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Abstract

Producton systems have been studied as a language for artificial intelligence programming
~ for over a decade. The flexibility of a programming paradigm which allows for loosely structured,
independent rules to represent knowledge is attractive. Unfortunately, two seemingly independent
phenomena have hindered the ability to take full advantage of production systems. First, the
performance of large production systems suffers due to the large amounts of computation required
to run them. Second, the programming styles of individuals primarily accustomed to conventional
programming has adversely affected the maintainability and performance of the resulting systems.
The parallel execution of production systems has been studied in order to address the performance
issues. Preliminary results have been interpreted pessimistically; production systems have been
observed to contain only moderate to low levels of parallelism. By investigating the issue of
programming style, however, it will be shown that the apparent lack of large-scale or massive
parallelism is an artifact of this problem. Indeed, a set of programming guidelines and tools will be
presented which yield more maintainable, understandable, and parallelizable production systems.

Is there a programming methodology or environment which will allow for the development
of more maintainable and parallelizable production systems? This work will attempt to demonstrate
that using a combination of several techniques, resulting production systems will more
appropriately conform with the theory which supports their use. Production systems are not
appropriate for encoding all problem solving tasks. They are appropriate when there is a clear
separation of explicit control knowledge, tabular knowledge, and pattern-directed knowledge.
This classification has been presented by many researchers in the field, often in order to advocate
their separation. The issue has been addressed from a knowledge representation standpoint; here
it will be one of several issues which, when addressed properly, will result in systems with
improved performance in addition to their more adequate representation of the knowledge.




Substantially more parallelism can be extracted from these systems. In this regard, the
techniques complement parallel match algorithms which provide the first step in the solution for
mapping production systems onto parallel architectures. The techniques are rable-driven rules,
creating constrained copies of culprit rules, multiple rule firing, and combining rule chains. These
methods are combined into a new way of viewing production system execution. Rather than
assuming the sequentiality of production systems and trying to extract parallelism explicitly, the
systems are assumed to be implicizly parallel and all necessarily sequential aspects are explicitly
defined.
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A Methodology for Programming Production Systems
and its Implications on Parallelism

Thesis Proposal

1. Introduction

Over 40 years ago, production systems were introduced as a general computational model
[Post 1943]. As computer science and, in particular, artificial intelligence developed, the
production system paradigm proved itself invaluable in a variety of frameworks. In the early
1970s, several prominent researchers established production systems as an adequate model for the
expression of a wide range of problem-solving tasks [Newell 1973, Newell and Simon 1972,
Nilsson 1971]. A definitive dissertation was prepared demonstrating production systems to be an

_ideal language for artificial intelligence programming [Rychener 1976]. All these results were
commentaries on the model of knowledge representation provided by production systems. It was
not untl the development of the Rete pattern match algorithm that production systems could be
realistically used for large scale artificial intelligence systems [Forgy 1982]. The Rete algorithm
provided a mechanism for the rapid execution of production systems; the many pattern/many object
match problem which Rete addressed was an obstacle preventing the use of production systems
due to their poor performance.

The increasing availability of production system interpreters resulted in a proliferation of rule-
based expert systems. These systems, though, were written primarily by individuals with
extensive experience in conventional programming, as opposed to researchers intimately involved
in the theory of production systems. In addition, many researchers subscribe to the belief that
production systems could and should be used to represent all aspects of a given knowledge base or
complete system. Due to these factors, many existing expert systems are encoded entirely in the
production system paradigm, including explicit control knowledge, pattern-directed knowledge,
and all other categories of information.

Many of the systems represent solutions to problems which have some degree of
sequentiality to them. The explicit control knowledge being embedded in the production system’s
architecture has resulted in an inherent sequential nature in the execution of such systems.
However, execution of production systems on parallel architectures intuitively was expected to
provide massive performance improvements. Initial results and projections on parallelizing
production system execution were disappointing. Unfortunately, researchers have pessimistically
generalized these preliminary findings and have decided that only limited improvements on
production system performance is available through parallelism (Gupta 1985]. Many of these
results were obtained by analyses of a small sample of existing systems which were written with a
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sequential machine as their target. The lack of parallelism is sometimes due to the sequential nature
of the problem, but may also arise from the programming style of the knowledge engineers who
built the systems. In the former case, no implementation could provide a parallel solution, but in
the latter, techniques could be applied which dramatically increase the level of parallelism.

Is there a programming methodology or environment which will allow for the development
of more maintainable and parallelizable production systems? The fundamental nature of production
systems is that of a collection of independent rules, each of which can be processed
simultaneously. Programmers creating production systems in sequential environments, though,
often write interdependent rules. This interdependency is most often due to the attempt to represent
control knowledge in production rules, not due to a dependency in the pattern-directed knowledge
of the domain. This introduction of sequentiality can be removed by providing a control language
to represent the sequential aspects of the problem. This approach would invoke sets of production

~rules to solve subproblems whose solutions can be represented with a collection of independent
rules that can be fired in parallel (commutative production systems [Nilsson 1980]). In the past,
control languages have been suggested for separating control knowledge from domain knowledge
in production systems, solely for knowledge representational advantages [Stolfo 1979, Georgeff
1982]. Here, a control language will provide the enriched knowledge representation as well as a
mechanism for explicitly defining necessarily sequential aspects of the problem.

