which is conveniently nonzero only at
integral (x,y) coordinates. Therefore, g,(x.y) is now a digital (discrete) image with intensity
values defined only over integrai indices of x and y. Each sample represents a picture element,
or pixel. Collectively, they comprise the 2-D array of pixels that serve as input to the subsequent
processing. ~

The process of mapping real numbers onto a range of integers is called quantization. Digi-
tal images are the product of both spatial and intensity quantizadon. Spatial quantization is
achieved through the use of a sampling grid. Intensity quandzation is the result of representing
pixel values with a finite number of bits. A tradeoff exists between sampling rate and quantiza-
tion levels. An interesting review of early work in this area is found in [Knowlton 72]. Related
work in image coding is described in [Netravali 80]. Finally, a recent analysis on the tradeoff
between sampling and quanrization can be found in [Lee 87].




3. SPATIAL TRANSFORMATION

This section describes the various mapping formulations derived for geometric transforma-
tions. We begin with a brief review of affine and perspective transformations. This provides the
basis for the more sophisticated mappings described in the remainder of this section. They
include the most common spatial transformations used in remote sensing, medical imaging,
computer vision, and computer graphics.

3.1. DEFINITIONS

A spatial transformation defines a geometric relationship between each point in the input
and output images. An input image consists entirely of reference points whose coordinate values
are known precisely. The output image is comprised of the observed (warped) data. The general
mapping function can be given in two forms: either relating the output coordinate system to that
of the input, or vice versa. Regpectively, they can be expressed as

[x,y] = [X(uVv), Y(u,v)] 3.1
or
(u,v] = [Uk.y), Vx,y)] (3.2)

where [u,v] refers to the input image coordinates corresponding to output pixel [x,y], and X, Y.
U and V are arbitrary mapping functions that uniquely specify the spatial transformation. Since
X and Y map the input onto the output, they are referred to as the forward mapping. Similarly,
the U and V functions are known as the inverse mapping since they map the output onto the
input.

3.1.1. Forward Mapping

The forward mapping consists of copying each input pixel onto the output image at posi-
tions determined by the X and Y mapping functions. Figure 3.1 illustrates the forward mapping
for the 1-D case. The discrete input and output are each depicted as a string of pixels lying on an
integer grid (dots). Each input pixel is passed through the spatial transformation where it is
assigned new output coordinate values. Notice that the input pixels are mapped from the set of
integers to the set of real numbers. In the figure, this corresponds to the regularly spaced input
samples and the irregular output distribution.

The real-valued output positions assigned by X and Y present complications at the discrete
output. In the continuous domain, where pixels may be viewed as points, the mapping is
straightforward. However, in the discrete domain pixels are now taken to be finite elements
defined to lie on a (discrete) integer lattice. [t is therefore inappropriate to implement the spatial
transformation as a point-to-point mapping. Doing so can give rise to two types of problems:
holes and overlaps. Holes, or patches of undefined pixels, occur when mapping contiguous input
samples to sparse positions on the output grid. In Fig. 3.1, F’ is a hole since it is bypassed in the
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Al = « A7

B| - "B

Cl « « | C
Forward

Df| - “| D
Mapping

E} " "1 E

F - . F ’

G - b G

Input Output

Figure 3.1: Forward mapping.
input-output mapping. In contrast, overlaps occur when consecutive input samples collapse into
one output pixel, as depicted in Fig. 3.1 by output pixel G”.

The shortcomings of a point-to-point mapping are avoided using a four-comer mapping
paradigm. This considers input pixels as square patches that may be transformed into arbitrary
quadrilaterals in the output image. This has the effect of allowing the input to remain contiguous
after the mapping.

Due to the fact that the projected input is free to lie anywhere in the output image, input
pixels often straddle several output pixels, or lie embedded in one. These two instances are illus-
trated in Fig. 3.2. An accwnulator array is required to properly integrate the input contributions
at each output pixel. It does so by determining which fragments contribute to each output pixel
and then integrating over all contributing fragments. The partial contributions are handled by
scaling the input intensity in proportion to the fractional part of the pixel that it covers. Intersec-

tion tests must be performed to compute the coverage. Thus, each position in the accumulator
N

array evaluates Y w;f;, where f; is the input value, w; is the weight reflecting its coverage of the
t=0

output pixel, and N is the total number of deposits into the cell. Note that N is free to vary
among pixels and is determined only by the mapping function and the output discretization.

Formulating the transformation as a four-comer mapping problem allows us to avoid holes
in the ourput image. Nevertheless, this paradigm introduces two problems in the forward map-
ping process. First, costly intersection tests are needed to derive the weights. Second, magnifi-
cation will possibly cause the same input value to be applied onto many output pixels unless
additional filtering is employed.

Both problems can be resolved by adapdvely sampling the input based on the size of the
projected quadnlateral. In other words, if the input pixel is mapped onto a large area in the out-
put image, then it is best to repeatedly subdivide the input pixel untl the projected area reaches
some acceptably low limit, i.e., one pixel size. As the sampling rate rises, the weights converge
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i )

=

Input array Ourtput (accumulator) array

Figure 3.2: Accumulator array.
to a single value, the input is resampled more densely, and the resulting computation is per-
formed at higher precision.

It is important to note that uniformly sampling the input image does not guarantee uniform
sampling in the output image unless X and Y are affine (linear) mappings. Thus, for nonaffine
mappings, e.g., perspective, the input image must be adaptively sampled at rates that are spa-
tially varying. For example, the oblique surface shown in Fig. 3.3 must be sampled more
densely near the horizon to account for the foreshortening due to the perspective mapping. In
general, forward mapping is useful when the texture image must be read sequentially or will not
reside entirely in memory.

____--—-——-,_,___,_._-'.:::.-—-—”"""‘-*
e

Figure 3.3: An oblique surface requiring adaptive sampling.

3.1.2. Inverse Mapping

The inverse mapping operates in screen order, projecting each output coordinate into the
input image via U and V. The value of the data sample at that point is copied onto the output
pixel. Again, filtering is necessary to combat the aliasing artifacts described in more detail later.
This is the most common method since no accumulator array is necessary and since output pix-
els which lie outside a clipping window need not be evaluated. This method is useful when the
screen is to be written sequentially, U and V are readily available, and the input image can be
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stored entirely in memory. As a result of these advantages, the spatal transformations described
in the remainder of the paper will be in the inverse mapping form.

A - - A,
gl - P -l g
C| - T - | C’
Inverse P

- - D'
b Mapping
E| - =l E
Fl = « | F’
ol- o L _—x—]c

Input Output
Figure 3.4: Inverse mapping.
Figure 3.4 depicts the inverse mapping, with each output pixel mapped back onto the input
via the spatial ransformadon (inverse) mapping function. Notice that the output pixels are cen-
tered on integer coordinate values. They are projected onto the input at real-valued positions.

As we will see later, an interpolation stage must be introduced in order to retrieve input values at
undefined (nonintegral) input positions.

Unlike the point-to-point forward mapping scheme, the inverse mapping guarantees that all
output pixels are computed. However, the analogous problem remains to determine whether
large holes are left when sampling the input. If this is the case, large amounts of input data may
have been discarded while evaluating the output, thereby giving rise to artifacts described in sec-
tion 6. Thus, filtering is necessary to integrate the area projected onto the input. In general,
though, this arrangement has the advantage of allowing interpolation to occur in the input space
instead of the output space. This proves to be a much more convenient approach than forward
mapping.

In their most unconstrained form, U and V can serve to scramble the image by defining a
discontinuous function. The image remains coherent only if U and V are piecewise continuous.

Several common forms of U and V have been isolated for geometric correction and geometric
distortion.

We begin with a discussion of the general ransformation matrix, the elementary form to
specify simple mappings including affine and perspective transformations. This is followed by
the methods advanced in remote sensing. The work in this area is motivated by the need to per-
form geometric correction. Many of the methods presented here apply equally to medical imag-

ing and computer vision, two fields which share this related problem. Finally, additional map-
ping formulations used in computer graphics are presented.
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3.2. GENERAL TRANSFORMATION MATRIX

Many simple spatial transformations can be expressed in terms of the general 3 x 3
transformation matrix shown below. It handles local scaling, overall scaling, shearing, rotation,
reflection, translation, and perspective in 2-space. Without loss of generality, we shall ignore
the component in the third dimension since we are only interested in 2-D image projections.
When multiplied with [x, y, w], a 2-space vector represented in homogeneous coordinates, it
yields the 2-space vector [u, v, w'].

a1 a2 ap
’
[u, Vv, w ] = [x, y, W] dr1 Az an (33)
as) dsz ass

The 3 x 3 transformation matrix can be best understood by partitioning it into four separate
sections. The 2 x 2 submatrix
a an
an an

yields a linear transformation for local scaling, shearing, and rotaton. The 1x2 matrix
[a3; a3, ] produces translation. The 2 x 1 matrix [a;3 a3 I produces perspective transforma-
tion. The final element a3 is responsible for overall scaling.

3.2.1. Translation

All points are translated to new positions by adding offsets T, and T, to x and y, respec-
tively. The translate transform is

1 00
(v, 1] =[x,y 11 |0 1 0 (3.4)
T, T, 1
3.2.2. Rotation
All points in the xy —plane are rotated about the origin through the clockwise angle 6.
cos® sin6 O
[u,v,1] = [x, y, 1] | -sinB cosB O (3.5)
0 0 1

3.2.3. Scale

All points are scaled by applying the scale factors S; and S, to the x and y coordinates,
respectively. Negative scale factors cause the image to be reflected, yielding a mirrored image.
If the scale factors are not identical, then the image proportions are altered resulting in a dif-
ferentially scaled image.
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S 00
v, 11 = [x, 11| G 5, O (3.6)
v

3.2.4. Shear
The coordinate scaling described above involves only the diagonal terms ay; and a3;. We now
consider the case where @) =a3; =1, and a;, =0. By allowing a;; to be nonzero, u is made
linearly dependent on both x and y, while v remains identical to y. A similar operation can be
applied along the y-axis to compute new values for v while u remains unaffected. This effect,
called shear, is therefore produced using the off-diagonal terms. The shear transform along the
x-axis is
1 00
(u,v,1] = [x,», 11 |H, 1 0 (3.7a)
0 01
where H, is used to make u linearly dependent on y as well as x. Similarly, the shear transform
along the y-axis is
1 Hy O
(u,v, 11 = [x,y, 1110 1 0O (3.7b)
0 01

3.2.5. Composite Transformations

Muldple transformations can be collapsed into a single composite transform. The transfor-
mations are combined by taking the product of the 3 x 3 matrices. For example, the composite
transform representing a translation followed by a rotation and a scale change is given below.

(4, v, 1] = [x, y, 1] Mcomp (3.8)
where
1 00 cos® sin6 O 5 00
M =10 120 —sinB cosB 0 05,0
nn Lo o) |, |
SycosO SysinB 0
= —S,sin@ Sycos6 0

Sx(Tycos0 —TysinB)  §,(T,sin6+ TycosB) 1
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3.2.6. Affine Transformations

All of the above examples are known as two-dimensional affine transformations. They are
characterized by their last columns being equal to [0 0 1]7. Since the product of affine transfor-
mations is also affine, they can be used to perform a general orientation of a set of points relative
to an arbitrary coordinate system while still maintaining a unity value for the homogeneous
coordinate. This is necessary for generating composite transforms. Furthermore, projections of
3-D affine transformations have the property of retaining parallelism among parallel lines. This
allows us to avoid foreshortened axes when performing 2-D projections. The general representa-
tion of the affine transform is

ajp; a;p 0
[u,v,1] = [x,y, 1] (a2 an O (3.9)

as az 1

3.2.7. Perspective Transformations

A perspective transformation is produced when [a3 ay3 17 is nonzero. A perspective
rransformation is frequently used in conjunction with a projection onto a viewing plane. This
combination is known as a perspective projection. The perspective projection of any set of
parallel lines which are not parallel to the projection plane will converge to a vanishing point,
the center of projection. This is useful for rendering realistic images. It has the property of
foreshortening distant lines.

3.2.8. Homogeneous Coordinates

Projection into 2-space for viewing requires dividing the computed [1’,v’] values by the
homogeneous coordinate w’. This yields [u, v]=[u'/w’, v'/w’], where [u, v] is the projected
vector which we sought from the transformation. Readers are referred to [Rogers 76] and [Foley
82] for a thorough treatment of 2-D and 3-D transformation matrix operations.

For affine transformations,
u =anx+any+as (3.10)
V = apxt+anytas

For projective transformations,

anx+azy+asj
u = 3.11D)
a;3x +axy+ass

ajpx +azy +as;

a|3x +any +ass
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3.3. POLYNOMIAL TRANSFORMATIONS

Geometric correction requires a spatial transformation to invert an unknown distortion
function. The mapping functions, U and V, have been almost universally chosen to be bivariate
polynomial transformations of the form

N N Lo

Z a,-,-x‘y’ (3.12)
i=0 j=0
N N-i .o

vV = Z Z b;jx‘y’

i=0 j=0

u

[
™M

where g;; and b;; are the constant polynomial coefficients. Since this formulation for geometric
correction originated in remote sensing [Markarian 71], the discussion below will center on its
use in that field. All the examples, though, have direct analogs in other related areas such as
medical imaging [Singh 79] and computer vision [Rosenfeld 82].

The polynomial transformations given above are low-order global mapping functions
operating on the entire image. They are intended to account for sensor-related spatial distortions
such as centering, scale, skew, and pincushion effects, as well as errors due to earth curvature,
viewing geometry, and camera attitude and altitude deviatons. Due to dynamic operating condi-
tions, these errors are comprised of internal and external components. The internal errors are
sensor-related distortions. External errors are due to platform perturbations and scene charac-
teristics. The effects of these errors have been categorized in [Bernstein 71] and are shown in
Fig. 3.5.
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Figure 3.5: Common geometric image distortions.
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These errors are characterized as low-frequency (smoothly varying) distortions. The global
effects of the polynomial mapping will not account for high-frequency deformations that are
local in nature. Since most sensor-related errors tend to be low-frequency, modeling the spatial
transformation with low-order polynomials appears justified. Common values of N that have
been used in the polynomials of Eq. (3.12) include N =1 [Steiner 77], N=2 [Nack 77], N=3
[Van Wie 77], and N =4 [Leckie 80]. In practice, a second-degree (N =2) approximation has
been shown to be adequate [Lillestrand 72].

Rather than apply the mapping functions over the entire set of points, an interpolation grid
is often introduced to reduce the computational complexity. This method evaluates the mapping
function at a relatively sparse set of grid, or mesh, points. The spatial correspondence of points
internal to the mesh is computed by bilinear interpolation from the corner points [Bernstein 76).

3.3.1. Polynomial Coefficients

Auxiliary information is needed to determine the polynomial coefficients. This information
includes reseau marks, platform attitude and altitude data, and ground control points. Reseau
marks are small cruciform markings inscribed on the faceplate of the sensor. Since the locations
of the reseau marks can be accurately calibrated, the measured differences between their true
locations and imaged (distorted) locations yields a sparse sensor distortion mapping. This
accounts for the internal errors.

External errors can be directly characterized from platform attitude, altitude, and ephem-
erides data. However, this data is not generally precisely known. Consequently, ground control
points are used to determine the external error. Ground control points (GCP) are identifiable
natural landmarks detectable in a scene, whose locations and elevations are known precisely.
Typical GCPs include airports, highway intersections, land-water interfaces, and geological pat-
terns [Bernstein 71, 76].

A number of these points are located and differences between their observed and actual
locations are used to characterize the external error component. Together with the internal dis-
torton function, this serves to fully define the spatial transformation which inverts the distor-
tions present in the input image, yielding a corrected output image. Since there are more ground
control points than undetermined polynomial coefficients, a least-squared-error fit is used. For
example, a second-degree approximation requires only six coefficients to be solved.

[ X i 1 uy, vy vy u% V% aoo
ao
X3 1 up vy ugvy u3 v3 a0
x3 | = |1 u3 vy usvs uf v3 01: (3.13)
4
] XR i 1 ug vg ugvp lt,zg v;ze azg
- - L

where R 26. A similar equation holds for y and b;;. Both of these expressions may be written in
matrix notation as
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X=WA (3.14)
Y=WB

Using the least squares estimate theory, the best estimate for A and B is given by the pseudoin-
verse solution [Wong 77].

A=wWTwy'wTx (3.15)
B=wWTwylwTy

Equation (3.15) expresses a numerical solution for estimating the polynomial coefficients.
A recent paper on practical geometric correction methods can be found in [Butler 87]. Under
certain simplifying conditions, it is possible to derive compact analytic solutions for the coeffi-
cients. This has the advantage of offering a stable closed form solution. An example is given in
[Bizais 83] for the case in which the reference pattern exhibits point symmetry about the origin.

3.3.2. A Surface Fitting Paradigm for Geometric Correction

The problem of determining functions U and V can be conveniently posed as a surface fit-
ting problem. Consider, for example, knowing N control points labeled [x;,y;] in the observed
image and [4;,v;] in the reference image, where 0<i <N. Deriving mapping functions U and V
is equivalent to determining two smooth surfaces: one that passes through points [x;,y;,4;] and
the other that passes through [x;,y;,v;] for 0<i <N. Figure 3.6 shows a surface for U (x,y) with
control points given at the grid points.

Figure 3.6: Surface U (x,y).

Before an image undergoes geometric distortion, these surfaces are defined to be ramp
functons. This follows from the observation that 4; =x; and v; =y; in the absence of any defor-
mation. Introducing geometric distortions will cause these surfaces to deviate from their initial
ramp configurations. Note that as long as the surface is monotonically nondecreasing, the
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resulting image does not fold back upon itself.

