Approximate String Matching
on the DADO?2 Parallel Computer'

Toshikatsu Mori 2
and
Salvatore J. Stolfo

Department of Computer Science
Columbia University
New York, NY 10027
CUCS-361-88
January 22, 1988

Abstract

This paper prescnts an approximate string matching algorithm on the 1023-processor parallel
computer DADO2. To allow proximity in matching between the text and search pattem, the
dyrsmic programming method is used as the matching algorithm. This paper includes timing
ri:c asurements and comparison with a conventional sequential computer (VAX). The results
show s’ sificant speedup over the sequential computer.

1. This research was conducted as part of DADO project. It has been supported by the Defense Advanced Research
Projects Agency under contract NOOO39-84-C-0165, and the New York State Science and Technology Foundation

under contract NYSSTFCA'1'(84)-15, as well as by grants from DEC, Hewlett Packard, IBM, AT&T, Intel, and
Valid Logic Systems.

2. Visiting from Processor Engineering Department, Second Office Automation Division, NEC Corporation.
Address: 1-10, Nisshincho, Fuchu, Tokyo, 183 Japan. Phone number: 011-81-423-33.1545

CONTENTS

1. Introduction.......... 1

2. Approximate String
1 £1061 11111 R I R UL 1

3. The DADO Machine and Programming
ENVITONMENL......cirieeerencersssremssesssncssssssissasssanssas 2
3.1 PE Configuration and Operation
MOME. cvvevvreeeiseresrerseessercssessassrensansssssssissessanessaniesasseses 2
3.2 COMMUINCALON. 11eeevererseereureresssrrnsensssssssessisrseniasssemstsst ersmsersasi s shstscrshssm st s st st 2
3.3 Host v

3.4 LANGUAZES. covuveeneseveneeressesasssssssstessiasissssasesssss st s sn s s S E Sh s 3

DADO....ccciiereciieiiinnnanrasenssnssseesss 3
4.1 ALLOCAUON PRASE. ouovuercmsiniversrrsristsrssseessssstasssstass s ar st da s s s e 3
4.2 Martch
PN T003 5111 1 DUV R R R L AR RS 4
4.3 Time Complexity of the
4.4 REPOTL PRESE. ..cucuveimsiriinisirsresesssssesssonse st st ieasas s s st st s s s anaE st s s sr s s s s s 5

5. Compute

CONCIUSION . cuveeeeireisieieieiecssisesssessesseresessaressossssssssenssssssssssssnsannassases 10

Appendix A —

LIST OF FIGURES

Figure 1. Data Partition for

Figure 2. Basic Dynamic Programming

Figure 3. Match Algorithm on

Figure 4. Computing Speedup by number of PEs (100 Kb text, 0

Figure 5. Normalized Compute Time of DADO (1023

Figure 6. Alternative Match

- -

LIST OF TABLES

TABLE 1. Compute Time of DADO and VAX (1 Kb

- iii -

1. Introduction

The purpose of approximate string matching (see for example [1]) is to find instances of a
search pattern in a symbol structure where some differences between the pattern and the structure
are allowed. It is useful in "free text" retrieval systems that must be sensitive to typographical
errors and abbreviations. It is also of great practical importance in speech recognition systems
that match the symbolic output of an acoustic processing step against many potential utterances.
The acoustic processes are typically error prone, admitting representations that approximate the
actual utterance. Hence the search process must allow for omitted, extraneous, or transformed
symbol structures (see [2] for examples).

The common characteristic of these problems is clear; the search pattern cannot be found
simply by direct character comparisons and searching must allow for a number of differences
when comparing the pattern to various strings within the text. This characteristic invalidates the
efficient approaches to searching that depend upon static data structures (inverted files of indices
of symbols appearing in the text, for example). The best known approaches to solving this
problem are based upon completely scanning the text using dynamic programming as the primary
search strategy. In this paper we consider the parallelization of this task and measure the
effective speedup that parallelism offers in the solution to this problem.