The remaining portions of the problem, with solutions expressed as sets of independent
production rules, will be more easily maintained, understood, and parallelized. During each cycle,
all satisfied rules should be able to be fired simultaneously. This would result in fewer cycles and
more parallel processing at each cycle. This mechanism can only be used if the production systems
satisfy certain criteria. The goal of this thesis is to outline these criteria and provide methods for
generating alternative solutions to existing problems which can be executed in this fashion. The
techniques described will be applied to a reimplementation of a set of existing systems. Also, two
complete, commercial expert systems written with the aid of these techniques will be analyzed.
The systems will be empirically analyzed to establish their degree of parallelism and execution
time. The results will be compared to the original systems in order to demonstrate the validity of
the techniques for improving performance and parallelism. A qualitative discussion will also be
presented concerning the knowledge representational advantages of the new systems. The
implications of this thesis include insights on:

« production systems as a more satisfying language for artificial intelligence
programming by providing a methodology for rule-base design,

- the ability to take advantage of massive parallelism for the rapid execution of
well-designed pattern-directed inference systems,
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« the relationship between good knowledge representational models and parallel
processing applicability in artificial intelligence systems.

 the generalization of the techniques applied to other formalisms such as frame-
and object-based systems.

2. Control Knowledge

Production systems are certainly not appropriate for all programming tasks and, as will be
discussed, also not for all knowledge representational tasks. Production system architecture
provides a production memory in which an unordered set of rules are stored, a working memory in
which the current problem state is represented as a set of assertions, and a conflict resolution
straregy which, given a set of satisfied rules and the assertions matched, determines which

—instantiation to fire. Each rule is comprised of a set of conditions (abstractions on potential
assertions) and a set of actions (predominantly new elements to be asserted and directives to
remove existing elements). In a state-saving environment in which each production rule
remembers its partial matches, a production system cycle begins with the match ol the previous
cycle’s new assertions and removals against the conditions in all the rules resulting in a change to
the conflict set. Conflict resolution then chooses the instantiation to fire and the actions feed the
next cycle. According to this model, the control knowledge determining which rule fires is
represented as reactions to the state described in working memory. In other words, a rule can be
generally expressed as:

If a portion of the current problem fits this abstraction,
Then  alter the current problem description according to these directives.

An example rule from an expert system for underwriting home owner’s insurance policies

which fits this description is:

If the home was builtl before 1950 and
the application requests coverage for more than $150,000,
Then  assert that an inspection of the premises is needed and
assert that the application should not be approved without referral to the

head underwriter.

Patterns detected in the problem state cause rules to be triggered and thus alter the state of the
problem. A rule such as this does not explicitly refer to the next or previous rule in the firing

sequence. These rules encode control as panern-directed knowledge.
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Tabular knowledge is also used to drive rule selection. Often, large tables of information can
summarize knowledge about a subdomain of the problem. These tables can be represented in
working memory and rules can be driven from their contents, specific entries in the table being
selected by problem-state descriptive working memory elements. An example from the
underwriting expert system is:

In WM: Rating table with fields town, county, state, and zip code.

If the address is in a given county, town, state, and zip code and
there is no entry in the rating table for the county or zip code and
the entry in the rating table for the town in the state has a minimum
home value,

Then  assert that the current address has the minimum home value from the
table.

These rules which match on the tabular knowledge are further examples of using pattern-
directed informarion as control knowledge. The patterns are satisfied partially from the assertions
describing the problem and partially from the knowledge represented in the table.

Explicit control knowledge is often represented in production rules as well. These rules
explicitly direct which rules should be selected next by asserting working memory elements which
do not describe facts about the problem but just the current stage of problem-solving being
performed. The next rules are triggered by the presence of these control elements. For example:

If the stage is calculating premium and
the factors are x, y, and z,

Then  assert that the premium is x*y*z and
assert that the stage is underwrite risk.

This embedded explicit control knowledge differs from pattern-directed knowledge. It
represents movement through different stages of problem solving, not reactions to problem
descriptions. Explicit control knowledge in production systems can be viewed as an attempt to
force conventional programming structures into the production system paradigm. Through its use,
sequential blocks, conditional code segments, and iteration can be implemented. One of the goals
of this thesis is to argue that explicit control information should not be represented in production
rules or, if it must, it should be carefully separated from the remainder of the system. An external
control language invoking production system executions in sequence, conditionally, or iteratively
is a better model for expressing combinations of explicit control and pattern-directed knowledge.
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This qualification will be supported both qualitatively by critically contrasting alternative encodings
of a set of problems and quantitatively by empirically demonstrating performance and
parallelization improvements.

3. Obstacles to Parallelization

According to Gupta [1986], the principal limitations to parallelizing production systems are
the following:

1. asmall number of affected productions per working memory change,
2. alarge variation in processing time for these productions,

3. asmall number of working memory changes per cycle.

In order to address these problems, the anatomy of the production system cycle is described.
The production system execution cycle is often described as match-resolution-act. This is a
misleading view; a better description for state-saving production system interpreters is
{act-match}-resolution or, more accurately, {select-join}-resolve. The synchronization point is the
conflict resolution: it cannot begin untl the match is completed. The next select phase begins after
resolution chooses an instantiation. Resolution is an operation computationally equivalent to
finding the maximum of a set; parallel log n solutions exist. The {act-match}, on the other hand,
presents several problems for efficient, balanced execution in a massively parallel environment.

