Incremental Evaluation of Ordered Attribute Grammars
for Asynchronous Subtree Replacements

Josephine Micallef

Columbia University
Department of Computer Science
New York, NY 10027
(212) 280-8178

September, 1988

CUCS-380-88

Abstract

Incremental algorithms for evaluating attribute grammars (AGs) have been extensively studied in recent years,
primarily because of their application in language-based environments. Ordered attribute grammars are a subclass
of AGs for which efficient evaluators can be constructed. Previous incremental algorithms for ordered attribute
grammars only allowed one modification to the program at a time, requiring attribute evaluation due to one change
to quiesce before another one due to a second change can start. This article presents new incremental evaluation
algorithms for ordered autribute grammars that can handle asynchronous program modifications in an optimal
manner. Support for asynchronous changes is necessary in environments for multiple users, where different
programmers may be making changes to different parts of the program simultaneously. The key to the optimality of
the algorithm is an ordering of the attribute evaluations so that an attribute affected by more than one change will
only be evaluated once if the changes happen concurrendy.

Copyright © Josephine Micallef

Keywords: Attribute grammars, incremental evaluation, interactive systems, language-based environments,
multiuser programming environments, ordered atribute grammars, programming languages.

1. Introduction

Incremental algorithms for evaluation of attribute grammars (AGs) have been the focus of much research in the last
few years. These algorithms are of practical importance in language-based environments and incremental compilers
based on attribute grammars, where, after a change is made to a program, the auributes affected by the change are
evaluated to reestablish consistency among the attributes decorating the program's parse tree.

Incremental atribute evaluators vary along two dimensions. The first dimension determines whether the evaluation
strategy is dynamic or static. When evaluating the attributes of a tree T, any evaluator must follow the partial order
of T"s attribute dependency graph. The dependency graph contains an edge (a, &) between two attributes a and b if
a appears in the semantic function defining b. Dynamic evaluators maintain the dependency graph at run-time.
When a change is made to the program, the dependency graph is updated and attribute evaluations are scheduled by
dynamically performing a topological sort on the dependency graph. Static evaluators, on the other hand,
precompute plans that specify the order of evaluation of attributes of each production in the grammar. These plans
are created once for each AG during construction of the grammar’s evaluator. At run-time, the evaluator determines
the order of atiribute evaluations using the plans associated with each production instance in 7. The advantage of
static evaluators is that they are more efficient than dynamic evaluators in both time and space. The disadvantage is
that not all well-defined attribute grammars can be evaluated by a static evaluation scheme. However, static
evaluators can be constructed for a large subclass of AGs, including most of the ones that arise in practice [12].

The second dimension along which incremental evaluators vary is the model of change used by the algorithm. A
change to a program corresponds to a subtree replacement, which replaces one subtree in the program’s parse tree
with another. Some algorithms allow only one change to the program at a time, so that the evaluation from one
subtree replacement runs to quiescence before another one starts for a different subtree replacement. Other
algorithms handle multipie changes to the program. Some of these require that multiple modifications be
synchronized, that is, the evaluator is only started after all modifications have been made. Others allow
asynchronous changes, that is, when a change is made, the evaluation of attributes affected by the change starts, but
it can be suspended if another change is made affecting attributes that should be evaluated first.

A summary of existing incremental attribute evaluation algorithms according to the classification given above is
given in table 1-1, In this article, we present a new static incremental evaluator that can handle multiple
asynchronous subtree replacements. We only describe the evaluation algorithm for ordered attribute grammars
(OAGs), a large subclass of AGs for which an efficient algorithm for constructing attribution plans is known [5].
However, the same gencral idea can be used to extend other static ree-walk evaluation strategies (such as the one
described in [6]) to handle asynchronous subtree replacements. Our algorithm can be used for the synchronous case
as well, and thus fills the two remaining entries (denoted by a star (*)) in the table below.

Dynamic Static
Single subtree replacement 9] (14,10, 12]
Multiple subtree replacement: (11] .
Synchronous
Multiple subtree replacemeni: [4, 2} *
Asynchronous

Table 1-1: Classification of Incremental Attribute Evaluators

The evaluation algorithm discussed in this article is optimal in the following sense: (1) only attributes affected by
each modification are evaluated, and (2) an attribute that is affected by more than one subtree replacement still in
progress and which has not yet been evaluated in any of them is evaluated once only. In order to accomplish this for
the class of OAGs, some run-time checks are required. We define a subclass of OAGs, called the pairwise ordered
attribute grammars (POAGs), for which this run-time check can be replaced by a table lookup operation, making the
evaluator even more efficient.

The rest of the article is organized as follows: Section 2 gives a brief overview of attribute grammars and
incremental evaluation. A precise formulation of the problem solved in this article is found in section 3. The
incremental evaluation algorithm for OAGs when asynchronous subtree replacements are allowed is presented in
section 4. Section 5 defines pairwise ordered attribute grammars, and describes algorithms to construct evaluators
for these grammars that record information needed during incremental evaluation. The last section outlines the
contributions of this article and compares it to other relevant work.

