On the Power of Probabilistic Polynomial Time:
PNP[log] C PP
Lane A. Hemachandra

Gerd Wechsung

September, 1988

CUCS-372-88

On the Power of Probabilistic Polynomial Time:
PNP[log] C PP

Lane A. Hemachandra™ Gerd Wechsung
Department of Computer Science Department of Mathematics
Columbia University Friedrich Schiller University
New York, NY 10027 USA Jena, East Germany

September, 1988

Abstract

We show that every set in the @} level of the polynomial hierarchy—that is, every set
polynomial-time truth-table reducible to SAT—is accepted by a probabilistic polynomial-
time Turing machine: PNPllegl C PP,

1 Introduction

Comparing the power of various computational paradigms is a core concern of compu-
tational complexity theory. In this paper, we study which classes in the polynomial-time

hierarchy are contained in probabilistic polynomial time, PP.

1.1 Hierarchical Voting

In a certain Northeastern computer science department, decisions are made in a peculiar
way. When an issue is to be decided, a vote is held. Some faculty members are lazy and
sleep through the vote. The remaining faculty members vote, some slyly voting many times
the same way. After the vote, the winning position is the position voted for by the most
senior faculty member who bothered to vote. For example, if the chairman votes “yes” on
an issue, that is the result of the ballot, even if every other faculty member casts ten “no”

votes. We call this scheme hierarchical voting.

Some of this work was done while Hemachandra visited Wechsung in Jena.
*Research supported by NSF grant CCR-8809174 and a Hewlett-Packard Corporation equipment grant.

1.2 0O and PP

In this paper, we show that a ©f computation (i.e., a pNPlog] computation) can be
viewed as a hierarchical vote, and that the hierarchical voting mechanism for ©f can be
implemented by a probabilistic polynomial-time Turing machine.

Theorem PNPlog] C PP,

PNPlog] the class of languages accepted by polynomial-time Turing machines allowed
O(log n) calls to an NP oracle, was first studied by Papadimitriou and Zachos in 1982 [PZ82].
Recently, after lying dormant for half a decade, the class has taken on new importance.
PNPllog] - which defines the ©3 level of Wagner's refined polynomial hierarchy! [Wag88],
has natural complete sets [Kre86,KSW86,Kad87,Wag88|, has been shown equivalent to the
class of sets truth-table reducible to SAT [Hem87,Wag87], and is the level to which Kadin
has collapsed the polynomial hierarchy under the assumption that NP has sparse Turing-
complete sets [Kad87].

Our result—PNPlog] ¢ PP—improves a sequence of results of Gill, Papadimitriou and
Zachos, Papadimitriou and Yannakakis, and Balcdzar, Dfaz, and Gabarré. Gill defined
PP as the class of languages accepted by probabilistic polynomial-time Turing machines—
machines that by definition accept an input if and only if more than half of the probabilistic
computation paths accept. Gill exploited the fact that the acceptance probability of PP
machines is not bounded away from 1/2 to prove that NP C PP [Gil77].

Papadimitriou and Zachos showed that the boolean hierarchy—the closure of NP un-
der boolean operations—is contained in P#P(l [PZ83]. The results of Gill and Papadim-
itriou and Zachos were unified and strengthenéd2 by Papadimitriou and Yannakakis, and
by Balcdzar, Diaz, and Gabarré, who showed that DF (=4 {L|(3Ly, L, € NP)[L =
L, - L,])}) C PP [PY82], and, indeed, that the boolean hierarchy—the closure of NP under
boolean operations [CGH*88]—is contained in PP [BDG88]. However, the technique does
not seem useful in proving stronger results.

Since comparing the power of computational paradigms—deterministic, nondetermin-
istic, and probabilistic—is a central concern of computational complexity theory, it seems
natural to ask, in the wake of these results, which classes in the polynomial hierarchy are

contained in probabilistic polynomial time. Qur paper addresses this question.

'NPUCONP C 8 =q4.y P¥FIo8l C AP =, PYP C NP¥P ncoNPNP C - .. [Wags8s).
*Since PP C P*PI1); see [Sim75,5im77) for discussions of the relationships between #P and PP.