The most fundamentally sequential aspect of production system execution is its cyclic nature.
Thus to overcome this obstacle to parallelization, the overall number of cycles must be reduced,
replacing them with fewer, more computationally intensive yet parallelizable cycles. By decreasing
the number of cycles in this way, in Gupta's terms this will result in increasing the number of
changes to working memory per cycle, thus addressing point 3. By effectively parallelizing this
work, Gupta’s point 2 is addressed. The techniques presented will also yield a greater number of
affected productions (point 1). Two goals have therefore been identified: reduce the number of
cycles and find solutions for the {act-match} phase which can take advantage of massive
parallelism. The first goal will be addressed by the using the techniques of rule independence and
combining rule chains. The latter has been investigated previously yielding the TREAT match
algorithm [Miranker 1986]. This algorithm provided a better parallel match algorithm than parallel
Rete. Nevertheless, load among processing elements was not well distributed and the algorithm
alone did not demonstrate the usefulness of massive parallelism in the {act-match}, thus it did not
directly address the second of Gupta’s points.
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In order to determine rule satisfaction, the conditions of a rule are matched against the
assertions in working memory. The match can be broken down into two parts. First, the
intracondition (selection) tests (a tests, in Rete terminology [Forgy 1982]) correspond to a
relational selection on the assertions. Then, the intercondition (join) tests (B tests, in Rete
terminology) are join operations on the relations which were selected [Stolfo and Miranker 1986].

The model of parallel match assumed is that a processing element is assigned to each rule.
Thus, the set of selection tests for each rule is performed simultaneously, as is the set of join tests.
For a given cycle, the changes to working memory are processed by each rule to result in a revised
conflict set of instantiations. There will likely be only a small variation in the number of selection
tests performed by each rule; most rules are approximately the same size in terms of number of
condition elements and number of constants in each. However, the number of join tests per rule
- will vary much more because it is dependent on how many assertions exist which match each
condition independently. This can result in poor load balancing among processors. The technique
of creating constrained copies of culprit rules will demonstrate the usefulness of massive
parallelism by providing a mechanism to balance the load during the {act-match} phase.

4. Rule Independence

Intrinsic to the nature of production systems is the concept of rule independence. However,
this characteristic is lost when explicit control knowledge is embedded in the rule-base.
Productions should, ideally, represent independent knowledge chunks; the decision concerning
when to apply the actions specified should be dependent on the problem description in working
memory, not the presence of working memory elements placed there for control purposes alone.

In the ideal case, any production eligible for firing should be allowed to fire simultaneously
with other eligible productions. Unfortunately, several reasons exist which make indiscriminate
multiple rule firing in current systems difficult:

+ many current systems were written with the assumption that only one

production would fire per cycle and thus make use of that fact in their probiem
solving strategy,

+ many systems implicitly rely on the conflict resolution strategy to select the
single most specific rule in order to function properly,

« embedded control structures exist in the productions which often result in very
few relevant productions eligible to fire in any cycle.

The productions nevertheless could be rewritten into rule sets which are controlled by an
external mechanism. Each individual set can be made of rules which can fire simuitaneously if
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they appear together in the conflict set. The productions in a set should be devoid of control
knowledge and should not cause incorrect behavior if fired simultaneously. Existing production
systems can be rewritten using this methodology so as to provide more clarity, more parallelism
during the execution of any rule set, and explicit specification of sequentiality outside the rule
formalism. The additional parallelism would arise from a larger number of working memory
changes per cycle and a larger number of affected rules per cycle [Ishida and Stolfo 1984]. In
addition, there would be fewer cycles overall. The greater degree of parallelism along with fewer
cycles would result in much improved performance.

5. Using Macrorules

It is often the case that a given task requires a sequence of rule firings to accomplish its goal.
=Depending on the state of working memory before the task begins, a different traversal through the
space of rule firings will take place, yielding a correspondingly altered working memory. In this
model, a given execution of a production system segment can be replaced by a single macrorule.
Theoretically, if all possible sequences of rule firings for a given rule set are known (and there are
a finite number of these), one macrorule can replace each traversal through the system, thus
causing the rule set’s execution to complete in one cycle. This one cycle would consist of
matching large sets of preconditions to the initial working memory and executing a large set of
actions to alter it. All these operations, however, could be parallelized. Techniques of combining
operations have been investigated in the realms of knowledge representation and learning
[Rosenblum and Newell 1982], the development of search strategies [Fikes and Nilsson 1971],
and standard code optimization [McKeeman 1965]. Similar techniques can be used in production
systems in order to improve performance by increasing the amount of parallelism and, in addition,
improving modularity by combining whole subtasks into one rule.

A set of macrorules would accomplish the same task as the original set of rules. The
macrorule scenario would be superior in two respects: the rules representing the solution to the
task would be independent of each other, each representing a different complete scenario, and the
macrorule version would be more parallelizable because there would be more working memory
changes in each of the fewer cycles and more rules affected by each of the changes (rules would
contain more conditions as well as actions).

As a methodology for writing production systems, this technique will be demonstrated to
provide superior systems by a qualitative argument as well as quantitative empirical performance
and parallelization measurements.

The technique can also be applie :xisting systems. The systems can be rewritten after an
analysis of their execution behavior. - obstacles to be overcome include the possibility of an
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infinite number of possible executions through a rule set due to loops in inference, the likelihood of
an unmanageable number of executions even if no loops exist, and the problem of figuring out all
possible executions even if the number is manageable. One approach to solving these problems
which will be evaluated is the use of execution expressions. An execution expression is a regular

expression. The terminal symbols are rule names and the operators are disjunction (+), sequence
(,), and arbitrary execution (*). The form (P1+P2) indicates that either P or P7 must fire.

(P1,P2) means that P| must fire and then P must fire. (P1)* means that zero or more firings of
P must occur. Although a regular expression is not descriptive enough to precisely define a given
production system execution, it can be used to constrain the possible executions adequately. The
interesting execution chunks are those which can be broken down into a finite number of
possibilities; infinite sequences cannot be rewritten into a set of macrorules, so a more powerful

- description of infinite sets is not necessary.
= Any production system can be described by the execution expression (P1+P2+...+Pp)*. Ifit

is known that P always fires first and then never again, the expression can constrain the execution
as follows Py,(P7+P3+...+P)*. Once a constrained execution expression for the production
system is obtained, the portions of the expressions which do not contain * operutions can be
extracted. The rules in these pieces can be translated into a set of macrorules.