2. Preliminaries

Attribute grammars were first introduced by Knuth (7] to describe the context-sensitive semantics of a programming
language, complementing the way a context-free grammar describes the language’s syntax. An AG extends a
context-free grammar by attaching autributes 10 the symbols in the grammar, and semantic equations defining these
attributes to the productions of the grammar. A semantic equation defines an attribute (LHS of equation) as the
value of a semantic function applied to other auributes of that production (RHS of equation). The attribute on the
LHS is functionally dependent on the attributes in the RHS of the equation. Attributes are divided into two disjoint
classes: synthesized and inherited. A semantic equation defines a synthesized attribute of the left-hand symbol of a
production, or an inherited attribute of one of the right-hand side symbols.

The use of AGs for generating language-based programming environments was originated by Reps (8]. A program
is represented by an attributed derivation tree (also called a semantic tree). The nodes of this derivation tree are
labelled with symbols of the grammar. Each node contains fields that correspond to the attributes of its labelling
grammar symbol. The value of an attribute instances is computed according to its defining semantic equaton.
Before an attribute can be evaluated, all other attributes that it is functionally dependent on must have already
received values. The functional dependencies among the atributes in the tree create a partial ordering on the
attribute instances in the tree. Any attribute evaluation algorithm must obey this partial order, but since the ordering
is partial, there may be more than one order of evaluating the attribute instances of the wree.

The program is modified by a sequence of pruning, grafting, or derivation operations on the tree; these operations
are collectively called subtree replacement operations. After a subtree replacement, the attributes at the root of the
replaced subtree may be inconsistent. An attribute is inconsistens if its value is not equal to its semantic function
applied to the current values of its arguments. An incremental atribute evaluator reevaluates the inconsistent
attributes, thus reestablishing consistency among the attributes in the tree.

AG evaluators for both incremental and non-incremental applications fall into two general classes — dynamic and
static evaluators. A dynamic evaluator builds a dependency graph of the attributed tree, where the nodes of the
graph are the attribute instances of the tree and the edges correspond to direct and transitive dependencies among the
attributes. The nodes of the dependency graph are then topologically sorted, and the attributes evaluated according
to their topological order. The disadvantages of a dynamic evaluation strategy are twofold. First, most of the work

is done at runtime. In an incremental editor, this degrades the response time after an edit. Second, in order to build
the dependency graph, large structures must be kept around, resulting in an incredible use of storage. Static
evaluators overcome both these problems; they are more efficient, both in terms of CPU time as well as memory
utilization.

Static evaluators do most of the work once only, during construction of the evaluator. A static evaluator uses a
strategy that is pre-computed at construction-time by a static analysis of the grammar. This plan is applicable in any
derivation tree of the grammar, and follows the autribute dependencies of the grammar. In the next two sections we
describe briefly non-incremental and incremental evaluators for ordered attribute grammars, a subclass of AGs for
which static evaluators can be constructed by a polynomial time algorithm.

2.1. Evaluation of Ordered Attribute Grammars

An attribute grammar is ordered if
... for each symbol a partial order over the associated attributes can be given, such that in any context of the symbol

the atiributes are evaluable in an order which includes that partial order [5].
An evaluator for an OAG is guided by plans associated with each production instance in the semantic tree being

evaluated. The plan for a production p: X, = X, --- X, is composed of the following basic instructions:
¢ Eval(X;.a) — Evaluates the auribute X;.a according 10 the semantic function defining it in production p.
X.a is a synthesized attribute if { = 0 and an inherited attribute if 1 < i < n.

ov(ik)— {i =0, Visits parent of p for the k™ time.
i >0, Visits child X; for the k& time.
To evaluate the attributes of a semantic tree T, an evaluator executes the instructions in the plans associated with the
production instances of T. Execution starts with the first instruction of the plan for the root production of 7. When an
Eval instruction is encountered, the specified auribute is evaluated, after which the evaluator moves on to the next
instruction in the same plan. The plans for two adjoining productions cooperate to evaluate the attributes of an
interior node X of the tree T. The inherited attributes of X are evaluated by instructions in the plan for the production
where X appears as a right-hand side symbol, while the synthesized attributes of X are evaluated by instructions in

the plan for the production where X is on the left-hand side.

If the instruction is a "visit child" (or "visit parent") instruction, then execution is resumed in the plan for the
production that applies at the child (or the parent). A function, MapDown, keeps track of the next instruction in the
plan for the child (or the parent) that should be executed.

A stack implementation of an OAG evaluator is given in Appendix A.

2.2. Incremental Evaluation of Ordered Attribute Grammars

The problem of incremental attribute evaluation can be stated as follows. Starting from a consistently attributed tree
"T, a subtree S of T is replaced by another tree, S, which is also consistently attributed. Let 7’ be the tree T with §

replaced by §’. The problem is to evaluate the minimum number of attributes in T” so that atribute consistency is

reestablished. Optimal solutions to this problem for ordered attribute grammars have been described by Ych

[14] and Reps and Teitelbaum [12]. Here we summarize the algorithm discussed in the later.