Given only sparse control points, it is necessary to interpolate a surface through these
points and closely approximate the unknown distortion function. It is clear that global low-order
polynomial mapping functions can only approximate these surfaces. Furthermore, the least-
squares technique that is used to determine the coefficients average a local geometric difference
over the whole image area independent of the position of the difference. As a result, local dis-
tortions cannot be handled and they instead contribute to errors at distant locations. We may,
instead, interpolate the surface with a global mapping by increasing the degree of the polynomial
to match the number of control points. However, the resulting polynomial is likely to exhibit
excessive spatial undulations and thereby introduce further artifacts.

These problems are resolved by considering piecewise mapping functions. Rather than
defining U and V via a global function, they are expressed as a union of a local functions. In this
manner, the interpolated surface is composed of local surface patches, each influenced by nearby

control points.
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3.4. PIECEWISE POLYNOMIAL TRANSFORMATONS

The global polynomial transformations described earlier impose a single mapping function
upon the whole image. They do not account for local geometric distortions such as scene eleva-
tion, atmospheric turbulence, and sensor nonlinearity. Consequently, piecewise mapping func-
tions have been introduced to handle local deformations [Goshtasby 86, 87].

The study of piecewise interpolation has received much attention in the spline literature.
The majority of the work, however, assumes that the data is available on a rectangular grid. In
our application, this is generally not the case. Instead, we must consider the problem of fitting a
composite surface to scattered 3-D data [Franke 79].

3.4.1. Procedure

The general procedure for performing surface interpolation on irregularly-spaced 3-D
points consists of the following operations.
1) Partition each image into triangular regions by connecting neighboring control points with
noncrossing line segments, forming a planar graph. This process, known as triangulation,
serves to delimit local neighborhoods over which surface patches will be defined.

2) Estimate partial derivatives of U (and similarly V) with respect to x and y at each of the
control points. This may be done using a local method, with data values taken from nearby
control points, or a global method using all the control points. Computing the partial
derivatives is necessary only if the surface patches are to join smoothly, i.e., for C!, C2, or
smoother results’.

3) For each triangular region, fit a smooth surface through the vertices satisfying the con-
straints imposed by the partial derivatives. The surface patches are generated using low-
order bivariate polynomials. A linear system of equations must be solved to compute the
polynomial coefficients.

4) Those regions lying outside the convex hull of the data points must extrapolate the surface
from the patches lying along the boundary.

5) For each point (x,y), determine its enclosing triangle and compute an interpolated value u
(similarly for v) using the polynomial coefficients derived for that triangle. This yields the
(u4,v) coordinates necessary to resample the input image.

3.4.2. Triangulation

Triangulation is the process of tesselating the convex hull of a set of N distinct points into
triangular regions. This is done by connecting neighboring control points with noncrossing line
segments, forming a planar graph. Although many configurations are possible, we are interested
to achieve a partition such that points inside a triangle are closer to its three vertices than to

Ex

+ C! and C? denote continuous first and second derivatives, respectively.
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vertices of any other triangle. This is called the optimal wiangulation and it avoids generating
triangles with sharp angles and long edges. In this manner, only nearby data points will be used
in the surface patch computations that follow. Several algorithms to obtain optimal triangula-
tions are reviewed below.

In [Lawson 77], the author describes how to optimize an arbitrary triangulation initially
created from the given data. He gives the following three criteria for optimality.

1)  Max-min criterion: For each quadrilateral in the set of triangles, choose the triangulation
that maximizes the minimum interior angle of the two obtained triangles. This tends to bias
the tesselation against undesirable long thin triangles. Figure 3.7a shows triangle ABC
selected in favor of triangle BCD under this criterion. The technique has computational
complexity O (N*/3),

2) The circle criterion: For each quadrilateral in the set of triangles, pass a circle through three
of its vertices. If the fourth vertex lies outside the circle then split the quadrilateral into two
triangles by drawing the diagonal which does not pass through the vertex. This is illus-
trated in Fig. 3.7b.

3) Thessian region criterion: For each quadrilateral in the set of triangles, construct the Thes-
sian regions. In computational geometry, the Thessian regions are also known as Delaunay,
Dirichlet, and Voronoi regions. They are the result of intersecting the perpendicular bisec-
tors of the quadrilateral edges, as shown in Fig. 3.7c. This serves to create regions around
each control point P such that points in that region are closer to P than to any other control
point. Triangulation is obtained by joining adjacent Delaunay regions, a result known as
Delaunay triangulation (Fig. 3.8). An O (N3'2) triangulation algorithm using this method is
described in [Green 78].

B
(a) (b) (c)

Figure 3.7: Three criteria for optimal triangulation.

An O(N log; N) recursive algorithm that determines the optimal triangulation is given in
[Lee 80]. The method recursively splits the data into halves using the x-values of the control
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Figure 3.8: (a) Delaunay tesselation; (b) Triangulation.
points until each subset contains only three or four points. These small subsets are then easily
triangulated using any of Lawson’s three criteria. Finally, they are merged into larger subsets
until all the triangular subsets are consumed, resulting in an optimal triangulation of the control
points. Due to its speed and simplicity, this divide-and-conquer technique was used in [Gosh-
tasby 87] to compute piecewise cubic mapping functions.

3.4.3. Linear Triangular Patches

Once the triangular regions are determined, the scattered 3-D data (x;,y;,u4;) or (x;,y;.v;) are
partitioned into groups of three points. Each group is fitted with a low-order bivariate polyno-
mial to generate a surface patch. In this manner, triangulation allows only nearby control points
to influence the surface patch calculations. Together, these patches comprise a composite sur-
face defining the corresponding u or v coordinates at each point in the observed image.

We now consider the case of fitting the miangular patches with a linear interpolant, i.e., a
plane. The equation of a plane through three points [x;,y,,u], [x2,y2,42], and [x3,y3,u3] is
given by

Ax +By+Cu+D =0 (3.16)
where
yi oup Xy uyp xp yp 1 X1y u
A= vyu 1}, B =~ xq uy 1|, C =|x3y; 1]; D =-{x, y7 up
Y3 uz 1 X3 uj |l x3 y3 |1 X3 Y3 u3

As seen in Fig. 3.7b, the triangulation covers only the convex hull of the set of control
points. In order to extrapolate points outside the convex hull, the planar triangles along the
boundary are extended to the image border. Their extents are limited to the intersections of




neighboring planes.

3.4.4. Cubic Triangular Patches

Although piecewise linear mapping functions are continuous at the boundaries between
neighboring functions, they do not provide a smooth transition across patches. In order to obtain
smoother results, the patches must at least use C! interpolants. This is achieved by fitting the
patches with higher-ordered bivariate polynomials.

This subject has received much attention in the field of computer-aided geometric design.
Many algorithms have been proposed using N-degree polynomials. They include N =2 [Powell
77], N =3, 4 [Percell 76], and N =5 [Akima 78]. In this section, we examine the case of fitting
triangular regions with cubic patches (N =3). A cubic patch fis a third-degree bivariate polyno-
mial of the form

3

f&xy) = a, +a2x+a3y+a412+a5xy +a5y2+a7x +agx2y +agxy2+a10y3 (3.17)

The ten coefficients can be solved by determining ten constraints among them. Three rela-
tions are obtained from the coordinates of the three vertices. Six relations are derived from the
partial derivatives of the patch with respect to x and y at the three vertices. Smoothly joining a
patch with its neighbors requires the partial derivatives of the two patches to be the same in the
direction normal to the common edge. This adds three more constraints, yielding a total of
twelve relations. Since we have ten unknowns and twelve equations, the system is overdeter-
mined and cannot be solved as given.

The solution lies in the use of the Clough-Tocher triangle, a widely known C! triangular
interpolant [Clough 65]. Interpolation with the Clough-Tocher triangle requires the triangular
region to be divided into three subtriangles. Fitting a surface patch to each subtriangle yields a
total of thirty unknown parameters. Since exactly thirty constraints can be derived in this pro-
cess. a linear system of thirty equations must be solved to compute a surface patch for each
region in the triangulation. A full derivation of this method is given in [Goshtasby 87]. A com-
plete review of triangular interpolants can be found in [Barnhill 77].

An interpolation algorithm offering smooth blending across patches requires partial deriva-
tive data. Since this is generally not available with the supplied data, it must be estimated. A
straightforward approach to estimating the partial derivative at point P consists of fitting a
second-degree bivariate polynomial through P and five of its neighbors. This allows us to deter-
mine the six parameters of the polynomial and directly compute the partial derivative. More
accurate estimates can be obtained by a weighted least squares technique using more than six
points [Lawson 77].

Another approach is given in [Akima 78] where the author uses P and its m nearest points
Py, Py, ..., Py, to form vector products V;; = (P - P;)x (P —P;) with P; and P; being all possible
combinations of the points. The vector sum V of all V;;'s is then calculated. Finally, the partial
derivatives are estimated from the slopes of a plane which is normal to the vector sum. A
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similar approach is described in [Klucewicz 78]. Akima later improved this technique by
weighting the contribution of each triangle such that small weights were assigned to large or nar-
row triangles when the vector sum was calculated [Akima 84]. For a comparison of methods,

see [Nielson 83] and [Stead 84].

3.5. FOUR-CORNER MAPPING

The piecewise mapping functions described above are best suited for scattered data. Often,
though, more efficient solutions are possible when the structure of the control points is regular.
In particular, if the control points lie on a distorted rectangular grid, then triangulation is not
necessary and the problem reduces to mapping one quadrilateral onto another. This spatial
transformation, known as four-corner mapping, is pervasive in remote sensing and medical
imaging where a grid of reseau marks on the sensor are imaged and registered with their known
positions for calibration purposes. It is also common in computer graphics where it plays a cen-
tral role in texture mapping.

3.5.1. Texture Mapping

Texture mapping is a powerful technique used to render visually realistic images in com-
puter graphics. It consists of a series of spatial transformations: a texture plane, [u,v], is
ransformed onto a 3-D surface, (x’,y’,z"], and then projected onto the output screen, [x,y].
This sequence is shown in Fig. 3.9, where f is the transformation from [u,v] to [x",y’,z’] and p
is the projection from [x’,y",z’] onto [x,y]. The forward mapping functions X and Y represent
the composite functon p (f (4,v)). The inverse mapping functions are U and V.
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Figure 3.9: Texture mapping functions.

Texture mapping serves to create the appearance of complexity by simply applying image
detail onto a surface, in much the same way as wallpaper. Textures are rather loosely defined.
They are usually taken to be images used for mapping color onto the targeted surface. Textures
are also used to perturb surface normals, thus allowing us to simulate bumps and wrinkles
without the tedium of modeling them. Additional applications are included in {Heckbert 86b], a
recent survey article on texture mapping.
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The 3-D objects are usually modeled with planar polygons or bicubic patches. Patches are
quite popular since they easily lend themselves for efficient rendering [Catmull 74, 80] and offer
a natural parameterization that can be used as a curvilinear coordinate system. Polygons, on the
other hand, are defined implicitly. Several parameterizations for planes and polygons are
described below.

Once the surfaces are parameterized, the mapping between the input and output images is
treated as a four-corner mapping. In inverse mapping, square output pixels must be projected
back onto the input image for resampling purposes. In forward mapping, we project square tex-

ture pixels onto the output image via mapping functions X and Y. These operations are discussed
below.

3.5.2, Mapping Rectangles to (Non)Planar Quadrilaterals

Consider the problem of mapping a rectangle onto an arbitrary quadrilateral. For con-
sistency, we treat the rectangle as our undistorted input in the uv plane, and the quadrilateral as
the distorted output in the xy plane. The mapping is defined through a piecewise function that
must interpolate the coordinate assignments specified at the vertices. Thus, the approach is
identical as before — a surface patch is fitted to the vertices of the tesselated regions. The only
distinction is that rectangular regions are now used instead of triangular regions. This scheme,
called bilinear interpolation, is used to evaluate the X and Y mapping functions. It is equivalent
to using a bilinear patch, a nonlinear parameterization that maps rectangles onto planar or non-
planar quadrilaterals.

3.5.2.1. Bilinear Interpolation

Bilinear interpolation utilizes a linear combination of the four closest pixel values to pro-
duce a new, interpolated value. Given four points, [ug,vo], [#1,v1], [42,v2], and [u3,v3], and
their respective function values xg, x;, x5 and x3, any intermediate point X (u,v) may be com-
puted by the expression

X(u,v) = ag+ayu+arzv+azuy (3.18)

where the g; coefficients are obtained by solving

1 1 1 1
Uo Uy Uz U3
[xoxi1x2x3] = laoayazas] |, . (3.19)

Uogvo U1V U2V U3zVj

Since the four points are assumed to lie on a rectangular grid, we rewrite them in the above
matrix in terms of ug, 4y, vg, and v,. Namely, the points are [ug,vol, [41,vo], [40,v2]. and
[uq.,v3], respectively. Solving for g; and substituting into Eq. (3.18) yields

X' v') = xg+x;—xp)u +@xa—xg)v' + (x3=x2-x+xp)u’ v’ (3.20)
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where u” and v’ € (0,1), and

u

ug + (u—ug)u’

v

vo+ W =vo) Vv’
Therefore, given a normaliz

ed coordinate [#’,v’] and function values [xg.x1,X2.x3), the point
correspondence [x,y] in the arbitrary quadrilateral is determin

ed. Figure 3.10 depicts this bil-
inear interpolation for the X mapping function.
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Figure 3.10: Bilinear interpolation.




presented below.

3.5.3.1. Bilinear Patch Inversion

By inverting Eq. (3.18), we can determine the normalized coordinate [u’,v’] corresponding to
the given coordinate [x,y]. The derivation is given below. First, we rewrite the expressions for
x and y in terms of u and v, as given in Eq. (3.18).

X =ag+aju+aszv+asuy (3.23a)

y bo+biu+byv + b3uy (3.23b)

Isolating u in Eq. (3.23a) gives us

X —dag—ajv
= ——2 (3.24)
a,+asv

In order to solve this, we must determine v. This can be done by substituting Eq. (3.24) into Eq.
(3.23b). Multiplying both sides by (a; + a3v) yields

y(@ai+asv) = bo(a+asv) + b(x—ag—ayv) + byv(a;+asv) + bav(x—ap—asv) (3.25)

This can be rewritten as
covi+cv+cg =0 (3.26)

where

co =ay(bo-y)+bi(x—ayp)
¢y = az(bo-y)+bs(x—apg)+a by —azb,
€2 = azby—ajb;

The inverse mapping for v thus requires the solution of a quadratic equation. Once v is deter-
mined, it is plugged into Eq. (3.24) to compute w.

3.5.3.2. Perspective Projection

A better approach is to consider the planar rectangle to be a perspective projection of the
arbitrary quadrilateral. The perspective mapping of a planar quadrilateral can be expressed as

a) ay as
(uw,vw, w] = [x,y, 1] |aq a3 an (3.27)
aszy as ass

If a3y is arbimarily chosen to be 1, eight coefficients remain to be determined. These values can
be computed by solving an 8 x 8 system of linear equations, defined by the texture and screen
coordinates of the four vertices. This is described in [Heckbert 83, 86b].
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3.5.2.2. Separability

The bilinear transformation is a separable function. This property enables us to easily
extend 1-D linear interpolation into two dimensions, resulting in a computationally efficient
algorithm. The algorithm requires two passes, with the first pass applying 1-D linear interpola-
tion along the horizontal direction, and the second pass interpolating along the vertical direction.
For example, consider the rectangle shown in Fig. 3.11. Points xg, and x3 are interpolated in
the first pass. These results are then used in the second pass to compute the final value x.
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Figure 3.11: Separable bilinear interpolation.
The separable results can be shown to be identical with the solution given in Eq. (3.20). In
the first (horizontal) pass, we compute
Xgp = xg+ (xy—xg)u’ (3.21)

X2+ (x3=x)u’

x]

These two intermediate results are then combined in the second (vertical) pass to yield the final
value

=
]

xo1 + (x23—xgpyv’ (3.22)

Xo+(x1—xp)u’ + [(x3—x0) + (X3=x2=x;+x0)u’ ]V’

Xxo+(xy=xp)u’ + (x2-xg) v’ + (X3—x2-x;+x0)u’ v’
Notice that this result is identical with the classic solution derived in Eq. (3.20).

3.5.3. Mapping (Non)Planar Quadrilaterals to Rectangles

In remote sensing, the opposite problem is posed — given a normalized coordinate [x”,y’]
in an arbitrary (distorted) quadrilateral, find its position in the rectangle. Two solutions are



3.5.3.3. Interpoiation Grid

Mapping from an arbitrary grid to a rectangular grid is an important step in performing any

2-D interpolation within an arbitrary quadrilateral. The procedure is given as follows.

1) To any point [x,y] inside an interpolation region defined by four arbitrary points, a normal-
ized coordinate [u’,v’] is associated in a rectangular region. This makes use of the results
derived above. A geometric interpretation is given in Fig. 3.12, where the normalized coor-
dinates can be found by determining the grid lines that intersect at [x,y ] (point P). Given
the positions labeled at the vertices, the normalized coordinates [u’,v’] are given as

PoPo  PxnP,

’ = = 32
4 PPy P3P, (328)
, = PoPo PP,

PPy P3P,

2) The function values at the four quadrilateral vertices are assigned to the rectangle vertices.

3) A rectangular grid interpolation is then performed, using the normalized coordinates to
index the interpolation function.

4) The result is then assigned to point [x,y ] in the distorted plane.
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Py \
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\

\ \ /
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Figure 3.12: Geometric interpretation of arbitrary grid interpolation.

