Rapid location of mount points

JONATHAN M. SMITH

Computer Science Department, Columbia University
New York, New York 10027

CUCS-366-88

SUMMARY

“Mount points’ allow more storage to be grafted into tree-structured hierarchical file systems.
Administrative tasks use their locations, which are tabulated in a file. In our System V UNIX
environment, this file was occasionally removed. Getmnt was written to recover the information.

Getmnt has had three significant versions. The original version (getmntl) was a highly optimized
naive tree traversal. Getmnt2 improved the real time performance by a mean factor of 7 by pruning
unnecessary branches from the traversal. Getmnt3 doubled getmni2’s speed, with a change from
depth-first to breadth-first search. On our development system, getmnt] required 647.6 seconds to
run, while getmn3 required 42.53 seconds.

KEY WORDS Mount Point  File System  Search  Performance

INTRODUCTION

The UNIX® file system!*3 manages collections of data called files. Data and a file con-
trol block called an inode comprise a UNIX file. /nodes are stored in a list maintained
per device. A pointer to the list entry, the i-number, identifies the file. Directories are
lists of <name, i-number> pairs. Directories are files, and can be components of another
directory. A rooted tree structure constrains the resulting ‘‘graph’’. A file is uniquely
named by the path from the root to the file in the directory tree, called the path name.
Name components are separated by the distinguished value ‘‘/*’. Referring to Figure 1,
the path name of the file ‘“‘core” is ‘‘/u2/smith/core’’. The current directory is a
directory-valued variable. It is an implied prefix, used to abbreviate path names. Direc-
tories have pointers to their containing directory to ease traversal; the root contains itself.

This scheme is extensible across multiple media through mount points. A mount
point is a named directory used to graft subtrees onto the tree. A mount point in a path
name causes interpretation of the portion after the mount point name to occur within the
context of the subtree rooted at that mount point. References to the containing directory
in the root of the subtree must resolve to the mount point.

The UNIX kernel does not store the path name passed to system calls. For open(2).

® UNKX is a registered trademark of AT&T. DEC, Digital, RA8:, and VAX are trademarks of Digital Equipment Corporation.



S2-

this absence prevents easy duplication of the MULTICS? hes_$fs_get path_name() call,
which returned the segment name of the segment descriptor argument. For chdir(2).
pwd(1). which finds a path from the root to “0 s roughly equivalent to converting the
descriptor to a name. For mount(2), an attempt to remedy the lack of pathnames is made
by maintaining a file. /etc/mntrab on System V, containing a mapping between mount
point names and device names. Administrative commands such as mount(1) and df(1)

use /etc/mnttab.

The Problem

In principle, locating the mount points is not hard. They must be distinguished in some
fashion. The difficulty is in determining the ‘‘path named’’ location of the mount points
in a file system tree. The solution could be as simple as examining system data struc-
tures, either directly or with a system call, if the operating system stored the path name.
The UNIX operating system kernel does not store path names associated with the mount
points. A file containing the names of mount points and their associated disk devices is
maintained so that administrative functions such as unmounting file systems can be per-
formed, Administrative accidents or errant programs can incorrectly update the file.
Such errors are infrequent on any given system, but large numbers of systems increase
the frequency of such errors. Several approaches to corrupt or deleted files exist:

e Maintain redundant copies of the file. All programs writing to the file must
adhere to this backup maintenance strategy.

e Maintain mount-point names in the kernel for recovery purposes. Path names are
not long in practice; the total storage required for null-terminated path name
strings on one large system with 38 mount points is 225 characters, less than a
system buffer. Thus, storing these names should require a manageable amount of
kernel storage.

® Restoring the file from alternate sources of information. For example, the set of
commands invoked on system startup could be examined for mount(l) com-
mands. This approach does not account for activity after startup. Another possi-
bility is the use of some utility to examine the kernel-maintained data structures.
This examination is difficult, and the data may be misleading. File system names
stored with the volume may not be accurate, as when a backup copy of a mounted
file system is examined.

* By convention, **."" is synonymous with the current dircctory, and *‘.."" with its parent.



-3

The first two are impractical, as they require either command or kernel changes. Such
changes are discouraged; experience has shown that the changes necessary for new
releases of the system software become unmanageable. Without these changes, the first
two methods are either not attractive or not robust. Setmnt(l) can create a new

letc/mntrrab if auxiliary information is available.