2 PNPllog] ¢ PP: Overview of the Simulation

In this section, we prove that PNPlleg] C PP,
Theorem 2.1 PNPlleel C PP

Since PNPlogl and the class of sets truth-table reducible [LLS75] to SAT are identical,

the latter class is contained in PP.

Lemma 2.2 [Hem87,Wag87] PNFPlod = {[|L <? . ., .. SAT}.
Corollary 2.3 If language L truth-table reduces to an NP set, then L is in PP.

Because of the connection between truth-table reductions, the boolean hierarchy, and

PNPlogl our result strengthens the theorem of Balcdzar, Dfaz, and Gabarré.

Lemma 2.4 ([CGH*88], see also [PZ83]) The boolean hierarchy consists of exactly the
sets that are bounded-truth-table reducible to SAT.

Corollary 2.5 [BDG88] The boolean hierarchy—the boolean closure of NP—is contained
in PP.

The proof of Theorem 2.1 is by our hierarchical voting model. Given a PNPllegl |anguage,
we wish to accept it with a PP machine. The PP machine will have three phases. Phase L is
an elector choosing phase in which probabilistic computation paths try to guess satisfying
assignments to questions that might be asked the oracle during the PNPogl computation.
At the end of the elector choosing phase, each probabilistic path chooses an “elector”—a
guess of the O(logn) oracle answers. There are 20(18") — n©() electors. Note that some
electors may appear many times.

In our faculty analogy, an elector who is not present is a sleeping faculty member, and an
elector who appears many times is a faculty member who cheats and casts multiple votes.

It turns out, since finding a satisfying assignment proves that a formula is satisfiable
but finding an unsatisfying assignment doesn’t prove anything, that the elector appearing
in Phase I who is lexicographically largest (i.e., represents the largest appearing vector of
answers to the queries of PNPogl) will in fact represent the actual answers to the PNPlog)
computation.

In Phase II, the vote fraud phase, we must amplify the power of electors in such a way
that each elector ¢ will have the power to defeat all electors ¢’ lexicographically less than

c—even if ¢’ received many more votes in Phase 1.

Phase II is made up of sub-phases. In the first sub-phase, the votes of the weakest
elector (cg) are not strengthened and the votes of ¢;, ¢z, - - are so strengthened that ¢ is
surely the weakest. In the next sub-phase, the votes of ¢g and ¢; are not strengthened, and
the votes of ¢g, c3, --- are. Repeating this process, eventually the most powerful (lexico-
graphically largest) elector who got any votes has more votes than everyone less powerful
added together! During Phase II. a new dummy elector, “silent-majority,” is added. This
elector may gain a tremendous number of votes—but he will carefully avoid influencing the
ballot.

In Phase III, the vote tallying phase, the electors state their opinions on the issue: does
our PNPllog] language accept the current input? Recall that an elector c; in fact represents
a possibly correct sequence of oracle answers in the computation of PNPlog] op the current
input. c; sees if the P machine of PNPllog] (we will have chosen specific P and NP machines
at the start) would accept or reject given the set of answers ¢; represents. If it would accept,
it flips a coin and votes “accept.” If it would reject, it flips a coin and votes “reject.” The
silent majority paths (which may outnumber even the winning elector) flip coins and vote
“accept” on heads and “reject” on tails. Thus the silent majority influences the ballot not
a whit, and the vote of the lexicographically largest elector (who is the one that knows the
actually answers of the queries of PNPllgl and thus knows if we should accept or reject)
carries the ballot.

3 Sketch of Simulation Details

3.1 Phase I: The Elector Choosing Phase

Let L € PNPlogl Clearly, L € PSAT0og], Without loss of generality, L is accepted by
M,-L(N’), where N; is a nondeterministic polynomial-time Turing machine accepting SAT
whose computation tree on inputs of size n is always full and of depth exactly n?, and M; is
a polynomial-time Turing machine that, regardless of the oracle answers it receives: (1) for
some polynomial ¢(-) on inputs of size n asks only queries of length exactly g(n), and that
(2) asks (for some k) exactly klogn queries. (These assumptions are for convenience and
follow immediately from the special properties of SAT, and from elementary manipulations.)