[t is important to note that the primary benefit of this procedure is that higher-order interpo-
ladon methods (e.g., spline interpolation) which are commonly defined to operate on rectangular
lattices can now be extended into the domain of non-rectangular grids. This thereby allows the
generation of a continuous interpolation function for any arbitrary grid [Bizais 83).
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4. SAMPLING THEORY

This section reviews the principal ideas of digital sampling and filtering theory®. Although
a complete treatment of this area falls outside the scope of this paper, a brief review is appropri-
ate in order to grasp the key issues relevant to the resampling and antialiasing stages that follow.
Both stages share the common two-fold problem addressed by sampling theory:

1) Given an original input signal g (x) and its sampled counterpart g (x), are the samples of
gs(x) sufficient to exactly describe g (x)?

2) If so, how can g (x) be reconstructed from g;(x)?

This problem is known as signal reconstruction. The solution lies in the frequency domain
whereby spectral analysis is used to examine the spectrum of the sampled data.

The conclusions derived from examining the reconstruction problem will prove to be
directly useful for resampling, and indicative of the filtering necessary for antialiasing. Sam-
pling theory thereby provides an elegant mathematical framework in which to assess the quality
of reconstruction, establish theoretical limits, and predict when it is not possible.

4.1. SAMPLING

Consider the imaging system discussed in section 2. For convenience, the images will be
taken as one dimensional signals, i.e., a single scanline image. Recall that the continuous signal,
f (x), is presented to the imaging system. Due to the point spread function of the imaging dev-
ice, the degraded output g(x) is a bandlimited signal with attenuated high frequency com-
ponents. Since visual detail directly corresponds to spatial frequency, it follows that g (x) will
have less detail than its original counterpart f (x). The frequency content of g (x) is given by its
spectrum, G (f), as determined by the Fourier Transform.

GU)=[" g)e” ™ Fdx 4.1)

The spectrum is shown in Fig. 4.1. Notice that the signal is bandlimited to frequency fn4.
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Figure 4.1: Spectrum G (f).

+ The reader is assumed o be familiar with elementary Fourier Transforms.
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The continuous output g (x) is then digitized by an ideal impulse sampler, the comb func-
tion, to get the sampled signal g;(x). The ideal 1-D sampler is given as

s(x) = E 6 (x —nTy) (4.2)

n=—c

where & is the familiar impulse function and T is the sampling period. The running index n is
used with & to define the impulse train of the comb function. We now have

gs(x) = g(x)sx) (4.3)

Taking the Fourier Transform of g,(x) yields

G,(f) = G() * S(f) 4.4)
= G(f)* ["i" £:5 (f—nfs)} (4.5)
= 1S G(f-nfy) (4.6)

where f; is the sampling frequency. The above equations make use of the following well-known
properties of Fourier Transforms:

1) Muldplication in the spatial domain corresponds to convolution in the frequency domain.
Therefore, Eq. (4.3) gives rise to a convolution in Eq. (4.4).

2) The Fourier Transform of an impulse train is itself an impulse train, justifying Eq. (4.5).

3) The spectrum of a signal sampled with frequency f; (T, = 1/f;) yields the original spectrum
replicated in the frequency domain with period f; (Eq. 4.6).

This last property has important consequences. It yields spectrum G,(f) which, in response
to a sampling period T, = 1/f,, is periodic in frequency with period f;. This is depicted in Fig.
4.2. Notice then, that a small sampling period is equivalent to a high sampling frequency yield-
ing spectra replicated far apart from each other. In the limiting case when the sampling period
approaches zero (T;—0, f,—), only a single spectrum appears — a result consistent with the
continuous case. This leads us, in the next section, to answer the central problem posed earlier
regarding reconstruction of the original signal from its samples.

Gs(f)
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Figure 4.2: Spectrum G (f ).




4.2. RECONSTRUCTION

The above result reveals that the sampling operation has left the original input spectrum
intact, merely replicating it periodically in the frequency domain with a spacing of f;. This
allows us to rewrite G,(f) as a sum of two terms, the low frequency (baseband) and high fre-
quency components. The baseband expression is exactly G (f), and the high frequency terms,
Ghign(f), consist of the remaining replicated versions of G (f).

Gs(f) = G(f) + Gpign() 4.7

Exact signal reconstruction from sampled data requires us to discard the replicated spectra
Ghigh(f), leaving only G (f), the spectrum of the signal we seek to recover. This is a crucial
observation in the study of sampled-data systems.

4.2.1. Reconstruction Conditions

The only provision for exact reconstruction is that G (f ) be undistorted due to overlap with
Ghigh(f). Two conditions must hold for this to be true:

1) The signal must be bandlimited. This avoids spectra with infinite extent that are impossible
to replicate without overlap.

2) The sampling frequency f, must be greater than twice the maximum frequency fpay,
present in the signal. This minimum sampling frequency, known as the Nyquist rate, is the
minimum distance between spectra, each with extent of f,,,,,.

The first condition merely ensures that a sufficiently large sampling frequency exists which
can be used to separate replicated spectra from each other. Since all imaging systems impose a
bandlimiting filter in the form of a point spread function, this condition is always satisfied for
images captured through an optical system’. Note that this does not apply to synthetic images,
e.g., computer generated imagery.

The second condition proves to be the most revealing statement about reconstruction. It
answers the problem regarding the sufficiency of the data samples to exactly reconstruct the con-
tinuous input signal. It states that exact reconstruction is possible only when f; > INyquise» where
SNyquist = 2fmax. Collectively, these two conclusions about reconstruction form the central mes-
sage of sampling theory, as pioneered by Claude Shannon in his landmark papers on the subject
[(Shannon 48, 49]. Interestingly enough, these conditions were first discussed during the early
development of television in the landmark 1934 paper by Mertz and Gray [Mertz 34]. In their
work, they informally outlined these conditions as a rule-of-thumb for preventing visual artifacts
in the reconstructed image.

t This does not include the shot noise that may be introduced by digital scanners.
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4.2.2. Ideal Low-Pass Filter

We now turn to the second central problem: Given that it is theoretically possible to per-
form reconstruction, how may it be done? The answer lies with our earlier observation that sam-
pling merely replicates the spectrum of the input signal, generating Gppn(f) in addition to G (f).
Therefore, the act of reconstruction requires us to completely suppress Guign(f). This is done by
multiplying G.(f) with H (f), given as

1 fl <fmax
O =10 112 fee @9

H(f) is known as an ideal low-pass filter and is depicted in Fig. 4.3, where it is shown
suppressing all frequency components above f,,. This serves to discard the replicated spectra
Ghigh(f). It is ideal in the sense that the fnq, cut-off frequency is strictly enforced as the transi-
tion point between the transmission and complete suppression of frequency components.

/1J\1/\I
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Figure 4.3: Ideal low-pass filter H (f).

In the literature, there appears to be some confusion as to whether it is possible to perform
exact reconstruction when sampling at exactly the Nyquist rate, yielding an overlap at the
highest frequency component f,,,. In that case, only the frequency can be recovered, but not the
amplitude or phase. The only exception occurs if the samples are located at the minimas and
maximas of the sinusoid at frequency fna,. Since reconstruction is possible in that exceptional
instance, some sources in the literature have inappropriately included the Nyquist rate as a sam-
pling rate which permits exact reconstruction. Nevertheless, realistic sampling techniques must
sample at rates far above the Nyquist frequency in order to avoid the nonideal elements that
enter into the process, e.g., sampling with a narrow pulse rather than an impulse. Therefore, this
mistaken point is rather academic for natural images. This has more serious consequences for
synthetic images which can indeed be sampled with a perfect comb function.

Gs(f)

N
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4.2.3. Sinc Function

In the spatial domain, the ideal low-pass filter is derived by computing the inverse Fourier
Transform of H(f). This yields the sinc function (Fig. 4.4), also known as a Cardinal spline.
Note that the sinc functon is only one instance of the large class of functions known as Cardinal
splines. It is defined as

sin(rtx) (4.9)
nx .

sinc(x) =
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Figure 4.4: The sinc function.

Since multiplication in the frequency domain is identical to convolution in the spatial
domain, sinc (x) represents the convolution kernel used to evaluate any point x on the continuous
input curve g given only the sampled data g;.

g(x) = sinc(x)* gs(x)

J sinc(A) gs;(x —A)dA (4.10)

Eq. (4.10) highlights an important impediment to the practical use of the ideal low-pass
filter. The filter requires an infinite number of neighboring samples, i.e., an infinite filter sup-
port, in order to precisely compute the points. This is, of course, impossible owing to the finite
number of data samples available. However, truncating the sinc function allows for approximate
solutions to be computed at the expense of undesirable ‘‘ringing’’, i.e., ripple effects. These
artifacts, known as the Gibbs phenomenon, are the overshoots and undershoots caused by recon-
structing a signal with truncated frequency terms (Fig. 4.5).

—

- e

Figure 4.5: Ringing due to truncated sinc function.

In response to these difficulties, a number of approximating algorithms have been derived,
offering a tradeoff between precision and computational expense. They represent nonideal
reconstruction filters, allowing spurious frequencies beyond f,.,, to pass onto the output. Their
descriptions are given in the resampling section.
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4.3. ALIASING

If the two reconstruction conditions outlined earlier are not met, sampling theory predicts
that exact reconstruction is not possible. This phenomenon, known as aliasing, occurs when sig-
nals are not bandlimited or when they are undersampled, i.e., f; S fiyquiss- In either case there
will be unavoidable overlapping of spectral components, as in Fig. 4.6. Notice that the irrepro-
ducible high frequencies fold over into the low frequency range. As a result, frequencies origi-
nally beyond f,,, will, upon reconstruction, appear in the form of much lower frequencies.
Unlike the spurious high frequencies retained by nonideal reconstruction filters, the spectral
components passed due to undersampling are more serious since they actually corrupt the com-

ponents in the original signal.

Gs(f)
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Figure 4.6: Overlapping spectral components give rise to aliasing.

Aliasing gives rise to distortdons such as jagged (staircased) edges and moire patterns, the
latter effect typically surfacing when the image is viewed under extreme perspective or scale
change. Aliasing takes its name from the field of digital signal processing. It refers to the higher
frequencies becoming aliased, and indistinguishable from, the lower frequency components in
the signal if the sampling rate falls below the Nyquist frequency. In other words, undersampling
causes high frequency components to appear as spurious low frequencies (Fig. 4.7). In digital
images, the Nyquist rate is determined by the highest frequency that can be displayed: one cycle
every two pixels. Therefore, any attempt to display higher frequencies will produce similar
artifacts.

Figure 4.7: Aliasing artifacts due to undersampling.

In the computer graphics literature there is a misconception that jagged edges are always a
symptom of aliasing. This is only partially mue. Technically, jagged edges can arise from high
frequencies introduced by inadequate reconstruction. Since these high frequencies are not cor-
rupting the low frequency components, no aliasing is actually taking place. The confusion lies
in that the suggested remedy of increasing the sampling rate is also used to eliminate aliasing.
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The distinction becomes clear when we notice that the appearance of jagged edges is improved
by blurring. For example, it is not tncommen to step back from an image exhibiting excessive
blockiness in order to see it more clearly. This is a defocusing operation which attenuates the
high frequencies admitted through nonideal reconstruction.

It is important to note that a signal may be densely sampled (far above the Nyquist rate),
and continue to appear jagged if a zero-order reconstruction filter is used. In this case, the signal
is clearly not aliased but rather poorly reconstructed. On the other hand, once a signal is truly
undersampled, there is no postprocessing possible to improve its condition. This subtlety is
pointed out in [Pavlidis 82].

4.4. ANTIALIASING

The filtering necessary to combat aliasing is known as antiagliasing. In order to determine
corrective action, we must directly address the two conditions necessary for exact signal recon-
struction. The first solution calls for low-pass filtering before sampling. This bandlimits the sig-
nal to levels below f,.., thereby eliminating the offending high frequencies. Notice that the fre-
quency at which the signal is to be sampled imposes limits on the allowable bandwidth. This is
often necessary when the output sampling grid must be fixed to the resolution of an output dev-
ice, e.g., screen resolution. Therefore, aliasing is often a problem that is confronted when a sig-
nal is forced to conform to an inadequate resolution due to physical constraints. As a result, it is
necessary to bandlimit, or narrow, the input spectrum to conform to the allotted bandwidth as
determined by the sampling frequency.

The second solution is to point sample at a higher frequency. In doing so, the replicated
spectra are spaced farther apart, thereby separating the overlapping spectra tails. This approach
theoretically implies sampling at a resolution determined by the highest frequencies present in
the signal. Since a surface viewed obliquely can give rise to arbitrarily high frequencies, this
method may require extremely high resolution. Whereas the first solution adjusts the bandwidth
to accommodate the fixed sampling rate, f, the second solution adjusts f; to accommodate the
original bandwidth. Antialiasing by sampling at the highest frequency is clearly superior in
terms of image quality. This is, of course, operating under different assumptions regarding the
possibility of varying f;. In practice, antialiasing is performed through a combination of these
two approaches. That is, the sampling frequency is increased so as to reduce the amount of
bandlimiting to a minimum.

The largest body of antialiasing research stems from computer graphics where high-quality
rendering of complicated imagery is the central goal. The developed algorithms have primarily
addressed the tradeoff issues of accuracy versus efficiency. Consequently, methods such as
supersampling, adaptive sampling, stochastic sampling, pyramids, and preintegrated tables have
been introduced. These techniques are described in section 6.
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5. IMAGE RESAMPLING

Image resampling is the process of transforming a discrete image from one coordinate sys-
temn to another. The two coordinate systems are related to each other by the mapping function of
the spatial transformation. This permits the output image to be generated by the following
straightforward procedure. First, the inverse mapping function is applied to the output sampling
grid, projecting it onto the input. The result is a resampling grid, specifying the locations at
which the input is to be resampled. Then, the input image is sampled at these points and the
values are assigned to their respective output pixels.

The resampling process outlined above is hindered by one problem. The resampling grid
does not generally coincide with the input sampling grid, taken to be the integer lattice. This is
due to the fact that the range of the continuous mapping function is the set of real numbers, a
superset of the integer grid upon which the input is defined. The solution therefore requires a
match between the domain of the input and the range of the mapping function. This can be
achieved by converting the discrete image samples into a continuous surface, a process known as
image reconstruction. Once the input is reconstructed, it can be resampled at any position.

Conceptually, image resampling is comprised of two stages: image reconstruction followed
by sampling. Although resampling takes its name from the sampling stage, image reconstruction
is the implicit component in this procedure. It is achieved through an interpolation procedure,
and, in fact, the terms reconstruction and interpolation are often used interchangeably.
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Figure 5.1: Image resampling.
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The image resampling process is depicted in Fig. 5.1 for the 1-D case. A discrete input
(squares) is shown passing through the image reconstruction module, yielding a continuous input
signal (solid curve). Reconstruction is performed by convolving the discrete input signal with a
continuous interpolating function. The reconstructed input is then modulated (multiplied) with a
resampling grid (dashed arrows). Note that the resampling grid is the result of projecting the
output grid onto the input through a spatial transformation. After the reconstructed signal is
sampled by the resampling grid, the samples (circles) are assigned to the uniformly spaced out-
put image.

Image magnification and minification are two typical instances of image resampling. They
are illustrated in Fig. 5.2. In the top half of the figure the interval between two adjacent black
and white pixels must be reconstructed in order to generate five output points. A ramp is fitted
between these points and uniformly sampled at five locations to yield the intensity gradation
appearing at the output. In the bottom half of the figure a scale reduction is shown. This is
achieved by discarding points, a method prone to aliasing. In later sections various filters will be
introduced to address the aliasing problem. These filters will be shown to be related to the inter-
polation functions used in reconstruction.
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Figure 5.2: Image magnification and minification.

The interpolating function is often referred to as the interpolation kernel, a term used to
denote the weights applied to the input signal in convolution. Another term commonly used to
denote the interpolating function is impulse response. This relates the response of the interpolat-
ing function to a unit impulse, thereby demonstrating the influence of a sampled value upon the
neighboring area.
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The remainder of this section focuses on interpolation for reconstruction, the central com-
ponent of image resampling. This area has received extensive treatment due to its practical sig-
nificance in numerous applications. Although theoretical limits on image reconstruction are
derived by sampling theory, the algorithms proposed in this section address tradeoff issues in
accuracy and complexity.

5.1. INTERPOLATION

Interpolation is the process of fitting a continuous function through the discrete input sam-
ples. While sampling generates an infinite bandwidth signal from one that is bandlimited, inter-
polation plays an opposite role: it produces a bandlimited signal by applying a low-pass filter to
the discrete signal. That is, interpolation reconstructs the signal lost in the sampling process by
smoothing the data samples according to an interpolation function.

For equally spaced data, interpolation can be expressed as

K-1
f&) = ¥ cch(x—x) (5.1
k=0
where 4 is the interpolation kernel weighted by coefficients ¢, and applied to K data samples, xi.
In all but one case that we will consider, the ¢, coefficients are the data samples themselves.
Note that Eq. (5.1) formulates interpolation as a convolution operation.

The computation of one interpolated point is illustrated in Fig. 5.3. The interpolating func-
tion is centered at x, the location of the point to be interpolated. The value of the interpolated
point is equal to the sum of the values of the discrete input scaled by the corresponding values of
the interpolation kernel. This follows from the definition of convolution.
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Figure 5.3: [nterpolation of a single point.
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The interpolation function shown in the figure extends over four points. If x is offset from
the nearest point by distance d, where 0<d < 1, we sample the kemnel at s (-d), h(-1-d),
h(1-d), and h(2—d). Since h is symmetric, it is defined only over the positive interval. There-
fore, h(d) and h (1+d) are used in place of h(-d) and h(-1-d), respectively. Note that if the
resampling grid is uniformly spaced, only a fixed number of points on the interpolation kernel
must be evaluated. Large performance gains can be achieved by precomputing these weights
and storing them in lookup tables for fast access during convolution.

