FAST FOURIER TRANSFORMS: A REVIEW
George Wolberg

Department of Computer Science
Columbia University
New York, NY 10027
wolberg@cs.columbia.edu

September 1988
Technical Report CUCS-388-88

ABSTRACT

The purpose of this paper is to provide a detailed review of the Fast Fourier Transform.
Some familiarity with the basic concepts of the Fourier Transform is assumed. The review
begins with a definition of the discrete Fourier Transform (DFT) in section 1. Directly evaluat-
ing the DFT is demonstrated there to be an O (N 2y process.

The efficient approach for evaluating the DFT is through the use of FFT algorithms. Their
existence became generally known in the mid-1960s, stemming from the work of J.W. Cooley
and J.W. Tukey. Although they pioneered new FFT algorithms, the original work was actually
discovered over 20 years earlier by Danielson and Lanczos. Their formulaton, known as the
Danielson-Lanczos Lemma, is derived in section 2. Their recursive solution is shown to reduce
the computational complexity to O (N logz N).

A modification of that method, the Cooley-Tukey algorithm, is given in section 3. Yet
another variation, the Cooley-Sande algorithm, is described in section 4. These last two tech-
niques are also known in the literature as the decimation-in-time and decimation-in-frequency
algorithms, respectively. Finally, source code, written in C, is provided in the appendix.

1. DISCRETE FOURIER TRANSFORM

Consider an input function f (¢) sampled at discrete time intervals. This yields a list of
numbers, fi, where 0 <k SN-1. For generality, the input samples are taken to be complex
numbers, i.e., having real and imaginary components. The discrete Fourier Transform of fis
defined as

N-1 . .
Fo, = Y fie 2minkiN 0<n<N-1 (1a)
k=0
1 NI 2minkIN
k=0

Equations (1a) and (1b) define the forward and inverse DFTs, respectively. Since both DFTs
share the same cost of computation, we shall confine our discussion to the forward DFT, and
refer to it only as the DFT.

The DFT serves to map the N input samples of finto the N frequency terms in F. From Eq.
(1a), we see that each of the N frequency terms are computed by a linear combination of the N
input samples. Therefore, the total computation requires N 2 complex multiplications and
N(N -1) complex additions. The straightforward computation of the DFT thereby gives rise to
an O (N?) process. This can be seen more readily if we rewrite Eq. (1a) as

N-1
F,=Y fiw™ 0<n<N-1)
k=0
where
W = e ZIN cos(=2n/N) + isin(-2nt/N) 3)

For reasons described later, we assume that
N =2
where r is a positive integer. That is, N is a power of 2.

Equation (2) casts the DFT as a matrix multiplication between the input vector f and the
two-dimensional array composed of powers of W. The entries in the 2-D array, indexed by n and
k, represent the N equally spaced values along a sinusoid at each of the N frequencies. Since
straightforward matrix multiplication is an O (¥ 2y process, the computational complexity of the
DFT is bounded from above by this limit.

In the next section, we show how the DFT may be computed in O (N log, N) operations
with the Fast Fourier Transform (FFT), as originally derived over forty years ago. By properly
decomposing Eq. (1a), the reduction in proportionality from N2 to N log, N multiply/add opera-
tions represents a significant saving in computation effort, particularly when N is large.

2. DANIELSON-LANCZOS LEMMA

In 1942, Danielson and Lanczos derived a recursive solution for the DFT. They showed
that a DFT of length N " can be rewritten as the sum of two DFTs, each of length N/2, where N
is an integer power of 2. The first DFT makes use of the even-numbered points of the original
N; the second uses the odd-numbered points. The following proof is offered.
N-1 .
Fo= % foe mnkiN 4)
k=0
(N12)-1 . Ni2)-1 .
Z f2ke—27€m(2k)/N + Z f2k+l e—21tm(2k+1)/~ (5)
k=0 k=0
(N%)_l kae—?Jtink/(N/2) + Wn(N%)-l f2k+l e—2m'nlcl(N/2) (6)
k=0 k=0

= FS + W'F3 W)

Equation (4) restates the original definition of the DFT. The summation is expressed in Eq.
(5) as two smaller summations consisting of the even- and odd-numbered terms, respectively. In
order to properly access the data, the index is changed from k to 2k and 2k+1, and the upper
limit becomes (N/2)—1. These changes to the indexing variable and its upper limit gives rise to
Eq. (6), where both sums are expressed in a form equivalent to a DFT of length N/2. The nota-
tion is simplified further in Eq. (7). There, F¢ denotes the n”* component of the Fourier
Transform of length N/2 formed from the even components of the original f, while F¢ is the
corresponding transform derived from the odd components.