The derivation of the execution expression for a production system requires the specification
of an abstract description of the possible initial working memory. From this and the set of rules, a
finite state automaton is constructed where the states are these abstract working memory
descriptions and the arcs are labeled with the rule names. The execution expression is then derived
from the automaton. Other approaches to the derivation of execution expressions have been
studied including the automatic learning of these control descriptions from sample execution traces
[Stolfo 1979].

The execution expressions for three production systems have been derived. They illustrate
three different scenarios, each of which can be parallelized in a different way. One system,
MESGEN (a portion of the system ANA developed at the University of Pennsylvania by Kukich in
1983), resulted in an execution expression characterized by large strings of rules which could be
combined, occasionally being cut by a single-rule tight loop (used for counting elements which
matched some pattern). This system, when rewritten by combining the rule chains would execute
in far fewer cycles.

Another system, Homex (developed at Fifth Generation Computer Corporation by Pasik and
Lowry in 1986), had an execution expression which was quite different. This system was built
with parallel execution in mind as a possibility. Therefore, there were few chains of rules to be
combined. Nevertheless, the rules were mostly able to be fired in parallel and a complete execution
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on a parallel machine would require approximately 10 cycles, regardless of the size of the problem
being solved.

Finally, the execution expression of a production system to label line drawings using Waltz
constrain propagation was derived. This represented an intermediary between the two previous
systems. There were several rule chains to combine and the resulting system would contain some
new rules and some original ones which could be fired in parallel.

Other methods for deciding which rules to combine will be discussed as well. A run-time
solution involves creating macrorules each time two rules fire in sequence. An upper limit on the
total number of rules in the system will be maintained by discarding the most infrequently (or least
recently) used rules. The criteria for the decision of which rules to discard will be compared to
those involved in paging decisions in virtual memory operating systems. One of the issues which
arises when dynamic methods are used is whether a macrorule replace the original rules or simply

“augment the rule set. If the macrorule is generated from rules which must fire in the urder
specified then they can be replaced. If, however, a heuristic method is used to control macrorule
generation, the original rules must be maintained and an algorithm (such as least recently used rule
removal) for the control of rule set size must be used. The scenarios requiring different solutions
will be discussed and compared.

6. Table-driven Rules

Production rules and working memory elements are often categorized as representing long-
and short-term memory respectively; the production rules represent the knowledge of the problem
domain whereas the working memory describes the state of the particular problem being solved.
Nevertheless, adherence to this distinction is not required. Table-driven rules can be used in
conjunction with tables in working memory to represent long term domain knowledge [Pasik and
Schor 1984]. The technique provides knowledge representational and system maintenance
advantages. Often experts organize their knowledge in categories. Problem solving can involve
the selection of a category and its associated information which best fits the current problem
description. Thus, a table in working memory can be built representing a relation among various
attributes of a problem. Rules can then select entries from this table according to other relevant
assertions in working memory, extracting additional needed information.

In addition to the knowledge representational adequacy of table-driven rules, their use
improves the maintenance of the system. Tuples in these tables are easily added and removed and
few, concise rules can be written which are driven by the tables. The alternative is a large
collection of rules which vary only according to a small number of parameters.
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The disadvantage of using tables and table-driven rules is realized when attemnpts are made to
parallelize the system. A table-driven rule will generate large selection relations to be processed in
the join phase. This implies that, in non-shared memory architectures, the processor handling the
table-driven rule will require much more memory than an average rule. In addition, the time
require to match the rule will be substantially above average, thus slowing down the entire
execution. However, the advantages provided are sufficient to warrant an investigation to
determine methods of parallelizing this process. These same methods will be useful in general
whenever a load balancing problem occurs in production system execution. The technique of
creating constrained copies of culprit rules addresses this issue formidably.

7. Creating Constrained Copies of Rules

= Whereas maintaining rule independence and using macrorules both improve parallel
performance by reducing the number of cycles by creating more parallel work, neither technique
addresses the issue of balancing the load over the processing elements. The problem is further
accentuated when table-driven rules are used to encode tabular knowledge in production systems.
Table-driven rules, however, are encouraged in the methodology due to their clear and
maintainable representation of the knowledge. The technique of creating constrained copies of
culprit rules [Pasik and Stolfo 1987, Stolfo er al. 1985] addresses the load balance problem
elegantly and sufficiently both with and without table-driven rules.

Working memory elements are matched by the productions’ conditions and created or
removed by the actions of selected rules upon firing. The conditions of a given production rule
match zero or more working memory elements on each cycle. If each condition is either not
matched by an existing working memory element or is only matched by a single one, then the time
required to match the production is proportional to the number of conditions, ¢, and working
memory elements, w: O(cxw). On the other hand, if multiple working memory elements match a
single condition, each creates a tuple in the selected relation which must be joined with the relations
formed by the remaining conditions, requiring many more join tests: O(wc). Rules that are
particularly plagued in this way generate a cross product of instantiations between two or more
large sets of elements being joined. These culprit rules slow down the execution of the entire
system: in parallel implementations this is even more detrimental because conflict resolution must
occur after all instantiations are created and thus a single culprit rule will cause the other processors
to idle during the match phase. This situation tends to occur frequently in programs which
represent a portion of the knowledge base as large tables in working memory as well as in
programs which analyze large amounts of data in working memory [Vesonder ez al. 1983].
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Certain working memory element types can be identified which are likely to appear in greater
numbers than others. For example, it may be known a priori that very few working memory
elements of type arithmeric-result will exist whereas many elements of type table-entry are likely to
reside in working memory at a given time. Thus, rules which match on table-entry working
memory elements will require more join tests to determine rule satisfaction than rules which match
only on arithmeric-resulr elements. Each of the former rules should be rewritten as a set of
constrained copies of the original.' Each copy would match on a subset of the table-entry elements
during the selection test phase, reducing the number of instantiations overall for join testing. Also,
each of the copies can be selection- and join-tested simultaneously.