Although interpolation has been posed in terms of convolution, it is rarely implemented this
way. Instead, it is simpler to directly evaluate the corresponding interpolating polynomial at the
resampling positions. Why then is it necessary to introduce the interpolation kernel and the con-
volution process into the discussion? The answer lies in the ability to compare interpolation
algorithms. Whereas evaluation of the interpolation polynomial is used to implement the inter-
polation, analysis of the kernel is used to determine the numerical accuracy of the interpolated
function. This provides us with a quantitative measure which facilitates a comparison of various
interpolation methods [Schafer 73].

The accuracy of an interpolation kernel can be evaluated by analyzing its frequency domain
characteristics. Of particular importance is the filter response in the passband and stopband. In
this problem, the passband consists of all frequencies below f,,,. The stopband contains all
higher frequencies, arising from the sampling process!.

An ideal reconstruction filter, as described earlier, will completely suppress the stopband
while leaving the passband intact. Recall that the stopband contains the offending high frequen-
cies that, if allowed to remain, would produce aliasing artifacts. As a result, the sinc filter was
devised to meet these goals and serve as the ideal reconstruction filter. Its kernel in the fre-
quency domain applies unity gain to transmit the passband and zero gain to suppress the stop-
band.

The breakdown of the frequency domain into passband and stopband isolates two problems
that can anise due to nonideal reconstruction filters. The first problem deals with the effects of
imperfect filtering on the passband. Failure to impose unity gain on all frequencies in the
passband will result in some combination of image smoothing or image sharpening. Smoothing,
or blurring, will result when the frequency gains near the cut-off frequency start falling off.
Image sharpening results when the high frequency gains are allowed to exceed unity. This fol-
lows from the direct correspondence of visual detail to spatial frequency. Furthermore, amplify-
ing the high passband frequencies yields a sharper transition between the passband and stopband,
a property shared by the sinc function.

The second problem addresses nonideal filtering on the stopband. If the stopband is
allowed to persist. high frequencies will exist that will contribute to aliasing. Failure to fully
suppress the stopband is a condition known as frequency leakage. This allows the offending

t Note that frequency ranges designated as passbands and stopbands vary among problems.
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frequencies to fold over into the passband range. These distortions tend to be more serious since
they are visually perceived more readily.

Due to their infinite extent, sinc filters are categorized as infinite impulse reponse (IIR).
Practical filtering requirements, however, call for the use of finite impulse response (FIR) filters.
In FIR filters, each output value is computed as the weighted sum of a finite number of neigh-
boring elements. Commonly used FIR filters include the box, triangle, cubic convolution kernel,
cubic B-spline, and the truncated sinc function. They serve as the interpolating functions, or ker-
nels, described below.

5.2. INTERPOLATION KERNELS

The numerical accuracy and computational cost of interpolation algorithms are directly tied
to the interpolation kernel. As a result, interpolation kemnels are the target of design and analysis
in the creation and evaluation of interpolation algorithms. They are subject to conditions
influencing the tradeoff between accuracy and efficiency.

In this section, the analysis is applied to the 1-D case. Interpolation in 2-D will be shown to
be a simple extension of the 1-D results. In addition, the data samples are assumed to be equally
spaced along each dimension. This restriction imposes no serious problems since images tend to
be defined on regular grids.

5.2.1. Sinc Function

Sampling theory establishes that the sinc function, or Cardinal spline, is the ideal interpola-
tion kernel. However, since it is a filter of infinite support, it cannot be realized on standard
input with finite data samples. Nevertheless, it is perfectly reasonable to consider the effects of
using a truncated, and therefore finite, sinc function as the interpolation kernel.

The results of this operation are predicted by sampling theory which demonstrates that trun-
cation in one domain leads to ringing in the other domain. Thus, truncating the sinc function in
the spatial domain is equivalent to ringing in the frequency domain. Since the stopband is no
longer eliminated, but rather attenuated by a ringing filter, aliasing artifacts are present. In
[Ratzel 801, the author found this method to perform poorly.

The process of truncating a signal is equivalent to multiplication with a rectangle function.
This function serves as a window, or kernel, that weighs the input signal. Ringing can be
attenuated by using a different windowing function exhibiting smoother fall-off than the rectan-
gle. The resulting windowed sinc function yields better results. However, since slow fall-off
requires larger windows, the computation remains costly.

In spite of these problems, properties of the sinc filter may be used as heuristics for
developing a superior interpolation kernel achieving accuracy and efficiency. As we will see
later, the cubic convolution algorithm is an outgrowth of this goal. We now review the interpo-
lation schemes in the order of their complexity.
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5.2.2. Nearest Neighbor

The simplest interpolation algorithm from a computational standpoint is the nearest neigh-
bor algorithm, where each interpolated output pixel is assigned the value of the nearest sample
point in the input image. This technique, also known as the point shift algorithm, is given by the
following interpolating polynomial.

Xg-1 + X X+ X4y

f&x) = f ) —  <x < — (5.2)

It can be achieved by convolving the image with a one-pixel width rectangle in the spatial
domain. The interpolation kernel for the nearest neighbor algorithm is defined as

1 0<|x| <1/2 53
AE) =10 u2gx] -3

Various names are used to denote this simple kernel. They include the box filter, sample-and-
hold funcrion, and Fourier window. The kernel and its Fourier Transform are shown in Fig. 5.4.
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Figure 5.4: Nearest neighbor: (a) kemnel, (b) Fourier Transform.

In the frequency domain, convolution with the rectangle functon A is equivalent to multi-
plication with a sinc function. Due to the prominent side lobes and infinite extent, a sinc func-
tion makes a poor low-pass filter. Consequently, the nearest neighbor algorithm has a poor fre-
quency domain response relative to that of the ideal low-pass filter.

The technique achieves magnification by pixel replication, and minification by sparse point
sampling. For large-scale changes, nearest neighbor interpolation produces images with a
blocky appearance. [n addition, position errors of up to one-half pixel are possible. These prob-
lems make this technique inappropriate when sub-pixel accuracy is required.

One notable property of this algorithm is that, except for the shift, the resampled data
exactly reproduces the original data if the resampling grid has the same spacing as that of the
input. This means that the frequency spectra of the original and resampled images differ only by
a pure linear phase shift. In general, the nearest neighbor algorithm permits zero-degree recon-
struction and yields exact results only when the sampled function is piecewise constant.

Nearest neighbor interpolation was first used in remote sensing at a time when the process-
ing time limitations of general purpose computers prohibited more sophisticated algorithms. It
was found to simplify the entire mapping problem because each output point is a function of
only one input sample. Furthermore, since the majority of problems involved only slight
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distortions with a scale factor near one, the results were considered adequate.

Currently, this method has been superceded by more elaborate interpolation algorithms.
Dramatic improvements in digital computers account for this transition. Nevertheless, the
nearest neighbor algorithm continues to find widespread use in one area: frame buffer hardware
zoom functions. By simply diminishing the rate at which to sample the image, and increasing
the cycle period in which the sample is displayed, pixels are easily replicated on the display
monitor. This scheme, also known as a sample-and-hold filter, is implemented by exploiting the
roundoff features of integer arithmetic available on all computers. Although it generates images
with large blocky patches, the nearest neighbor algorithm derives its primary use as a means for
real-time magnification. For more sophisticated algorithms, this has only recently become real-
izable with the use of special-purpose hardware.

5.2.3. Linear Interpolation

Linear interpolation is a first-degree method that passes a straight line through every two
consecutive points of the input signal. Given an interval (xg,x;), and their respective function
values f and f, the interpolating polynomial is

f&x) =ax+ayp (5.4)

where ag and a are determined by solving
Xo X3
[.fOfl] =[ala0] 1 1

This gives rise to the following interpolating polynomial.

X—X

0
f @) =fo+[———] (f1=fo) (5.5)
X1 —Xo
Not surprisingly, we have just derived the equation of a line joining points (xg,fo) and (x;,f})-
In order to evaluate this method of interpolation, we must examine the frequency response of its
interpolation kernel.
In the spatial domain, linear interpolation is equivalent to convolving the sampled input
with the following interpolation kernel.
{1—|x| 0< |x] <1

0 1< x| (5.6)

Kernel h is referred to as a triangle filter, roof function, Chateau function, or Bartlett window.

This interpolation kernel corresponds to a reasonably good low-pass filter in the frequency
domain. As shown in Fig. 5.5, its response is superior to that of the nearest neighbor interpola-
tion function. In particular, the side lobes are far less prominent, indicating improved perfor-
mance in the stopband. Nevertheless, a significant amount of spurious high-frequency
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components continue to leak into the passband, contributing to some aliasing. In addition. the
passband is moderately attenuated, resulting in image smoothing.

h(x) [H ()]

(a) (b)
Figure 5.5: Linear interpolation: (a) kernel, (b) Fourier Transform.

Linear interpolation offers improved image quality above nearest neighbor techniques by
accommodating first-degree fits. It is the most widely used interpolation algorithm for recon-
struction since it produces reasonably good results at moderate cost. Often, though, higher fidel-
ity is required and thus more sophisticated algorithms have been formulated.

Although second-degree interpolating polynomials appear to be the next step in the pro-
gression, it was shown that their filters are space-variant with phase distortion [Schafer 73].
These problems are shared by all interpolators of even-degree. This is attributed to the fact that
the number of sampling points on each side of the interpolated point always differ by one. As a
result, interpolating polynomials of even-degree are not considered.

5.2.4. Cubic Convolution

Cubic convolution is a third-degree interpolation algorithm originally suggested by Rifman
and McKinnon [Rifman 74) as an efficient approximation to the theoretically optimum sinc
interpolation function. Its interpolation kernel is derived from constraints imposed on the gen-
eral cubic spline interpolation formula. The kernel is composed of piecewise cubic polynomials
defined on the unit subintervals (-2,-1), (-1,0), (0,1), and (1,2). Outside the interval (=2,2),
the interpolation kernel is zero'. As a result, each interpolated point is a weighted sum of four
consecutive input points. This has the desirable symmetry property of retaining two input points
on each side of the interpolating region. It gives rise to a symmetric, space-invariant, interpola-
tion kemnel of the form

as|x|® +ax|x|2+ai0|x| +aoo 0< |x| <1
h(x): a31|x|3+au|x|2+a“|x|+a01 1S|X|<2 (57)
0 2< x|

The values of the coefficients can be determined by applying the following set of constraints to
the interpolation kemel.

1) A@)=tandh(l)=h(2)=0.

* We again assume that our data points are located on the integer grid.
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2)  h must be continuous at x =0, 1, and 2.
3)  h must have a continuous first derivative at x =0, 1, and 2.

The first constraint states that when 4 is centered on an input sample, the interpolation
function is independent of neighboring samples. This permits f to actually pass through the
input points. In addition, it establishes that the ¢, coefficients in Eq. (5.1) are the data samples
themselves. This follows from the observation that at data point X;,

K-1
FGp) = X ah(xi—xe) (5.8)
k=0

I

j+2
> ckh(xj—xi)
k=f-2

According to the first constraint listed above, h(x; —x,) =0 unless j = k. Therefore, the right-
hand side of Eq. (5.8) reduces to ¢;. Since this equals f (x;), we see that all ¢ coefficients must
equal the data samples in the four-point interval.

The first two constraints provide four equations for these coefficients:

1 =h(0) = ac (5-92)
0=hA")=az+tay+app+aw (5.9b)
0 = h(1*) = a3 +ay +ay +ap (5.9¢)
0 = h(2°) = 8as, +4aq +2a;; +ao (5.9d)

Three more equations are obtained from constraint (3):

—ayp = h’'(07) = K'(0%) = ayg (5.9)
dajg+2a+ayp = h'(17) = h'(1%) = 3ay; +2a +an (5.91)
12a3, +4ay +ay = K@) = K@) = 0 (5.9g)

The constraints given above have resulted in seven equations. However, there are eight
unknown coefficients. This requires another constraint in order to obtain a unique solution. By
allowing @ = a3, to be a free parameter that may be controlled by the user, the family of solu-
tions given below may be obtained.

(a+2)|x|3—(a+3)|x|2+1 0< x| <1
h(x) ={ajx|>-5a|x|*+8a|x| - 4a 1< |x| <2 (5.10)
0 2< x|

Additional knowledge about the shape of the desired result may be imposed upon Eq.
(5.10) to yield bounds on the value of a. The heuristics applied to derive the kernel are
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motivated from properties of the ideal reconstruction filter, the sinc function. By requiring & to
be concave upward at |x | = 1, and concave downward at x =0, we have

A7) = -2a@+3H<0 - a>-3 (5.11a)
A”(1) = -4a>0 - a<0 (5.11b)

Bounding a to values between —3 and 0 makes h resemble the sinc function. In [Rifman
74), the authors use the constraint that @ = -1 in order to match the slope of the sinc function at
x =1. This choice results in some amplificaton of the frequencies at the high-end of the
passband. As stated earlier, such behavior is characteristic of image sharpening.

Other choices for a include —1/2 and —-3/4. Keys selected a = -1/2 by making the Taylor
series approximation of the interpolated function agree in as many terms as possible with the ori-
ginal signal [Keys 81]. He found that the resulting interpolating polynomial will exactly recon-
struct a second-degree polynomial. Finally, a = -3/4 is used to set the second derivatives of the
two cubic polynomials in 4 to 1 [Simon 75]. This allows the second derivative to be continuous
atx=1.

Of the three choices for a, the value -1 is preferable if visually enhanced results are
desired. That is, the image is sharpened, making visual detail perceived more readily. However,
the results are not mathematically precise, where precision is measured by the order of the Tay-
lor series. To maximize this order, the value a = ~1/2 is preferable. The kernel and spectrum of
a cubic convolution kernel with @ = —1/2 is shown in Fig. 5.6.

h(x) IHQ)I

(b)

Figure 5.6: Cubic convolution: (a) kernel (a =-1/2), (b) Fourier Transform.

In a recent paper [Maeland 88], Maeland showed that at the Nyquist frequency the spec-
trum attains a value which is independent of the free parameter a. The value is equal to
(48/n*)f,. while the value at the zero frequency is f;. This result implies that adjusting a can
alter the transition rate between the passband and stopband, but not the performance gain at the
cut-off frequency. In comparing the effect of varying a, Maeland points out that cubic convolu-
tion with a =0 is superior to the simple linear interpolation method when a strictly positive ker-
nel is necessary. The role of a has also been studied in [Park 83], where a discussion is given on
its optimal selection based on the frequency content of the image.

[t is important to note that in the general case cubic convolution can give rise to values out-
side the range of the input data. Consequently, when using this method in image processing it is
necessary to properly clip or rescale the results into the appropriate range for display.
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5.2.5. Two-Parameter Cubic Filters

In [Mitchell 88], Mitchell and Netravali describe a variation of cubic convolution in which
two parameters are used to describe a family of cubic reconstruction filters. Through a different
set of constraints, the number of free parameters in Eq. (5.7) are reduced from eight to two,
yielding the following two-parameter family of solutions.

(-9b-6¢+12) |x | + (12b+6¢c —18) | x |2 + (=2b+6) 0< x| <1
h(x)=% (~b—6¢)|x |3 + (6b+30c) |x |% + (-12b—48¢) |x | + (8b+24c) 1< |x| <2 (5.12)
0 2< x|

Several well-known cubic filters are derivable from Eq. (5.12) through an appropriate choice of
values for (b,c). For instance, (0,—c) corresponds to the cubic convolution kernel in Eq. (5.10)
and (1,0) is the cubic B-spline given later in Eq. (5.19).

The evaluation of these parameters is performed in the spatial domain, using the visual
artifacts described in [Schreiber 85] as the criteria for judging image quality. In order to better
understand the behavior of (b, c), the authors partitioned the parameter space into regions charac-
terizing different artifacts, including blur, anisotropy, and ringing. As a result, the parameter
pair (1/3,1/3) is found to offer superior image quality. Another suggestion is (3/2,-1/4),
corresponding to a band-reject, or notch, filter. This suppresses the signal energy near the
Nyquist frequency that is most responsible for conspicuous moire patterns.

Further improvements in reconstruction are possible when derivative values can be given
along with the signal amplitude. This is possible for synthetic images where this information
may be available. In that case, Eq. (5.1) can be rewritten as

K-1
f&x)y=13% [fkg(x—xk)+f2h(x—xk)] (5.13)
k=0
where
sin®mx
X) = 5.14
g (x) 2.2 (5.14a)
2
h(x) = 5"‘2’“ (5.14b)
nx

An approximation to the resulting reconstruction formula can be given by Hermite cubic interpo-
lation.

2|x | -3|x|*+1 0<|x| <1
gx) = 0 1< |X| (5.153)
|x|® - 2x|x| +x 0<|x] <1
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5.2.6. Cubic Splines

The final reconstruction technique described here is the method of cubic spline interpola-
tion. A cubic spline is a piecewise continuous third-degree polynomial. Given n points labeled
(xk,¥x) for 0 €k < n, the interpolating cubic spline consists of n—1 cubic polynomials. They
pass through the supplied points, which are also known as control points or knots.