Initially, there are two production instances in 7 which may have inconsistent atributes. These are the two
productions at the point of subtree replacement. If R is the nonterminal occurrence at the root of §” (and necessarily

of §), then the two productions are:
p:Xgo X, - X, whereR = X, 1<i<m, and
qg:R>Y --- ¥

n

The incremental evaluation algorithm starts executing the first instruction of the plan for production p. Since plans
associated with production instances not affected by the subtree replacement do not have to be evaluated, additional
information must be maintained to indicate which production instances are affected. This information is stored in
the set Reactivated, which contains nonterminal occurrences deriving production instances which may have affected
attributes. Initially, Reactivated contains X, and R, which derive the two productions p and g at the point of subtree
replacement.

The incremental OAG evaluation algorithm is given in Appendix B. It is similar to the non-incremental version
described in the previous subsection, except that the set Reactivared is used to limit the scope of attribute evaluations
to only those affected. When an atiribute a is evaluated, if its value changes and it is an argument in a semantic
function defining another attribute b, then the production where b is defined is added to Reacrivated. "Visit child”
and "visit parent” instruction are skipped if the child or the parent are not in Reactivated. Otherwise, they are
executed in the same way as in the non-incremental algorithm.

3. Problem Formulation

Let T be a parse tree of some ordered attribute grammar G, T the resulting parse tree after subtree S in T is replaced
by S’, and T” the resulting parse tree after subtree R in T is replaced by R”. The two modifications at S and R are
asynchronous, that is, the second one may occur while the evaluation of the first one is still in progress. The
problem is to design an incremental static evaluator that can handle this scenario in an optimal way, that is, it will
only evaluate the minimum number of attributes required to restore consistency.

An incremental evaluator for asynchronous subtree replacements is optimal if it meets the following requirements:
1. For any one modification, the algorithm will evaluate only those attribute instances affected by the
modification.

2. For any two (or more) modifications affecting the same attribute @, where both evaluations are still in
progress and neither one has yet evaluated a, the algorithm will evaluate a only once.

The second requirement is the mare important one for the purposes of this article, so we shall state it a litle more
formally. Suppose that subtree S was replaced at time ¢,, and subtree R at time (,, where {; < t,. Let AFFECTED
be the set of attributes that were affected (and therefore must be reevaluated) because of the subtree replacement at
S, and similarly, AFFECTED, the set of attributes affected by the subtree replacement at R. Furthermore, suppose
that the evaluations from the two modifications overlap, that is,

AFFECTED, N AFFECTED, # @
If the evaluation due to the subtree replacement at S is still in progress at the time of the second modification, ¢,,
then AFFECTED, can be divided into two subsets: (1) EVAL, containing those affected attributes that have already
been evaluated at the time of the second replacement, and (2) UNEVAL, containing the attributes still needing
evaluation, .

AFFECTED, , = EVAL, , U UNEVAL,
Note that all these sets are not known a priori but are determined as the evaluation is proceeding. The second
optimality requirement states that every attribute a, such that

ace UNEVALS',2 NAFFECTED,,
is evaluated only once.

4. Solution for Ordered Attribute Grammars

We first inroduce some terminology. During attribute evaluation, we refer to the instruction that is about to be
executed as the current instruction; the plan containing the current instruction as the current plan; and the node
deriving the production instance whose associated plan is the current plan as the current node. The current node is
available in StackTop.Node; the current plan in Plan[StackTop. Node. Productionindicator]: and the index of the
current instruction in StackTop.TableEntry.

The algorithm consists of three procedures, StartUp, Schedule, and Evaluate, shown in figures 4-1, 4-2, and 4-3
respectively. Startup is called whenever a subtree replacement occurs, possibly interrupting another evaluation in
progress. Startup initializes the state of the evaluation for the new modification and places it on a list of pending
evaluations, PendingList. This list records the evaluation state of previous subtree replacements whose evaluations
have not yet terminated. The pending list is ordered, with the evaluation that will be resumed first at the head of the
list. Then, it calls Schedule.

procedure StartUp(R: nonterminal occurrence at root of replaced subtree)

declare
p :production Xy — X; --- X, whereR=X;,1sism
q :productionR = Y, --- ¥,

Reactivated : set of nonterminal occurrences

PendingList : list of evaluations waiting to be restarted, ordered according to which should be restarted first
begin

Reactivated := (X, R }

push(X,;, MapDown(p.1)) /* evaluation starts at plan for production p which derives R */

Insert (StackTop, Reactivated) in appropriate place in PendingList

Schedule()
end

Figure 4-1: StartUp algorithm

Schedule must determine which evaluation o resume, the one that was previously in progress whose state is
recorded in Stackiop,,,,,,, and Reactivated,,,,,,,. or the first one in the list of pending evaluations. In order to
determine this, it checks whether the current instruction (Stacktop,,,,,,.TableEntry) comes before the next
instruction 10 be executed for the first evaluation in the pending list (PendingList[1).Stackiop.TableEntry) in the
computation sequence of the semantic tree representing the program. The compuwation sequence of a semantic trec
T is a linearization of the plans associated with the production instances of T, achieved by simulating the operation
of an evaluator on T, where instead of executing the instructions, they are appended to the computation sequence. If
the current instruction is before the first pending instruction then the current instruction remains the same. If not,
then the state of the current evaluation is placed on the pending list and the evaluation at the head of the pending list
is made current. The use of the computation sequence to order the pending evaluations is the key 1o achieving the

second optimality requirement stated in section 3.