We now begin to describe the action of a PP machine, Mpp, accepting L. Our PP
machine determines what is the actual first query, ¢, to N; that M,-(')(:z) asks. Then it
generates a random path in the computation tree of N;(g;). If that path is an accepting

path, Mpp figures (correctly) that ¢; € SAT. If the path is not an accepting path, Mpp

4

figures (possibly incorrectly) that ¢, € SAT. In either case. Mpp determines what is the
second query that AM;(z) asks its oracle under the assumption that the answer to the first
query is that which we (correctly or incorrectly) believe. Note that, if the machine on some
path determines that ¢; ¢ SAT and this is not the case, then the second query it tries will
have no relationship to the actual computation—this probabilistic path will be living in a
fantasy world.

This process is repeated until we have asked klog|z| queries. At this point, our proba-
bilistic path has a guess (possibly incorrect) as to the klogn bit sequence of oracle answers.

Crucially, note that the sequence that is lexicographically largest (viewing “accept” as
1 and “reject” as 0) among those that are chosen by some path is correct. Why is this
so? Consider the first query. If different probabilistic paths of Mpp get different answers,
then the “accept” paths are right (as the discovered satisfying assignments assure that q; is
satisfiable). If ¢; € SAT, then a path that errs at the start (stumbling on the answer “reject”
to the first query), and then does very well on the bogus future queries it wanders through,
poses no problem. Its largest possible value is 011 --11, which will be lexicographically less
than 1?7 ...7?7. Similarly, among those paths that have the first { answers right, a 1 in the
[+ st position (signifying an accepting path found for the / + 1st query) outweighs a 0.

The observation that the maximum vector in this structure is the correct one is a
technique Krentel [Kre86] uses in his study of optimization problems. However, Krentel
used a maximum operator (which was a magical way of computing maximums); our goal
is to implement the effect of the maximum operator within the framework of probabilistic

polynomial computation. This is accomplished by the amplification procedures of Phase II.

3.2 Phases II: The Vote Fraud Phase

Phase II has n* — 1 sub-phases (where k is the constant such that Ml-L(N’)(') makes
klogn oracle queries). Call the potential electors ¢; <iezicographically €2 <lericographicaily
-+ <lezicographically ™. In sub-phase one (which has (g(n))? depth, recall that g(n) is the
length of the queries to N; and that N; runs in quadratic time), at each of the (g(n))? steps,
if the current elector is silent-majority or ¢;,7 > 1, we flip a coin and keep the same elector.
If the current elector is c,, we flip a coin and keep ¢, as the elector if it yields heads, and
make silent-majority our elector if it yields tails.

Consider the extreme case in which, at the start of Phase I, all but one of the proba-
bilistic paths—i.e., 2la(n))? _ paths—are votes of ¢;, and just one path is a vote of c3. At
the end of sub-phase 1 of Phase I, we still have (g(n))? — 1 probabilistic paths of Mpp as

votes of ¢;, but now Mpp has 2(a(n))? paths as votes for ¢;. So ¢; (and c3, ¢4, - - -, if thev
occur) have had their voting strength boosted beyond that of ¢;.

We continue in a similar fashion. In sub-phase m, 1 < m < n*¥ — 1. (which has (g(n))?
depth). at each of the (g(n))? steps, if the current elector is silent-majority or ¢;, i > m,
we flip a coin and keep the same elector. If the current elector is ¢;, ¢ > m, we flip a coin
and keep ¢; as the elector if it yields heads, and make silent-majority our elector if it yields
tails.

At first, it seems that we have a terrible problem. For example. coming into sub-phase
2, there are 22(a(n))? probabilistic paths of Mpp. If all but one is a vote of c;, and just
one is a vote of cs, then since sub-phase 2 is of depth (g(n))? (and not 2(g(n))?), it seems
that c3 does not overpower c;. The crucial observation is that the italicized phrase above
is impossible. During sub-phase 1, c; and c¢3 are both boosted proportionally; thus, coming
into sub-phase 2, the worst possible ratio between them is (¢(n))?2 — 1 : 1, which is a mild
enough ratio that our depth (¢(n))? sub-phase 2 deals with it correctly.