The expression given in Eq. (7) is the central idea of the Danielson-Lanczos Lemma and
the decimation-in-time FFT algorithm described later. It presents a divide-and-conquer solution
to the problem. In this manner, solving a problem (F,) is reduced to solving two smaller sub-
problems (F7 and F7). However, a closer look at the two sums, F§ and F3, illustrates a poten-
tially roublesome deviation from the original definition of the DFT: N/2 points of f are used to
generate N points. (Recall that n in F§ and F¥ is still made to vary from 0 to N-1). Since each
of the subproblems appears to be no smaller than the original problem, this would thereby seem
to be a wasteful approach. Fortunately, there exists symmetries which we exploit to reduce the
computational complexity.

The first simplification is found by observing that F, is periodic in the length of the
transform. That is, given a DFT of length N, F, .y = F,. The proof is given below.

+ This is also known as an N-point DFT.

N-1 .
Fn+N — z fke—Zm(n+N)k/N (8)
k=0

NE'I £, e-2minkiN =2NKIN

k=0

Nil fe o ~2minkIN
k=0

= F,

In the second line of Eq. (8), the last exponential term drops out because the exponent
—2miNk/N is simply an integer multiple of 27t and e~2mk = 1. Relating this result to Eq. (7), we
note that F¢ and F¢ have period N/2. Thus,

Feona = F¢ 0<n<NI2 ©)
Founpa =F2 0<n<NI2

This permits the N/2 values of F§; and F7, to trivially generate the N numbers needed for F,.

A similar simplification exists for the W” factor in Eq. (7). Since W has period N, the first
N/2 values can be used to trivially generate the remaining N/2 values by the following relation.

cos(Qr/N)(n+N/2)) = —cos(2rn/N) 0<n<N/2 10)
sin(Qr/N)(n+N/2)) = —sin(2rn/N) 0<n<N/2
Therefore,
wreNiZ = _wn 0<n <N/2 ©(11)

Summarizing the above results, we have

F, = FE+W"F¢ 0<n<N/2 (12)
Fong = FE-W'FS 0<n<NI2

where N is an integer power of 2.

2.1. Butterfly Flow Graph

Equation (12) can be represented by the busrerfly flow graph of Fig. l1a, where the minus
sign in +W" arises in the computation of F,,,y,2. The terms along the branches represent multi-
plicative factors applied to the input nodes. The intersecting node denotes a summation. For
convenience, this flow graph is represented by the simplified diagram of Fig. 1b. Note that a
butterfly performs only one complex multiplication (W"F3). This product is used in Eq. (12) to
yield F,, and F, /2.

Fning Fp Frini2
(a) (b)
Figure 1: (a) Butterfly flow graph; (b) Simplified diagram
The expansion of a butterfly flow graph in terms of the computed real and imaginary terms

is given below. For notational convenience, the real and imaginary components of a complex
number are denoted by the subscripts r and i, respectively. We define the following variables.

g = Fj
h = F?
w, = cos(-2nn/N)
w; = sin(-2nn/N)
Expanding F,, we have
F,=g+W"h (13)

[gr +ig] + [w, +iw;] (A, + ih;)
= [g, +igi]l + (w,h, — wih; + iw.h; + iw;h,]
= (g, +w,h, —wih;] +i[g; +w,h; +w;h,]
The real and imaginary components of W"h are thus w,h, — w;h; and w,h; + w;h,, respectively.

These terms are isolated in the computation so that they may be subtracted from g, and g; to
yield F, .n,2 without any additional transform evaluations.