The rationale behind the operation of the scheduler is that the evaluation that is resumed will eventually reach the
other evaluation that was placed on the pending list. This reasoning may be incorrect if a visit to the child or parent

procedure Schedule()
declare
T ‘ : semantic tree representing program
Reactivated,,, ., : setof nonterminal occurrences reactivated by current evaluation
StackTop,,,,,,,, :top of stack of current evaluation
PendingList : list of evaluations waiting to be restarted, ordered according to which should start first
b ?‘emp : holds state of first evaluation of pending list
egin
if StackTop,,,,, . -TableEntry is before PendingList[1).StackTop.TableEntry in computation sequence of T then
skip
else

Remove first element from PendingList and place it in Temp

Insert (StackTop,,,,,,,»Reactivated .) in appropriate place in PendingList
StackTop,,,,,,, := TempStackTop
Reactivated, ., . .= Temp Reactivated

fi

Evaluate()
end

Figure 4-2: Schedule algorithm

that would have reached the other evaluation is skipped because the child or parent were not in Reactivated.
Therefore Evaluate must handle skipped visits in a special way.

Evaluate is responsible for evaluating attributes affected by a modification. It is very similar to the incremental
algorithm for single subtree replacements given in section 2.2. The only difference is that if a visit child or visit
parent instruction is about to be skipped because the child or parent is not in Reactivated, Schedule is called.

4.1. Determining Relative Order Among Plan Instructions

The Schedule algorithm described above needed o determine whether an instruction i, in plan p; occurs before
another instruction i, in plan p, in the computation sequence of T. This can be done as follows. (Step 1) Find the
next "visit parent” instruction following i, in plan p,. (Step 2) Simulate the operation of the evaluator to determine
the instruction that would be resumed in the parent plan. Repeat these two steps, each time going up to the parent
plan, until one of the following happens: (a) instruction j in plan p, is encountered, or (b) instruction j in the plan for
the root production is encountered. For case (a), if j < iy, then the answer to the question /s instruction iy executed
before instruction i,?" is yes, otherwise the answer is no. Case (b) requires some additional work. Repeat steps (1)
and (2), but this time for i, in plan p,, until instruction k in the root plan is reached. Then if j < k the answer is yes,
else it is no.

4.2. Improvements

The evaluation algorithm given above is asymptotically optimal, but it can still be improved if we can find a more
efficient method for determining the relative order among plan instructions, such as precomputing this information
at evaluator-construction time. It turns out that this cannot be done for certain OAGs. One such grammar is shown
in figure 44, Figure 4-S gives possible auribution plans for the productions in this grammar, such as would be
constructed by the algorithm given in [5].

procedure Evaluate()
declare
T: semantic tree representing program
Reactivated: set of nonterminal occurrences
begin
repeat
case StackTop.TableEntry of
Eval(X.a) : call semantic function defining X.a
increment(StackTop.TableEntry)
if NewValue(X.a) # OldValue(X.a) and 3 attributes that depend on X.a then
if X.a is a synthesized attribute then
/* its value can be used in the production where X is on the right hand side */
Reactivated := Reactivated U (X .ParentNode.ProductionIndicator)
else /* X.a is an inherited attribute */
/* its value can be used in the production derived from X */
Reactivated := Reactivated U {X Productionindicator)
fi
fi
wWik), i >0 : /* descendent visit */
increment(StackTop.TableEntry)
if X; € Reactivated then
push(StackTop. X, MapDown(StackTop. X ;. Production/ndicator, k))
else Schedule()
fi
wO0.k) : [* ancestor visit */
increment(StackTop.TableEntry)
if X,.ParentNode € Reactivated then

pop
else Schedule()
fi

esac
until StackIsEmpty or X, is root of T or this is the last instruction for plan for production p

end

Figure 4-3: Evaluate algorithm

productionP, a:=BXYy. production P, Y:=2Z production P, W:=Z.
attribution attribution attribution
Xae ... Z.aeYa, W.b « W.a;
X.c e« X.b; Y.be 20b; Z.ae W.c;

. Yde Yo, Yde Z2.b;
production P, X:=Y. production Py Y:u=W. production Py Z:=Q.
attribution attribution attribution

Yae Xa; W.a « Y.a; Q.a« Z.a;
X.beYhb; Y.b « Wb; Z.b e« Q.b;
Y.c e X.c; W.c « Y.c;
X.deY.d; Y.d e Wd;

Figure 4-4: Auribute Grammer that is not Pairwise Ordered

The reason that we cannot determine al construction lime whether instruction i; in plan p, is executed before

Evaluate Y.q Evaluate W.a Evaluate Q.q
Moveto Y Move to W Move to Q
araluate X.b Evaluate Y.b Evaluate Z.b
ove to parent Move to parent Move 1o parent