2. Approximate String Matching
Approximate string matching may be demonstrated by the following example.

Consider the problem of finding matches in the text "COLUMBIA" for the pattem
"COLKUBYA". One possible correspondence between the two strings is as follows.
position: 1234567839

text: C L UMBTIA
C L

o)
pattemn: OLKU BYA

Here, we can observe three types of differences:

(a) Insertion: a character of the pattern corresponds to no character in the text.
(position 4)

(b) Deletion: a character of the text corresponds to no character in the pattern.
(position 6)

(c) Substitution: a character of the pattern corresponds to a different character of the text.
(position 8)

We assign a cost of one 10 each type of difference; non-unit cost may also be used as the
application demands. Under the unit cost assumption, the above pattern matches the text with
three differences. This is the minimal cost match. We use the term occurrence to refer to a
match, that is, an instance of the pattern in the text with some number of differences. In this
paper, we will consider the task of finding all occurrences of a pattem in a text where at most &
differences are allowed, for a given integer k. Our primary focus is on the parallelization of this
task on the DADQ2 parallel computer, described briefly in the next section. See Appendix A for
a detailed example actually performed on the DADO2.

3. The DADO Machine and Programming Environment

DADO is a tree-structured parallel machine in which the processing elements (PEs) are
interconnected in a complete binary tree [3] (4]. A 1023-PE model named DADO2 has been
working at Columbia University since 1985. Although DADO was originally designed as an
experimental machine to support Al expert systems implemented in rule-based form, it has been
found suitable for the high-speed execution of almost decomposable searching problems [S].
This section describes the DADO2 machine, its communication primitives, and the DADO
programming environment.

3.1 PE Configuration and Operation Mode. Each PE consists of an Intel 8751 8-bit
microprocessor, 16 Kb (kilobytes) random access memory (RAM) and a semi-custom I/O chip
for high-speed communication. Each PE contains its control program and user program in its 20
Kb local memory (4 Kb on-chip EPROM and 16 Kb RAM). Most instructions are executed in
one microsecond.

Each PE operates in one of two modes: SIMD (Single Instruction stream, Multiple Data
stream) or MIMD (Multiple Instruction stream, Multiple Data stream). A PE in SIMD mode
receives instructions (function addresses) broadcast by its nearest MIMD root ancestor. A PE in
MIMD mode is disconnected from its parent, and executes instructions independently of its
ancestors in the DADQ tree. If the MIMD PE finds a SIMD block in its program, the PE
broadcasts the address of the SIMD block to its SIMD descendants. The enabled SIMD
descendants execute this block in parallel with the MIMD PE.

3.2 Communication. The communication among PEs is done through the I/O chips. Data
transfer between the I/O chip and local memory is under microprocessor control. The basic
communication functions are:

(a) Broadcast. Send information to the descendant PEs,
(b) Resolve: Select one PE from a candidate set,
(c) Reporr: Send information from the selected PE to the root PE.

The resolve operation is a unique function of the DADO machine. As noted above, the
purpose of the resolve is to select a PE from a set of designated PEs. In general, this is
accomplished by finding the minimum value among all such values held by the set of designated
PEs. The minimum value will reach the MIMD PE, and the PE responsible for that value (and
only that PE) will know that it is the "winner” of the resolve.

As with the broadcast and report operations, software functions are built atop this hardware
circuit to provide a class of functions for resolving on higher-level values.

3.3 Host interface. The DADO machine functions as an attached processor controlled by a
conventional computer. The DADO has been used successfully with a range of hosts. In the
work reported here, a DEC VAX 11/750 served as the host processor and was connected to the
DADO with a DEC DR11-W parallel interface.

It is interesting to note that the DADO2 is comparable to a VAX 11/750 in size, number of
components, and age of their respective technologies. Hence, the VAX/DADO?2 configuration
should be considered twice the cost of a single VAX.

3.4 Languages. To date, three high-level languages are available on DADO2; parallel PL/M
(PPL/M), parallel C, and parallel PSL Lisp (PPSL) (6] (7). Each parallel language
accommodates a small set of parallel processing and communication primitives. The program
implemented in this paper was written in parallel C.

4. Implementation of approximate string matching on DADO

The abstract algorithm implemented on DADO is presented in this section. In this
implementation, the root PE of the DADO tree is in MIMD mode and the other PEs are in SIMD
mode. Hereafter we will use n for text size, m for pattern size, & for the number of differences,
and p for the number of PEs used in the DADO.