Related Work

This work consists of both a result, germnt, and a methodology. Since the algorithms are
problem-specific, there is little prior work related to the result. Hence, relevant com-

parisons must be drawn based on the methodology used for performance analysis.

Profiling has been used-7 for an analysis of system events. The analysis was
applied to improving system performance. These previous studies focus on operating
system performance. Disk performance8 has been studied using trace-gathered measure-
ments of driver activity. but no performance improvements based on these measurements
were reported. Similar techniques® were used to improve the performance of a com-
monly used network news management utility by a factor of 19; the focus was divided
between the results and the methods used to achieve them. While the goals of the pro-
grams are unrelated, a similar methodology was used in the development of getmnt, that
of profile-based performance analysis to refine a program. Getmnt's performance
increases were achieved in two major jumps rather than in many small steps. The
increases were achieved through algorithmic changes rather than implementation
changes: many of the optimizations ? had been applied in the construction of getmnzl.

The techniques used for getrmnt may be useful in other hierarchical file system
searches where mount points are significant, such as finding the machines in a network
file system tree.

GETMNT1

The UNIX system call stat(2) returns, among other data, the device, identified by a
number, that its file name argument resides on. Since the device on which a file is
mounted changes for files beneath a mount point, they are found in a file wee traversal.
On UNIX, device access is done with special files, which are entries in the file system
name space kept by convention in the directory ‘‘/dev’’. These special files also contain
a device datum in their inode entries, so that we can create a mapping between names
and devices. This mapping is unfortunately not 1-to-1: ‘‘swap’’ typically shares a
number.

Using these facts. getmntl was written. Getmntl builds a table of special file



-4-

names, subject to certain naming constraints, indexed by the device id. It then recur-
sively descends the directory tree starting from the root. Whenever the device id of a file
differs from that of its “parent”, the mount point name and the associated special file

name are output. The recursive algorithm is:

get_mount_points( dir )

while( dir not empty )
{
get next element;
if( dev(dir) != dev(element) )
mount point ( dir );
if( is_dir(element) )
get_mount points( element );
}

The first draft in the development of gemmnt! was slow, much like a “‘find /
-depth’ would be. The following optimizations were applied to yield acceptable per-

formance:

— Relative path names and chdir(2) were used to cache namei() results. As pointed out
in a UNIX system performance study> the namei() procedure used by staz() and
chdir() is very expensive.

— Read(2) calls on directories were buffered in a 512 byte buffer.

— Traversal depth was bounded, e.g., to four directories deep.

Germntl was used from late 1983 until the summer of 1987.

GETMNT?2

Getmntl’s static and empirically-determined depth bound was unattractive. Worse, its
approach did not scale well. The amount of disk storage associated with each processor
had increased over time. For example, consider system E, a DEC™ 8650 processor. It
has 38 file systems distributed over 12 RAS81 drives, comprising 5.4 gigabytes of disk
storage. Germntl took tens of minutes of real time to run on E and similarly configured
systems. Since germnt is used frequently as an administrative tool this performance was
unacceptable. The analysis began with a profiled version of germntl. The stat() system
call consumed about 47 percent of the execution time, with 29626 calls at 0.88 mil-
liseconds per call; 14 percent by read() with 19460 calls at 0.41 msec/call; 14 percent by
chdir(} with 16108 calls at 0.46 msec/call; and 7 percent by open() with 8054 calls at



-5

0.48 msec/call. The code was optimized to reduce the cost of system calls so that the
problem clearly lay with the number being issued. It was not obvious that this number
could be reduced”. Small changes made to the program resulted in equally small perfor-

mance improvements.

— Directories had been read using an old block size of 512 bytes, and the program logic
had used Iseek(2) to skip past the ““."" and ‘“..”” entries in a directory before reading
began, thus misaligning the blocks read with respect to the blocks on disk. The
buffer size was adjusted to the file system block size, halving the number of read()
calls.

— The program read information from /dev and its subdirectories one directory entry at
a time. Buffering was applied, as before. Experimental data showed that the simplis-
tic hashing scheme used in device name lookup was effective in generating short,
well-distributed lists.

— Get_mnt_pis(), the file tree walking routine, and the source of most string manipula-
tion calls, checked whether it had exceeded the depth limit specified. Checking
before the routine was called eliminated many calls. This pre-checking exemplifies a
rule for bushy trees: when you can, examine from the top.