Evaluate Y.c Evaluate W.c
Moveto Y Move 1o W e) Procedure for Z::=Q
Evaluate X.d Evaluate Y.d
Move to parent Move to parent

a) Procedure for X ;=Y c) Procedure for Y:=W
Evaluate Z.a Evaluate W.b
Move o Z Move to parent
Evaluate ¥.b Evaluate Z.a
Move to parent Move o Z
Evaluate Y.d Evaluate Y.d
Move to parent Move (o parent

b) Procedure for Y =2 d) Procedure for W:=2Z

Figure 4-5: Auribution algorithms for attribute grammar of figure 4-4

instruction i, in plan p, is that the answer depends on the structure of the tree containing the two productions p and ¢
associated with the plans p, and p,, respectively. Consider the two attributed trees, T, and T,, shown in figure 4-6
below. Production p is X ::= Y and production ¢ is Z ::= Q. If the plan for production ¢ is the current one, and
instruction "Evaluate Q.a" is being executed, then when the plan for p is eventually resumed, the next instruction is
"Evaluate X.b" in the case of T, whereas in the case of T,, the next instruction is "Evaluate X.d".

In the next section, we define a subclass of OAGs, called the pairwise ordered attribute grammars, for which it is
possible o precompute the relative order among plan instructions.

Figure 4-6: Two semaniic trees

5. Pairwise Ordered Attribute Grammars
Pairwise ordered attribute grammars are defined as a subclass of ordered attribute grammars. An AG is pairwise

ordered if:
1. It is ordered, and

2. For each pair of symbols, X and Y, such that X 3> Y, a partial order over the attributes of X and Y can
be given, such that in any semantic tree where X is an ancestor of Y, the attributes of X and Y are
evaluable in an order which includes that partial order.

5.1. Algorithm to Compute Plans for POAGs

In this section we describe an algorithm that constructs plans for POAGs according to the definition given above.
The algorithm is modelled after Kasten’s original algorithm to construct visit-sequences for ordered attribute
grammars (S]. Only the steps that differ from Kasten’s algorithm are described in detail here. Furthermore, we
make use of an algorithm to compute transitive dependencies between pairs of symbols in an attribute grammar that
was published in [11]. The details of this algorithm are also not repeated below.

In the algorithm below we use the following notation:

* A, is the set of attributes associated with the nonterminal symbol X. A, is divided into two disjoint
subsets, A/, containing the inherited attributes of X, and AS,, containing the synthesized attributes of X.

* SF is the set of semantic functions associated withthe productions in the grammar. SF, is the set of
semantic functions associated with production p.

e The relation TDS, contains direct and transitive dependencies between attributes of a nonterminal
symbol X,

e The relation TDPP contains direct and wtansitive dependencies between attribute occurrences in
production p.

» The relation TDPS, , contains direct and transitive dependencies between atributes of symbols X and
Y, where X &Y.

Step 1 and Step 2: Computation of TDS, and TDPS, ,.

Method: Use algorithms described in the appendix of [11].!2 Note that TDPP is not computed in these first two steps
(as is done in [S]) but in step 4. This is done only to simplify the description of the algorithm,

Step 3: Use TDS, to partition A, into subsets A, ;. i=1, ..., m, such that A, ; is a subset of A/, for odd i and a
subset of AS, for even i. The attributes of X can be evaluated in the order A, |, ..., A, ,,. The output of this step is
a vector PARTITION describing the disjoint partitions of A, .

Method: Same as Step 3 of Kasten's algorithm.
Step 4: Computation of TDPP.

Method: The algorithm is given in Appendix C. Arcs are added o the (initially empty) TDF, for the direct
dependencies among attribute occurrences in p; the transitive dependencies among attributes of each symbol X in p

10ur notation follows that of Kastens. Tt differs from the notation used in [11], where DS (X) and DP(X,Y) are used instead of TDSX and
TDPSXJ respectively.

2Reps et al. use the relation TDPSXJ, in their algorithm to handle multiple syachromous subtree replacements.

10

(given by TDS,); the transitive dependencies among attributes of the lefi-hand side symbol X of p and occurrences
of each unique symbol Y in the right-hand side of p (given by TDPS, ,); and the dependencies among attributes of
each symbol X due to the partitions of X. After adding an edge to TDPP , other edges required to transitively close
TDP are also added. This is accomplished by the function AddArcTrans which is the same as defined in [5].

Step 5: Construction of visit-sequences.

Method: Same as Step 5 of Kasten's algorithm,

5.2. Computation of Relative Order Among Plans
For each two productions, p: Xy > X| -+ X, andq: Yy > Y, --- ¥, ,such thatX, £ Y, , we want to compute:
* Index in PLAN(q] where control is transferred after a "Visit child i" instruction in PLAN[p], where i is ¥
or an ancestor of Y.

¢ Index in PLAN[p} where control is transferred after a "Visit parent” instruction in PLAN([q].