2.2. Putting It All Together

The recursive formulation of the Danielson-Lanczos Lemma is demonstrated in the follow-
ing example. Consider list f of 8 complex numbers labeled fo through f7 in Fig. 2. In order to
reassign the list entries with the Fourier coefficients F,, we must evaluate Fy and F;. As a
result, two new lists are created containing the even and odd components of f. The e and o
labels along the branches denote the path of even and odd components, respectively. Applying
the same procedure to the newly created lists, successive halving is performed until the lowest
level is reached, leaving only one element per list. The result of this recursive subdivision is
shown in Fig. 2.

fo f1 f2 f3 fa fs fe f1

e 0
fo| fa| fa fs fv] 3| fs| fi
e 0 e 0
fo | fa fa | fe fi| fs 1 f
e 0 e 0 e 0 e 0

fo fa f2 fs h fs f3 fa

eee €eo eoe €00 oee 0éo 00é 000

Figure 2: Recursive subdivision into even- and odd-indexed lists.

At this point, we may begin working our way back up the tree, building up the coefficients
using the Danielson-Lanczos Lemma given in Eq. (12). Figure 3 depicts this process using but-
terfly flow graphs to specify the necessary complex additions and multiplications. Note that
bold lines are used to delimit lists in the figure. Beginning with the 1-element lists, the 1-point
DFTs are evaluated first. Since a 1-point DFT is simply an identity operation that copies its one
input number into its one output slot, the 1-element lists remain the same.

The 2-point transforms now make use of the 1-point transform results. Next, the 4-point
transforms build upon the 2-point results. In this case, N is 4, and the exponent of W is made to
vary from O to (N/2)-1, or 1. In Fig. 3, all butterfly flow graphs assume an N of 8 for the W fac-
tor. Therefore, the listed numbers are normalized accordingly. For the 4-point transform, the

-7-

exponents of 0 and 1 (assuming an N of 4) become 0 and 2 to compensate for the implied N
value of 8. Finally, the last step is the evaluation of an 8-point transform. In general, we com-
bine adjacent pairs of 1-point ransforms to get 2-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of the whole data
set are combined into the final transform.

LT

afiafia

l

Fo|l| Fy| Fo| F3| F4| Fs| Fs| F;

Figure 3: Application of the Danielson-Lanczos Lemma.

2.3. Recursive FFT Algorithm

The Danielson-Lanczos Lemma provides an easily programmable method for the DFT
computation. It is encapsulated in Eq. (12) and presented in the FFT procedure given below.

Procedure FFT(N,f)
1. If N equals 2, then do
Begin
2. Replace fo by fo + f1 and fy by fo - f1.
3. Return
End
4. Else do:
Begin
S. Define g as a list consisting of all points of f which have an even index
and h as a list containing the remaining odd points.
6. Call FFT(N/2, g)
7. Call FFT(N/2, h)
8. Replace f, by g, + W"h, forn=0to N-1.
End
End

The above procedure is invoked with two arguments: N and f. N is the number of points
being passed in array f. As long as N is greater than 2, f is split into two halves g and h. Array g
stores those points of fhaving an even index, while A stores the odd-indexed points. The Fourier
Transforms of these two lists are then computed by invoking the FFT procedure on g and 4 with
length N/2. The FFT program will overwrite the contents of the lists with their DFT results.
They are then combined in line 8 according to Eq. (7).

The successive halving proceeds until N is equal to 2. At that point, as observed in Fig. 3,
the exponent of W is fixed at 0. Since WY is 1, there is no need to perform the multiplication and
the results may be determined directly (line 2).

Returning to line 8, the timesavings there arises from using the N/2 available elements in g
and A to generate the N numbers required. This is a realization of Eq. (12), with the real and
imaginary terms given in Eq. (13). The following segment of C code implements line 8 in the
above algorithm. Note that all variables are of type double.

-9.

ang =0; I initialize angle */
inc =-6.2831853/N; [* angle increment: 2rt/N */
N2 =N/2;
for(n=0; Nn<N2; n++) {
w, = cos(ang); /* realpartot W" */
w; = sin(ang); /* imaginary part of W" */
ang += inc; * next angle in W" */

a=w,"h,[n]—wy, h,[n]; 7 real partof W"h (Eq. 13) */
£ nl = g,[n] + a; /" Danielson-Lanczos Lemma (Eq. 12) */

fr[n+N2] = g,[n] - a;

a=w;*h[n)+w,*h;[n]; 7/ imaginary partof W"h (Eq. 13) */
filn] = g;[n] + a; r* Danielson-Lanczos Lemma (Eq. 12) */
filn+N2] = g;[n] - a:

2.4. Cost of Computation

The Danielson-Lanczos Lemma, as given in Eq. (12), can be used to calculate the cost of
the computation. Let C (N) be the cost for evaluating the transform of N points. Combining the
transforms of N points in Eq. (12) requires effort proportional to N because of the multiplication
of the terms by W" and the subsequent addition. If c is a constant reflecting the cost of such

operations, then we have the following result for C (V).