Suppose, for example, that the following rule is written in order to identify two jigsaw puzzle
pieces of the same color and fit them together (OPSS5 syntax is used):

(p join-pieces
= {piece “color <X%>

~id <I>) E
{(piece ~color <X> ‘
~id { <J> <> <I> })
- (gecal “tyce <try-ioin
~idl <i>
~id2 <3>)

{make goal “zype try-ioin
~idl <I>
~id2 <C>))

There may exist many (say n = 100) elements of type piece. The first two conditions would
each create selected relations containing n tuples. Then, ne = 10,000 join tests would be required
to create tuples (possibly very many of them) in the joined relation (all sets of two pieces with the
same color), which would in turn be matched in the remaining join tests in the rule. The rule can
be copied, say m = S times, each copy constrained to match only a subset of the elements. For
example, the domain of the color attribute may be known to be {red, blue, yellow, green, nil}.
One of the five copies would include the following conditions:

(piece ~color RED

~id <I>)
(piece “color RED
~id { €3> <> <I> })

The other copies would only match one of the other four possible values. Assuming that
there is an even distribution of the colors among the pieces in working memory, each condition
would create its selection relation with approximately (n/m) tupies. Each of the m rules would
require (n/m)2 join tests: a factor of m fewer comparisons overall even on a sequential
implementation. These m rules, however, could be processed in parallel. In this example,

therefore, the process would be sped up by a factor of m2 =25.
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The method described requires knowledge of the domains of the attributes in order to
constrain the copies. This assumption can be removed by employing a hashing scheme; each copy
of the rule would be constrained to match only those working memory elements with a particular
hash value. Once an attribute with enough variability is selected, a new attribute is defined for the
working memory element type. Its value will be the result of a hash function performed on the
selected attribute. Thus, even if the colors of the pleces were unknown, the copies could still be
created, constrained by differing values of the hash attribute. The copies which would be
generated if pieces’ colors were hashed into four buckets are shown below.

(p jein-pieces-1 (p join-pieces-~2
(pilece “color <X> (piece ~color <x>
~id <Ii> ~id <I>
~hash-color 1) ‘ “hash-colsor 2)
(piece ~color <X> (piece “~color <X>
~id { <JI> <> <I>} ~id { <I> <> <I>})
- ~hash-color 1) “hash-color 2)
- (geal ~type cry-jein - (goal ~cype zry-join
~idl <I> ~idl <I>
~id2 <J>) ~id2 <3>)
--> -=>
{make goal “typce <try-join {make goal “type trcy-jein
~idl <I> ~idl <I>
~id2 <J>)) ~id2 <2>))
(p joiln-pieces-3 (p join-pieces-4
(plece ~colcor <X> (piece ~color <X>
~id <I> ~id <I>
~hash-color 3) “hash-color 4)
(piece ~color <X> (piece “~color <X>
~id { <J> <> <I>} ~id { €3> <> <I»)
“hash-color 3) “hash-color 4)
- ({goeal “tyve try-join - (goal “type try-jein
~idl <I> ~idl <I>
~id2 <3>) ~id2 <3>)
--> -=>
{make goal ~type try-join ({make goal “type try-join
~id1 <I> ~idl <I>
~1d2 <J>)) ~id2 <S>))

The generated copies result in an increase in the number of rules active during selection
testing. More work is performed in this phase resulting in more selection operations in parallel,
each of which would result in a smaller relation during join testing. According to Gupta [1985],
the average affect set size is 30 productions per cycle. This was presented in order to support the
conjecture that massive parallelism was inappropriate for production system execution; no more
than 30 processors would be needed if the productions were distributed intelligently. These few
processors would, however, have to deal with the occasional culprit rule which would slow the
execution of the entire system. By creating constrained copies of culprit rules and distributing
them to many more processors, each will be working on a smaller subset of the changes to
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working memory yielding an improved performance. Much of the work is shifted from the join
test phase to the easily parallelizable selection test phase.

In addition to the speedup obtained, this technique also provides the advantage of smaller
memory requirements for each rule to store its joined relations. On fine-grained parallel systems
without shared memory (such as DADO), the number of tuples in the selection-generated relations
created by certain conditions can become large and thus overflow the limited memory of the
processing element. Upon creating constrained copies of the rules and assigning each to its own
processing element, the number of tuples for each is dramatically decreased.

The selection of which attributes within which classes to constrain requires knowledge of the
domain. The simple directive of selecting the classes of which there will be many working
memory elements and the attributes of those classes with high variability will provide good results.
Nevertheless, it may often be difficult to assess these parameters.

Initial tests have been performed estimating the amount of parallelism and speedup of three
systems by creating constrained copies of culprit rules. They have demonstrated that as more
copies of culprit rules are created, greater parallelism and faster execution time is achieved (see

Figure 1).
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Flgure 1. As more copies of culprit rules are created, the sum of the manimur_n
number of intercondition tests per cycle during the whole execution is
decreased. This indicates an overall speed improvemaent.