There are three phases to this implementation of the approximate string matching algorithm.
First is the allocation phase. The host processor sends both a search pattern and a text string to
the DADO. The DADO PEs partition the text among them. Next is the match phase. All PEs
execute the match algorithm and save pointers to the matches in their local memory. Last is the
report phase. The root PE collects these pointers and sends them to the host. The following
sections describe each of these phases in more detail.

4.1 Allocation phase. The host processor sends the search pattern and text to the root PE of
DADO, which then broadcasts both to all PEs. All PEs receive the entire search pattemn, but store
a different portion of the text,

The text is partitioned into contiguous and overlapped pieces and distributed over all
available PEs. The partitioned text in each PE is overlapped with that of the adjacent PEs, since
if the text were divided without overlap, a PE could not find the pattern that "straddles” across to
the adjacent PEs. By eliminating data dependencies in this manner, we improve performance by
avoiding additional communication among the PEs in the match phase. The additional work on
the host side and timing penalties are small; they are described below and in Section 4.3.

Figure 1. Data Partition for PEs

The minimum size of the overlap is m + k - 1 per PE, since the result of matching a string
starting from position i will always be determined before position i + m + k.

The host supports this text partitioning as follows.

First, an occurrence that is wholly contained within the overlapped area between two PEs is
reported by both PEs. We leave its handling to the host, though this duplication could be
eliminated in DADO.

Second, if the text is larger than the maximum text size possible in DADOY, the host breaks
the text into blocks (which overlap in exactly the same way as the text partitions on the DADO).
Each block is thus processed sequentially by DADO. The host translates the matching pointers
reported by the DADO into the appropriate text block(s) during the report phase. Note this
procedure places no limit on the maximum text allowable with the algorithm.

4.2 Match Algorithm. The match algorithm implemented in each PE is based on a well-known
dynamic programming method as shown in Figure 2. The matrix D;; stores the minimum
number of differences between a substring of the search pattem sy, ..., s; and any substring of
the text ending with ;. A straightforward implementation of this algorithm would require a
memory space of mn and involve an expensive multiply operation on the DADO PE for the array
address calculation. We modified this algorithm slightly for DADO as shown in Figure 3. The
idea of the optimization is that a row of D is calculated only with reference to the previous row,
thus memory space of 2n is enough for the calculation, provided each row is used alternately.
Since the first array index is always O or 1, no multiplication is involved in the address
calculation for the array D(2]{n]. Aside from the reduced memory requirements as noted above,
this results in a threefold improvement in compute time.

1. Initializaton
fij=0[0’l Do_/=0
fori=ltom D¢o=i
2. Computation
fori=ltom
forj=lw’l ifSl=‘j D,'J=mi’|(D[_!J+1. DlJ—l+ll Di-l.]—l)
if.?‘ *'I D‘\I =nu'n(D,-u + 1. Dl'.j-l + l. Df—l.]-l + 1)

3. Occurrence check
forj=1ton ifD, sk There is an occurrence ending at t;.

Figure 2. Basic Dynamic Programming Algorithm

4.3 Time Complexity of the Algorithm. The time complexity of the algorithm shown in Figure
2 is O(mn). From the data partition algorithm described in the previous section, it is clear that the

time complexity for DADQ is 0(% + (m+k)m). The first term shows the improvement from
data partitioning. The second term shows the penalty due to the overlapping data. Since the
second term does not include a factor of 1 and can be the same order as the first term, the

p
number of differences and especially the search pattern size can significantdy affect the search
time.

The performance improvement (ratio of compute time) against sequential machines with the
same algorithm is also estimated from the above time complexities as follows:

t the maximum text size in DADO is p (2048—(m +k—1)) bytes.

1. Initialization

forj=0ton Do;=0
2. Computation
Jori=1tom
if i = odd number Dyg=i
forj:]lon ifS;=lj D1J=”u.’l(Do,j+1.DlJ,l+1,Do_)‘-l)
éfs,-#t,- Dl,}=m’i"(D0,j+l'Dl,j-l+1-DO_j-I+1)
if i = even number Doo=i
forj=1‘0n l:fs;=‘i Do.jzmn(Dl_j+l'D0,j—l+l‘ Dl,j-l)
l:fS;#'j D0J=ml"l(DlJ+1. Do.j_1+1. Dl.j~1+1)
3. Occurrence check
if m = odd number
forj=1ton ifDy;<k There is an occurrence ending at t;.
if m = even number
forj=1twon ifDoj<k There is an occurrence ending at t;.