This information will be computed once for each grammar, and stored in the two tables, MapVisitChildToPlan/ndex
and MapVisitParentToPlanindex. MapVisitChildToPlanIndex{p,q,i) returns the index of the next instruction in the
plan for ¢ 10 be executed after the “visit child" instruction at index / in the plan for p.
MapVisitParentToPlanindex(p, q,i] retums the index of the next instruction in the plan for g to be executed after the
"visit parent" instruction in position i in the plan for p.

The first algorithm, shown in figure D-1 in Appendix D, computes the ANCESTOR relation for pairs of productions
in the grammar, where
ANCESTOR = {(p,q) | p,q are productions, and p is an ancestor of q in some parse tree of the grammar}.

A directed graph G is used, initially containing vertices representing the productions of the grammar and no edges.
First, edges are added to G to represent the PARENT relation between pairs of productions — an edge between p and
q indicates that one of the right hand side symbols of p derives g. The edges added in this step are blue. Then the
transitive closure of G is computed o give the ANCESTOR relation. Edges added to transitively close G are red.
Edge color is used in the next algorithm.

The next algorithm, shown in figure D-2 in Appendix D, builds the two tables MapVisiiChildToPlanindex and
MapVisitParentToPlanIndex. The algorithm sorts the edges (p.q) in the ANCESTOR relation in increasing path-of-
blue-edges order, that is, first the pairs of productions such that p is the parent of g are considered, (length of
path-of-blue-edges is 1), then those such that p is the grandparent of ¢ (length of path-of-blue-edges is 2), and so on.
Then, the algorithm iterates over the sorted list of edges, considering them one at time.

If the edge considered, (p,q), is blue (a direct edge), then the actions of the evaluator are simulated to find the
instruction in ¢’s plan that is executed after each "visit child" instruction in p's plan, where the child visited is the
left hand side symbol of g. If the edge (p.q) is red (a transitive edge), then the principle of dynamic programming is
used. We find a production r such that (p,r) and (r,q) are edges in ANCESTOR, and (p,r) is a blue edge. The
length of the path-of-blue-edges of both (p,r) and (r,q) is less than that of (p.q), and therefore we must have already
computed the relative arder for these pairs of plans. To find the next instruction that is executed in ¢'s plan after
each "visit child" instruction in p’s plan, where the child visited is the left hand side symbol of r, we find the first
"visit child" instruction in r's plan where the child is an ancestor of the left hand side symbol of g, and then use
MapVisitChildToPlanindex 1o determine where this takes us in g's plan. The enties in the

11

MapVisitParentToPlanIndex table are computed in a similar way.

6. Contributions and Comparison with Related Work
The primary contributions of this work are:
* A new incremental evaluation algorithm for ordered attribute grammars that can handle asynchronous
program modifications in an optimal way.

* The definition of a new subclass of auribute grammars for which the scheduling information for
attribute evaluations necessary for asynchronous subtree replacements can be precomputed during
construction of the evaluator.

Incremental evaluators that allow asynchronous program modifications are important for environments that support
programming-in-the-many (PTTM), that is, the development and maintenance of large software systems by many
different programmers. An incremental evaluation algorithm for multiple asynchronous subtree replacements is
used in MERCURY, a generator of language-based environments for PITM (3, 4]. This algorithm does not satisfy our
second optimality requirement: an attribute affected by two different subiree replacements may be evaluated twice.
Geitz’ describes an optimal algorithm for asynchronous subtree replacements which maintains additional
information about dependencies between the modified subtrees (2]. His algorithm relies on the computation of
TDPSy y for each pair of symbols in the grammar, and therefore only works for a subset of AGs.3 The relation
TDPS is also used in the algorithm described in [11] for synchronous subtree replacements.* The ability to handle
synchronous subtree replacement is useful in environments that provide editing commands that do not correspond to
subtree replacements, such as transformations, which may result in modifications to more than one part of the tree.
All of these algorithms are variants of the optimal incremental evaluator for single subree replacements described in
[9], and are therefore all based on a dynamic evaluation strategy.

The class of ordered attribute grammars was defined by Kastens, who also described polynomial time algorithms for
constructing evaluators for them [5]. Yeh describes an incremental version of Kasten's evaluator [14). The
evaluator used in the Comell Synthesizer Generator for ordered auribute grammars is presented in [12]. This
algorithm is also based on Kasten's, and is similar to Yeh's. Both these incremental algorithms only allow single
subtree replacements.

Parallel incremental attribute evaluation techniques for ordered auribute grammars are described in [15]. Two
versions of parallel evaluation are presented. In the synchronous version, a process is forked for each auribute that
is ready for evaluation, i.e., those attributes whose arguments have already been evaluated. In the asynchronous
version, a process is forked for any arbitrary attribute evaluation, but this process may have to wait if one of its
arguments is not yet available. Zaring’s algorithms only apply to single subtree replacement Boehm and
Zwaenepoel also describe a parallel evaluator, but in their case the application area is AG-based compilers, and the
algorithm is therefore not incremental {1]. The parse tree is divided into subtrees, which are evaluated in parallel by
evaluators executing on different machines. The algorithm uses a combined static and dynamic evaluation strategy:
attributes that depend on other attributes associated with nodes in a different subtree are computed dynamically,
whereas those whose arguments are in the same subtree are computed statically.