8. Conventional Code Optimization

A broad definition of conventional code optimization is the detection of certain patterns in
code followed by the replacement of this code with more efficient constructs (Aho and Ullman
1977). Whereas optimization of conventional programs can yield up to a factor of 2 or 3 improved
speed, optimization is more necessary in Al languages and can yield order of magnitude speed
improvements (Earley 1975, Schwartz 1975a, Schwartz 1975b). The methodology described can
be interpreted as a set of code optimization techniques; many conventional code optimizations
were, after all, derived from programming guidelines. However, the techniques are specifically
designed for production systems, and the scope of the code improvement includes both efficiency
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and maintainability. Conventional code optimization deals with automatic detection and
replacement strategies applied to intermediate code produced by compilers. The production system
methods are presented as code writing guidelines along with, in the case of copy and constraining,
an automatic tool for the application of the method. For the sake of comparing conventional code
optimization to the methodology described, however, these fundamental differences can be
overlooked.

Loop Optimization.

According to the 90-10 theory (90% of a program’s execution time is spent in 10% of its
code) [Knuth 1975], the most important code optimization techniques are concerned with the
improvement of inner loops. This loop optimization includes repositioning of loop-invariant code,
elimination of induction variables (often accompanied by a reduction in operator strength), loop

<unrolling, and loop jamming.

The movement of loop-invariant computations in conventional code optimization improves
the efficiency of code by reducing the amount of work being done in each iteration of the loop.
Loop-invariant code is repositioned so as to be executed once before the body of loop is entered.
A distant analogy can be made between this process and creating constrained copies of culprit
rules. Just as the most compute-intensive portion of conventional programs is their inner loops,
the intercondition test phase is the correspondingly intensive code in the production system
execution cycle. Creating constrained copies of culprit rules involves identifying patterns in
potential working memory configurations and adding constraints to copied rules so as to
redistribute the work out of the intensive intercondition test phase and into the intracondition test
phase. Although this “code movement” is not loop-invariant code, the process common to both
optimization techniques is the offloading of work from an intensive region by adding work into a
previous, less intensive program section.

The elimination of induction variables is a technique specific to conventional program’s loop
structures. A loose interpretation of the process is the detection of two (or more) variables which
can be combined into one serving both (or all) purposes. In this sense, it is related to the local
optimization technique of elimination of common subexpressions. There, an expression calculated
twice is only evaluated once and the result used in both occurrences. Both of these optimizations
result in a single operation replacing several. Using macrorules accomplishes a similar result by
eliminating changes to working memory which would have been done and undone by the chain of

rules being replaced. For example,
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If A, B,and C
Then makeDandE

and

If Band D
Then make F and remove D

could be replaced by

If A, B,and C
Then makeE andF.

= Thus, the operations of make D and remove D are eliminated. Although this process has
nothing to do with induction variables, removing a data item and making one rule serve the
purpose of both original rules is distantly related to the conventional code optimization process.
This same example is more closely related to the peephole optimization process of removing
redundant loads and stores.

Conventional loop unrolling is used to reduce the number of exit tests required in a loop’s
execution. Its is best explained by referring to the small example below. If a loop is known to
execute a fixed number of times, the body of the loop can be duplicated so that the loop will
perform its exit test 50% fewer times.

for (i=1:;i<=100;) {

a(i] = b(i)

i =i+l

}
becomes

for (i=1;i<=100:) {
afi] = b(i)
i=1i+1
afi] = b[i]
i=i+1
}

In effect, loop unrolling achieves the reduction in exit tests by replacing many small iterations
with fewer large iterations. The process is similar to using macrorules and multiple rule firing in
that these techniques also replace many small cycles with fewer large cycles. Both the
conventional loop unrolling and the production system techniques reduce the overhead associated

with the cycling: the number of exit tests and the number of conflict resolutions respectively. The
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production system techniques are also used to improve performance via increasing the available
parallelism. It is interesting to note that conventional loop unrolling may also increase the
parallelism in conventional code.

Similar to loop unrolling, loop jamming also replaces small loops with larger ones. Loop
jamming refers to the combination of two separate loops into one. The analogy described above is
even more appropriate for loop jamming. Macrorules represent the combination of two distinct
pieces of code into one unit as opposed to the repetition of the same piece. The benefits of
reducing overhead and increased potential parallelism are the same as those discussed for loop
unrolling.

In conventional code, loops are easily detected because of the high level control constructs.
Loops in production systems are hard or impossible to detect. The idiom corresponding to
conventional code’s loop constructs is

- 1. initialize working memory,

2. repeatedly fire a rule (or set of rules) over a number of matching working
memory elements,

3. fire a loop exiting rule.

This is accomplished by a number of independent rules. Syntax provides little guidance
since rules can be placed far apart in the production system program text. Indeed, the detection of
such loops requires semantic knowledge applied to an analysis of the potental behavior of the rule
base. Furthermore, there are no guarantees that a loop will be executed in its entirety. Since any
rule can fire during the course of executing the body of a production system loop, the loop may be
executed at unpredictable points in the computation. The conflict resolution strategies employed by
OPSS programs depend primarily on runtime behavior that cannot be determined at compile time.*
Hence, the sharp control knowledge available at the compile time of conventional programs is only
fuzzy or nonexistant in the production system case. This same argument holds when attempting to
use other optimization techniques requiring data flow analysis.

The methodology proposed here puts the burden on the knowledge engineer to write code
more efficiently in the first place in the absence of a very smart optimizing compiler. Production
systems, after all, are declarative programming languages. The claimed advantages of production
system programming of modularity and expressiveness afford perhaps the easy representation of
human knowledge but at the expense of generally inefficient machine execution. There is need.,

* OPSS5’s conflict resolution strategy favors instantiations of rules matching working memory elements asserted
more recently than others. The order in which elements are asserted is not known at compile time since the
inidalization of working memory or the interactive behavior with the program falls victim to the vagaries of the
user.
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therefore, for a well structured programming methodology to balance the benefits of expres -n
with the requirement of efficiency.