CN) = 20(%)”1\/ (14)

This yields a recurrence relation which is known to result into an O (N log N) process. Viewed
another way, since there are logy N levels to the recursion, and cost O (N) at each level, the total

cost is O (N logy N).

-10 -

3. COOLEY-TUKEY ALGORITHM

The Danielson-Lanczos Lemma presented a recursive solution to computing the Fourier
Transform. The role of the recursion is to subdivide the original input into smaller lists which
are eventually combined according to the lemma. The starting point of the computation thus
begins with the adjacent pairing of 1-point DFTs. In the preceding discussion, their order was
determined by the recursive subdivision. An alternate method is available to determine their
order directly, without the need for the recursive algorithm given above. This result is known as
the Cooley —Tukey, or decimation-in-time algorithm.

To describe the method, we define the following notation. Let F be the list of even-
indexed terms taken from F¢. Similarly, F € is the list of odd-indexed terms taken from F¢. In
general, the string of symbols in the superscript specifies the path traversed in the tree represent-
ing the recursive subdivision of the input data (Fig. 2). Note that the height of the tree is logy N
and that all leaves denote 1-point DFTs which are actually elements from the input numbers.
Thus, for every pattern of e’s and o0’s, numbering log, N in all,

Feoceoco0ee — f for some n (14)

The problem is now to directly find which value of n corresponds to which pattern of e’s
and o’s in Eq. (14). The solution is surprisingly simple: reverse the pattern of e’s and o’s, then
let e =0 and o0 =1, and the resulting binary string denotes the value of n. This works because
the successive subdivisions of the data into even and odd are tests of successive low-order (least
significant) bits of n. Examining Fig. 2, we observe that traversing successive levels of the tree
along the e and o branches corresponds to successively scanning the binary value of index n
from the least significant to the most significant bit. The strings appearing under the bottom row
designates the traversed path.

The procedure is summarized in Table 1 for N = 8. There we see the binary indices listed
next to the corresponding array elements. The first subdivision of the data into even- and odd-
indexed elements amounts to testing the least significant (rightmost) bit. If that bit is 0, an even
index is implied; a 1 bit designates an odd index. Subsequent subdivisions apply the same bit
tests to successive index bits of higher significance. Observe that in Fig. 2, even-indexed lists
move down the left branches of the tree. Therefore, the order in which the leaves appear from
left to right indicate the sequence of 1s and Os seen in the index while scanning in reverse order,
from least to most significant bits.

S 11 -

Original Index | Original Array | Bit-reversed Index | Reordered Array
000 fo 000 fo
001 N 100 fa
010 f2 010 f2
011 f3 110 fs
100 fa 001 i
101 fs 101 fs
110 e 011 f3
111 f7 111 f1

Table 1: Bit-reversal and array reordering for input into FFT algorithm.

The distinction between the Cooley-Tukey algorithm and the Danielson-Lanczos Lemma is
subtle. In the latter, a recursive procedure is introduced in which to compute the DFT. This pro-
cedure is responsible for decimating the input signal into a sequence which is then combined,
during the traversal back up the tree, to yield the transform output. In the Cooley-Tukey algo-
rithm, though, the recursion is unnecessary since a clever bit-reversal trick is introduced to
achieve the same disordered input. Furthermore, directly reordering the input in this way simpli-
fies the bookkeeping necessary in recombining terms. Source code for the Cooley-Tukey FFT
algorithm, written in C, is provided in the appendix.

3.1. Computational Cost

The computation effort for evaluating the FFT is easily determined from this formulation.
First, we observe that there are log, N levels of recursion necessary in computing F,. At each
level, there are N/2 butterflies to compute the F§, and F§ terms (see Fig. 3). Since each butterfly
requires one complex multplication and two complex additions, the total number of multiplica-
tions and additions is (N/2)loga N and N log; N, respectively. This O (N logy N) process
represents a considerable saving in computation over the O (N) approach of direct evaluation.
For example if N 2512, the number of multiplications is reduced to a fraction of 1 percent of
that required by direct evaluation.