Figure 3. Match Algorithm on DADO

SEQUENTIAL MACHINE /DADO = 1 / C [i-{‘mT-l‘k]

where C is a constant giving the ratio of the computing power of the sequential machine to that of
a single PE for this algorithm.

Again, the first term of the equation is the improvement and the second term is the penalty.
The second term also shows the upper bound on performance improvement for a certain size text.
The performance will not improve beyond this value, regardless of the number of PEs.

4.4 Report phase. PEs that do not match are disabled. By use of the resolve function as
described above, one of the enabled PEs is selected. The root PE collects matching pointers from
the selected PE and sends them to the host. The selected PE is disabled, after it reports. This
process is repeated until all enabled PEs are disabled.

5. Compute Time

We have measured the compute time for the match phase with various parameters. This
section reviews the results and the procedures used. (Timing for the allocation and reporting
phases is discussed in Section 5.3.) We have also compared the time against the VAX 11/750,
running on 4.3 BSD UNIX? operating system. The same algorithm is used on both machines.
Another algorithm on the VAX will be discussed in Section 6.

For the purposes of the experiments reported here, we used text files ranging in size from 1
Kb o 1 Mb. An arbitrary string was selected from the text and modified appropriately to suit its
use as a search pattern.

t UNIX is a trademark of AT&T Bell Laboratories.

Timing on the DADO was accomplished using the timers built into the Intel 8751. Timer
resolution is one microsecond. The elapsed time is that of the slowest PE, since the MIMD PE
reads the timer after all PEs have finished a job. Timing on the VAX was accomplished using the
times function provided by UNIX. The "user time" returned by the times function was used, that
is, the total amount of time spent executing in user mode. Timer resolution is 1/60 second.

5.1 Compute time for small text portions. Let us start with text that is small enough to fit in
one PE, since we are interested in comparing the computing power of a single PE. Table 1 shows
the compute times for a text of 1 Kb with pattern sizes of 50, 150, and 250 bytes and using
DADO machines of 1 PE, 2 PEs, and a maximum number of PEs that varies according to pattern
size.

TABLE 1. Compute Time of DADO and VAX (1 Kb text)

Pattern | VAX DADO

size 111750 I PE 2 PEs 774 PEs 874 PEs 974 PEs
50 343 | 1.0(;8;) s9) | ¢ 1_930(71.11))) [20210]2?1 1.83)
150 102571 .0(1);5(358) J1.7§3€;02)) 16-812]5f3 97)
250 1709 (1.0(2)72(;53) (1 .6jjj(g.94) (4097fl(4239)

1. All times are in seconds. 2. Zero differences (i.e., exact matching). 3. [] : Computing speedup over single PE.
4.() : Computing speedup over the VAX 111750.

From Table 1, we see that the computing power of a single PE for this character-oriented
operation is approximately 58% that of the VAX 11/750. This number was much larger than we
expected since the VAX is a 32-bit machine with a rich instruction set, while the Intel 8751 is a
tiny 8-bit microcontroller. We assume the reasons for this are: (a) simple operators such as add,
comp, mov are used; and (b) most of the operands are characters. These factors make effective
use of the 8-bit architecture.

5.2 Compute time for larger text. We measured the system for larger text size. Tables 2 and 3
(for 100 Kb and 1 Mb texts, respectively) show changes in compute time over a range of total
differences. In each case, 1023 PEs are used.

We measured the relation between compute time and the number of PEs. Figure 4 shows
computing speedup over 100 PEs. By increasing the number of PEs, the text is partitioned more
finely. However, compute time in the overlapped area is constant for fixed values of m and k,
and have larger weight when the text partitions are small. Therefore the computing speedup is
diminished by these values. Using a 50-byte search pattern as an example, between 5% (100
PEs) and 33% (1023 PEs) of total compute time is spent for the calculation in the overlapping
area. This number becomes large for larger pattem sizes: it occupies about 71% for a pattern of

1 In these cases, the text size is so small that, even with maximal partitioning as described in Section 4.1, the number
of text partitions is less than the 1023 PEs physically available on the DADO?2.

250 bytes (1023 PEs), though DADO is nevertheless nearly 170 times faster than the VAX in that
case.