We now derive the piecewise interpolating polynomials. The k™ polynomial piece, f, is
defined to pass through two consecutive input points in the fixed interval (xi,xg.;). Further-
more, f; are joined at x (for k = 1,...,n-2) such that f;, fi, and fi are continuous (Fig. 5.7).
The interpolating polynomial f is given as

fi®) = a3(x —x)® +ay(x —x)? +a (x —x) + ag (5.16)

fa
\fo/\fs
| 2 fa -
>

Xg X1 X2 X3 X4 Xs

y

/N

X

Figure 5.7: A spline consisting of 5 piecewise cubic polynomials.

The four coefficients of f, can be defined in terms of the data points and their first (or
second) derivatives. Assuming that the data samples are on the integer lattice, each spaced one
unit apart, then the coefficients, defined in terms of the data samples and their first derivatives,
are given below.

ag = Yx (5.17a)
a; = yi (5.17b)
az = 38y - 2yk — Vil (5.17¢)
ay = =28yp +yg + Y (5.17d)

where Ay = Yr41 — Vi
Although the derivatives are not supplied with the data, they are derived by solving the fol-
lowing system of linear equatons.
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(5 4 1] o [ Syo+dyi+ys |
141 i 30602 = o)
141 y2 3003 —y1)
= . (5.18)
1417 |y 5 30n-1 = Yn-3)
] 4 2] Vi ~Yn-3 =4Yn-2 + 5Yn-1
s ! ]

The not-a-knot boundary condition [de Boor 78] was used above, as reflected in the first
and last rows of the matrices. It is superior to the artificial boundary conditions commonly
reported in the literature, such as the natural or cyclic end conditions, which have no relevance
in our application. Note that the need to solve a linear system of equations arises from global
dependencies introduced by the constraints for continuous first and second derivatives at the
knots. A complete derivation is given in [Wolberg 88b].

In order to compare interpolating cubic splines with other methods we must analyze the
interpolation kernel. Thus far, however, the piecewise interpolating polynomials have been
derived without any reference to an interpolation kernel. We seek to express the interpolating
cubic spline as a convolution in a manner similar to the previous algorithms. This can be done
with the use of cubic B-splines as interpolation kernels [Hou 78].

5.2.6.1. B-Splines

A B-spline of degree n is derived through n convolutions of the box filter, By. Thus,
B, = By*B denotes a B-spline of degree 1, yielding the familiar triangle function shown in Fig.
5.5a. Interpolation by B consists of a sequence of straight lines joined at the knots continu-
ously. This is equivalent to linear interpolation.

The second-degree B-spline B, is produced by convolving By three times. Using B, to
interpolate data yields a sequence of parabolas which join at the knots continuously together
with their slopes. The span of B, is limited to three points.

The cubic B-spline Bi is generated from four convolutions of Bgy. That is,
B3y = Bg*By*By*By. The interpolation with B3 is composed of a series of cubic polynomials
which join at the knots continuously together with their slopes and curvatures, i.e., their first and
second derivatives. Figure 5.8 summarizes the shapes of these low-order B-splines.

Denoting the cubic B-spline interpolation kernel as h, we have the following piecewise
cubic polynomials defining the kernel.

| 3)x)° - 6]x|* +4 0< x| <1
h(x) = —< =|x|>+6|x|>-12]x| +8 1< x| <2 (5.19)
6
0 2< x|
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Figure 5.8: Low-order B-splines are derived from repeated box filters.
This kernel is sometimes called the Parzen window.

There are several properties of cubic B-splines worth noting. As in the cubic convolution
method, the extent of the cubic B-spline is over four points. This allows two points on each side
of the central interpolated region to be used in the convolution. Consequently, the cubic B-
spline is shift-invariant as well.

Unlike cubic convolution, however, the cubic B-spline kernel is not interpolatory since it
does not satisfy the necessary constraint that A(0) =1 and h(1)=h(2)=0. Instead, it is an
approximating function which passes near the points but not necessarily through them. This is
due to the fact that the kernel is strictly positive.

The positivity of the cubic B-spline kemel is actually attractive for our image processing
application. When using kernels with negative lobes, e.g., the cubic convolution and truncated
sinc functions, it is possible to generate negatve values while interpolating positive data. Since
negative intensity values are meaningless for display it is desirable to use strictly positive inter-
polation kernels to guarantee the positivity of the interpolated image.

There are problems, however, in directly interpolating the data with kernel A, as given in
Eq. (5.19). Due to the low-pass (blur) characteristics of A, the image undergoes considerable
smoothing. This is evident by examining its frequency response where the stopband is effec-
tively suppressed at the expense of additional attenuation in the passband. This leads us to the
development of an interpolation method built upon the local support of the cubic B-spline.
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5.2.6.2. Interpolating B-Splines
Interpolating with cubic B-splines requires that at data point x;, we again satisfy Eq. (5.8).
Namely,
j+2
fG&x) = Y chxj—x) (5.20)
k=j-2

From Eq. (5.19), we have h(0) =4/6, h(-1) = h(1) = 1/6, and h(-2) = h(2) =0. This yields
1
f(xj) = g(cj—l +4Cj +Cj+1) (5.21)

Since this must be true for all data points, we have a chain of global dependencies for the ¢,
coefficients. The resulting linear system of equations is similar to that obtained for the deriva-
tives of the cubic interpolating spline algorithm. We thus have,

r 9 _ . ~ -
fO 41 Co
f1 141 ¢l
f2 141 c2
= . . (5.22)
Ja-2 141 Ch-2
fn—l L 1 4_ Cn—i
Labeling the three matrices above as F, K, and C, respectively, we have
F=KC (5.23)

The coefficients in C may be evaluated by multiplying the known data points F with the inverse
of the tridiagonal matrix K.

C = FK™! (5.24)

This matrix inversion has an efficient algorithm which is solvable in linear time [Press 88].
In [Lee 83], the matrix inversion step is modified to introduce high-frequency emphasis. This
serves to compensate for the undesirable low-pass filter imposed by the point-spread function of
the imaging system. '

In all the previous methods the coefficients ¢, were taken to be the data samples them-
selves. In the cubic spline interpolation algorithm, however, the coefficients must be determined
by solving a tridiagonal matrix problem. After the interpolation coefficients have been com-
puted, cubic spline interpolation has the same computational cost as cubic convolution.
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5.3. COMPARISON OF INTERPOLATION METHODS

The quality of the popular interpolation kernels are ranked in ascending order as follows:
nearest neighbor, linear, cubic convolution, cubic spline, and sinc function. These interpolation
methods are compared in [Andrews 76], [Parker 83], and [Maeland 88].

The algorithms are rated according to the passband and stopband performances of their
interpolation kernels. If an additional process is required to compute coefficients used together
with the kernel, its effect must be evaluated as well. In [Parker 83], the authors failed to con-
sider this when they erroneously concluded that cubic convolution is superior to cubic spline
interpolation. Their conclusion was based on an inappropriate comparison of the cubic B-spline
kernel with that of the cubic convolution. The fault lies in neglecting the effect of computing the
coefficients in Eq. (5.1). Had the data samples been directly convolved with the cubic B-spline
kernel, then the analysis would have been correct. However, in performing a matrix inversion to
determine the coefficients, a certain periodic filter must be multiplied together with the spectrum
of the cubic B-spline in order to produce the interpolation kernel. The resulting kernel can be
easily demonstrated to be of infinite support and oscillatory, sharing the same properties as the
Cardinal spline (sinc) kernel [Maeland 88]. By a direct comparison, cubic spline interpolation
performs better than cubic convolution, albeit at slightly greater computational cost.

It is important to note that high quality interpolation algorithms are not always warranted
for adequate reconstruction. This is due to the natural relationship that exists between the rate at
which the input is sampled and the interpolation quality necessary for accurate reconstruction. If
a bandlimited input is densely sampled, then its replicating spectra are spaced far apart. This
diminishes the role of frequency leakage in the degradation of the reconstructed signal. Conse-
quently, we can relax the accuracy of the interpolation kernel in the stopband. Therefore, the
stopband performance necessary for adequate reconstruction can be made a function of the input
sampling rate. Low sampling rates require the complexity of the sinc function, while high rates
allow simpler algorithms. Although this result is intuitively obvious, it is reassuring to arrive at
the same conclusion from an interpretation in the frequency domain.

The above discussion has focused on reconstructing gray-scale (color) images. Complica-
tions emerge when the attention is restricted to bi-level (binary) images. In [Abdou 82], the
authors analyze several interpolation schemes for bi-level image applications. This is of practi-
cal importance for the geometric transformation of images of black-and-white documents.
Subtleties are introduced due to the nonlinear elements that enter into the imaging process:
quantization and thresholding. Since binary signals are not bandlimited and the nonlinear effects
are difficult to analyze in the frequency domain, the analysis is performed in the spatial domain.
Their results confirm the conclusions already derived regarding interpolation kernels. In addi-
tion, they arrive at useful results relating the errors introduced in the tradeoff between sampling
rate and quantization.
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5.4. SEPARABLE 2-D INTERPOLATION

The 1-D interpolation algorithms described above generalize quite simply to 2-D. This is
accomplished by performing 1-D interpolation in each dimension. For example, the horizontal
scanlines are first processed, yielding an intermediate image which then undergoes a second pass
of interpolation in the vertical direction. These are the elements of a separable transformation,
which allow a reconstruction filter & (x,y) to be replaced by the product A (x)A (y).

In 2-D, the nearest neighbor and bilinear interpolation algorithms use a 2 x 2 neighborhood
about the desired location. The separable transform result is identical to computing these
methods directly in 2-D. The proof for bilinear interpolation was given in section 3. In cubic
convolution, a 4 x4 neighborhood is used to achieve an approximation to the radially symmetric
2-D sinc function. Note that this is not equivalent to the result obtained through direct computa-
tion. This can be easily verified by observing that the zeros are all aligned along the rectangular
grid instead of being distributed along concentric circles. Nevertheless, separable transforms
provide a substantial reduction in computational complexity from O (N?) to O (N) for an N xN

image.
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6. ANTIALIASING

The geometric transformation of digital images is inherently a samp?ing pr.ocess. .As with
all sampled data, digital images are susceptible to aliasing artifacts. This section rev1e.ws .the
antialiasing techniques developed to counter these deleterious effects. The la.rgest contnbfxt%on
1o this area stems from work in computer graphics, where visually complex images containing
high spatial frequencies must be rendered onto a discrete array. In particular, antaliasing l.xas
played a critical role in the quality of texture-mapped and ray-traced images. Remote sensing
and medical imaging, on the other hand, typically do not deal with large scale changes that war-
rant sophisticated filtering. They have therefore neglected this stage of the processing.

6.1. INTRODUCTION

Aliasing occurs when the input signal is undersampled. There are two solutions to this
problem: raise the sampling rate or bandlimit the input. The first solution is ideal but may
require a display resolution which is too costly or unavailable. The second solution forces the
signal to conform to the low sampling rate by attenuating the high frequency components that
give rise to the aliasing artifacts. In practice, some compromise is reached between these two
solutions [Crow 77, 81].

6.1.1. Point Sampling

The naive approach for generating an output image is to perform point sampling, where
each output pixel is a single sample of the input image taken independently of its neighbors (Fig.
6.1). It is clear that information is lost between the samples and that aliasing artifacts may sur-
face if the sampling density is not sufficiently high to characterize the input. This problem is
rooted in the fact that intermediate intervals between samples, which should have some influ-
ence on the output, are skipped entirely.

TN
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Input Output

Figure 6.1: Point sampling.

Aliasing can be reduced by point sampling at a higher resolution. This raises the Nyquist
limit, accounting for signals with higher bandwidths. Generally, though, the display resolution
places a limit on the highest frequency that can be displayed, and thus limits the Nyquist rate to
one cycle every two pixels. Any attempt to display higher frequencies will produce aliasing

artifacts such as moire patterns and jagged edges. Consequently, antaliasing algorithms have
been derived to bandlimit the input before resampling onto the output grid.
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6.1.2. Area Sampling

The basic flaw in point sampling is that a discrete pixel actually represents an area, not a
point. In this manner, each output pixel should be considered a window looking onto the input
image. Rather than sampling a point, we must instead apply a low-pass filter (LPF) upon the
projected area in order to properly reflect the information content being mapped onto the output
pixel. This approach, depicted in Fig. 6.2, is called area sampling and the projected area is
known as the preimage. The low-pass filter comprises the prefiltering stage. It serves to defeat
aliasing by bandlimiting the input image prior to resampling it onto the output grid. In the gen-
eral case, prefiltering can be defined by the following convolution integral.

gxy) = [[f@v)h(x-uy—v)duav (6.1)

where f is the input image, g is the output image, A is the filter kernel, and the integration is
applied to all [u,v] points in the preimage.

LPF >

Input Output

Figure 6.2: Area sampling.

Area sampling is akin to direct convolution except for one notable exception: indepen-
dently projecting each output pixel onto the input image limits the extent of the filter kernel to
the projected area. As we shall see, this constraint can be lifted by considering the bounding
area which is the smallest region that completely bounds the pixel’s convolution kernel.
Depending on the size and shape of convolution kernels, these areas may overlap. Since this
carries extra computational cost, most area sampling algorithms limit themselves to the restric-
tive definition which, nevertheless, is far superior to point sampling. The question that remains
open is the manner in which the incoming data is to be filtered. There are various theoretical
and practical considerations to be addressed.
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6.1.3. Space-Invariant Filtering

Ideally, the sinc function should be used to filter the preimage. However, as discussed in
sections 4 and 5, a finite impulse response (FIR) approximation must be used instead to form a
weighted average of samples. If the mapping is affine, the filter kernel remains constant as it
scans across the image. Such a filter is said to be space-invariant.

Fourier convolution can be used to implement space-invariant filtering by transforming the
image and filter kernel into the frequency domain using an FFT, multiplying them together, and
then computing the inverse FFT. For wide space-invariant kernels, this becomes the method of
choice since it requires O (N log; N) operations instead of O (MN) operations for direct convolu-
tion, where M and N are the lengths of the filter kernel and image, respectively. Since the cost
of Fourier convolution is independent of the kemnel width, it becomes practical when M > log,N.
This means, for example, that scaling an image can best be done in the frequency domain when
excessive magnification or minification is desired. An excellent tutorial on the theory support-
ing digital filtering in the frequency domain can be found in [Smith 83].

6.1.4. Space-Variant Filtering

In most applications, however, space-variant filters are required, where the kernel varies
with position. This is necessary for many common operations such as perspective mappings,
nonlinear warps, and texture mapping. In such cases, space-variant FIR filters are used to con-
volve the preimage. Proper filtering requires a large number of preimage samples in order to
compute each output pixel. There are various sampling strategies used to collect these samples.
They can be broadly categorized into two classes: regular sampling and irregular sampling.
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6.2. REGULAR SAMPLING

The process of using a regular sampling grid to collect image samples is called regular
sampling. It is also known as uniform sampling, which is slightly misleading since an irregular
sampling grid can also generate a uniform distribution of samples. Regular sampling includes
point sampling, as well as the supersampling and adaptive sampling techniques described below.

6.2.1. Supersampling

The process of using more than one regularly-spaced sample per pixel is known as super-
sampling. Each output pixel value is evaluated by computing a weighted average of the samples
taken from their respective preimages. For example, if the supersampling grid is three times
denser than the output grid (i.e., there are nine grid points per pixel area), each output pixel will
be an average of the nine samples taken from its projection in the input image. If, say, three
samples hit a green object and the remaining six samples hit a blue object, the composite color in
the output pixel will be one-third green and two-thirds blue.

Supersampling reduces aliasing by bandlimiting the input signal. The purpose of the high-
resolution supersampling grid is to refine the estimate of the preimages seen by the output pixels.
The samples then enter the prefiltering stage, consisting of a low-pass filter. This permits the
input to be resampled onto the (relatvely) low-resolution output grid without any offending high
frequencies introducing aliasing artifacts (Fig. 6.3).

sea » * LPF

I
Supersampling gnd Input Output

Figure 6.3: Supersampling.

There are two problems associated with straightforward supersampling. The first problem
is that the increased frequency of the prefiltered image continues to be fixed. Therefore, there
will always be sufficiently high frequencies that will alias. The second problem is cost. In our
example, supersampling will take nine times longer than point sampling. Although there is a
clear need for the additional computation, the dense placement of samples can be optimized.
Adaptive sampling is introduced to address these drawbacks.
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6.2.2, Adaptive Sampling

In adaptive sampling, the samples are distributed more densely in areas of high intensity
variance. In this manner, supersamples are collected only in regions that warrant their use.
Early work in adaptive sampling for computer graphics is described in [Whitted 80]. The stra-
tegy is to subdivide areas between previous samples when an edge, or some other high frequency
pattern, is present. Two approaches to adaptive sampling have been described in the literature.
The first approach allows sampling density to vary as a function of local image variance [Lee 85,
Kajiya 86]. A second approach introduces two levels of sampling densities: a regular pattern for
most areas and a higher-density pattern for regions demonstrating high frequencies. The regular
pattern simply consists of one sample per output pixel. The high density pattern involves local
supersampling at a rate of 4 to 16 samples per pixel. Typically, these rates are adequate for
suppressing aliasing artifacts.