4. COOLEY-SANDE ALGORITHM

In the Cooley-Tukey algorithm, the given data sequence is reordered according to a bit-
reversal scheme before it is recombined to yield the transform output. The reordering is a conse-
quence of the Danielson-Lanczos Lemma that calls for a recursive subdivision into a sequence of
even- and odd-indexed elements.

The Cooley-Sande FFT algorithm, also known as the decimation-in-frequency algorithm,
calls for recursively splitting the given sequence about its midpoint, N/2.

N-1 .
Fo= 3 fie mmW (15)
k=0
N/2)-1 . N-1 .
— z fk e—Zmnk/N + Z fk e-—Zmn.k/N
k=0 k=NI2
NI2-1 . iNI2)-1 .
_ —2mink/N —_2ntin (k+N/I2)IN
= ¥ fie ™" + Y fuang e T EsNI2)
=0 k=0
(NI12)>-1 . .
_ - —Ominkl
= ¥ [fk + freNr2 € “‘"] g ~2RinkIN
k=0

Noticing that the e ™" factor reduces to +1 and —1 for even and odd values of n, respectively, we
isolate the even and odd terms by changing n to 2n and 2n+1.

N1 | : ,

Fon= 3 |fe+feann| e THEWN 0<n<N/2 (16)
k=0 . -

NI2-1 | -

= 2 | fetSenn

k=0 . .

(NI2F1 [- ,

Fonsi = % | fe— feanin| e M @n+DUN 0<n<N/2 (17)
k=0 . :

WNI2D>-1 7 b

= ¥ | Sfe—Sesn2
k=0 - -

e -2nink/(N12)

e -2rik/N e —21tink/(N/2)

Thus, the even- and odd-indexed values of F are given by the DFTs of f§ and f§ where

fr
Iz

Je + feann2 (18)

[fk "fk+N/2] wk (19)

The same procedure can now be applied to f§ and ff. This sequence is depicted in Fig. 4. The
top row represents input list f containing 8 elements. Again, note that lists are delimited by bold
lines. Regarding the butterfly notation, the lower left branches denote Eq. (18) and the lower
right branches denote Eq. (19).

-13-

Since all the even-indexed values of F need f%, a new list is created for that purpose. This
is shown as the left list of the second row. Similarly, the f list is generated, appearing as the
second list on that row. Of course, the list sizes diminish by a factor of two with each level since
generating them makes use of f; and f,.n/2 to yield one element in the new list. This process of
computing Eqgs. (18) and (19) to generate new lists terminates when N =1, leaving us F, the
transform output, in the last row.

In contrast to the decimation-in-time FFT algorithm, in which the input is disordered but
the output is ordered, the opposite is true of the decimation-in-frequency FFT algorithm. How-
ever, reordering can be easily accomplished by reversing the binary representation of the loca-
tion index at the end of computation. The advantage of this algorithm is that the values of f are
entered in the input array sequentially.

fo f1 f2 f3 Ja fs fs f7

o

TLTIIT

11 atﬁgﬁ Fﬁ

Figure 4: Decimation-in-frequency FFT algorithm.

- 14 -

5. APPENDIX

This appendix provides source code for the recursive FFT procedure given in section 2, as

well as code for the Cooley-Tukey algorithm described in section 3. The programs are written in
C and make use of IMPROC library routines [Wolberg 88]. The following brief remarks should
clarify some of the IMPROC library functions.

The data is passed to the functions in quads. A quad is an image control block, containing

information about the image. Such data includes the image dimensions (height and width),
pointers to the uninterleaved image channels (buf [0] ... buf [15]), and other necessary informa-
tion. Since the complex numbers have real and imaginary components, they occupy 2 channels
in the input and output quads (channels O and 1). A brief description of the library routines
included in the listing is given below.

1)
2)
3)
4)
5)

6)

7)

cpqd(q 1,q2) simply copies quad q 1 into g 2.

cpqdinfo(q 1,q2) copies the header information of ¢ 1 into g 2.