Secondly, we compare the compute times of the DADO and the VAX. Figure 5 shows the
experimental values for 29@:::_11'”18_ with 1023 PEs. Note that compute time increases with
pattern size as predicted by the time complexity model; the DADO compute time is proportional
to the pattern size (more precisely, to ﬂ;:i). The VAX compute time is almost constant at 68

microseconds.
TABLE 2. Compute Time of DADO and VAX (100 Kb text)
Pattern | VAX Number of Differences in DADO (1023 PEs)
size 111750 0 s 10 15 20 25
0.86 0.89 092 095 0.98 101
30 35046 {1.00] (407.0) | [0.97] (3933) | (0.94] (3813) | [091] (370.1) | [0.88] (359.1) | [0.86] (348.7)
150 1056.53 428 437 445 454 4.63 471
[1.00] (246.7) | [0.98] (241.9) | (0.96] (237.3) | [0.94) (232.7) | (093] (2284) | [091] (2242)
9.99 10.13 1028 1042 1056 1070
250 1693.98 [1.00] (169.6) | [0.99) (1672) | [097] (164.9) | [086] (162.6) | [0.95] (1604) | [0.93] (158.3)

1. All times are in seconds. 2. [] : Computing speedup over zero differences. 3.() : Computing speedup over the
VAX 111750.

TABLE 3. Compute Time of DADO and VAX (1 Mb text)

Pattern VAX Nuwnber of Differences in DADO (1023 PEs)
size 1141750 0 k) 10 15 20 25
50 354107 6.03 605 6.08 6.11 6.14 6.17

(1.00] (5782) | [1.00] (585.3) | [0.99] (5824) | [0.99] (579.6) | [0.98) (576.7) | (0.98) (574.0)

150 10498.11 19.75 19.84 19.92 2001 20.09 20.18

[100] (531.5) | [100] (529.1) | [0.99] (527.0) | [0.99] (524.6) | [0.98] (522.6) | [0.98] (5202)

250 | 1739396 35.75 35.89 36.03 3618 36.32 3646

[100] (4865) | [100] (484.6) | [0.99] (482.8) | [0.99] (480.8) | [0.98] (4789) | [0.98] (477.1)

1. All times are in seconds. 2. [] : Computing speedup over tero differences. 3.() : Computing speedup over the
VAX 111750.
5.3 I/O time. This section discusses the time required for the allocation and reporting phases of
our implementation.

5.3.1 Allocation phase. The time for the allocation phase is dominated by text loading time.

Prior to receiving text, each PE calculates a pointer to and size of the text partition. The root
PE broadcasts the text in its entirety to all PEs. Each PE tracks its position in the broadcast text
and stores into its local memory only that part of the text which is within its computation area;
other text is ignored.

We estimate the data transfer rate to be 19 Kb/sec for the timing over a range of data sizes. It
takes, for example, about 5 seconds to load a text of 100 Kb.

7~
p pattern size = 50
S
4 pattern size = 150
Computing Speedup
over 100 PEs 3 pattern size = 250
2=
1=
] 1] 1 | J
100 300 500 700 900 1100
Number of PEs in DADO

Figure 4. Computing Speedup by number of PEs (100 Kb text, 0 differences)

400 —
text size = 100 Kb
300 [~
Compute time
per 200
(pastern size)(text size) B text size = 500 Kb

100k text size = 1 Mb

| f | | i
50 100 150 200 250

Pattern Size [bytes]

Figure 5. Normalized Compute Time of DADO (1023 PEs)

5.3.2 Reporting phase. In the report phase, only PEs that find one or more occurrences are
enabled and take part in the operation. This phase has two steps.
Step 1: Each PE sends up the number of occurrences (2 bytes) to the root PE. The root PE

counts the total number of occurrences (i.e., size of the data transfer in the next step; 4
bytes), and sends it to the host.

Step 2 : Each PE sends up the text partition pointer (4 bytes) and offset (2 bytes) for each
occurrence. The root PE converts these values to absolute indices in the host’s text and
sends them to the host.

Assume that a total of s PEs found a total of r occurrences. Total timing ¢ in this phase will
be:

t=as+br+c

where a, b and ¢ are constants. From our measurement, these constants may be replaced as
follows:

t=14s+ 0.9r + 30 milliseconds

For example, if 10 PEs found 2 occurrences (a total of 20 occurrences), it will take 62
milliseconds to send the result to the host.