3This subset is not equal to the class of OAGs or the class of POAGs. It is a subset of the pantitionable grammars [13] in the same way that the
class of POAGs is a subset of OAGs.

4To the author's knowledge, this is the first algorithm to use the TDPS relation for scheduling anribuie evaluations.

12

Appendix A. An Evaluator for Ordered Attribute Grammars

Figure A-1 shows a stack implementation of an evaluator for OAGs. MapDown(p, k) is a function that returns the
next instruction to be executed in the plan for production p: X, = X, --- X, after the & visit to X, For any
nonterminal occurrence X in the semantic tree that is being evaluated, the production derived from that nonterminal
is found in X.Productionindicator, and the parent of X is found in X.ParentNode.

procedure OAGevaluate(root: root of semantic tree o be evaluated)

begin
push(root, MapDown(root.Productionindicator,1))
repeat
case StackTop.TableEntry of
Eval(X.a) : call semantic function defining X.a
increment(StackTop.TableEntry)
wWik),i>0 : /*descendent visit */
increment(StackTop.TableEntry)
push(StackTop.X;, MapDown(StackTop. X,. Productionindicator, k))
vw0,k) : /* ancestor visit */
POp
esac
until StackIsEmpty
end

Figure A-1: Evaluator for Ordered Attribute Grammars

13

Appendix B. An Incremental Evaluator for Ordered Attribute Grammars
Figure B-1 is an implementation of the incremental evaluator for OAGs described in section 2.

procedure IncOAGevaluate(T: semantic tree; R: nonterminal occurrence at root of replaced subtree)
declare
p:productionXy, = X, --- X,
g:productionR - Y, --- Y,
Reactivated: set of nonterminal occurrences
begin
Reactivated := (X, R }
/* start evaluation of plan for production p which derives R */
push(X,, MapDown(p,1))
repeat
case StackTop.TableEntry of
Eval(X.a) : call semantic function defining X.a
increment(StackTop.TableEntry)
if New Value(X.a) # OldValue(X.a) and 3 attributes that depend on X.a then
if X.a is a synthesized attribute then
/* its value can be used in the production where X is on the right hand side */
Reactivated := Reactivaied u (X ParentNode Productionindicator)
else /* X.a is an inherited atribute */
/* its value can be used in the production derived from X */
Reactivated = Reactivated U {X Productionindicator)

whereR=Xi,lSiSm

fi
fi
Wi k), i >0 : /* descendent visit */
increment(StackTop.TableEntry)
if X; € Reactivated then
push(StackTop. X, MapDown(StackTop. X . ProductionIndicator, k))
fi
v(0.k) : /* ancestor visit */
increment(StackTop.TableEntry)
if Xy.ParentNode € Reactivated then
pop
fi
esac
until StackIsEmpty or X, is root of T or this is the last instruction for plan for production p
end

Figure B-1: Incremental Evaluator for Ordered Attribute Grammars

14

Appendix C. Computation of TDP,
The algorithm below computes the relation TDP,, in step 4 of the construction of evaluators for POAGs.

procedure stepd()
begin
for each productionp: X5 — X, -+ X, do

/* add direct dependencies among attribute occurrences in p */
for each f € SF_ defining X.b do
for each argument X;.a of f do
if (X;.a,X j.b) € TI)PP then AdclArcTrans(TDPp (X0, X,.b)) fi
od
od

/* add transitive dependencies among attributes of each symbol X in p (given by TDS,,) */
for each unique X; in p do
for each edge (c,d) in TDSy do
[

let (X;.a,X,.b) = (c,d) in
for each occurrence X;” of X; in p do
if (X/.a,X;"b) € TDP, then AddArcTrans(TDP ,,(X;"a, X/b)fi
od
ni
od
od

/* add transitive dependencies among attributes of each pair of symbols X and Y in p (given by TDPS,) */

for each X; inp,1 < i<k do
for each edge (c,d) in TDPSXG'X- do
i

let (Xy.a,X;.b)=(c,d) in
for each occurrence X;” of X; in p do
if (Xp.a,X;.b) & TDP, then AddArcTrans(TDP , (X4, X/ .b)fi
od
ni
od
od

/* add dependencies among attributes of each symbol X due to the partitions of X */
for each nonterminal occurrence X;” of X; in p do
for each X".a do
for each X;".b do
if PARTITION[X.a] > PARTITION[X 5] then®
AddArcTrans(TDPP (X,a,X.b)
fi

Figure C-1: Algorithm to computée TDP,

yiributes that are to be evaluated first in the largest-numbered partition.

| gy o B
e

15

Appendix D. Computation of Relative Order Among Plans of POAGs
Figure D-1 shows the algorithm for computing the ANCESTOR relation described in section 5.2.

procedure Ancestor(out G: a directed graph)
declare

|4 : set of vertices of G

E : set of edges of G

p,q :productions

X;s Y, : nonterminal symbols

begin
V= {p|p is a production)
E=0
for each vertex p: Xy — X; -+ X, inG do
for each vertex q: Yy » Y, --- ¥, inG do
ifX;=Y5i=1,...,m then
AddBlueEdge(p.g) 0 G
fi
od
od
Compute transitive closure of G, adding red edges
end

Figure D-1: Algorithm to compute ANCESTOR relation

The algorithm in figure D-2 builds the two tables, MapVisitChildToPlanindex and MapVisitParentToPlanIndex as
described in section 5.2.