3.3 Phase 3: Vote Tallying Phase

This phase is exactly as described in Section 2. The silent majority has no effect on
the election, and the strongest elector, who outweights all weaker electors added together
thanks to amplification, controls the election. That is, the overall probability of acceptance
is greater than 1/2 if and only if the most powerful elector (call her cpo4,) Votes to accept

if and only if 11‘-(')(:1:) using the oracle answers represented by cp,s, accepts if and only if
L(N,)
M; (z) accepts.

4 Conclusions

We have used the model of hierarchical voting to interpret PNPlog] computations as
ballots that can be simulated by probabilistic polynomial-time machines. It follows that
PNPlog] C PP, The techniques used here seem not to extend beyond PNFllogl, PNP woyld
have an exponential number of electors and thus would need an exponentially long ampli-
fication phase. We leave as an open question whether some new technique may prove that

PNP is contained in PP.

Acknowledgements

For helpful conversations we are very grateful to Gerhard Buntrock, Zvi Galil, Albrecht
Hoene, and Dirk Siefkes.

References

[BDG8S)

[CGH*88]

[GilT7]
[Hem87]

[Kad87]

[Kre86)

(KSW86)

[LLS75]

[PY82]

(PZ82]

(PZ83)

[Sim75]

[Sim77)

J. Balcdzar, J. Diaz, and J. Gabarré. Structural Complezity I. EATCS Mono-
graphs in Theoretical Computer Science, Springer-Verlag, 1988.

J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson, K. Wag-
ner, and G. Wechsung. The boolean hierarchy I: Structural properties. SIAM
Journal on Computing, 17(6), 1988. To appear.

J. Gill. Computational complexity of probabilistic Turing machines. SIAM
Journal on Computing, 6(4):675-695, December 1977.

L. Hemachandra. The strong exponential hierarchy collapses. In 79th ACM
Symposium on Theory of Computing, pages 110-122, May 1987.

J. Kadin. PNPllogn] and sparse Turing-complete sets for NP. In Proceedings
2nd Structure in Complezity Theory Conference, pages 33-40, IEEE Computer
Society Press, June 1987.

M. Krentel. The complexity of optimization problems. In 18th ACM Symposium
on Theory of Computing, pages 69-76, May 1986.

J. Kébler, U. Schoning, and K. Wagner. The Difference and Truth-Table Hierar-
chies for NP. Technical Report, Fachberichte Informatik, EWH Rheinland-Pfalz,
Koblenz, West Germany, July 1986.

R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time re-
ducibilities. Theoretical Computer Science, 1(2):103-124, 1975.

C. Papadimitriou and M. Yannakakis. The complexity of facets (and some facets
of complexity). In 14th ACM Symposium on Theory of Computing, pages 255-
260, 1982. ‘

C. Papadimitriou and S. Zachos. Two Remarks on the Power of Counting.
Technical Report MIT/LCS/TM-228, Laboratory for Computer Science, MIT,
Cambridge, MA, August 1982.

C. Papadimitriou and S. Zachos. Two remarks on the power of counting. In
Proceedings 6th GI Conference on Theoretical Computer Science, pages 269-276,
Springer-Verlag Lecture Notes in Computer Science #145, 1983.

J. Simon. On some central problems in computational complexity. January 1975.
Ph.D. thesis, Cornell University, Ithaca, N.Y., Available as Cornell Department
of Computer Science Technical Report TR75-224.

J. Simon. On the difference between one and many. In Automata, Languages,
and Programming (ICALP 1977), pages 480-491, Springer-Verlag Lecture Notes
in Computer Science #52, 1977.

[Wag87)

[Wag88]

Klaus Wagner. Log Query Classes. Institut fiir Mathematik 143, Universitat
Augsburg, Augsburg, W. Germany, May 1987.

K. Wagner. Bounded query computation. In Proceedings 3rd Structure in Com-
plezity Theory Conference, pages 260-277, IEEE Computer Society Press, June
1988.