A sampling strategy is required to determine where supersampling is necessary. In
[Mitchell 87], the author describes a method in which the image is divided into small square
supersampling cells, each containing eight or nine of the low-density samples. The entire cell is
supersampled if its samples exhibit excessive variation. In [Lee 85], the variance of the samples
are used to indicate high frequency. It is well-known, however, that variance is a poor measure
of visual perception of local variation. Another alternative is to use contrast, which more closely
models the nonlinear response of the human eye to rapid fluctuations in light intensities [Caelli
81]. Contrast is given as

C = .['"a"_l”_“"_ (6.2)

Lax + Lnin
Adaptive sampling reduces the number of samples required for a given image quality. The
problem with this technique, however, is that the variance measurement is itself based on point
samples, and so this method can fail as well. This is particularly true for sub-pixel objects that

do not cross pixel boundaries. Nevertheless, adaptive sampling presents a far more reliable and
cost-effective alternative to supersampling.
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6.2.3. Reconstruction from Regular Samples

Each output pixel is evaluted as an average of the preimage samples. The low-pass filters
shown in Figs. 6.2 and 6.3 are actually reconstruction filters used to interpolate the output point.
They share the identical function of the reconstruction filters discussed in section 5: they
bandlimit the sampled signal (suppress the replicated spectra) so that the resampling process
does not itself introduce aliasing. The careful reader will notice that reconstruction serves two
roles:

1) Reconstruction filters interpolate the input samples to compute values at nonintegral posi-
tions. These values are the preimage samples that are assigned to the supersampling grid.

2) The very same filters are used to interpolate a new value from the dense set of samples col-
lected in step (1). The result is applied to the output pixel.

When reconstruction filters are applied to interpolate new values from regularly-spaced
samples, errors may appear as observable derivative discontinuities across pixel boundaries. In
antialiasing, reconstruction errors are more subtle. Consider an object of constant intensity
which is entirely embedded in pixel p, i.e., a sub-pixel sized object. We will assume that the
popular triangle filter is used as the reconstruction kernel. As the object moves away from the
center of p, the computed intensity for p decreases as it moves towards the edge. Upon crossing
the pixel boundary, the object begins to contribute to the adjacent pixel, no longer having an
influence on p. If this motion were animated, the object would appear to flicker as it crossed the
image. This artifact is due to the limited range of the filter. This suggests that a wider filter is
required, in order to reflect the object’s contribution to neighboring pixels.

One ad hoc solution is to use a square pyramid with a base width of 2x2 pixels. This
approach was used in [Blinn 76], an early paper on texture mapping. In general, by varying the
width of the filter a compromise is reached between passband transmission and stopband
attenuation. This underscores the need for high-quality reconstruction filters to prevent aliasing
in image resampling.

Despite the apparent benefits of supersampling and adaptive sampling, all regular sampling
methods share a common problem: information is discarded in a coherent way. This produces
coherent aliasing artifacts that are easily perceived. Since spatially correlated errors are a conse-
quence of the regularity of the sampling grid, the use of irregular sampling grids has been pro-
posed to address this problem.




6.3. IRREGULAR SAMPLING

Irregular sampling is the process of using an irregular sampling grid in which to sample the
input image. This process is also referred to as nonuniform sampling and stochastic sampling.
As before, the term nonuniform sampling is a slight misnomer since irregular sampling can be
used to produce a uniform distribution of samples. The name stochastic sampling is more
appropriate since it denotes the fact that the irregularly-spaced locations are determined proba-
bilistically via a Monte Carlo technique.

The motivation for irregular sampling is that coherent aliasing artifacts can be rendered
incoherent, and thus less conspicuous. By collecting irregularly-spaced samples, the energies of
the offending high frequencies are made to appear as featureless noise of the correct average
intensity, an artifact that is much less objectionable than aliasing. This claim is supported by
evidence from work in color television encoding [Lim 77], image noise measurement [Sakrison
77], dithering [Lim 69, Ulichney 87], and the distribution of retinal cells in the human eye [Yel-
lott 83].

6.3.1. Stochastic Sampling

Although the mathematical properties of stochastic sampling have received a great deal of
attention, this technique has only recently been advocated as a new approach to antialiasing for
images. In particular, it has played an increasing role in ray tracing where the rays (point sam-
ples) are now stochastically distributed to perform a Monte Carlo evaluation of integrals in the
rendering equation. This is called distributed ray tracing and has been used with great success
in computer graphics to simulate motion blur, depth of field, penumbrae, gloss, and translucency
[Cook 84, 86].

There are three common forms of stochastic sampling discussed in the literature: Poisson
sampling, jittered sampling, and point-diffusion sampling.

6.3.2. Poisson Sampling

Poisson sampling uses an irregular sampling grid that is stochastically generated to yield a
uniform distribution of sample points. This approximation to uniform sampling can be improved
with the addition of a minimum-distance constraint between sample points. The result, known
as the Poisson-disk distribution, has been suggested as the optimal sampling pattern to mask
aliasing artifacts. This is motivated by evidence that the Poisson-disk distribution is found
among the sparse retinal cells outside the foveal region of the eye. It has been suggested that
this spatial organization serves to scatter aliasing into high-frequency random noise [Yellott 83].

A Poisson-disk sampling pattern and its Fourier Transform are shown in Fig. 6.4. Theoreti-
cal arguments can be given in favor of this sampling pattern, in terms of its spectral characteris-
tics. An ideal sampling pattern, it is argued, should have a broad noisy spectrum with minimal
low-frequency energy. A perfectly random pattern such as white noise is an example of such a
signal where all frequency components have equal magnitude. This is equivalent to the
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A=Vi+Vi
= “2(U,Vr + U, Vy)
C = U2+ U}
where
(3u av )
Uy, Vi) = Lg,a—xJ

Once the ellipse parameters are determined, samples in the texture space may be tested for
point-inclusion in the ellipse by incrementally computing Q for new values of 4 and v. In texture
space the contours of Q are concentric ellipses. Points inside the ellipse satisfy Q (u,v) < F for
some threshold F.

F = UV, - Uy, 6.7)

This means that point-inclusion testing for ellipses can be done with one function evaluation
rather than the four needed for quadrilaterals (four line equations).

If a point is found to satisfy Q < F, then the sample value is weighted with the appropriate
lookup table entry. In screen space, the lookup table is indexed by r, the radius of the circle
upon which the point lies. In texture space, though, Q is related to r2. Rather than indexing
with r, which would require us to compute r = V@ at each pixel, the kernel values are stored into
the lookup table so that they may be indexed by Q directly. Initializing the lookup table in this
manner results in large computational efficiency. Thus, instead of determining which concentric
circle the texture point maps onto in screen space, we determine which concentric ellipse the
point lies upon in texture space and use it to index the appropriate weight in the lookup table.

Explicitly treating preimages as ellipses permits the function Q to take on a dual role:
point-inclusion testing and lookup table index. The EWA is thereby able to achieve high-quality
filtering at substantially lower cost. After all the points in the ellipse have been scanned, the
sum of the weighted values is divided by the sum of the weights (for normalization) and
assigned to the output pixel.

All direct convolution methods have a computational cost proportional to the number of
input pixels accessed. This cost is exacerbated in [Feibush 80] and [Gangnet 82] where the col-
lected input samples must be mapped into screen space to be weighted with the kernel. By
achieving identical results without this costly mapping, the EWA is the most cost-effective
high-quality filtering method.
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6.5. PREFILTERING

The direct convolution methods described above impose minimal constraints on the filter
area (quadrilateral, ellipse) and filter kernel (precomputed lookup table entries). Additional
speedups are possible if further constraints are imposed. Pyramids and preintegrated tables are
introduced to approximate the convolution integral with a constant number of accesses. This
compares favorably against direct convolution which requires a large number of samples that
grow proportionately to preimage area. As we shall see, though, the filter area will be limited to
squares or rectangles, and the kernel will consist of a box filter. Subsequent advances have
extended their use to more general cases with only marginal increases in cost.

6.5.1. Pyramids

Pyramids are multi-resolution data structures commonly used in image processing and
computer vision. They are generated by successively bandlimiting and subsampling the original
image to form a hierarchy of images at ever decreasing resolutions. The original image serves as
the base of the pyramid, and its coarsest version resides at the apex. Thus, in a lower resolution
version of the input, each pixel represents the average of some number of pixels in the higher
resolution version.

The resolution of successive levels typically differ by a power of two. This means that suc-
cessively coarser versions each have one quarter of the total number of pixels as their adjacent
predecessors. The memory cost of this organization is modest: 1 + 1/4 + 1/16 + -+ =4/3
times that needed for the original input. This requires only 33% more memory.

To filter a preimage, one of the pyramid levels is selected based on the size of its bounding
square box. That level is then point sampled and assigned to the respective output pixel. The
primary benefit of this approach is that the cost of the filter is constant, requiring the same
number of pixel accesses independent of the filter size. This performance gain is the result of
the filtering that took place while creating the pyramid. Furthermore, if preimage areas are ade-
quately approximated by squares, the direct convolution methods amount to point sampling a
pyramid. This approach was first applied to texture mapping in [Catmull 74] and described in
[Dungan 78].

There are several problems with the use of pyramids. First, the appropriate pyramid level
must be selected. A coarse level may yield excessive blur while the adjacent finer level may be
responsible for aliasing due to insufficient bandlimiting. Second, preimages are constrained to
be squares. This proves to be a crude approximation for elongated preimages. For example,
when a surface is viewed obliquely the texture may be compressed along one dimension. Using
the largest bounding square will include the contributions of many extraneous samples and result
in excessive blur. These two issues were addressed by Williams and Crow, respectively, along
with extensions proposed by other researchers.

Williams proposed a pyramid organization called mip map to store color images at multiple
resolutions in a convenient memory organization [Williams 83]. The acronym ‘‘mip’’ stands for
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“‘multum in parvo,’’ a Latin phrase meaning '‘many things in a small place.”” The scheme sup-
ports trilinear interpolation, where both intra- and inter-level interpolation can be computed
using three normalized coordinates: 4, v, and d. Both « and v are spatial coordinates used to
access points within a pyramid level. The d coordinate is used to index, and interpolate between,
different levels of the pyramid. This is depicted in Fig. 6.7.
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Figure 6.7: Mip Map memory organization.

The quadrants touching the east and south borders contain the original red. green, and blue
(RGB) components of the color image. The remaining upper-left quadrant contains all the lower
resolution copies of the original. The memory organization depicted in Fig. 6.7 clearly supports
the earlier claim that memory cost is 4/3 times that required for the original input. Each level is
shown indexed by the [u,v,d ] coordinate system, where d is shown slicing through the pyramid
levels. Since corresponding points in different pyramid levels have indices which are related by
some power of two, simple binary shifts can be used to access these points across the multi-
resolution copies. This is a particularly attractive feature for hardware implementation.

The primary difference between mip maps and ordinary pyramids is the trilinear interpola-
tion scheme possible with the [u,v,d] coordinate system. By allowing a continuum of points to
be accessed, mip maps are referred to as pyramidal parametric data structures. In Williams’
implementation, a box filter (Fourier window) was used to create the mip maps, and a triangle
filter (Bartlett window) was used to perform intra- and inter-level interpolation. The value of d
must be chosen to balance the tradeoff between aliasing and blurring. Heckbert suggests

2 2 2 2
ou ov ou ov
42 ou v 6.

d?=MAX| | =
where d is proportional to the span of the preimage area, and the partial derivatives can be
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computed from the surface projection [Heckbert 83].

6.5.2. Summed-Area Tables

An alternative to pyramidal filtering was proposed by Crow in [Crow 84]. It extends the
filtering possible in pyramids by allowing rectangular areas, oriented parallel to the coordinate
axes, to be filtered in constant time. The central data structure is a preintegrated buffer of inten-
sities, known as the summed-area table. This table is generated by computing a running total of
the input intensities as the image is scanned along successive scanlines. For every position P in
the table, we compute the sum of intensities of pixels contained in the rectangle between the ori-
gin and P. The sum of all intensities in any rectangular area of the input may easily be
recovered by computing a sum and two differences of values taken from the table. For example,
consider the rectangles Rg, Ry, R,, and R shown in Fig. 6.8. The sum of intensities in rectangle
R can be computed by considering the sum at [x 1,y 1], and discarding the sums of rectangles R,
R . and R, This corresponds to removing all area lying below and to the left of R. The result-
ing area is rectangle R, and its sum S is given as

S =Txl,yl]-T[x1,y0]-T[x0,y1]+T[x0,y0] 6.9)

where T [x,y] is the value in the summed-area table indexed by coordinate pair [x,y ].

Y1
R,

Yo

X0 X1

Figure 6.8: Summed-area table calculation.

Since T[x1,y0] and T [x0,y 1] both contain R, the sum of R was subtracted twice in Eq.
(6.9). As a result, T[x0,y0] was added back to restore the sum. Once S is determined it is
divided by the area of the rectangle. This gives the average intensity over the rectangle, a pro-
cess equivalent to filtering with a Fourier window (box filtering).

There are two problems with the use of summed-area tables. First, the filter area is res-
tricted to rectangles. This is addressed in [Glassner 86], where an adaptive, iterative technique is
proposed for obtaining arbitrary filter areas by removing extraneous regions from the rectangular
bounding box. Second, the summed-area table is restricted to box filtering. This, of course, is
attributed to the use of unweighted averages that keeps the algorithm simple. In [Perlin 85] and
(Heckbert 86a], the summed-area table is generalized to support more sophisticated filtering by
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repeated integration.

It is shown that by repeatedly integrating the summed-area table n times, it is possible to
convolve an orthogonally oriented rectangular region with an n*#-order box filter (B-spline).
Kernels for small n are shown in Fig. 5.8. The output value is computed by using n + 1
weighted samples from the preintegrated table. Since this result is independent of the size of the
rectangular region, this method offers a great reduction in computation over that of direct convo-
lution. Perlin called this a selecrive image filter because it allows each sample to be blurred by
different amounts.

Repeated integration has rather high memory costs relative to pyramids. This is due to the
number of bits necessary to retain accuracy in the large summations. Nevertheless, it allows us
to filter rectangular or elliptical regions, rather than just squares as in pyramid techniques. Since
pyramid and summed-area tables both require a setup time, they are best suited for input that is
intended to be used repeatedly, i.e., a stationary background scene. In this manner, the initializa-
tion overhead can be amortized over each use. However, if the texture is only to be used once,
the direct convolution methods raise a challenge to the cost-effectiveness offered by pyramids
and summed-area tables.

6.6. FREQUENCY CLAMPING

The antialiasing methods described above all attempt to bandlimit the input by convolving
input samples with a filter in the spatial domain. An alternative to this approach is to transform
the input to the frequency domain, apply an appropriate low-pass filter to the spectrum, and then
compute the inverse transform to display the bandlimited result. This was, in fact, already sug-
gested as a viable technique for space-invariant filtering in which the low-pass filter can remain
constant throughout the image. Norton, Rockwood, and Skolmoski explore this approach for
space-variant filtering, where each pixel may require different bandlimiting to avoid aliasing
[Norton 82].

The authors propose a simple technique for clamping, or suppressing, the offending high
frequencies at each point in the image. This clamping function technique requires some a priori
knowledge about the input image. In particular, the input should not be given as an array of
samples but rather it should be represented by a Fourier series, i.e., a sum of bandlimited terms
of increasing frequencies. When the frequency of a term exceeds the Nyquist rate at a given
pixel, that term is forced to the local average value. This method has been successfully applied
in a real-time visual system for flight simulators. It is used to solve the aliasing problem for tex-
tures of clouds and water, patterns which are convincingly generated using only a few low-order
Fourier terms.

6.7. ANTIALIASED LINES AND TEXT

A large body of work has been directed towards efficient antialiasing methods for eliminat-
ing the jagged appearance of lines and text in raster images. These two applications have
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attracted a lot of attention due to their practical importance in the ever growing workstation and
personal computer markets. While images of lines and text can be handled with the algorithms
described above, antialiasing techniques have been developed which embed the filtering process
directly within the drawing routines.

Shaded (gray) pixels for lines can be generated, for example, with the use of a lookup table
indexed by the distance between each pixel center and the line (or curve). Since arbitrary ker-
nels can be stored in the lookup table at no extra cost, this approach shares the same merits as
[Feibush 80]. Conveniently, the point-line distance can be computed incrementally by the same
Bresenham algorithm used to determine which pixels must be turned on. This algorithm is
described in [Gupta 81].

In [Turkowski 82], the CORDIC rotation algorithm is used to calculate the point-line dis-
tance necessary for indexing into the kernel lookup table. Other related papers describing the
use of lookup tables and bitmaps for efficient antialiasing of lines and polygons can be found in
[Pitteway 80], [Fiume 83], and [Abram 85]. Recent work in this area is described in [Chen 88].
For a description of recent advances in antialiased text, the reader is referred to [Naiman 87].

6.8. DISCUSSION

This section has reviewed methods to combat the aliasing artifacts that may surface upon
performing geometric transformations on digital images. Aliasing becomes apparent when the
mapping of input pixels onto the output is many-to-one. Sampling theory suggests theoretical
limitations and provides insight into the solution. In the majority of cases, increasing display
resolution is not a parameter that the user is free to adjust. Consequently, the approaches have
dealt with bandlimiting the input so that it may conform to the available output resolution.

All contributions in this area fall into one of two categories: direct convolution and pre-
filtering. Direct convolution calls for increased sampling to accurately resolve the input preim-
age that maps onto the current output pixel. A low-pass filter is applied to these samples, gen-
erating a single bandlimited output value. This approach raises two issues: sampling techniques
and efficient convolution. The first issue has been addressed by the work on regular and irregu-
lar sampling, including the recent advances in stochastic sampling. The second issue has been
treated by algorithms which embed the filter kernels in lookup tables and provide fast access to
the appropriate weights. Despite all possible optimizations, the computational complexity of
this approach is inherently coupled with the number of samples taken over the preimage. Thus,
larger preimages will incur higher sampling and filtering costs.