Peephole Optimizarion.

Peephole optimization refers to code optimizations resulting from an analysis of a small range
of instructions (McKeeman 1985). An important characteristic of peephole optimizations is that an
application of one such optimization often leads to one or more additional possibilities for further
optimization. The construction of macrorules and the creation of constrained copies of culprit rules
share this attribute of peephole optimization. When a macrorule is created, the set of possible
sequences of rule firings changes. This may provide opportunities for further combination of rule
chains. Also, the new macrorule may turn out to be a culprit rule requiring many intercondition
tests. This would provide an opportunity for further parallelization and performance improvement

by creating constrained copies of the macrorule. Creating constrained copies of one culprit rule
may illuminate the presence of another culprit rule previously masked by the “worse culprit”. In
this case, the first constrained copy creation leads to a second.

Specific peephole optimization techniques can be compared to the production system
techniques described. They are redundant loads and stores, jumps over jumps, unreachable code,
and multiple jumps. Other peephole optimizations such as algebraic simplification, reduction in
strength, and use of machine idioms are specifically related to conventional code optimization and
have no apparent meaningful analogy to the production system environment. Production systems,
after all, execute a relatively simple sequence of operators: test a set of symbolic structures, then
add or remove a symbolic structure to or from memory.

As previously discussed in the context of induction variables, the elimination of redundant
loads and stores is directly related to the elimination of temporarily used working memory elements
during the creation of macrorules. Redundant loads and stores occur when conventional code

generators naively create code such as

MOVE RO, A
MOVE A, RO.

Here, the second instruction can be removed because there is no label (thus it will only be
executed immediately after the previous instruction) and RO is guaranteed to already contain the
value of A. The redundant instruction is analogous to the make followed by remove in two
consecutive rules which can be combined. This combination allows for the removal of the actions.

Jumps over jumps, elimination of unreachable code, and rewriting multiple jumps (that is a
jump to a jump should be replaced by a jump straight to the second jump’s destination) are all
examples of peephole optimization involving the removal of dead code which results from a naive
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code generation or the result of a previous application of another peephole optimization. This dead
code removal is demonstrated in the production system environment by the example provided in
the discussion of the elimination of induction variables. Creating macrorules results in dead code
when a working memory element is made and removed in the sequence of rule firings being
combined into one rule. The elimination of these actions provides an additional advantage to using
macrorules: not only does the resulting system have more parallelism and better performance due
to its fewer cycles and more effective work per cycle to be parallelized, unnecessary work is
extracted from the system as well.

Optimizing Conventional Code for Parallel Execution.

Many code optimization techniques have been adapted for the improved implementation of

code on parallel processors. Unfortunately, most of these optimization techniques rely heavily on

=data flow analysis which can be readily performed on convention code but which would be
difficult or impossible on production systems [Kuck er al. 1980]. Data flow analyses have been
applied to production systems [Moldovan 1984, Ishida and Stolfo 1984), but these studies have
been used to determine the data dependency between a pair of rules. This is useful for determining
whether two rules can be fired in parallel, but it cannot provide information about the overall
sequence of rule firings necessary for the application of the code optimizations described. An
important area of future research is the design of a knowledge engineering tool which would
provide a mechanism for the representation of the data flow of a production system. This external
data flow representation could be used to apply more optimization techniques to production
systems. In additon, the techniques presented in this methodology could be automatically applied
given the data flow description, instead of relying on the knowledge engineer to perform these
programming techniques by hand.

Two methods of optimizing conventional code for parallel execution are forall
transformations and pipelining [Padua er al. 1980]. These techniques are illustrative of the need
for data flow analysis for the application of these automatic optimizations. Both these techniques
are applied to detected for-loops in the source code. Forall transformations parallelize the code by
method similar to the creation of constrained copies of rules. A copy is made for each iteration of
the for loop constrained with its index variable being set to the value for one of the iterations. One
copy is allocated to each processor. Code is inserted to synchronize the processors so that no
statement is executed before another upon which it is dependent. Certain loops with little
dependency within their bodies execute extremely quickly, achieving a linear speedup on the
number of processors used. Others can achieve no speed up at all. For example, the following
loop would require synchronization between the two statements and thus its parallel execution time
would be the same as its sequential time.
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for (i=l;i<=n;i++) |
ali] = b(i-1]) + 2;
b(i] = c(i] + 1;
}

[

However, if the two statements are reversed (yielding the same functionality) distributing the
n iterations over n processors, using the forall transformation would result in an execution time of
2 units (each statement requiring 1 unit time) thus achieving a linear speedup.

Pipelining for loops distributes the m individual statements of the body of a loop over m
processors, placing synchronization code where appropriate. Using the above example, the two
statements are not dependent on each other within one iteration. However, the first statement is
dependent on the second statement of the previous iteration. Thus, pipelining this code into two
processors would result in a speedup of slightly less than linear (due to the first cycle only
executing the second statement and every subsequent cycle executing both the first statement of one
teration and the second statement of the previous iteration). However, this linear speedup is
proportional to the number of statements in the loop (only 2) whereas the forall transformation with
the statements reordered would result in a linear speedup proportional to the number of iterations
(possibly very large). Pipelining is vaguely reminiscent of using macrorules in that operations
from a set of distinct cycles are combined into one cycle. If these macrorules were themselves
distributed, the analogy would be stronger.