These changes gave improvements of a few percent, not the desired order of magnitude.
The next section describes our first method for achieving major performance improve-
ments, ‘‘Leaf Pruning’’.

Leaf Pruning

The system calls in the profile results, e.g., stat(), read(), chdir() and open(). are used as
part of a search process. The number of system calls is reduced if the search is more effi-
cient. One way of making a search more efficient is a better criterion for stopping the

search.

Extra information can give us a better stopping criterion. In the example file tree
structure of Figure 1, mount points are marked with a parenthesized ‘‘device number ",
Germnt] would traverse the illustrated tree to the depth bound of 4.

The extra information about the organization of the tree is obtained as follows:

— The system mount table structure is read from /dev/kmem, a file system name-space

entry for the kernel memory. A flag associated with each device is initially marked

* Stat() system calls issued during a file tree walk are used 1o gather information, e.g., directory status and device number. Chdir() is
used in tree traversal. The open(), readf), and close() sysiem calls are used to gather information from directories.



UNREFERENCED.

— The system mount table is examined, and the inode table entry is obtained for each
mounted-on file system. This data forms a table of <file system device #. mounted-on
file system device #> pairs.

Table 1. Device numbers with parents

device | parent

number | device
0 0
10 0
23 0
12 10
31 10
33 0

— The flags of devices in the right-hand column of the table are marked INTERNAL,
as mounted-on file systems are parents in the tree structure. Devices present in the
left-hand column but not in the right-hand column are marked LEAF. The special
devices are thus partitioned into UNREFERENCED, LEAF, and INTERNAL. Thus.
a membership test can determine the type of a given file system.

This information can be used to ‘‘prune’’ nodes from the search for mount points; no
mount points can be found beneath a leaf node. For example, referring again to Figure 1,
the search beneath /ul, /usrisrc, /usrispoolinews, and /u2 is unnecessary because they
are leaf nodes. Germntl would search directories such as /u2/smith and /ul/jms. The
algorithm for get mount_points( dir ) is:

while( dir not empty )
{
get next element;
if( dev(dir) != dev(element) )
mount_point ( element );
if( is_dir(element) && !leaf(dev(element)) )
get_mount points( element );



Discussion

The extra information is used as a ‘‘hint’’, as an old /etc/mnitab could be, thus it only
improves performance; in the worst case the performance reverts to that of the old algo-
rithm. However, a profile illustrates the performance can improve significantly. Stai()
now consumes about 81 percent of the execution time, with 8100 calls at 0.95 msec/call;
chdir() 4 percent, with 556 calls at 0.69 msec/call; get_mnt_pts(), a local function, about
3 percent, with 6749 calls at 0.04 msec/call; and read() about 3 percent, with 751 calls at
0.36 msec/call.

This technique is particularly effective where many leaf file systems are mounted at
or near the root of the tree structure. The algorithm discovers the leaves almost immedi-
ately, and thus dispenses with their subtrees. The effectiveness of the technique is sensi-
tive to the shape of the tree, but is remarkably effective in practice. Performance results
were computed by gathering data for 17 systems. All command executions were timed
with rimex(1), which provides three statistics: real time, the amount of wall clock time
used during the execution; user time, the amount of time the application program spent
in control of the CPU; and system time, the amount of time the operating system spent in
control of the CPU for the application. Timesharing of the system with other applica-
tions and waiting for I/O to complete account for real-(user+system). The data was gath-
ered when the systems were in ‘‘single-user’’ mode to remove the effects of timesharing:
the system buffer cache was pre-flushed. The ratio time(getmnt1)/time(getmnt2) is used
to measure the improvement; this ratio allows comparison between unlike systems.
Statistics~ for these ratios are given for each relevant variety of time in Table 2. Column
AVG] contains the computed mean of the run times, in seconds, for getmntl.

Table 2. Performance Summary, getmnt2/getmntl

Time | mean | median | max | min | std_dev | AVGI

real 7.1 7.9 13.5 2.7 2.8 276.6

user 8.4 6.5 14.8 3.3 4.1 8.2

Sys 3.2 2.3 7.0 1.3 1.8 60.5
GETMNTS3

Mount points naturally tend to be located near the root of the tree. A depth-first strategy,
even one with leaf-pruning, does not take advantage of this fact. It encouraged a strategy
of exploring the top of the tree first, e.g., breadth-first search.