A cheaper approach providing lower quality results is obtained through prefiltering. By
precomputing pyramids and summed-area tables, filtering is possible with only a constant
number of computations, independent of the preimage area. Combining the partially filtered
results contained in these data structures produces large performance gains. The cost, however,
is in terms of constraints on the filter kernel and approximations to the preimage area. Design-
ing efficient filtering techniques that support arbitrary preimage areas and filter kernels remains
a great challenge. It is a subject that will continue to receive much attention.
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7. SEPARABLE GEOMETRIC TRANSFORMATION ALGORITHMS

Separable geometric transformation algorithms, also known as scanline algorithms, spa-
tially transform 2-D images by decomposing the mapping into a sequence of orthogonal 1-D
transformations. This implies that the mapping function is separable, i.e., each dimension can be
resampled independently of the other. For instance, 2-pass scanline algorithms typically apply
the first pass to the image rows and the second pass to the columns. Although separable algo-
rithms cannot handle all possible mapping functions, they can be shown to work particularly
well for a wide class of common transformations, including affine and perspective mappings.

7.1. INTRODUCTION

Geometric transformations have traditionally been formulated as either forward or inverse
mappings operating entirely in 2-D. Their advantages and drawbacks have already been
described in section 3. We briefly restate these features in order to motivate the case for separ-
able geometric transformation algorithms.

7.1.1. Forward Mapping

Forward mappings deposit input pixels into an output accumulator array. A distinction is
made here based on the order in which pixels are fetched and stored. In forward mappings, the
input arrives in scanline order (row by row) but the results are free to leave in any order, project-
ing into arbitrary areas in the output. In the general case, this means that no output pixel is
guaranteed to be totally computed until the entire input has been scanned. Therefore, a full 2-D
accumulator array must be retained throughout the duration of the mapping. Since the square
input pixels project onto quadrilaterals at the output, costly intersection tests are needed to prop-
erly compute their overlap with the discrete output cells. Furthermore, an adaptive algorithm
must be used to determine when supersampling is necessary in order to avoid blocky appear-
ances upon one-to-many mappings.

7.1.2. Inverse Mapping

Inverse mappings are more commonly used to perform spatial transformations. By operat-
ing in scanline order at the output, square output pixels are projected onto arbitrary quadrila-
terals. In this case, the projected areas lie in the input and are not generated in scanline order.
Each preimage must be sampled and convolved with a low-pass filter to compute an intensity at
the output. In section 6 we reviewed clever approaches to efficiently approximate this computa-
tion. While either forward or inverse mappings can be used to realize arbitrary mapping func-
tions, there are many transformations that are well-suited for alternate techniques that yield
further computational savings. These are the mappings that can be implemented with separable
algorithms. They include affine and perspective mappings onto bivariate surfaces.
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7.1.3. Separable Mapping

There are several advantages to decomposing a mapping into a series of 1-D transforms,
First, the resampling problem is made simpler since reconstruction, area sampling, and filtering
can now be done entirely in 1-D. Second, this lends itself naturally to digital hardware imple-
mentation. Note that no sophisticated digital filters are necessary to deal explicitly with the 2-D
case. Third, the mapping can be done in scanline order both in scanning the input image and in
producing the projected image. In this manner, an image may be processed in the same format
in which it is stored in the framebuffer: rows and columns, This leads to efficient data access
and large savings in I/O time. The approach is amenable to stream-processing techniques such
as pipelining, and facilitates the design of hardware that works at real-time video rates.
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7.2. 2-PASS TRANSFORMS

Consider a spatial transformation specified by forward mapping functions X and Y such that
x,y] = Twv) = [X V), Y (V)] (7.1

The transformation T is said to be separable if T (u,v) = F (u)G (v). Since it is understood that G
is applied only after F, the mapping T (u,v) is said to be 2-pass transformable, or simply 2-
passable. Functions F and G are called the 2-pass functions, each operating along different
axes. Consequently, the forward mapping in Eq. (7.1) can be rewritten as a succession of two
1-D mappings F and G, the horizontal and vertical transformations, respectively.

7.2.1. Catmull and Smith, 1980

The most general presentation of the 2-pass technique appears in the seminal work
described by Catmull and Smith in [Catmull 80). This paper tackles the problem of mapping a
2-D image onto a 3-D surface and then projecting the result onto the 2-D screen for viewing.
The contribution of this work lies in the decomposition of these steps into a sequence of compu-
tationally cheaper mapping operations. In particular, it is shown that a 2-D resampling problem
can be replaced with two orthogonal 1-D resampling stages. This is depicted in Fig. 7.1.

7.2.1.1. First Pass

In the first pass, each horizontal scanline (row) is resampled according to spatial transfor-
mation F (u4), generating an intermediate image / in scanline order. All pixels in / have the same
x-coordinates that they will assume in the final output; only their y-coordinates now remain to be
computed. Since each scanline will generally have a different transformation, function F (i)
will usually differ from row to row. Consequently, F can be considered to be a function of both
u and v. In fact, it is clear that mapping function F is identical to X, generating x-coordinates
from points in the [u,v] plane. To remain consistent with earlier notation, we rewrite F (u,v) as
F,(u) 1o denote that F is applied to horizontal scanlines, each having constant v. Therefore, the
first pass is expressed as

[x,v] = [F,(u), V] (7.2)

where F, (1) = X (4,v). This relation maps all [4,v] points onto the [x,v] plane.

7.2.1.2. Second Pass

In the second pass, each vertical scanline (column) in / is resampled according to spatial
transformation G (v), generating the final image in scanline order. The second pass is more
complicated than the first pass because the expression for G is often difficult to derive. This is
due to the fact that we must invert [x,v] to get [u,v] so that G can directly access Y (4,v). In
doing so, new y-coordinates can be computed for each point in /.
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Figure 7.1: 2-pass geometric transformation.

Inverting f requires us to solve the equation X (u,v) — x =0 for u to obtain u = H,(v) for
vertical scanline (column) x. Note that x contains all the pixels along the column at x. Function
H, known as the auxiliary function, represents the u-coordinates of the inverse projection of x,
the column we wish to resample. Thus, for every column in /, we compute H,(v) and use it to-
gether with the available v-coordinates to index into mapping function Y. This specifies the vert-
ical spatial transformation necessary for resampling the column. The second pass is therefore
expressed as
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[x.y] = [x,Gx(v)] (7.3)

where G,(v) refers to the evaluation of G (x,v) along vertical scanlines with constant x. It is
given by

Gx(v) = Y(H (v),v) (7.4)

The relation in Eq. (7.3) maps all points in / from the [x,v] plane onto the [x,y ] plane, the coor-
dinate system of the final image.

7.2.1.3. 2-Pass Algorithm

In summary, the 2-pass algorithm has three steps. They correspond directly to the evalua-
tion of scanline functions F and G, as well as the auxiliary function H.

1) The horizontal scanline function is defined as F,(u) =X (u,v). Each row is resampled
according to this spatial transformation, yielding intermediate image /.

2) The auxiliary function H,(v) is derived for each vertical scanline x in I. It is defined as the
solution to x =X (u,v) for u, if such a solution can be derived. Sometimes a closed form
solution for H is not possible and numerical techniques such as the Newton-Raphson itera-
tion method must be used. As we shall see later, computing H is the principal difficulty
with the 2-pass algorithm.

3) Once H,(v) is determined, the second pass plugs it into the expression for Y (,v) to evalu-
ate the target y-coordinates of all pixels in column x in image /. The vertical scanline func-
tion is defined as G,.(v) =Y (Hy(v).,v). Each column in [ is resampled according to this
spatial transformation, yielding the final image.

7.2.1.4. An Example: Rotation

The above procedure is demonstrated on the simple case of rotation. The rotation matrix is
given as

o y] = v] | 558 sind 7.5)

We want to transform every pixel in the original image in scanline order. If we scan a row by
varying u and holding v constant, we immediately notice that the transformed points are not
being generated in scanline order. This presents difficulties in antialiasing filtering and fails to
achieve our goals of scanline input and output.

Alternatively, we may evaluate the scanline by holding v constant in the output as well, and
~only evaluating the new x values. This is given as

[x,v] = [ucosB-vsinb, v] (7.6)

This results in a picture that is skewed and scaled along the horizontal scanlines.
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The next step is to transform this intermediate result by holding x constant and computing
y. However, the equation y = usin + vcos6 cannot be applied since the variabie u is referenced
instead of the available x. Therefore, it is first necessary to express « in terms of x. Recall that
x = ucosf@—vsinb, so

_ X +vsin a7
cosO
Substituting this into y = usin@+ vcos6 yields
_ XxsinB+v (7.8)

cosH

The output picture is now generated by computing the y-coordinates of the pixels in the inter-
mediate image, and resampling in vertical scanline order. This completes the 2-pass rotation.
An example of this procedure for a 45° clockwise rotation is shown in Fig. 7.1.

The stages derived above are directly related to the general procedure described earlier.
The three expressions for F, G, and H are explicitly listed below.

1) The first pass is defined by Eq. (7.6). In this case, F,(u) = ucos0 — vsin6.

2) The auxiliary function H is given in Eq. (7.7). It is the result of isolating u from the expres-
sion for x in mapping function X (u,v). In this case, H,(v) = (x + vsin6) / cos6.

3) The second pass then plugs H,(v) into the expression for Y (u,v), yielding Eq. (7.8). In this
case, G(v) = (xsinB + v) / cosb.

7.2.1.5. Bottleneck Problem

After completing the first pass, it is sometimes possible for the intermediate image to col-
lapse into a narrow area. If this area is much less than that of the final image, then there is insuf-
ficient data left to accurately generate the final image in the second pass. This phenomenon,
referred to as the bortleneck problem in [Catmull 80], is the result of a many-to-one mapping in
the first pass followed by a one-to-many mapping in the second pass.

The bottleneck problem occurs, for instance, upon rotating an image clockwise by 90°.
Since the top row will map to the rightmost column, all of the points in the scanline will collapse
onto the rightmost point. Similar operations on all the other rows will yield a diagonal line as
the intermediate image. No possible separable solution exists for this case when implemented in
this order. This unfortunate result can be readily observed by noting that the cos8 term in the
denominator of Eq. (7.7) approaches zero as 6 approaches 90°, thereby giving rise to an undeter-
minable inverse.

The solution to this problem lies in considering all the possible orders in which a separable
algorithm can be implemented. Four variations are possible to generate the intermediate image:

1) Transform u first.

2) Transform v first.
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3) Rotate the input image by 90° and transform u first.
4)  Rotate the input image by 90° and transform v first.

In each case, the area of the intermediate image can be calculated. The method that pro-
duces the largest intermediate area is used to implement the transformation. If a 90° rotation is
required, it is conveniently implemented by reading horizontal scanlines and writing them in
vertical scanline order.

In our example, methods (3) and (4) will yield the correct result. This applies equally to
rotation angles near 90°. For instance, an 87° rotation is best implemented by first rotating the
image by 90° as noted above and then applying a —3° rotation using the 2-pass technique. These
difficulties are resolved more naturally in a recent paper, described later, that demonstrates a
separable technique for implementing arbitrary spatial lookup tables [Wolberg 88c].

7.2.1.6. Foldover Problem

The 2-pass algorithm is particularly well-suited for mapping images onto surfaces with
closed form solutions to auxiliary function H. For instance, texture mapping onto rectangles that
undergo perspective projection was first shown to be 2-passable in [Catmull 80]. This was
independently discovered by Evans and Gabriel at Ampex Corporation where the result was
implemented in hardware. The product was a real-time video effects generator called ADO
(Ampex Digital Optics). It has met with great success in the television broadcasting industry
where it is routinely used to map images onto rectangles in 3-space and move them around
fluidly.

The process is more complicated for surfaces of higher order, e.g., bilinear, biquadratic, and
bicubic patches. Since these surfaces are often nonplanar, they may be self-occluding. This has
the effect of making F or G become multi-valued at points where the image folds upon itself, a
problem known as foldover.

Foldover can occur in either of the two passes. In the vertical pass, the solution for single
folds in G is to compute the depth of the vertical scanline endpoints. At each column, the end-
point which is furthest from the viewer is transformed first. The subsequent closer points along
the vertical scanline will obscure the distant points and remain visible. Generating the image in
this back-to-front order becomes more complicated for surfaces with more than one fold. In the
general case, this becomes a hidden surface problem.

This problem can be avoided by restricting the mappings to be nonfolded, or single-valued.
This simplification reduces the warp to one that resembles those used in remote sensing. In par-
ticular, it is akin to mapping images onto distorted planar grids where the spatial transformation
is specified by a polynomial transformation. For instance, the nonfolded biquadratic patch can
be shown to correct common lens aberrations such as the barrel and pincushion distortions dep-
icted in Fig. 3.5.

Once we restrict patches to be nonfolded, only one solution is valid. This means that only
one u on each horizontal scanline can map to the current vertical scanline. We cannot attempt to

Y
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use classic techniques to solve for H because n solutions may be obtained for an n'*-order sur-
face patch. Instead, we find a solution y = H,(0) for the first horizontal scanline. Since we are
assuming smooth surface patches, the next adjacent scanline can be expected to lie in the vicin-
ity. The Newton-Raphson iteration method can be used to solve for Hy(1) using the solution
from H,(0) as a first approximation (starting value). This exploits the spatial coherence of sur-
face elements to solve the inverse problem at hand.

The complexity of this problem can be reduced at the expense of additional memory. The
need to evaluate H can be avoided altogether if we make use of earlier computations. Recall that
the values of u that we now need in the second pass were already computed in the first pass.
Thus, by introducing an auxiliary framebuffer to store these u’s, H becomes available by trivial
lookup table access.

In practice, there may be many «’s mapping onto the unit interval between x and x+1.
Since we are only interested in the inverse projection of integer values of x, we compute x for a
dense set of equally spaced u’s. When the integer values of two successive x’s differ, we take
one of the two following approaches.

1) Iterate on the interval of their projections u; and u; 4, until the computed x is an integer.
2) Approximate u by u = u; +a (u;+; —u;) where a = x - x;.

The computed u is then stored in the auxiliary framebuffer at location x.

7.2.2. Fraser, Schowengerdt, and Briggs, 1985

Fraser, Schowengerdt, and Briggs demonstrate the 2-pass approach for geometric correc-
tion applications [Fraser 85]. They address the problem of accessing data along vertical scan-
lines. This issue becomes significant when processing large multichannel images such as
Landsat multispectral data. Accessing pixels along columns can be inefficient and can lead to
major performance degradation if the image cannot be entirely stored in main memory. Note
that paging will also contribute to excessive time delays. Consequently, the intermediate image
should be transposed, making rows become columns and columns become rows. This allows the
second pass to operate along easily accessible rows.

A fast transposition algorithm is introduced that operates directly on a multichannel image,
manipulating the data by a general 3-D permutation. The three dimensions include the row,
column, and channel indices. The transposition algorithm uses a bit-reversed indexing scheme
akin to that used in the Fast Fourier Transform (FFT) algorithm. Transposition is executed ‘‘in
place.”” with no temporary buffers, by interchanging all elements having corresponding bit-
reversed index pairs.
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7.2.3. Fant, 1986

The central benefit of separable algorithms is the reduction in complexity of 1-D resam-
pling algorithms. When the input is restricted to be one-dimensional, efficient solutions are
made possible for the image reconstruction and antialiasing components of resampling. Fant
presents a detailed description of such an algorithm that is well-suited for hardware implementa-
tion [Fant 86].

The process treats the input and output as streams of pixels that are consumed and gen-
erated at rates determined by the spatial mapping. The input is assumed to be mapped onto the
output along a single direction, i.e., with no folds. As each input pixel arrives, it is weighted by
its partial contribution to the current output pixel and integrated into an accumulator. In terms of
the input and output streams, one of three conditions is possible:

1)  The current input pixel is entirely consumed without completing an output pixel.
2) The input is entirely consumed while completing the output pixel.

3) The output pixel will be completed without entirely consuming the current input pixel. In
this case, a new input value is interpolated from the neighboring input pixels at the position
where the input was no longer consumed. It is used as the next element in the input stream.

If conditions (2) or (3) apply, the output computation is complete and the accumulator
value is stored into the output array. The accumulator is then reset to zero in order to receive
new input contributions for the next output pixel. Since the input is unidirectional, a one-
element accumulator is sufficient. The process continues to cycle until the entire input stream is
consumed.

The algorithm described in [Fant 86] is the principal 1-D resampling method used in separ-
able transformations. It is demonstrated in the example below. Consider the input arrays shown
in Fig. 7.2. The first array specifies the values of F,(u) for u=0, 1,...,4. These represent new x-
coordinates for their respective input pixels. For instance, the leftmost pixel will start at x =.6
and terminate at x=2.3. The next input pixel begins to influence the output at x =2.3 and
proceeds until x =3.2. This continues until the last input pixel is consumed, filling the output
between x =3.3 and x =3.9.

The second array specifies the distribution range that each input pixel assumes in the out-
put. It is simply the difference between adjacent coordinates. Note that this requires the first
array to have an additional element to define the length of the last input pixel. Large values
correspond to stretching, and small values reflect compression. They determine the rate at
which input is consumed to generate the output stream.

The input intensity values are given in the third array. Their contributions to the output
stream is marked by connecting segments. The output values are labeled A ; through A3 and are
defined below. For clarity, the following notation is used: interpolated input values are written
within square brackets ([]), weights denoting contributions to output pixels are written within an
extra level of parentheses, and input intensity values are printed in boldface.
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Fo(u) 61 23(32]33]39

AF,w) | 17| 9| 1| 6

Input | 100 | 106| 92 | 90
) v B

Output Agl Ay Ajl Aj

Figure 7.2: Resampling example.