Note that the number of PEs in the machine does not affect the I/O time, since the
communication among the I/O chips is done in a pipelined manner, and because of the tree
structure, 2' PEs are in the same clock period where i is the depth from the root PE.

6. Alternative Match Algorithm

In this section, we discuss another algorithm for approximate string matching (8] [9] that
displays noteworthy speed improvement under certain circumstances. This algorithm is shown in
Figure 6. It uses the diagonals of the matrix D (see Figure 2) for its computation. In Figure 6,
L4, denotes the largest row i of D such that D; j=e and j —i =d. PREFIX is a data structure
where PREFIX; ; contains the length of the longest common prefix between the pattemn suffix
starting with s; and the text suffix starting with ¢;.

By preprocessing the text and the pattemn, and constructing a suffix tree, PREFIX can be
computed in constant time. Once such a data structure is constructed, the algorithm can be
computed in the time complexity of O(kn). The time complexity of the preprocessing step is
estimated O ((n+m) log min(&, m)), where « is the size of alphabet [9]. This algorithm is quite
good when k is small.

The amount of memory space required for preprocessing may limit the implementation of this
algorithm on the current DADO2. For the comparison between the VAX and DADO, we
implemented the algorithm on the VAX as follows. PREFIX is constructed as a two-dimensional
array, a straightforward implementation of the algorithm described above. Our implementation
of PREFIX is easy to construct, but has a large time complexity compared to the above estimate.
Thus, we discuss only the matrix compute time in Figure 6.

The normalized compute time (in this case, i’;‘%) on the VAX is about 150

-10-

microseconds. If a 1 Mb text is used, it will take 150 seconds for k = 0, while the compute time
on the DADO is 36 seconds for k = 0 and m = 250, which means that DADO performs faster
than the VAX. Note that compute time on the VAX is proportional to k. If k = 25, the VAX will
take an hour, but the compute time on the DADO is almost the same as when k = 0.

1. Initialization
ford=0ton + 1 Ly, =-1
ford=Ak+1)10-1 Lyyg-21 = -00; Lyg\q-11 =[d-1f

2. Compwtation and occurrence check
fore=0tok
ford=-eton
row=max(Ly,_y +1, Ly 100 Lo, +1)
Ly, =row + PREFIX 1) rows1+d
ifLg,sm There is an occurrence ending at t,, 4.

Figure 6. Alternative Match Algorithm

7. Conclusion

The parallel computer DADO2 shows significant speedup over the VAX computer, although,
in our implementation, compute time and its improvement against sequential computers are
dependent on the searching parameters. For example, in a search for a 250-byte pattern in a 1 Mb
text with 25 differences (10% of the search pattern), the DADO with 1023 PEs is over 400 times
faster than the VAX 11/750 in compute time, and nearly 200 times faster when text loading time
is included. It is worth pointing out that the timing results provided here are quite close to the
complexity estimates given in Section 4.3.

One important application area of approximate string matching is string search for text
retrieval systems. In previous research in parallel computers, Stanfill and Kahle reported free-text
search on the Connection Machinet [10]. Stone analyzed their work and pointed out that
"parallel query algorithms that do not use indexing may perform poorly relative to serial searches
with indexing [11]." However once the problem is extended to a more general problem such as
search with approximation, indexing is no longer adequate and parallel computers will allow
favorable speedup as compared to sequential computers,

The application area is not limited to text retrieval systems, since dynamic programming
techniques are central to a wide range of classical pattern matching tasks, as in speech recognition
and genetic sequence matching [12].

The results reported here therefore demonstrate one method of accelerating these tasks on
parallel hardware.

t The Connection Machine is a registered trademark of Thinking Machines Corporation.

-11 -

Acknowledgements

We would like to thank Mark D. Lemer, Russell C. Mills, and Leland Woodbury for their
help, encouragement and suggestions in various stages of this work.

(1]

[2]

3]

(4]

[51

[6]

(7]

(8]

(9]

(10]

(11]

(12]

References

Patrick A. V. Hall and Geoff R. Dowling, "Approximate String Matching", Computing Surveys,
Vol. 12, No. 4, Dec. 1980, pp. 381-402.