NEWQD allocates a quad header. The image memory is allocated later when the dimen-
sions are known.

getqd (h,w,type) returns a quad containing sufficient memory for an image with dimensions
h xw and channel datatypes type. Note that FFT_TYPE is defined as 2 channels of type

float.
freeqd (q) frees quad g, leaving it available for any subsequent getqd call.

divconst (g 1,num,q2) divides the data in g1 by nwm and puts the result in g2. Note that
num is an array of numbers used to divide the corresponding channels in g 1.

Finally, PI2 is defined to be 2x, or 6.28318531.

=15 -

5.1. Recursive FFT Algorithm

tfit1D(q1.dir.g2) r* Fast Fourier Transform (1D) */
int dir; [* dir=0: forward; dir=1;inverse */
qdP q1, qQ2;
{

inti, N, N2;

float *r1, *i1, *r2, *i2, 'ra, "ia, ‘b, "ib;

double FCTR, fctr, a, b, ¢, s, num{2];

qdP qa, gb;

cpadinfo(q1, q2);

N = qt->width;

r1 = (float *) q1->buf[0];
i1 = (float *) q1->buf[1];
r2 = (float *) q2->buf[0];
i2 = (float *) g2->buf[1];

if(N == 2) { r F(O)=1(0)+t(1); F(1)=1(0)-1(1) */
a=ri[0] + ri[1]; /" a,b needed whenri=r2 */
b = i1[0] + i1[1];
re[1] = r1[0] - r1[1];
i2[1] = i1[0] - i1[1]:
re[0] = a;
i2[0] = b;
} else {
N2=N/2;
ga = getqd(1, N2, FFT_TYPE),
gb = getqd(1, N2, FFT_TYPE});
ra = (float *) ga->buf[0]; ia = (float *) qa->buf[1];
b = (float *) gb->buf[0]; ib = (float *) gb->bui[1];

 split list into 2 halves: even and odd */
for(i=0; i<N2; i++) {
rafi] = “ri++; iafi] = "it++;
o[i] = ‘ri++; ib[i] = *i1++;
}

" compute fft on both lists */
fit1D(qa, dir, qa);
fit1D(qgb, dir, gb);

* build up coefficients */

if('dir) r* forward */
FCTR = -Pi2/N;

else FCTR= PI2/N;

- 16 -

for(fctr=i=0; i<N2; i++fctr+=FCTR) {
¢ = cos(fctr);
s = sin(fctr);
a = c'rfi] - s*ib[i];
reli] =rafi] + a;
refi+N2] = ra[i] - a;

a = s'rp[i] + ¢*ib[i];
2l =ia[i] + a;
i2[i+N2] = ia[i] - a;

}
freeqd(qa);
freeqd(qgb);
}
if(dir) { /* inverse: divide by log N */

num[0] = num[1] = 2;
diveonst(g2, num, g2):

-17 -

5.2. Cooley-Tukey FFT Algorithm

fft1D(q1, dir, q2) I* Fast Fourier Transform (1D) */

int dir; r* dir=1: forward; dir=-1:inverse */

qdP q1, q2; /* Uses bit reversal to avoid recursion */

{ r* and trig recurrence for sin and cos */

inti, j, logN, N, N1, NN, NN2, itr, offst;

unsigned int &, b, msb;

float *r1, *r2, "it, *i2;

double wr, wi, wpr, wpi, wtemp, theta, tempr, tempi, numj{2];
qdP gsrc;

if(q1 ==q2) {
gsrc = NEWQD;
cpqd(q1, gsrc);
} else qgsrc =qt;

cpqdinfo(q1, g2);

r1 = (float *) gsrc->buf[0];
i1 = (float *) gsrc->buf[1];
r2 = (float *) g2->buf[0];
i2 = (float *) g2->buf[1];

N = q1->width;
N1=N-1;
for(logN=0,i=N/2; i; logN++,/=2); /* # of bits sig digits in N */
msb = LSB << (logN-1);
for(i=1; i<N1; i++) { I* swap all nums; ends remain fixed */
a=i;
b=0;
for(j=0; a && j<logN; j++) {
if(a & LSB) b |= (msb>>j);
as>=1;
}

I* swap complex numbers: [i] <--> [b] */

r2[i] = r1{b); i2[i] = i1[b};
re[b] = r1[i); i2[b] = i1[i];
)
r* copy elements 0 and N1 since they don't swap °/
r2[0] = r1[0]; i2[0] =i1[0];
r2[N1] = r1[N1]; i2[N1] = i1{N1}];

" NN denotes the number of points in the fransform.
It grows by a power of 2 wilth each iteration.
NN2 denotes NN/2 which is used 1o trivially generate
NN points from NN2 complex numbers.