* Detailed data is available.!©



-8-

Breadth-first search was implemented in early 1988:

List = "/";

while ( not ( all mount points found ) )
{
get next directory, dir, from List;
while( dir not empty )
{
get next element for which is dir(element) ==

if( dev(dir) != dev(element) )
mount_point ( element );

if( leaf(dev(element)) )
continue;

append element to List;

}

The change in search strategy was made in an attempt to reduce the number of star()
calls still further. It was successful, as profile results” demonstrate: Stat() now requires
88 percent of the execution time, with 1767 calls at 1.471 msec/call; match(). a local
pattern-matching function, about 3 percent, with 7680 calls at 0.01 msec/call; and mal-
loc() a library function for memory allocation, requires about 2 percent, with 1623 calls
at 0.03 msec/call. This reduction in the number of calls should translate into a perfor-
mance improvement. Open(), chdir(), and read() have become relatively minor costs.
While fewer in number, each stat() call has become about 50 percent more costly, due to
the greater effectiveness of the UNIX disk buffer cache in depth-first search. The table
shows that the performance always improves and improves significantly on average. The
magnitude of the improvement is not uniform; the variation is due to differences in tree
shape. AVG2 is the computed mean of the times for getmnt2; from AVG2 the run times
can be estimated using the ratios.

* /dev was removed from the search, as it is traversed when device names, e.g., /devidsi/11s0, are being mapped to device numbers.
/dev is also an unlikely place for file systems 10 be mounted. This (hack) removed about 600 stat() calls.

TRUE;

S .



-9.

Table 3. Performance Summary, getmnt3/getmnt2

Time | mean | median | max | min | std_dev | AVG2
real 2.0 1.9 3.0 1.1 0.5 46.3
user 2.8 2.4 5.8 1.3 1.2 1.2
sys 24 2.3 4.0 1.3 0.6 29.2

Table 4 relates the performance of germnt3 to the performance of getmntl.

Table 4. Performance Summary, getmnt3/getmnt]

Time | mean | median | max | min | std_dev
real 13.6 135 24.1 3.6 4.9
user 27.0 24.25 65.3 4.7 204
Sys 7.4 8.3 155 | 27 4.2

To illustrate why the performance increases, consider the tree in Figure 1, and imagine
that /usr/spool/news is not a mount point. A directory font with many subdirectories is
found previous to src in /usr. Since src remains to be found, /usr is not a leaf and the
font directory must be searched to the depth bound. Such search can be costly.
Breadth-first search postpones such traversals until necessary for correctness.

There were other improvements whose effect was not dramatic:
— Path bunching; in an attempt to reduce the cost of chdir() calls, the number of calls

was traded against a slightly increased complexity for each call. Consider a directory
search, shown in a sh(1) -like notation:

for i in a b c d
do

cd ${i}

# work

cd ..
done

Equivalently:



-10-

cd a
#work

for i in b c d

do
cd ../${i}
fwork

done

cd

Note that five calls to chdir() do the work of eight. A routine cheap_cd( from_dir.

to_dir ) applies several such heuristics to reduce the cost of directory changes.

— Directories are read with a single system call. A set of routines emulating the
4.2BSD !! directory access routines was written. When accessed, the entire directory
is read into a buffer. Subsequent calls for directory entries are satisfied from this
buffer. While space utilization might be a problem in a recursive search, the strategy
employed in germnt3 completes its examination of a given directory before beginning
another. The space allocated to directory buffers is thus proportional to the single

largest directory examined.

— The information gathered about the kernel table of mounted file systems was
expanded to a complete tree structure. This organization has the advantage that
changes in the tree structure can be noted as leaves are detected and removed. Ter-
mination of the search is detected by the root node’s transition to a leaf, when all its
children, and their children, and so on, have been detected.

However, the major gain was effected by the change in search strategy.

Costs

One potential problem was overuse of memory, but the memory utilization of gemni3
was roughly comparable, about a factor of 2 greater than getmnt2. The major cost of the
changes is clearly in code complexity. Efficient breadth-first search required more com-
plex data structures and procedures for traversing the UNIX file tree. The code complex-
ity increased from getmntl to getmnt2 mainly as a result of the examination of kernel
memory. While a single conditional test was added to the main loop of germnt! for

getmni2, the cost of implementing the conditional was great.