L.R. Rabiner and S.E. Levinson, "Isolated and Connected Word Recognition-Theory and Selected
Applications”, IEEE Transactions on Communications, Vol. COM-29, No. 5, May 1981, pp. 621-
659.

Mark D. Lerner, Gerald Q. Maguire Jr., and Salvatore J. Stolfo, "An overview of the DADO parallel
computer”, Proc. National Computer Conference 1985, pp. 297-306.

Salvatore J. Stolfo and Daniel P. Miranker, "The DADO Production System Machine”, Journal of
Parallel and Distributed Computing 3, 1986, pp. 269-296.

Salvatore J. Stolfo, "Initial Performance of the DADO?2 Prototype”, Computer, Vol. 20, No. 1, Jan.
1987, pp. 75-83.

Salvatore J. Stolfo, Daniel Miranker, and Mark D. Lerner, "PPL/M: The System Level Language for
Programming the DADO Machine”, tech. report, Dept. Computer Science, Columbia University,
Feb. 1984, (CUCS-104-84)

Michael van Biema, Mark D. Lemer, Gerald Q. Maguire Jr., and Salvatore J. Stolfo, "l PSL: A
Parallel Lisp for the DADO machine”, tech. report, Dept. Computer Science, Columbia University,
Feb. 1984, (CUCS-107-84)

Gad M. Landau and Uz Vishkin, "Intoducing Efficient Parallelism into Approximate String
Matching and A New Serial Algorithm”, Proc. 18-th ACM STOC, 1986, pp. 220-230.

Z. Galil and R. Giancarlo, "Data Structure and Algorithms for Approximate String Matching”,
Journal of Complexity, to appear.

Craig Stanfill and Brewster Kahle, "Parallel Free-Text Search on the Connection Machine System”,
Comm. ACM, Vol. 29, No. 12, Dec. 1986, pp. 1229-1239.

Harold S. Stone, "Parallel Querying of Large Database: A Case Study”, Computer, Vol. 20, No. 10,
Oct. 1987, pp. 11-21.

David Sankoff and Joseph B. Kruskal (editors), "Time Warps, String Edits, and Macromolecules:
the Theory and Practice of Sequence Comparison”, Addison-Wesley, Reading, USA, 1983.

-12-

Appendix A — Example

Here we present a sample session with one implementation of approximate string matching on the DADO2
machine; this implementation prints out all lines which contain approximate maitches. In the presentation below, we
have underlined the matching segments of each output line.

SEARCH PATTERN
"opendir"

TEXT STRINGt

"DESCRIPTION

Opendir opens the directory named by filename and associates a directory
stream with it. Opendir returns a pointer to be used to identify the
directory stream in subsequent operations. The pointer NULL is returned
if filename cannot be accessed, or if it cannot malloc(3) enough memory
to hold the whole thing.

Readdir returns a pointer to the next directory entry. It returns NULL
upon reaching the end of the directory or detecting an invalid seekdir

operation.

Telldir returns the current location associated with the named directory
stream.

Seekdir sets the position of the next readdir operation on the directory
stream. The new position reverts to the one associated with the directory
stream when the tell dir operation was performed. Values returned by
telldir are good only for the lifetime of the DIR pointer from which they
are derived. If the directory is closed and then reopened, the telldir
value may be invalidated due to undetected directory compaction. It is
safe to use a previous telldir value immediately after a call to opendir
and before any calls to readdir.

Rewinddir resets the position of the named directory stream to the
beginning of the directory.

Closedir closes the named directory stream and frees the structure
associated with the DIR pointer.”

OoUTPUT

k = 0 (exact match):

21:
k = 1:
2:
3:
21:
k= 2:
2:
3:
21:
27:

safe to use a previous telldir value immediately after a call to opendir
Opendir opens the directory named by filename and associates a directory
stream with it. Opepndir returns a pointer to be used to identify the

safe to use a previocus telldir value immediately after a call to opendir

Opendir opens the directory named by filename and associates a directory
stream with it. Opepdir returns a pointer to be used to identify the
safe to use a previcus telldir value immediately after a call to gpepdir
Closedir closes the named directory stream and frees the structure

t The. text is excerpted from "Unix Programmer's Manual: 4.3 BSD Virtual VAX-11 Version", University of
California, Berkeley, California 94720, April, 1986.