Research on the parallelization of conventional code has provided a set of measurements
which can be used to determine speedup, efficiency, utilization, and redundancy in parallel
versions of programs [Kuck er al. 1974]. These techniques will be used and adapted in the
measurments of parallelism in production systems.

Algorithm Optimizarion.

The conventioan! code optimization technique with the most impact is algorithm optimization.
Using a better algorithm can provide improvements much greater than those achievable by a
compiler. The replacement of an n? sorting routine with an n log n one provides a speed
improvement far beyond that available from the conventional code optimization techniques
described so far. The methodology for writing production systems and the tools for creating
constrained copies of culprit rules can have effects on performance which are dramatic. This is
mostly due to the techniques being more closely related to algorithm optimization than other code
optimizations.

The algorithmic changes are the introduction of hash partitioning when using constrained
copies of culprit rules, the use of parallelism to handle more matching concurrently, and the
provision of more concurrently available matching by the collapse of the match of several cycles
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into one by multiple rule firing and using macrorules. These benefits provide substantial

performance improvements and increased parallelism in production system execution.

9. Measurements

In addition to the qualitative discussions on the merits of the methodology and techniques,
empirical studies will be performed in order to validate the techniques’ effects on performance and
parallelism. A series of measurements will be applied to the execution of several expert systems to

assess the improvements due to the use of the techniques. Five systems written without the benefit

of the methodology will be rewritten semi-automatically (see Figure 2) using the techniques

described. Also, two large commercial systems written according to the guidelines for rule
independence and external control structures will be tested with and without the additional use of

-copy/constraining and using macrorules.

Each of the above systems will be run in an OPS5 environment altered so as to collect
information on the number of tests (selection and join) performed per rule in each cycle. From this
data, assuming on¢ processor per rule, measurements will be taken to determine overall
performance and amount of parallelism. Several measurements will be applied including the

following two in order to support the desired resulits.

+ The ratio of the maximum number of tests over all the rules in each cycle to the
average number of tests per rule will provide insight on the degree of
parallelism. The closer the value is to 1, the more balanced the execution is.

« The sum over all the cycles of the time required to perform the maximum
number of tests over all the rules in the cycle plus conflict resolution time of the
cycle will be an indicator of overall performance. Smaller values will indicate

improved performance.

There are no existing standards for measuring the quantities described. A research topic itself
is the development of set of measures for evaluating and comparing parallelism in programs. This
issue will be addressed by providing several alternative measures and discussing the implications
of each. Other measurements which will provide insight on parallelism and performance will be
investigated, especially those which have been demonstrated as useful in determining the

effectiveness of parallelizing conventional code.
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Figure 2. Rewriting existing systems is accomplished by manual analysis and
the application of automatic tools.

10. Case Study: Homex

Homex is an expert system developed by Alexander Pasik and Andrew Lowry at Fifth
Generation Computer Corporation for Home Insurance Company. Homex underwrites (evaluates
risk) of new home owner insuraqcc policies specifying whether the company should insure the
home and, if so, whether certain additional criteria are required. The system was written using the
methodology described: rule independence was maintained when possible, table-driven rules were
used, explicit control knowledge among rule sets was represented separately (albeit still in OPS35),
and rules which could be combined into macrorules or copy/constrained have been identified. The
architecture of Homex, the experiences which concluded in its completion, and the empirical
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analysis of its performance will be discussed. Homex will also be compared to other systems built
with and without the methodology described.

11. Conclusions

Although production systems were originally introduced for artificial intelligence
programming because of the flexibility they provide for incremental development, many systems
have specifically voided this advantage by embedding explicit control knowledge. This has yielded
systems which are very difficult to maintain and debug because of the extensive interdependency of
the rules. No longer can a developer add new rules at will without completely understanding all of
the embedded control structures in these interdependent rule systems. In addition, this style has
contributed greatly to the apparent minimal amount of parallelism in the systems. The
methodology which will be described and evaluated will provide a mechanism for the construction
of better production systems. Also, methods and tools will be developed which will help in the
construction of these systems as well as the rewriting of existing systems.

The substantial pessimism concerning the parallelization of production systems will be
addressed by providing solutions to the problems of few affected rules, poor load balance, and few
changes in working memory per cycle. The copy and constrain method serves to load balance as
well as extract additional parallelism from existing, sequentially written production systems. The
speed improvements obtained using this method alone were measured over eight-fold. The
advantages of this technique stem from the reduction in both total number of join tests performed,
maximum number of join tests per cycle, and the decrease in the variability between rules of the
number of join tests required. Overall, many more selection tests are performed because of the
proliferation of new rules, but each can be processed in parallel. This parallelization reduces the
selection test overhead. Even on sequential implementations, however, systems plagued with large
numbers of required join tests exhibit improved performance in spite of the added selection tests.

The low-level parallelism provided by match algorithms and enhanced by creating
constrained copies of culprit rules is the first step in extracting more parallelism from production
systems. The techniques of multiple rule firing of independent rules enables even more work to be
performed in parallel. Also, by analyzing possible execution paths of production systems, rules
can be rewritten into macrorules which provide an even greater degree of parallelism by reducing
the number of execution cycles while increasing the amount of parallelism available in each cycle.

Although more methods may exist for the optimization of production systems for parallel
execution, the techniques described each address the issues as presented by Gupta. Few changes
to working memory per cycle is addressed by multiple rule firing and using macrorules; few
affscted productions per working memory change is addressed by creating more rules via
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copy/constrain and increasing the number of selection tests by using macrorules: balancing the load
among processors is addressed by creating constrained copies of culprit rules,

b
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