16

procedure BuildMaps()

declare
p :production Xy — X, --- X
q :production¥y - Y, --- Y,
r iproductionZy — Z, --- Z,

pindex, glndex, rindex : integers, used as indices into plans for p, ¢ and r respectively
EdgeList : list of edges
begin
EdgelList := sort edges (p,q) in ANCESTOR graph in increasing order of length of path of blue edges
between p and ¢
for each edge (p,q) in EdgeList do
if (p.q) is blue then
let i be the index of the right hand side (RHS) symbol of p such that X; =Y, i=1,...,min
qindex := 1;
for pIndex := 1 to Length(Plan(p]) do
if Plan{p][p/ndex] = "Visit Child {" then
MapVisitChildToPlanindex[p,q.pIndex] := qIndex;
while Plan[g][g/ndex] # "Visit parent” do g/ndex := gindex + 1 od
MapVisitParentToPlanlndex{q.p.qindex) := pIndex + 1;
glndex = qlndex + 1
fi
od
ni
else /* (p,q) isred, a transitive edge */
let r be a production such that (p,r) and (r,q) are edges in ANCESTOR and (p,r) is a blue edge, and
i be the index of the RHS symbol of p such that X; = Z,,,i = 1, ...,mande HYy.j=1 ... kin
rindex := qindex := 1
for pIndex := 1 to Length(Plan[p]) do
if Plan[p](p/ndex] = "Visit Child i" then
while Plan[r](rindex] # "Visit child /" do rindex := rindex + 1 od
MapVisitChildToPlanIndex{p,q pindex) := MapVisitChildToPlanIndex(r.q,rIndex]
while Plan[q](g/ndex] # "Visit parent” do g/ndex := gindex + 1 od
rindex := MapVisitParentToPlanIndex{qr.qIndex]
while Plan[r][r/ndex] # "Visit parent” do r/ndex := rindex + 1 od
MapVisitParentToPlanIndex{q.p.qIndex) := MapVisitParentToPlanIndex{r p.rindex]
rindex := rindex + 1
fi

ni
fi

end

Figure D-2: Compuwation of MapVisitChildToPlanindex and
MapVisitParen(ToPlanindex

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11)

[12]

(13]

(14]

17

References

Hans-Juergen Boehm and Willy Zwaenepoel.
Parallel Attribute Grammar Evaluation.

1986.

Rice University.

Bob Geitz.

Asynchronous Subtree Replacement for Language-Based Editors.
1987.

Oberlin College and Comell University.

Gail E. Kaiser, Simon M. Kaplan and Josephine Micallef.
Multiple-User Distributed Language-Based Environments.
IEEE Software :58-67, November, 1987.

Simon M. Kaplan and Gail E. Kaiser.

Incremental Attribute Evaluation in Distributed Language-Based Environments.

In 5th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pages 121-130. Calgary,
Alberta, Canada, August, 1986.

Uwe Kastens.
Ordered Attribute Grammars.
Acta Informatica 13:229-256, 1980.

K. Kennedy and S.K. Warren.
Automatic Generation of Efficient Evaluators for Attribute Grammars,
In Third Annual ACM Symposium on Principles of Programming Languages, pages 32-49. January, 1976.

Donald E. Knuth,
Semantics of Context-Free Languages.
Mathematical Systems Theory 2(2):127-145, June, 1968.

Thomas Reps.
Optimal-time Incremental Semantic Analysis for Syntax-directed Editors.
In Ninth Annual ACM Symposium on Principles of Programming Languages. January, 1982.

Thomas Reps, Tim Teitelbaum and Alan Demers.
Incremental Context-Dependent Analysis for Language-Based Editors.
ACM Transactions on Programming Languages and Systems 5(3):449-477, July, 1983.

Thomas Reps.
Generating Language-Based Environments.
M.LT. Press, Cambridge, MA, 1984,

T. Reps, C. Marceau and T. Teitelbaum.

Remote Auribute Updating for Language-Based Editors.

In Thirteenth ACM Symposium on Principles of Programming Languages, pages 1-13. St. Petersburg Beach,
FL, January, 1986.

Thomas Reps and Tim Teitelbaum.
The Synthesizer Generator.,

1988.

Book being prepared for publication.

W. Waite and G. Goos.
Compiler Construction.
Springer-Verlag, New York, 1984,

Dashing Yeh.
On Incremental Evaluation of Ordered Attribute Grammars.
BIT 23:308-320, 1983.

[15]

Alan Zaring,

Parallel Auribute Evaluation.

1986.

Indiana Universiy and Comell University.

18