- 18 -

Computation of the sines and cosines of multiple
angles is made through recurrence relations.
wr is the cosine for the real terms; wi is sine for
the imaginary terms.
*/
NN =1;
for(itr=0; itr<logN; itr++) {
NN2 = NN;
NN <<=1; /" NN'=2"%

theta = -PI2 / NN * dir;
wtemp = sin(.5theta);
wpr = -2 * wtemp * wiemp;
wpi = sin(theta);

wr =1,

wi =0,

for(offst=0; offst<NN2; offst++) {
for(i=offst; i<N; i+=NN) {
j=1i+NN2;
tempr = wr*r2[j] - wi*i2[j};
tempi = wi'r2[j] + wr*i2[j]
r2[jj = r2[i] - tempr;
r2[i] = r2[i] + tempr;
i2[j] = i2[i] - tempi;
i2[i] = i2[i] + tempi;
}
/" trigonometric recurrence */
wr = (wtemp=wr) wpr - wi'wpi + wr;
wi = wi'wpr + wiemp wpi + wi;

}

if(dir == -1) { r* inverse transform: divide by N */
num([0] = num[1] = N;
diveonst(q2, num, q2);

}

if(qsrc = q1) freeqd(qgsrc);

-19-

1. REFERENCES AND SUGGESTED READING

[Antoniou 79]

[Bergland 69]

[Brigham 74]

[Cochran 67]

[Cooley 65]

[Cooley 67a]

[Cooley 67b]

[Cooley 69]

[Danielson 42]

[Pavlidis 82]

[Press 88]

[Wolberg 88]

Antoniou, Andreas, Digital Filters: Analysis and Design, McGraw-Hill, New
York, 1979.

Bergland, G.D., ‘A Guided Tour of the Fast Fourier Transform,”” /EEE Spec-
trum, vol. 6, pp. 41-52, July 1969.

Brigham, E. Oran, The Fast Fourier Transform, Prentice-Hall, Englewood
Cliffs, NJ, 1974.

Cochran, W.T., Cooley, J.W., er al., ‘“What is the Fast Fourier Transform?,”
IEEE Trans. Audio and Electroacoustics, vol. AU-15, no. 2, pp. 45-55, 1967.
Cooley, J.W., and Tukey, J.W., ‘‘An Algorithm for the Machine Calculation of
Complex Fourier Series,”” Math. Comp., vol. 19, pp. 297-301, April 1965.
Cooley, J.W., Lewis, P.A.W., and Welch P.D., ‘*Historical Notes on the Fast
Fourier Transform,”’ IEEE Trans. Audio and Electroacoustics, vol. AU-15, no.
2, pp- 76-79, 1967.

Cooley, J.W., Lewis, P.AW., and Welch P.D., *‘Application of the Fast
Fourier Transform to Computation of Fourier Integrals,”’ JEEE Trans. Audio
and Electroacoustics, vol. AU-15, no. 2, pp. 79-84, 1967.

Cooley, J.W., Lewis, P.A.W., and Welch P.D., ‘“The Fast Fourier Transform
and Its Applications,”’ /EEE Trans. Educ., vol. E-12, no. 1, pp. 27-34, 1969.
Danielson, G.C. and Lanczos, C., ‘‘Some Improvements In Practical Fourier
Analysis and Their Application to X-Ray Scattering from Liquids,’’ J. Frank-
lin Institute, vol. 233, pp. 365-380 and 435-452, 1942.

Pavlidis, Theo, Algorithms for Graphics and Image Processing, Springer-
Verlag, Berlin, 1982,

Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T., Numerical
Recipes in C, Cambridge University Press, Cambridge, 1988.

Wolberg, G., “'IMPROC: An Interactive Image Processing Software Package,’’
Columbia University Computer Science Technical Report 330-88, April 1988.