The knowledge of many system details makes the code harder to understand and is
an impediment to portability. The increase in source lines from germntl, 445, to
germnt2, 818. including comments, was about 80 percent; getmnt3 showed a 60 percent



-11-

increase, from 818 to 1317 lines. As a result of the changes, the code is less portable,
and more effort is required to maintain it for new architectures and UNIX releases.

Copies of previous versions are archived for reference by maintainers.

CONCLUSIONS

The performance increase is particularly satisfying on our development system, E, as the
difference between getmntl and germnt3 on this machine was a factor of 15, somewhat
greater than the mean. The performance increases have been achieved by reducing the
number of system calls. Under a timesharing workload, each system call causes the
caller to be rescheduled, possibly resulting in a service delay. Thus, the observed

improvements are more dramatic!0 when a system is timesharing.

In locating mount points the items of interest are near the top of the file hierarchy,
and information about relative positions was available. We pruned nodes from our
search and used breadth-first search to yield a significant performance improvement.
The main ideas, of using extra information and adapting the search strategy to the prob-
lem . are applicable to many instances of file system search, and to algorithms in general.

In addition, the methodology may be useful to others; the results are embodied in

the current germnt.

ACKNOWLEDGMENTS

Henry Wong, Lorenzo Bonnani and John Ashmead instigated the development of
getmni2. Questions from John Ashmead and Gerald Maguire prompted getmnt3.

The presentation was improved by constructive criticism and suggestions from
reviewers. Jonathan Gross made the presentation of performance data more meaningful.
Charles Colbert, Vivian Hsu, Dave Slade and Jack Pucci helped to make new measure-
ments for a revision. Some development and all testing was done at Bell Communica-
tions Research, Inc.

REFERENCES
1. D.M. Ritchie and K.L. Thompson, ‘‘The UNIX Operating System,”” Communica-
tions of the ACM 17, pp. 365-375 (July 1974).

K.L. Thompson, ‘‘UNIX Implementation,”” The Bell System Technical Journal
57(6, Part 2), pp. 1931-1946 (July-August 1978).

3. M. . Bach. The Design of the UNIX Operating System, Prentice-Hall (1986).

4. Elliott I. Organick, The Multics System, Massachusetts Institute of Technology
Press (1972).

[



-12 -

5. Samuel J. Leffler, Michael J. Karels, and Marshall Kirk McKusick, ‘‘Measuring and
Improving the Performance of 4.2BSD,”’ in Proceedings, Summer 1984 USENIX
Technical Conference, Salt Lake City, Utah (June 12-15, 1984), pp. 237-252.

6. Marshall Kirk McKusick, Samuel J. Leffler, Michael J. Karels, and Luis Felipe
Cabrera, ‘‘Measuring and Improving the Performance of Berkeley UNIX,’’ Techni-
cal Report, Computer Systems Research Group, University of California, Berkeley
(November 30, 1985).

7. J. Ousterhout, H. Da Costa, D. Harrison, J. Kunze, M. Kupfer, and J. Thompson,
‘A Trace-Driven Analysis of the UNIX 4.2 BSD File System,”’ in Proceedings of
the Tenth ACM Symposium on Operating Systems Principles (ACM Operating Sys-
tems Review), Orcas Island, WA (December, 1985).

8. Thomas D. Johnson, Jonathan M. Smith, and Eric S. Wilson, ‘‘Disk Response Time
Measurements,”’ in Proceedings, Winter 1987 USENIX Technical Conference,
Washington, DC (January, 1987), pp. 147-162.

9. Geoff Collyer and Henry Spencer, ‘‘News Need Not Be Slow,”’ in Proceedings,
Winter 1987 USENIX Technical Conference, Washington, DC (January, 1987),
pp- 181-190. .

10. Jonathan M. Smith, ‘‘Performance Analysis and Improvement in UNIX.File System
Tree Traversal,”’ Technical Report CUCS-323-88, Columbia University Computer
Science Department (1988).

11. W.Joy, 4.2BSD System Manual, 1982.

(b2
OZEOENONRONRC
CIONNCENCONENC

(85 ©

Figure 1. Sample File Tree