Ag = (100)((:4)) =40
[ [ 4] (4]
A1 = |00 151 109 1.7]- (1)) = 101
[ 14] [ 14]]
Az = | (100)] 1-754 +(106) 77] ((3)) + (106) (7)) = 106
As = | (106) 1-% +(92)[%” ((2)) + (92) (1)) + (96) ((.6)) = 82

The algorithm demonstrates both image reconstruction and antialiasing. When we are not
positioned at pixel boundaries in the input stream, linear interpolation is used to reconstruct the
discrete input. When more than one input element contributes to an output pixel, the weighted
results are integrated in an accumulator to achieve antialiasing. These two cases are both
represented in the above equadons, as denoted by the expressions between square brackets and
double parentheses, respectively.

7.2.4. Smith, 1987

The 2-pass algorithm has been shown to apply to a wide class of transformations of general
interest. These mappings include the perspective projection of rectangles, bivariate patches, and
superquadrics. Smith has discussed them in detail in [Smith 87].

The paper emphasizes the mathematical consequence of decomposing mapping functions X
and Y into a sequence of F followed by G. Smith distinguishes X and Y as the parallel warp, and
F and G as the serial warp, where warp refers to resampling. He shows that an n**-order serial
warp is equivalent to an (n?% +n)*-order parallel warp. This higher-order polynomial mapping is
quite different in form from the parallel polynomial warp. Smith also proves that the serial
equivalent of a parallel warp is generally more complicated than a polynomial warp. This is due
to the fact that the solution to H is typically not a polynomial.
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7.3. ROTATION

The earliest separable geometric techniques can be traced back to the application of image
rotation. Several of these algorithms are reviewed below.

7.3.1. Braccini and Marino, 1980

Braccini and Marino use a variant of the Bresenham line-drawing algorithm to rotate and
shear images [Braccini 80]. While this does not qualify as a separable technique, it is included
here because it is similar in spirit. In particular, the algorithm demonstrates the decomposition
of the rotation matrix into simpler operations which can be efficiently computed.

Consider a straight line with slope n/m, where n and m are both integers. The line is
rotated by an angle  from the horizontal. The expressions for cos@ and sinf can be given in
terms of n and m as follows:

m

cos = ———— (7.9)
\J(nz + mz)
sin® = —_Zn_z_
\/(n +m*°)
These terms can be substituted into the rotation matrix R to yield
_ | cos® sin6
R = [—sin(—) cose] (7.10)

=_m—[ 1 n/m]
m —(n/im) 1

The matrix in Eq. (7.10) is equivalent to generating a digital line with slope n/m, an opera-
tion conveniently implemented by the Bresenham line-drawing algorithm [Foley 82]. The scale
factor that is applied to the matrix amounts to resampling the input pixels, an operation which
can be formulated in terms of the Bresenham algorithm as well. This is evident by noting that
the distribution of n input pixels onto m output pixels is equivalent to drawing a line with slope
n/m. The primary advantage of this formulation is that it exploits the computational benefits of
the Bresenham algorithm: an incremental technique using only simple integer arithmetic compu-
tations.

The rotation algorithm is thereby implemented by depositing the input pixels along a digital
line. Both the position of points along the line and the resampling of the input array are deter-
mined using the Bresenham algorithm. Due to the inherent jaggedness of digital lines, holes
may appear between adjacent lines. Therefore, an extra pixel is drawn at each bend in the line to
fill any gap that may otherwise be present. Clearly, this is a crude attempt to avoid holes, a
problem inherent in this forward mapping approach.

The above procedure has been used for rotation and scale changes. It has been generalized
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into a 2-pass technique to realize all affine transformations. This is achieved by using different
angles and scale factors along each of the two image axes. Further nonlinear extensions are pos-
sible if the parameters are allowed to vary depending upon spatial position, e.g., space-variant

mapping.

7.3.2. Weiman, 1980

Weiman describes a rotation algorithm based on cascading simpler 1-D scale and shear
operations [Weiman 80]. These transformations are determined by decomposing the rotation
matrix R into four submatrices.

_ | cosB sinB
R = [—sinG cose] (7.11)

1 tan@ 1 ol |1 O 1/cosB O
0 1 —sinBcosB 1| [0 cosO 0 1

This formulation represents a separable algorithm in which 1-D scaling and shearing are
performed along both image axes. As in the Braccini-Marino algorithm, an efficient line-
drawing algorithm is used to resample the input pixels and perform shearing. Instead of using
the incremental Bresenham algorithm, Weiman uses a periodic code algorithm devised by Roth-
stein. By averaging over all possible cyclic shifts in the code, the transformed image is shown to
be properly filtered. In this respect, the Weiman algorithm is superior to that in [Braccini 80].

7.3.3. Paeth, 1986 / Tanaka, et. al., 1986

The most significant algorithm to be proposed for image rotation was proposed indepen-
dently in (Paeth 86] and [Tanaka 86). They demonstrate that rotation can be implemented by
cascading three shear transformations.

_ | cosB sin®
R = [—sine cose] (7.12)

= [—tan%G/Z) (1)] [(1) Si?e] [—tan}9/2) (1)]

The algorithm first skews the image along the horizontal direction by displacing each row.
The result is then skewed along the vertical direction. Finally, an additional skew in the hor-
izontal direction yields the rotated image. This sequence is illustrated in Fig. 7.3.

The primary advantage to the 3-pass shear transformation algorithm is that it avoids a
costly scale operation. In this manner, it differs significantly from the 2-pass Catmull-Smith
algorithm which combined scaling and shearing in each pass, and the 4-pass Weiman algorithm
which further decomposed the scale/shear sequence. By not introducing a scale operation, the
algorithm avoids complications in sampling, filtering, and the associated degradations. Note, for
instance, that this method is not susceptible to the bottleneck problem.
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Figure 7.3: 3-pass shear transformation algorithm.

Simplificatons are based in the particularly efficient means available to realize a shear
ransformation. The skewed output is the result of displacing each scanline differently. The dis-
placement is generally not integral, but remains constant for all pixels on a given scanline. This
allows intersection testing to be computed once for each scanline, noting that each input pixel
can overlap at most two output pixels in the skewed image. The result is used to weigh each
input intensity as it contributes to the output. Since the filter support is limited to two pixels, a
simple box filter is adequate. Furthermore, the sum of the pixel intensities along any scanline
can be shown to remain unchanged after the shear operation. Thus, the algorithm produces no



- 86 -

visible spatial-variant artifacts or holes. Finally, images on bitmap displays can be rotated using
conventional hardware supporting bitblt, the bit block transfer operation useful for rznslations.

7.4. MORE SEPARABLE MAPPINGS

Additional separable geometric transformations are described in this section. They rely on
the simplifications of 1-D processing to perform perspective projections, mappings among arbi-
trary planar shapes, and spatial lookup tables.

7.4.1. Perspective Projection: Robertson, 1987

The perspective projection of 3-D surfaces has been shown to be reducible into a series of
fast 1-D resampling operations [Robertson 87]. In the traditional approach, this task has proved
to be computationally expensive due to the problems in determining visibility and performing
hidden-point removal. With the introduction of this algorithm, the problem can be decomposed
into efficient separable components that can each be implemented at rates approaching real-time.

The procedure begins by rotating the image into alignment with the frontal (nearest) edge
of the viewing window. Each horizontal scanline is then compressed so that all pixels which lie
in a line of sight from the viewpoint are aligned into columns in the intermediate image. That is,
each resulting column comprises a line of sight between the viewpoint and the surface.

Occlusion of a pixel can now only be due to another pixel in that column that lies closer to
the viewer. This simplifies the perspective projection and hidden-pixel removal stages. These
operations are performed along the vertical scanlines. By processing each column in back-to-
front order, hidden-pixel removal is executed trivially.

Finally, the intermediate image undergoes a horizontal pass to apply the horizontal projec-
tion. This pass is complicated by the need to invert the previously applied horizontal compres-
sion. The difficulty arises since the image has already undergone hidden-pixel removal. Conse-
quently, it is not directly known which surface point has been mapped to the current projected
point. This can be uniquely determined only after additional calculations. The resulting image
is the perspective transformation of the input, performed at rates which make real-time interac-
tive manipulation possible.

7.4.2. Warping Among Arbitrary Planar Shapes: Wolberg, 1988

The advantages of 1-D resampling have been exploited for use in warping images among
arbitrary planar shapes [Wolberg 88a]. The algorithm addresses the following inadequately
solved problem: mapping between two images which are delimited by arbitrary, closed, planar,
curves, e.g., hand-drawn curves.

Unlike many other problems treated in image processing or computer graphics, the stretch-
ing of an arbitrary shape onto another, and the associated mapping, is a problem not addressed in
a tractable fashion in the literature. The lack of attention to this class of problems can be easily
explained. In image processing, there is a well-defined 2-D rectilinear coordinate system.
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Correcting for distortions amounts to mapping the four corners of a nonrectangular patch onto
the four corners of a rectangular patch. In computer graphics, a parameterization exists for the
2-D image, the 3-D object, and the 2-D screen. Consequently, warping amounts to a change of
coordinate system (2-D to 3-D) followed by a projection onto the 2-D screen. The problems
considered in this work fail to meet the above properties. They are neither parameterized nor are
they well suited for four-corner mapping.

The algorithm treats an image as a collection of interior layers. Informally, the layers are
extracted in a manner similar to peeling an onion. A radial path emanates from each boundary
point, crossing interior layers until the innermost layer, the skeleton, is reached. Assuming
correspondences may be established between the boundary points of the source and target
images, the warping problem is reduced to mapping between radial paths in both images. Note
that the layers and the radial paths actually comprise a sampling grid.

This algorithm uses a generalization of polar coordinates. The extension lies in that radial
paths are not restricted to terminate at a single point. Rather, a fully connected skeleton obtained
from a thinning operation may serve as terminators of radial paths directed from the boundary.
This permits the processing of arbitrary shapes.

The 1-D resampling operations are introduced in three stages. First, the radial paths in the
source image must be resampled so that they all take on the same length. Then these normalized
lists, which comprise the columns in our intermediate image, are resampled in the horizontal
direction. This serves to put them in direct comrespondence to their counterparts in the target
image. Finally, each column is resampled to lengths that match those of the radial paths in the
target image. In general, these lengths will vary due to asymmetric image boundaries.

The final image is generated by wrapping the resampled radial paths onto the target shape.
This procedure is identical to the previous peeling operation except that values are now depo-
sited onto the traversed pixels.

7.4.3. Spatial Lookup Tables: Wolberg and Boult, 1988

Sampling an arbitrary forward mapping function yields a 2-D spatial lookup table. This
specifies the output coordinates for all input pixels. A separable technique to implement this
utility is of great practical importance. The chief complications arise from the bottleneck and
foldover problems described earlier. These difficulties are addressed in [Wolberg 88c].

Wolberg and Boult propose a 2-pass algorithm akin to that in [Catmull 80], with additional
memory and data structures introduced to guard against the bottleneck and foldover problems.
The solution lies in careful implementation of function F. Rather than blindly calculating the
intermediate image without regard for any possible many-to-one mappings, the filter that is used
to perform antialiasing also determines when aliasing is present. While integrating pixels into a
single-element accumulator array, their y-coordinates are inspected. If they do not all lie within
a single pixel in the final image, then the bottleneck problem is present. This is an accurate
measure of bottleneck superior to that in [Catmull 80]. For instance, they suggest that the area
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of the intermediate image be used to detect bottleneck problems. This, however, is a global
measure which may fail to highlight severe compression in local areas. Althonugh this proves to
be satisfactory for mappings onto low-order surface patches, it is inadequate for arbitrary map-
pings.

The points subjected to the bottleneck are stored in a list and their processing is deferred
until the second pass. Thus, the intermediate image actually consists of a combination of prop-
erly filtered pixels and pointers to lists of pixels. The second pass then processes this data along
vertical scanlines. This approach is shown to resolve the foldover problem as well.

7.5. DISCUSSION

Scanline algorithms all share a common theme: simple interpolation, antialiasing, and data
access are made possible when operating along a single dimension. Using a 2-pass transform as
an example, the first pass represents a forward mapping. Since the data is assumed to be uni-
directional, a single-element accumulator is sufficient for filtering purposes. This is in contrast
to a full 2-D accumulator array for standard forward mappings. The second pass is actually a
hybrid mapping function, requiring an inverse mapping to allow a new forward mapping to
proceed. Namely, auxiliary function H must be solved before G, the second-pass forward map-
ping, can be evaluated.

A benefit of this approach is that clipping along one dimension is possible. For instance,
there is no need to compute H for a particular column that is known in advance to be clipped.
This results in some timesavings. The principal difficulty, however, is the bottleneck problem
which exists as a form of aliasing. This is avoided in some applications, such as rotation, where
it has been shown that no scaling is necessary in any of the 1-D passes. More generally, special
attention must be provided to counteract this degradation. This has been demonstrated for the
case of arbitrary spatial lookup tables.
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8. SUMMARY

Geometric transformation techniques for digital images are a subject of widespread interest.
They are of practical importance to the remote sensing, medical imaging, computer vision, and
computer graphics communities. Typical applications can be grouped into two classes:
geometric correction and geometric distortion. Geometric correction refers to distortion com-
pensation of imaging sensors, decalibration, and geometric normalization. It is applied to
remote sensing, medical imaging, and computer vision. Geometric distortion refers to texture
mapping, a powerful computer graphics tool for realistic image synthesis.

All geometric transformations have three principal components: spatial transformation,
image resampling, and antialiasing. They have each received considerable attention. However,
due to domain-dependent assumptions and constraints, they have rarely received uniform treat-
ment. For instance, in remote sensing work where there is usually no severe scale change, image
reconstruction is more sophisticated than antialiasing. However, in computer graphics where
there is often more dramatic image compression, antialiasing plays a more significant role. This
has served to obscure the single underlying set of principles that govern all geometric transfor-
mations for digital images. The goal of this paper has been to survey the numerous contributions
to this field, with special emphasis given to the presentation of a single coherent framework.

Various formulations of spatial transformations have been reviewed, including affine and
perspective mappings, polynomial transformations, piecewise polynomial transformations, and
four-corner mapping. The role of these mapping functions in geometric correction and
geometric distortion was discussed. For instance, polynomial transformations were introduced
to extend the class of mappings beyond affine transformations. Thus, in addition to performing
the common translate, scale, rotate, and shear operations, it is possible to invert pincushion and
barrel distortions. For more local control, piecewise polynomial transformations are widespread.
It was shown that by establishing several correspondence points, an entire mapping function can
be generated through the use of local interpolants. This is actually a surface reconstruction prob-
lem. There continues to be a great deal of activity in this area as evidenced by recent papers on
multigrid relaxation algorithms to iteratively propagate constraints throughout the surface. Con-
sequently, the tools of this field of mathematics can be applied directly to spatial transforma-
tions.

Image resampling has been shown to primarily consist of image reconstruction, an interpo-
lation process. Various interpolation methods have been reviewed, including the (truncated) sinc
function, nearest neighbor, linear interpolation, cubic convolution, 2-parameter cubic filters, and
cubic splines. By analyzing the responses of their filter kernels in the frequency domain, a com-
parison of interpolation methods was presented. In particular, the quality of interpolation is
assessed by examining the performance of the interpolation kernel in the passbands and stop-
bands. A review of sampling theory has been included to provide the necessary background for
a comprehensive understanding of image resampling and antialiasing.

Antialiasing has recently attracted much attention in the computer graphics community.
The earliest antialiasing algorithms were restrictive in terms of the preimage shape and filter
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kernel that they supported. For example, box filtering over rectangular preimages were com-
mon. Later developments obtained major performance gains by retaining these restrictions but
permitting the number of computations to be independent of the preimage area. Subsequent
improvements offered fewer restrictions at lower cost. In these instances the preimage areas
were extended to ellipses and the filter kernels, now stored in lookup tables, were allowed to be
arbitrary. The design of efficient filters that operate over an arbitrary input area and accommo-
date arbitrary filter kernels remains a great challenge.

Development of superior filters used another line of attack: advanced sampling strategies.
They include supersampling, adaptive sampling, and stochastic sampling. These techniques
draw upon recent results on perception and the human visual system. The suggested sampling
patterns that are derived from the blue noise criteria offer promising results. Their critics, how-
ever, point to the excessive sampling densities required to reduce noise levels to unobjectionable
limits. Determining minimum sampling densities which satisfy some subjective criteria requires
additional work.

The final section has discussed various separable algorithms introduced to obtain large per-
formance gains. These algorithms have been shown to apply over a wide range of transforma-
tions, including perspective projection of rectangles, bivariate patches, and superquadrics.
Hardware products, such as the Ampex ADO and Quantel Mirage, are based on these techniques
to produce real-time video effects for the television industry. Recent progress has been made in
scanline algorithms that avoid the bottleneck problem, a degradation that is particular to the
separable method. These modifications have been demonstrated on the special case of rotation
and the arbitrary case of spatial lookup tables.

Despite the relatively short history of geometric transformation techniques for digital
images, a great deal of progress has been made. This has been accelerated within the last decade
through the proliferation of fast and cost-effective digital hardware. Algorithms which were too
costly to consider in the early development of this area, are either commonplace or are receiving
increased attention. Future work in the areas of reconstruction and antialiasing will most likely
integrate models of the human visual system to achieve higher quality images. This has been
demonstrated in a recent study of a family of filters defined by piecewise cubic polynomials, as
well as recent work in stochastic sampling. Related problems that deserve attention include new
adaptive filtering techniques, irregular sampling algorithms, and reconstruction from irregular
samples. In addition, work remains to be done on efficient separable schemes to integrate
sophisticated reconstruction and antialiasing filters into a system supporting more general spatial
transformations. This is likely to have great impact on the various diverse communities which
have contributed to this broad area.
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